JP2002145908A - Method for producing ethylene-based polymer - Google Patents

Method for producing ethylene-based polymer

Info

Publication number
JP2002145908A
JP2002145908A JP2000347451A JP2000347451A JP2002145908A JP 2002145908 A JP2002145908 A JP 2002145908A JP 2000347451 A JP2000347451 A JP 2000347451A JP 2000347451 A JP2000347451 A JP 2000347451A JP 2002145908 A JP2002145908 A JP 2002145908A
Authority
JP
Japan
Prior art keywords
polymer
polymerization
ethylene
polymerization vessel
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000347451A
Other languages
Japanese (ja)
Inventor
Akihiko Yamamoto
昭彦 山本
Takeshi Kitagawa
猛 北川
Yutaka Naito
豊 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2000347451A priority Critical patent/JP2002145908A/en
Publication of JP2002145908A publication Critical patent/JP2002145908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a polymer balanced in solid characteristics and melt flowability at high level in the usage of a blow molding by highly maintaining the productivity per polymerization vessel. SOLUTION: In producing an ethylene-based polymer by using two polymerization vessels connected in series in the presence of a highly active Ziegler's catalyst, the whole produced polymer is brought to have 2.0-3.5 dL/g intrinsic viscosity [η]w and, by controlling the temperature and the pressure of at least one of pressure reducing tanks connected to the two polymerization vessels in conditions of 50-80 deg.C and 30-100 KpaG pressure respectively, the polymer obtained in the pressure reducing tank having 7-15 dL/g intrinsic viscosity [η]f is brought to be included in 0.5-10 wt.% in the whole polymer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規なエチレン系
重合体の製造方法に関する。さらに詳しくは、ブロー成
形、特に50L以上の容器を成形する大型ブロー成形に
おいて、成形品の表面状態(肌)が滑らかとなる重合体
を与えることを特徴とするエチレン系重合体の製造方法
である。
[0001] The present invention relates to a method for producing a novel ethylene polymer. More specifically, the present invention relates to a method for producing an ethylene polymer, which provides a polymer having a smooth surface state (skin) of a molded product in blow molding, particularly in large blow molding for molding a container of 50 L or more. .

【0002】[0002]

【従来の技術】エチレン系重合体の主要な用途の一つで
あるブロー成形分野では、固体物性と溶融流動特性の双
方に優れた性能を持つエチレン系重合体を使用すること
が重要である。固体物性としては、剛性、耐衝撃性など
の機械的強度や、耐環境応力亀裂性(ESCR)などの
環境的強度が挙げられる。また、溶融流動性としてブロ
ー成形時に溶融体の垂れ下がり(ドローダウン)がな
く、得られる成形体の肉厚が均一で、内外表面が滑らか
であることが要求される。この種の重合体では、分子量
を高くすると固体物性は向上するものの、流動性が低下
することにより表面状態が悪化する。反対に、分子量を
低くすると流動性が向上して表面状態が良好となるが、
固体物性は低下する。このように相反する性質を持つ重
合体を得るにあたり、分子量を比較的高くして固体物性
を良好とした上で、分子量分布を広げて流動性を確保す
る手法が採られている。
2. Description of the Related Art In the field of blow molding, which is one of the main uses of ethylene-based polymers, it is important to use ethylene-based polymers having excellent properties in both solid physical properties and melt flow properties. Solid physical properties include mechanical strength such as rigidity and impact resistance, and environmental strength such as environmental stress crack resistance (ESCR). In addition, it is required that the melt has no sagging (drawdown) during blow molding, has a uniform thickness, and has smooth inner and outer surfaces. In this type of polymer, the solid state properties are improved when the molecular weight is increased, but the surface state is deteriorated due to a decrease in fluidity. Conversely, lowering the molecular weight improves the flowability and improves the surface condition,
Solid physical properties decrease. In order to obtain a polymer having such contradictory properties, a technique of increasing the molecular weight relatively to improve the solid physical properties and broadening the molecular weight distribution to secure fluidity has been adopted.

【0003】例えば、比較的分子量分布の広い重合体を
与えるフィリップス型触媒を用いたエチレン系重合体
は、溶融流動性の改善が見られ、ドローダウンがなく、
肌の良好な成形体を得ることができる。しかしながら、
分子量の増大および分子量分布の拡大ともに未だ不十分
なことから、ESCRが低いといった固体物性の面で、
依然欠点を持つ。
For example, an ethylene polymer using a Phillips type catalyst which gives a polymer having a relatively wide molecular weight distribution has an improved melt fluidity and has no drawdown.
A molded body having good skin can be obtained. However,
Since both the increase in molecular weight and the expansion of molecular weight distribution are still insufficient, in terms of solid physical properties such as low ESCR,
Still has drawbacks.

【0004】一方、チーグラー型触媒により得られるエ
チレン系重合体は、一般に分子量分布が狭く、ブロー成
形用途には適していない。この点を改善するため、チー
グラー型触媒を使用して複数の重合工程で分子量の異な
る重合体を生成し、それらを混合させて全体として広い
分子量分布の重合体を製造する方法が考えられ、多段重
合法として提案されている。
On the other hand, an ethylene polymer obtained with a Ziegler-type catalyst generally has a narrow molecular weight distribution and is not suitable for use in blow molding. In order to improve this point, a method of producing polymers having different molecular weights in a plurality of polymerization steps using a Ziegler-type catalyst and mixing them to produce a polymer having a wide molecular weight distribution as a whole may be considered. It has been proposed as a polymerization method.

【0005】例えば、特許第2712307号公報で
は、3つ以上の各重合器で得られる各成分の分子量およ
び生産比率を最終的に生産されるエチレン系重合体の分
子量である極限粘度[η]wに基づいて決定し、かつ各
成分のα−オレフィン含量を各成分の比率に基づいて決
定することにより、粘弾的性質を改善してブロー成形お
よび押出成形に適合性の高いエチレン系重合体を製造で
きることとしている。しかしながら、3つの重合器を使
用することによって得られる広い分子量分布を有するエ
チレン系重合体は、機械的強度を低下させる低分子量成
分を多く含むことにより、最終的に生産される分子量を
高くしても、50L以上の容器、なかでも100L以上
のプラスチックドラムに関しては樹脂自体に要求される
衝撃強度を満足することができず、容器の肉厚を厚くし
て重量によって強度を維持する必要があり、好ましくな
い。さらに、高純度薬品の保存に使用されるドラム用途
に対し、分子量分布を広くすることにより増加する低分
子量成分が、重合体から充填液に比較的溶出しやすいこ
とから、充填される液へ溶出する微粒子を低レベルとす
ることができず、好ましくない。
[0005] For example, in Japanese Patent No. 2712307, the molecular weight and production ratio of each component obtained in three or more polymerization reactors are determined by limiting viscosity [η] w which is the molecular weight of an ethylene polymer finally produced. And the α-olefin content of each component is determined based on the ratio of each component, thereby improving the viscoelastic properties to obtain an ethylene polymer having high compatibility with blow molding and extrusion molding. It can be manufactured. However, the ethylene-based polymer having a wide molecular weight distribution obtained by using three polymerization reactors has a high molecular weight finally produced by containing a large amount of low molecular weight components that reduce mechanical strength. However, for a container of 50 L or more, especially a plastic drum of 100 L or more, the impact strength required for the resin itself cannot be satisfied, and it is necessary to increase the thickness of the container and maintain the strength by weight, Not preferred. Furthermore, for drum applications used to store high-purity chemicals, low molecular weight components that increase by broadening the molecular weight distribution are relatively easy to elute from the polymer into the filling solution, so they elute into the filling solution. The resulting fine particles cannot be reduced to a low level, which is not preferable.

【0006】また、特公平6−99510号公報、特公
平6−99511号公報および特公平6−55912号
公報には、少なくとも3基の重合器からなる重合装置を
用いた多段階連続重合工程により、各重合器内でそれぞ
れ異なった極限粘度[η]のポリオレフィンを生成させ
るオレフィンの連続重合法において、該多段重合工程の
うち少なくとも1つの重合工程において、全重合工程で
重合される原料オレフィンの0.1〜5重量%を30℃
未満の温度で重合させて、極限粘度[η]Uが15dL
/g以上の超高分子量ポリオレフィンを生成させること
を特徴とするオレフィンの連続重合法が開示されてい
る。これらの方法では、分子量分布を広げることで、溶
融張力や溶融弾性を改善でき、ドローダウンを防止でき
る。しかしながら、極限粘度[η]15dL/g以上の
超高分子量体を製造することから、重合体中にブツやゲ
ルといったものが生成しやすく、良好な成形品表面状態
(肌)を得ることが難しい。また、重合器を3つ以上使
用することによる反応操作の煩雑性増加や重合器当たり
の生産性低下などの点で好ましくない。
Further, Japanese Patent Publication No. 6-99510, Japanese Patent Publication No. 6-99511 and Japanese Patent Publication No. 6-55912 disclose a multi-stage continuous polymerization process using a polymerization apparatus having at least three polymerization units. In a continuous olefin polymerization method for producing polyolefins having different intrinsic viscosities [η] in respective polymerization vessels, in at least one of the multi-stage polymerization steps, 0% of the raw olefin to be polymerized in the entire polymerization step is used. 0.1-5% by weight at 30 ° C
Polymerization at a temperature of less than 15 dL
A continuous polymerization method for olefins, characterized in that an ultrahigh molecular weight polyolefin of at least / g is produced. In these methods, the melt tension and melt elasticity can be improved by expanding the molecular weight distribution, and drawdown can be prevented. However, since an ultra-high molecular weight product having an intrinsic viscosity [η] of 15 dL / g or more is produced, it is easy to produce bumps and gels in the polymer, and it is difficult to obtain a good molded product surface state (skin). . Further, the use of three or more polymerization reactors is not preferable in terms of an increase in complexity of the reaction operation and a decrease in productivity per polymerization reactor.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、前記
問題点を解決するべく2つの重合器のみを用いて、反応
の操作性を損なうことなく重合器当たりの生産性を高く
維持しつつ、ブロー成形用途において固体物性と溶融流
動性を高い水準でバランスさせた重合体を製造する方法
を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems by using only two polymerization reactors while maintaining high productivity per polymerization reactor without impairing the operability of the reaction. Another object of the present invention is to provide a method for producing a polymer in which the solid properties and the melt fluidity are balanced at a high level in blow molding applications.

【0008】[0008]

【課題を解決するための手段】本発明者は上記目的を達
成するために鋭意検討を行った結果、直列に接続された
2基の重合器を用いて、各重合器で異なる分子量を有す
る重合体を製造する方法において、重合器に接続された
脱圧槽の条件を特定の範囲にする事によって、槽内で特
定分子量の重合体が特定の割合で製造でき、固体物性に
優れ、かつブロー成形品の肌が良好となることを見出
し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, using two polymerizers connected in series, each polymerizer has a different molecular weight. In the method for producing a coalescence, by setting the conditions of the depressurization tank connected to the polymerization vessel to a specific range, a polymer having a specific molecular weight can be produced in a specific ratio in the tank, and has excellent solid physical properties and excellent blown properties. It has been found that the skin of the molded article is good, and the present invention has been completed.

【0009】すなわち、本発明は、高活性チーグラー型
触媒の存在下、エチレンまたはエチレンと炭素数3〜2
0のα−オレフィンを直列に接続された2基の重合器を
用いて、各重合器で異なる分子量を有する重合体を製造
する方法において、得られる全重合体の極限粘度[η]
wが2.0〜3.5dL/gであり、2基の重合器にそ
れぞれ接続された脱圧槽の少なくとも1基の温度を50
〜80℃、圧力を30〜100KPaGの条件下に調節
することにより、その脱圧槽で得られる極限粘度[η]
fが7〜15dL/gである重合体が全重合体に対して
0.5〜10重量%含まれるようにすることを特徴とす
るエチレン系重合体の製造方法である。
That is, the present invention relates to a method for producing ethylene or ethylene and having 3 to 2 carbon atoms in the presence of a highly active Ziegler type catalyst.
In a method for producing polymers having different molecular weights in each polymerization vessel using two polymerization vessels in which 0 α-olefins are connected in series, the intrinsic viscosity [η] of all the resulting polymers is obtained.
w is 2.0 to 3.5 dL / g, and the temperature of at least one of the depressurization tanks connected to the two polymerization reactors is 50
By adjusting the pressure at ~ 80 ° C and the pressure at 30-100 KPaG, the intrinsic viscosity [η] obtained in the depressurization tank is obtained.
A method for producing an ethylene-based polymer, characterized in that a polymer having f of 7 to 15 dL / g is contained in an amount of 0.5 to 10% by weight based on the whole polymer.

【0010】本発明によるエチレン系重合体は、エチレ
ン単独重合体、またはエチレンと炭素数3〜20のα−
オレフィンからなるエチレン共重合体である。炭素数3
〜20のα−オレフィンとしては、例えば、プロピレ
ン、1−ブテン、1−ペンテン、1−ヘキセン、1−オ
クテン、1−デセン、1−エイコセン、4−メチル−1
−ペンテンなどが挙げられる。
The ethylene polymer according to the present invention is an ethylene homopolymer, or ethylene and α-α having 3 to 20 carbon atoms.
It is an ethylene copolymer composed of olefin. Carbon number 3
Examples of the α-olefin of -20 to -20 include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-eicosene and 4-methyl-1
-Pentene and the like.

【0011】高活性チーグラー型触媒としては、Mg、
Ti、ハロゲンを必須成分とする固体触媒成分(A)と
有機アルミニウム化合物(B)を主成分とする触媒が挙
げられる。固体触媒成分(A)の具体例としては、特開
昭50−51587号公報、特開昭56−155205
号公報、特開昭60−262802号公報、特開平4−
309505号公報、特開平7−41513号公報など
に記載の触媒成分が挙げられる。
As the highly active Ziegler type catalyst, Mg,
Examples of the catalyst include a solid catalyst component (A) containing Ti and halogen as essential components and a catalyst containing an organic aluminum compound (B) as main components. Specific examples of the solid catalyst component (A) include JP-A-50-51587 and JP-A-56-155205.
JP-A-60-262802, JP-A-4-262802
The catalyst components described in JP-A-309505 and JP-A-7-41513 are exemplified.

【0012】より具体的には、少なくとも金属マグネシ
ウムとアルコールの反応生成物とアルコキシチタンを含
有する均一溶液に、ハロゲン化アルミニウムを加えるこ
とで得られる固体触媒成分を用いるのが良い。ここで言
う均一溶液とは、マグネシウム成分、アルコール成分、
チタン成分が均質な状態で溶液中に溶解しているものを
指す。沈殿物や浮遊物等が存在した場合、ハロゲン化ア
ルミニウムと反応させても不均質な触媒しか得られず、
本発明の目的である流動性(肌)の良いエチレン共重合
体を得ることができない。固体触媒成分を調製する際の
それぞれの使用量は、マグネシウムとチタンの原子比が
1:0.05〜0.5、マグネシウムとアルミニウムの
原子比が1:2〜20の範囲となるように選ぶことが好
ましい。マグネシウム:チタンの原子比が上記範囲を外
れて小さい場合には、均一溶液を得ることが難しくな
る。逆に大きい場合には、エチレン系重合体中に多くの
チタンが含有されることになり、重合体が着色や変色な
どを起こすことや、ブロー成形容器から内容物へチタン
などが溶出して内容物の品質を悪化させることとなり好
ましくない。マグネシウム:アルミニウムの原子比が上
記範囲を外れて小さい場合には、触媒活性が不十分にな
ることや、得られる重合体の分子量分布が狭く、流動性
が悪くなる。逆に大きい場合には、分子量分布や組成分
布が広すぎるものとなり、重合時に非常に分子量の低い
重合体が生成し、熱や酸素に対する安定性が低下して各
種添加剤が必須となったり、エチレンとα−オレフィン
の共重合によって生成する短鎖分岐が重合体中に不均一
に分布し、ESCRの改善効果が望めなくなる。
More specifically, it is preferable to use a solid catalyst component obtained by adding an aluminum halide to a homogeneous solution containing at least a reaction product of metal magnesium and alcohol and alkoxytitanium. Here, the homogeneous solution is a magnesium component, an alcohol component,
It refers to a titanium component dissolved in a solution in a homogeneous state. If precipitates or suspended matters are present, only a heterogeneous catalyst can be obtained even when reacted with aluminum halide,
The object of the present invention is not to obtain an ethylene copolymer having good fluidity (skin). The amounts used for preparing the solid catalyst components are selected such that the atomic ratio of magnesium to titanium is in the range of 1: 0.05 to 0.5, and the atomic ratio of magnesium to aluminum is in the range of 1: 2 to 20. Is preferred. When the atomic ratio of magnesium: titanium is small outside the above range, it is difficult to obtain a uniform solution. Conversely, if it is large, a large amount of titanium will be contained in the ethylene-based polymer, causing the polymer to be colored or discolored, or the content of titanium to be eluted from the blow-molded container to the contents. The quality of the product is deteriorated, which is not preferable. When the atomic ratio of magnesium: aluminum is small outside the above range, the catalytic activity becomes insufficient, the molecular weight distribution of the obtained polymer is narrow, and the fluidity is poor. Conversely, if it is large, the molecular weight distribution and composition distribution will be too wide, a polymer with a very low molecular weight will be generated during polymerization, stability to heat and oxygen will be reduced, and various additives will be indispensable, Short chain branches generated by copolymerization of ethylene and α-olefin are unevenly distributed in the polymer, and the effect of improving ESCR cannot be expected.

【0013】有機アルミニウム化合物(B)としては、
当該分野で通常用いられる直鎖または分岐鎖の炭素数1
〜20のアルキル基を有するアルミニウム化合物が用い
られる。具体的にはトリメチルアルミニウム、トリエチ
ルアルミニウム、トリ−i−ブチルアルミニウム、トリ
−n−ブチルアルミニウム、イソプレニルアルミニウ
ム、トリ−n−ヘキシルアルミニウム、ジエチルアルミ
ニウムクロライドなどが挙げられる。
As the organoaluminum compound (B),
A straight or branched chain carbon number 1 usually used in the art.
Aluminum compounds having up to 20 alkyl groups are used. Specific examples include trimethylaluminum, triethylaluminum, tri-i-butylaluminum, tri-n-butylaluminum, isoprenylaluminum, tri-n-hexylaluminum, diethylaluminum chloride and the like.

【0014】本発明において、重合反応は直列に接続さ
れた2基の重合器を用いて行われる。両重合器は不活性
溶媒で満たされており、溶媒が連続的に供給されながら
一定の圧力に保たれた状態のもとに、原料としてエチレ
ンと炭素数3〜20のα−オレフィンとともに、分子量
調節剤として効果的でかつ取り扱いやすい水素が連続的
に供給され、一定の温度にて重合が行われる。触媒は、
第1重合器のみに連続して供給され、第2重合器には第
1重合器で生成した重合体を含むスラリーとして供給さ
れる。
In the present invention, the polymerization reaction is carried out using two polymerization units connected in series. Both polymerization reactors are filled with an inert solvent, and under a condition where the solvent is continuously supplied and kept at a constant pressure, together with ethylene and α-olefin having 3 to 20 carbon atoms as raw materials, Hydrogen, which is effective and easy to handle as a regulator, is continuously supplied, and the polymerization is carried out at a constant temperature. The catalyst is
It is continuously supplied only to the first polymerization reactor, and is supplied to the second polymerization reactor as a slurry containing the polymer generated in the first polymerization reactor.

【0015】重合反応は、次の条件下で行われる。すな
わち、重合温度20〜110℃、重合圧力150〜10
000KPaGの範囲内で、不活性溶媒として3〜20
個の炭素原子を有するアルカンまたはシクロアルカン、
例えば、プロパン、イソブタン、ペンタン、ヘキサン、
シクロヘキサンなどが用いられる。
[0015] The polymerization reaction is carried out under the following conditions. That is, a polymerization temperature of 20 to 110 ° C. and a polymerization pressure of 150 to 10
2,000 KPaG, 3 to 20 as an inert solvent.
Alkanes or cycloalkanes having carbon atoms,
For example, propane, isobutane, pentane, hexane,
Cyclohexane and the like are used.

【0016】重合条件は、両重合器において、それぞれ
異なる水素濃度やα−オレフィン濃度、さらには反応温
度が選択される。生成重合体の分子量は、重合器内の水
素濃度を適当量とすることで調節する。
As for the polymerization conditions, different hydrogen concentrations and α-olefin concentrations, and further, reaction temperatures are selected in both the polymerization reactors. The molecular weight of the produced polymer is adjusted by adjusting the hydrogen concentration in the polymerization vessel to an appropriate amount.

【0017】本発明において重合器で生成する重合体の
極限粘度を[η]r、生成比率をr%とし、各重合器の
重合体の極限粘度および全重合体に対する生成比率は、
それぞれ第1重合器が[η]r1、r1%、第2重合器
が[η]r2、r2%と表される。これと同様に、各脱
圧槽列で生成する重合体の極限粘度を[η]f、生成比
率をf%とし、各脱圧槽列の極限粘度および全重合体に
対する生成比率は、それぞれ第1脱圧槽列が[η]f
1、f1%、第2脱圧槽列が[η]f2、f2%と表さ
れる。これらにより最終的に得られる重合体の極限粘度
[η]wは、各装置で生成する重合体の極限粘度と生成
比率をかけ合わせたものの総和として得られ、次式で表
される。
In the present invention, the intrinsic viscosity of the polymer produced in the polymerization vessel is [η] r, the production ratio is r%, and the intrinsic viscosity of the polymer in each polymerization vessel and the production ratio to the total polymer are as follows:
The first polymerization vessel is represented by [η] r1, r1%, and the second polymerization vessel is represented by [η] r2, r2%. Similarly, the intrinsic viscosity of the polymer generated in each depressurization tank row is [η] f, the generation ratio is f%, and the intrinsic viscosity of each depressurization tank row and the generation ratio for all polymers are respectively One depressurization tank row is [η] f
1, f1%, and the second depressurization tank row are represented as [η] f2, f2%. The intrinsic viscosity [η] w of the polymer finally obtained from the above is obtained as the sum of the intrinsic viscosity of the polymer produced in each apparatus multiplied by the production ratio, and is expressed by the following equation.

【0018】[η]w=([η]r1×r1%+[η]
f1×f1%+[η]r2×r2%+[η]f2×f2
%)/100 100%=r1%+f1%+r2%+f2% 各重合器で生成する重合体の極限粘度、生成比率は、例
えば、第1重合器で低分子量成分を、第2重合器で高分
子量成分を重合する場合、低分子量成分の極限粘度
[η]rは0.6〜2.4dL/g、好ましくは0.9
〜2.1dL/gで、生成比率は低分子量成分の生成
比:高分子量成分の生成比で20:80〜80:20、
好ましくは40:60〜60:40で製造する事が望ま
しい。このとき、第2重合器で重合する高分子量成分の
極限粘度[η]rは3.2〜5.0dL/gとなる。低
分子量成分の極限粘度が上記範囲より大きい場合には、
成形時に溶融樹脂の流れが悪く、成形体の肌が悪くなっ
たり、成形サイクルが長くなり、好ましくない。また、
低分子量成分の極限粘度が上記範囲より小さい場合に
は、耐衝撃性などの機械強度が低下し、好ましくない。
[Η] w = ([η] r1 × r1% + [η]
f1 × f1% + [η] r2 × r2% + [η] f2 × f2
%) / 100 100% = r1% + f1% + r2% + f2% The limiting viscosity and the production ratio of the polymer produced in each polymerization vessel are, for example, low molecular weight component in the first polymerization vessel, high molecular weight in the second polymerization vessel. When the components are polymerized, the intrinsic viscosity [η] r of the low molecular weight component is 0.6 to 2.4 dL / g, preferably 0.9 dL / g.
2.12.1 dL / g, and the production ratio is 20:80 to 80:20 in terms of the production ratio of low molecular weight components: the production ratio of high molecular weight components.
Preferably, it is desirable to manufacture at 40:60 to 60:40. At this time, the intrinsic viscosity [η] r of the high molecular weight component polymerized in the second polymerization vessel becomes 3.2 to 5.0 dL / g. When the intrinsic viscosity of the low molecular weight component is larger than the above range,
The flow of the molten resin during molding is poor, the skin of the molded body is deteriorated, and the molding cycle is undesirably long. Also,
If the intrinsic viscosity of the low molecular weight component is smaller than the above range, the mechanical strength such as impact resistance is reduced, which is not preferable.

【0019】第1重合器で高分子量成分を、第2重合器
で低分子量成分を重合する場合、高分子量成分の極限粘
度[η]rが3.0〜6.0dL/g、好ましくは3.
2〜5.0dL/gで、生成比率は20:80〜80:
20、好ましくは40:60〜60:40で製造する事
が望ましい。[η]rが上記範囲より小さい場合、耐衝
撃性などの機械強度が低下し、また、[η]rが上記範
囲より大きい場合、成形時に溶融樹脂の流れが悪く、成
形体の肌が悪くなったり、成形サイクルが長くなり、好
ましくない。
When the high molecular weight component is polymerized in the first polymerization reactor and the low molecular weight component is polymerized in the second polymerization reactor, the intrinsic viscosity [η] r of the high molecular weight component is 3.0 to 6.0 dL / g, preferably 3 to 6.0 dL / g. .
2 to 5.0 dL / g, and the production ratio is 20:80 to 80:
It is desirable to manufacture at 20, preferably 40:60 to 60:40. When [η] r is smaller than the above range, mechanical strength such as impact resistance is reduced, and when [η] r is larger than the above range, the flow of the molten resin during molding is poor and the skin of the molded article is poor. Or the molding cycle becomes longer, which is not preferable.

【0020】低分子量成分の生成比が、上記の範囲より
小さい場合、ブロー成形品のピンチオフ部分の融着強度
が弱くなり、落下などによる衝撃によってピンチオフ部
分から成形体が破壊しやすくなり好ましくない。また、
低分子量成分の生成比が上記範囲より大きい場合、成形
時に溶融樹脂の流れが悪く、成形体の肌が悪くなり好ま
しくない。
If the production ratio of the low molecular weight component is smaller than the above range, the fusion strength of the pinch-off portion of the blow-molded article becomes weak, and the molded product is easily broken from the pinch-off portion by impact due to dropping, which is not preferable. Also,
When the production ratio of the low molecular weight component is larger than the above range, the flow of the molten resin during molding is poor, and the skin of the molded body is unfavorably deteriorated.

【0021】第1重合器から排出される重合体を含むス
ラリーは、重合器に直接接続された脱圧槽とよばれる装
置に連続して供給される。ここで、スラリー中に存在す
る未反応のモノマーおよび水素を接続する第2重合器も
しくは後処理工程に供給する前に脱圧・除去する必要が
ある。同様に、第2重合器から排出される重合体を含む
スラリーは、重合器に直接接続された脱圧槽とよばれる
装置に連続して供給される。ここでも、スラリー中に存
在する未反応のモノマーおよび水素を接続する後処理工
程に供給する前に脱圧・除去する必要がある。
The slurry containing the polymer discharged from the first polymerization vessel is continuously supplied to a device called a depressurization tank directly connected to the polymerization vessel. Here, it is necessary to depressurize and remove the unreacted monomer and hydrogen present in the slurry before supplying them to the second polymerization reactor or the post-treatment step for connecting. Similarly, the slurry containing the polymer discharged from the second polymerization vessel is continuously supplied to a device called a depressurization tank directly connected to the polymerization vessel. Also here, it is necessary to depressurize and remove the unreacted monomer and hydrogen present in the slurry before supplying them to the post-treatment step for connecting.

【0022】炭素数3〜20のα−オレフィンは、固体
物性として要求される耐環境応力亀裂性(ESCR)を
改善するために、高分子量成分の重合体を製造する重合
器に供給することが好適である。かかるコモノマーを低
い水素濃度で運転を行う重合器に添加することとなる。
The α-olefin having 3 to 20 carbon atoms may be supplied to a polymerizer for producing a polymer having a high molecular weight component in order to improve environmental stress cracking resistance (ESCR) required as solid physical properties. It is suitable. Such a comonomer would be added to a polymerization vessel operating at a low hydrogen concentration.

【0023】また、別のケースとしては、比較的低分子
量の重合体を得る重合器においては、水素を高い濃度で
運転を行う場合がある。
Further, as another case, a polymerizer for obtaining a polymer having a relatively low molecular weight may be operated at a high concentration of hydrogen.

【0024】以上の条件に反して、第1重合器から排出
されたスラリーを未反応モノマーの脱圧・除去の操作を
せずに第2重合器に送ってしまうと、第2重合器に持ち
込まれた過剰なモノマーにより、第2重合器内の組成を
所望のものに管理することができない。
Contrary to the above conditions, if the slurry discharged from the first polymerization reactor is sent to the second polymerization reactor without depressurizing and removing the unreacted monomer, the slurry is brought into the second polymerization reactor. The composition in the second polymerization vessel cannot be controlled to a desired one due to the excess monomer.

【0025】さらに、重合器内のモノマー存在量を推測
して重合体の物性値の管理を行うにあたり、脱圧した重
合器内の未反応ガスの組成を測定する上においても、脱
圧を行う必要がある。
Further, when controlling the physical properties of the polymer by estimating the amount of monomer present in the polymerization vessel, depressurization is also performed in measuring the composition of the unreacted gas in the depressurized polymerization vessel. There is a need.

【0026】脱圧槽本体にはスラリー中の重合体の沈降
防止とともに、脱圧を容易にする目的で撹拌機を有し、
さらに重合体を含むスラリーを循環させる循環ラインと
ポンプを付帯している。また、少なくとも1基が脱圧槽
として重合器に対して直列に接続されており、2基以上
により直列もしくは並列に接続して槽列として使用する
事ができる。
The depressurizing tank main body has a stirrer for the purpose of preventing sedimentation of the polymer in the slurry and facilitating depressurizing.
Further, a circulation line and a pump for circulating the slurry containing the polymer are provided. Also, at least one unit is connected in series to the polymerization vessel as a depressurizing tank, and two or more units can be connected in series or in parallel to be used as a tank line.

【0027】また、脱圧槽の運転条件として温度や圧
力、平均滞留時間の設定を変更することによって、脱ガ
ス効率を向上させることも可能であり、脱圧槽を直列に
複数基接続して、その圧力設定を順次低く設定すること
により、脱圧を容易に行う事ができる。
It is also possible to improve the degassing efficiency by changing the setting of temperature, pressure and average residence time as the operating conditions of the depressurizing tank, and connecting a plurality of depressurizing tanks in series. By sequentially setting the pressure lower, the pressure can be easily released.

【0028】以上のように、本来、未反応ガスの除去を
目的としている装置である脱圧槽を、本発明において
は、脱圧槽の条件をある特定の範囲とすることにより、
重合器のように原料を供給することなく、目的としてい
る脱圧を達成しつつ、所定の滞留時間で所望の分子量お
よび割合の重合体を得ることにより、成形品の肌を改良
しようとするものである。所望の重合体は、各重合器に
付帯する少なくとも1基の脱圧槽列にて得ることがで
き、第1重合器に付帯する第1脱圧槽列と反応条件の異
なる第2重合器に付帯する第2脱圧槽列にて得ることが
できる。得られる重合体は、[η]f1もしくは[η]
f2に相当し、[η]fで7〜15dL/g、好ましく
は10〜13dL/gであり、かつ全重合工程で重合さ
れる重合体全体に対して0.5〜10重量%、好ましく
は1.0〜5重量%が温度50〜80℃、圧力30〜1
00KPaG下において得られるものである。このと
き、重合体を得る各重合工程に付帯する脱圧槽列のトー
タルの平均滞留時間は0.3〜1.5hrである。
[η]fや成分量が上記範囲より小さい場合には肌の改
良は見られず、[η]fや成分量が大きすぎる場合には
超高分子量成分によるゲルやブツといった外観上見劣り
するものとなり、好ましくない。
As described above, in the present invention, the depressurization tank, which is an apparatus originally intended for removing unreacted gas, is provided by setting the conditions of the depressurization tank to a specific range.
It aims to improve the skin of a molded product by obtaining a polymer of a desired molecular weight and ratio at a predetermined residence time while achieving a target depressurization without supplying raw materials as in a polymerization vessel. It is. The desired polymer can be obtained in at least one depressurization tank row attached to each polymerization vessel, and is supplied to a second polymerization vessel having different reaction conditions from the first depressurization tank row attached to the first polymerization vessel. It can be obtained in the accompanying second depressurization tank row. The obtained polymer is [η] f1 or [η]
f [eta] f is 7 to 15 dL / g, preferably 10 to 13 dL / g, and 0.5 to 10% by weight, preferably 0.5 to 10% by weight, based on the whole polymer to be polymerized in the entire polymerization step. 1.0-5% by weight at a temperature of 50-80 ° C and a pressure of 30-1
It is obtained under 00 KPaG. At this time, the total average residence time of the depressurization tank line accompanying each polymerization step for obtaining a polymer is 0.3 to 1.5 hr.
When [η] f or the amount of the component is smaller than the above range, no improvement in skin is observed, and when [η] f or the amount of the component is too large, the appearance is inferior such as a gel or butter due to an ultrahigh molecular weight component. Is not preferred.

【0029】本発明によるエチレン系重合体は、分子量
が極限粘度[η]w2.0〜3.5dL/gの範囲であ
る必要がある。この範囲を外れて小さい場合には、固体
物性が不十分で衝撃強度などが小さいものとなり、大き
い場合には溶融流動性が悪く、肌に滑らかさの無いブロ
ー成形体しか得られない。
The ethylene polymer according to the present invention is required to have a molecular weight in the range of intrinsic viscosity [η] w of 2.0 to 3.5 dL / g. If it is smaller than this range, the solid properties are insufficient and the impact strength is small, and if it is large, the melt fluidity is poor and only a blow molded article having no smooth skin can be obtained.

【0030】本発明においては、2基の重合器にそれぞ
れ接続された脱圧槽の少なくとも1基の温度を50〜8
0℃、圧力を30〜100KPaGの条件下に調節する
ことにより、極限粘度[η]fが7〜15dL/gであ
る重合体が全重合体に対して0.5〜10重量%含まれ
るようにしなければならない。これらの条件を満たすこ
とが、2つの重合器のみを用いて重合器当たりの生産性
を高く維持しつつ、ブロー成形用途において固体物性と
溶融流動性を高い水準でバランスさせた重合体を製造す
る上において重要である。その理由は明確ではないが、
温度が上記範囲を外れて低い場合や圧力が低い場合には
極限粘度[η]fが7〜15dL/gである成分がエチ
レン系重合体中に均質に分散されず、ブツ・ゲルとな
る。反対に、温度が上記範囲を外れて高い場合や圧力が
高い場合には極限粘度[η]fが7〜15dL/gであ
る成分を得ることが難しくなり、強度などの固体物性を
満足させることができなくなる。
In the present invention, the temperature of at least one of the depressurization tanks connected to the two polymerization reactors is 50 to 8
By adjusting the pressure at 0 ° C. and the pressure at 30 to 100 KPaG, a polymer having an intrinsic viscosity [η] f of 7 to 15 dL / g is contained in an amount of 0.5 to 10% by weight based on the whole polymer. Must be. Satisfying these conditions produces a polymer that balances solid properties and melt fluidity at a high level in blow molding applications while maintaining high productivity per polymerization unit using only two polymerization units. Important above. The reason is not clear,
When the temperature is out of the above range and the pressure is low, the component having the intrinsic viscosity [η] f of 7 to 15 dL / g is not homogeneously dispersed in the ethylene polymer, and becomes a gel. Conversely, if the temperature is outside the above range or the pressure is high, it is difficult to obtain a component having an intrinsic viscosity [η] f of 7 to 15 dL / g, and satisfy solid physical properties such as strength. Can not be done.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、本発明
によれば、(1)2つの重合器のみを用いて、反応の操
作性を損なうことなく、重合器当たりの生産性を高く維
持しつつ、ブロー成形用途において固体物性と溶融流動
性を高い水準でバランスさせた重合体を製造でき、
(2)本発明によって得られたエチレン系重合体をブロ
ー成形の用途に用いた場合、内外面の肌が滑らかな容器
を得ることができ、(3)成形時の熱等に対する安定性
が良好であるため、添加剤として熱安定剤や酸化防止剤
を加えることが必須とはならず、(4)ブロー成形容器
は、容器自体となる重合体にチタン成分等を極微量しか
含まず、かつ添加剤等を含ませないことが可能なため、
容器内の内容物へこれらの成分が溶出することがなく、
内容物の品質や純度を悪化させることがない。
As is apparent from the above description, according to the present invention, (1) using only two polymerization reactors, the productivity per polymerization reactor is maintained at a high level without impairing the operability of the reaction. While producing a polymer that balances solid physical properties and melt fluidity at a high level in blow molding applications,
(2) When the ethylene-based polymer obtained by the present invention is used for blow molding, a container having smooth inner and outer surfaces can be obtained, and (3) good stability against heat and the like during molding. Therefore, it is not essential to add a heat stabilizer or an antioxidant as an additive. (4) The blow-molded container contains only a trace amount of a titanium component or the like in a polymer serving as the container itself, and Since it is possible not to include additives etc.,
These components do not elute into the contents of the container,
It does not deteriorate the quality or purity of the contents.

【0032】[0032]

【実施例】以下に、本発明を実施例により詳細に説明す
るが、本発明はこれらの実施例によってなんら限定され
るものではない。なお、実施例および比較例における各
種物性試験は、次に示す方法にて行った。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples. Various physical property tests in Examples and Comparative Examples were performed by the following methods.

【0033】(1)メルトフローレート 2.16kgおよび21.6kg荷重によるメルトフロ
ーレート(MFRおよびHLMFR)は、JIS K−
7210(1995年)の条件4および条件7に従い測
定した。
(1) Melt flow rate The melt flow rates (MFR and HLMFR) under 2.16 kg and 21.6 kg loads are determined according to JIS K-
The measurement was performed according to the conditions 4 and 7 of 7210 (1995).

【0034】(2)極限粘度 柴山化学器械製作所の毛細管粘度自動測定装置SS−2
01H−2Tにより、135℃のオルトジクロロベンゼ
ン中で測定を行った。
(2) Intrinsic Viscosity Capillary Viscosity Automatic Measurement System SS-2 from Shibayama Chemical Instruments Co., Ltd.
The measurement was carried out in orthodichlorobenzene at 135 ° C. with 01H-2T.

【0035】(3)肌評価 本発明の効果の一つである溶融流動性の良さは、実際に
ブロー成形により50L以上の容器を成形し、その内外
面の肌を観察することで確認した。得られた重合体によ
る100Lのクローズタイププラスチックドラムの成形
を、日本製鋼所製NB80/P115型中空成形機によ
り、200〜230℃で射出圧力0.6MPaG、ブロ
ー時間120secにて行い、成形品の肌を目視にて確
認した。
(3) Evaluation of Skin The good melt fluidity, one of the effects of the present invention, was confirmed by actually molding a container of 50 L or more by blow molding and observing the skin on the inner and outer surfaces. Molding of a 100 L closed type plastic drum with the obtained polymer was performed using a NB80 / P115 type hollow molding machine manufactured by Nippon Steel Works at 200 to 230 ° C. at an injection pressure of 0.6 MPaG and a blow time of 120 sec. The skin was visually checked.

【0036】また、肌は溶融した重合体の流動と停止の
状態変化時の影響を大きく受けることから、キャピログ
ラフを用いた方法によっても確認した。エチレン系重合
体ペレットを190℃に温調させた東洋精機製作所製キ
ャピラリーレオメーターPMD−Cのダイスを取り除い
たバレルに15g充填し、一旦200mm/minで押
出した後に、押出し速度を0mm/minとして1分間
放置後、500mm/minの押出速度で押出した直後
の押出品に現れる肌の状態を観察した。
Further, since the skin is greatly affected by the flow of the molten polymer and the change in the state of stoppage, it was also confirmed by a method using a capillograph. The ethylene-based polymer pellets were filled at a temperature of 190 ° C. and the barrel of the capillary rheometer PMD-C manufactured by Toyo Seiki Seisakusho with the die removed was filled with 15 g, extruded once at 200 mm / min, and then extruded at 0 mm / min. After standing for 1 minute, the condition of the skin appearing on the extruded product immediately after being extruded at an extrusion speed of 500 mm / min was observed.

【0037】(4)ESCR JIS K−6760(1981年)の「定ひずみ環境
応力き裂試験」の測定法に従い測定した。
(4) ESCR Measured in accordance with the measuring method of “constant strain environmental stress crack test” of JIS K-6760 (1981).

【0038】(5)曲げこわさ JIS K−7106(1995年)の「片持ちばりに
よるプラスチックの曲げこわさ試験」の測定法に従い測
定した。
(5) Flexural stiffness The flexural stiffness was measured in accordance with the measuring method of "Plastic flexural stiffness test by cantilever beam" in JIS K-7106 (1995).

【0039】(6)シャルピー衝撃値 JIS K−7111(1996年)の「シャルピー衝
撃強さ試験」の測定法に従い測定した。
(6) Charpy impact value Measured according to the measuring method of "Charpy impact strength test" of JIS K-7111 (1996).

【0040】実施例1 (1)固体触媒成分(A)の調製 攪拌装置を備えた10Lのステンレス製オートクレーブ
に、i−プロパノール108.2g(1.80モル)と
n−ブタノール 134.6g(1.82モル)を入
れ、これにヨウ素2.0g、金属マグネシウム粉末40
g(1.65モル)およびチタンテトラブトキサイド2
24.1g(0.66モル)を加え、さらにヘキサン
2.0Lを加えた後、80℃まで昇温し、発生する水素
ガスを排除しながら窒素シール下で1時間攪拌した。引
き続き120℃まで昇温して1時間反応を行い、Mgと
Tiを含む均一溶液を得た。オートクレーブの内温を4
5℃に保ち、ジエチルアルミニウムクロライドの30%
ヘキサン溶液1.32kg(3.3モル)を1時間かけ
て加えた。すべてを加えた後、60℃で1時間攪拌し
た。次に、メチルヒドロポリシロキサン(25℃におけ
る粘度30センチストークス)197.0g(ケイ素
3.3グラム原子)を加え、還流下に1時間反応させ
た。45℃に冷却後、i−ブチルアルミニウムジクロラ
イドの50%ヘキサン溶液2.81kg(9.1モル)
を2時間かけて加えた。すべてを加えた後、70℃で1
時間攪拌を行い、Ti含量11wt%の固体触媒成分
(A)を得た。得られた固体触媒成分(A)はヘキサン
を用いて残存する未反応物および副生成物を除去した
後、ヘキサンスラリーとして次の重合工程に用いた。
Example 1 (1) Preparation of solid catalyst component (A) In a 10 L stainless steel autoclave equipped with a stirrer, 108.2 g (1.80 mol) of i-propanol and 134.6 g (1) of n-butanol were added. .82 mol), 2.0 g of iodine and 40 metallic magnesium powder
g (1.65 mol) and titanium tetrabutoxide 2
After adding 24.1 g (0.66 mol) and further adding 2.0 L of hexane, the temperature was raised to 80 ° C., and the mixture was stirred for 1 hour under a blanket of nitrogen while excluding hydrogen gas generated. Subsequently, the temperature was raised to 120 ° C., and the reaction was carried out for 1 hour to obtain a homogeneous solution containing Mg and Ti. Set the internal temperature of the autoclave to 4
Keep at 5 ° C, 30% of diethylaluminum chloride
1.32 kg (3.3 mol) of a hexane solution was added over 1 hour. After adding all, the mixture was stirred at 60 ° C. for 1 hour. Next, 197.0 g (3.3 g atom of silicon) of methylhydropolysiloxane (viscosity of 30 centistokes at 25 ° C.) was added, and the mixture was reacted under reflux for 1 hour. After cooling to 45 ° C., 2.81 kg (9.1 mol) of a 50% hexane solution of i-butylaluminum dichloride.
Was added over 2 hours. After adding all, at 70 ° C 1
The mixture was stirred for an hour to obtain a solid catalyst component (A) having a Ti content of 11 wt%. The obtained solid catalyst component (A) was used for the next polymerization step as a hexane slurry after removing remaining unreacted substances and by-products using hexane.

【0041】(2)重合 内容積370Lの第1重合器に、脱水精製したヘキサン
183L/hr、有機アルミニウム化合物(B)として
トリ−i−ブチルアルミニウムを18mmol/hr、
上記固体触媒成分(A)を0.79g/hrの速度で連
続的に供給し、重合内容物を所要速度で排出しながら、
85℃においてエチレンを20.3kg/hrの速度で
供給し、エチレン濃度1.56wt%、水素を対エチレ
ン濃度比0.269mol/molに保ち、全圧2.9
MPaG、平均滞留時間1.8hrの条件下にて満液状
態で連続的に第1段の重合を行った。第1重合器から直
接サンプリングを行った重合体を含むスラリーをろ過
し、乾燥後に得られたパウダーの[η]r1は0.89
dL/gであった。第1重合器で得られた重合体を含む
ヘキサンスラリーは、圧力59KPaG、温度70℃、
平均滞留時間0.6hrの1基の脱圧槽に連続的に送ら
れ、未反応の水素およびエチレンをフラッシュさせた
(第1段における重合体のMFRは14.6g/10m
in、[η]f1は0.92dL/g)。その後、重合
体を含むヘキサンスラリーを内容積545Lの第2重合
器に導入し、固体触媒成分およびアルキルアルミニウム
は追加せず、ヘキサン113L/hrで供給し、重合器
内容物を所要速度で排出しながら、80℃においてエチ
レンを20.7kg/hrの速度で供給し、エチレン濃
度0.75wt%、水素を対エチレン濃度比0.033
mol/molに保ち、全圧2.0MPaG、平均滞留
時間1.6hrの条件下に第2段重合を行った。第2重
合器から直接サンプリングを行った重合体を含むスラリ
ーをろ過し、乾燥後に得られたパウダーのHLMFRは
11.3g/10min、[η]r2は2.11dL/
gであった。第2重合器からのスラリーは、1基の脱圧
槽にて圧力59KPaG、温度70℃、平均滞留時間
1.0hrで、未反応の水素、エチレンをフラッシュさ
せた後、分離、乾燥工程を経て、HLMFRが9.8g
/10min、[η]w(最終重合体の極限粘度)が
2.24dL/g、Ti含量1.9ppmの重合体粉末
を得た。
(2) Polymerization In a first polymerization vessel having an inner volume of 370 L, 183 L / hr of dehydrated and purified hexane, 18 mmol / hr of tri-i-butylaluminum as an organoaluminum compound (B),
While continuously supplying the solid catalyst component (A) at a rate of 0.79 g / hr and discharging the polymerization content at a required rate,
At 85 ° C., ethylene was supplied at a rate of 20.3 kg / hr, the ethylene concentration was maintained at 1.56 wt%, hydrogen was maintained at an ethylene concentration ratio of 0.269 mol / mol, and the total pressure was 2.9.
The first-stage polymerization was continuously performed in a liquid-full state under the conditions of MPaG and an average residence time of 1.8 hr. The slurry containing the polymer sampled directly from the first polymerization vessel was filtered, and the [η] r1 of the powder obtained after drying was 0.89.
dL / g. The hexane slurry containing the polymer obtained in the first polymerization vessel was pressure 59 KPaG, temperature 70 ° C,
It was continuously sent to one depressurization tank with an average residence time of 0.6 hr to flush unreacted hydrogen and ethylene (the MFR of the polymer in the first stage was 14.6 g / 10 m
in, [η] f1 is 0.92 dL / g). Thereafter, the hexane slurry containing the polymer was introduced into a second polymerization vessel having an internal volume of 545 L, and the solid catalyst component and alkylaluminum were not added, but fed at a rate of 113 L / hr, and the contents of the polymerization vessel were discharged at a required speed. At a temperature of 80 ° C., ethylene was supplied at a rate of 20.7 kg / hr, and an ethylene concentration of 0.75 wt% and a hydrogen to ethylene concentration ratio of 0.033
mol / mol, the second-stage polymerization was carried out under the conditions of a total pressure of 2.0 MPaG and an average residence time of 1.6 hr. The slurry containing the polymer sampled directly from the second polymerization vessel was filtered, the HLMFR of the powder obtained after drying was 11.3 g / 10 min, and the [η] r2 was 2.11 dL /
g. The slurry from the second polymerization vessel was subjected to a separation and drying process after flushing unreacted hydrogen and ethylene at a pressure of 59 KPaG, a temperature of 70 ° C. and an average residence time of 1.0 hr in one depressurization tank. , HLMFR is 9.8g
/ 10 min, [η] w (the intrinsic viscosity of the final polymer) was 2.24 dL / g, and a polymer powder having a Ti content of 1.9 ppm was obtained.

【0042】得られた重合体粉末を、添加剤を添加せず
に、230℃でペレット化した。得られたエチレン重合
体ペレットは、HLMFR8.9g/10min、ES
CR160hr、曲げこわさ850MPa、シャルピー
衝撃値27kJ/m2であった。
The resulting polymer powder was pelletized at 230 ° C. without adding any additives. The obtained ethylene polymer pellets were HLMFR 8.9 g / 10 min, ES
The CR was 160 hr, the stiffness was 850 MPa, and the Charpy impact value was 27 kJ / m 2 .

【0043】(3)成形肌の評価 上記エチレン系重合体ペレットを用い、所定の温度、射
出圧力、ブロー時間にて100Lのクローズタイププラ
スチックドラムの成形を行い、成形品を得た。得られた
ドラム成形品の落下強度試験を実施した。ドラムにエチ
レングリコールの50%水溶液を90%充填し、1.9
mの高さから胴部水平落下を行い、破損のない事を確認
した。また、キャピラリーレオメーターを使用して、所
定の条件でバレル押出によるサンプルを得た。また、ド
ラム成形品およびバレル押出品の肌はいずれも良好であ
り、メルトフラクチャー、鮫肌は見られなかった。
(3) Evaluation of Molded Surface Using the above-mentioned ethylene polymer pellets, a 100 L closed type plastic drum was molded at a predetermined temperature, injection pressure and blow time to obtain a molded product. A drop strength test was performed on the obtained drum molded product. The drum is filled with 90% of a 50% aqueous solution of ethylene glycol, and 1.9
From the height of m, the torso was dropped horizontally, and it was confirmed that there was no damage. Further, a sample was obtained by barrel extrusion under predetermined conditions using a capillary rheometer. The skin of the drum molded product and the barrel extruded product were all good, and no melt fracture or shark skin was observed.

【0044】実施例2 (1)重合 内容積370Lの第1重合器に、脱水精製したヘキサン
414L/hr、有機アルミニウム化合物(B)として
トリ−i−ブチルアルミニウムを107mmol/h
r、上記固体触媒成分(A)を1.51g/hrの速度
で連続的に供給し、重合内容物を所要速度で排出しなが
ら、85℃においてエチレンを20.5kg/hrの速
度で供給し、エチレン濃度0.62wt%、水素を対エ
チレン濃度比0.12mol/molに保ち、全圧2.
9MPaG、平均滞留時間0.84hrの条件下にて、
満液状態で連続的に第1段の重合を行った。第1重合器
から直接サンプリングを行った重合体を含むスラリーを
ろ過し、乾燥後に得られたパウダーの[η]r1は2.
13dL/gであった。第1重合器で得られた重合体を
含むヘキサンスラリーは、圧力59KPaG、温度70
℃、平均滞留時間0.3hrの1基の脱圧槽に連続的に
送られ、未反応の水素およびエチレンをフラッシュさせ
た(第1段における重合体のMFRは0.22g/10
min、[η]f1は2.19dL/g)。その後、内
容積545Lの第2重合器に導入し、固体触媒成分およ
びアルキルアルミニウムは追加せず、ヘキサン402L
/hrで供給し、重合器内容物を所要速度で排出しなが
ら、80℃においてエチレンを23kg/hrの速度で
供給し、エチレン濃度0.92wt%、水素を対エチレ
ン濃度比0.034mol/molに保ち、全圧2.0
MPaG、平均滞留時間0.63hrの条件下に第2段
重合を行った。第2重合器から直接サンプリングを行っ
た重合体を含むスラリーをろ過し、乾燥後に得られたパ
ウダーのHLMFRは2.79g/10min、[η]
r2は2.79dL/gであった。第2重合器からのス
ラリーは、1基の脱圧槽にて圧力59KPaG、温度7
0℃、平均滞留時間0.4hrで、未反応の水素、エチ
レンをフラッシュさせた後、分離、乾燥工程を経て、H
LMFRが2.24g/10min、[η]wが2.9
6dL/g、Ti含量3.0ppmの重合体粉末を得
た。
Example 2 (1) Polymerization In a first polymerization vessel having an inner volume of 370 L, 414 L / hr of dehydrated and purified hexane and 107 mmol / h of tri-i-butylaluminum as an organoaluminum compound (B) were used.
r, the solid catalyst component (A) was continuously supplied at a rate of 1.51 g / hr, and ethylene was supplied at 85 ° C. at a rate of 20.5 kg / hr while discharging the polymerization content at a required rate. , Ethylene concentration 0.62 wt%, hydrogen to ethylene concentration ratio 0.12 mol / mol, total pressure 2.
Under the conditions of 9 MPaG and an average residence time of 0.84 hr,
The first-stage polymerization was continuously performed in a full state. The slurry containing the polymer sampled directly from the first polymerization vessel was filtered, and [η] r1 of the powder obtained after drying was 2.
It was 13 dL / g. The hexane slurry containing the polymer obtained in the first polymerization vessel was pressure 59 KPaG, temperature 70
° C and an average residence time of 0.3 hr, continuously sent to one depressurization tank to flush unreacted hydrogen and ethylene (the MFR of the polymer in the first stage was 0.22 g / 10
min, [η] f1 is 2.19 dL / g). Thereafter, the mixture was introduced into a second polymerization vessel having an internal volume of 545 L, and the solid catalyst component and alkylaluminum were not added.
/ Hr, and while discharging the contents of the polymerization vessel at a required rate, ethylene is supplied at 80 ° C. at a rate of 23 kg / hr, and an ethylene concentration of 0.92 wt% and a hydrogen to ethylene concentration ratio of 0.034 mol / mol. And total pressure 2.0
The second stage polymerization was carried out under the conditions of MPaG and an average residence time of 0.63 hr. The slurry containing the polymer sampled directly from the second polymerization vessel was filtered, and the HLMFR of the powder obtained after drying was 2.79 g / 10 min, [η].
r2 was 2.79 dL / g. The slurry from the second polymerization vessel was subjected to a pressure of 59 KPaG and a temperature of 7 in one decompression tank.
At 0 ° C. and an average residence time of 0.4 hr, unreacted hydrogen and ethylene were flushed, and then separated and dried.
LMFR 2.24 g / 10 min, [η] w 2.9
A polymer powder having 6 dL / g and a Ti content of 3.0 ppm was obtained.

【0045】得られた重合体粉末100重量部に対し、
フェノール系安定剤であるイルガノックス1010(商
品名、チバガイギー社製)を0.1重量部、フェノール
系安定剤であるイルガフォス168(商品名、チバガイ
ギー社製)を0.1重量部、DSTP(商品名、吉富製
薬社製)を0.07重量部、ステアリン酸カルシウムを
0.15重量部、さらに有機過酸化物としてα,α’−
ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン
を0.01重量部添加して、230℃でペレット化し
た。得られたエチレン重合体ペレットのHLMFRは
2.09g/10minであった。
With respect to 100 parts by weight of the obtained polymer powder,
0.1 parts by weight of Irganox 1010 (trade name, manufactured by Ciba Geigy) as a phenolic stabilizer, 0.1 parts by weight of Irgafos 168 (trade name, manufactured by Ciba-Geigy) as a phenolic stabilizer, DSTP (trade name) Name, manufactured by Yoshitomi Pharmaceutical Co., Ltd.), 0.07 parts by weight of calcium stearate, 0.15 parts by weight, and α, α′- as an organic peroxide.
Bis (t-butylperoxy) diisopropylbenzene was added in an amount of 0.01 part by weight and pelletized at 230 ° C. The HLMFR of the obtained ethylene polymer pellet was 2.09 g / 10 min.

【0046】(2)成形肌の評価 上記エチレン系重合体ペレットを用い、実施例1と同様
に評価を行った。得られたドラム成形品およびバレル押
出品の肌は良好であり、メルトフラクチャー、鮫肌は見
られなかった。
(2) Evaluation of Molded Surface The above-mentioned ethylene polymer pellets were evaluated in the same manner as in Example 1. The skin of the obtained drum molded product and barrel extruded product was good, and no melt fracture or shark skin was observed.

【0047】実施例3 (1)重合 内容積37m3の第1重合器に、脱水精製したヘキサン
10.4m3/hr、有機アルミニウム化合物(B)と
してトリ−i−ブチルアルミニウムを1.8mol/h
r、上記固体触媒成分(A)を0.16kg/hrの速
度で連続的に供給し、重合内容物を所要速度で排出しな
がら、85℃においてエチレンを7.7t/hrの速度
で供給し、エチレン濃度0.46wt%、水素を対エチ
レン濃度比0.26mol/molに保ち、全圧2.7
MPaG、平均滞留時間1.72hrの条件下にて、満
液状態で連続的に第1段の重合を行った。第1重合器か
ら直接サンプリングを行った重合体を含むスラリーをろ
過し、乾燥後に得られたパウダーの[η]r1は1.8
3dL/gであった。第1重合器で得られた重合体を含
むヘキサンスラリーは、圧力59KPaG、温度65
℃、平均滞留時間1.4hrの1基の脱圧槽にて未反応
の水素およびエチレンをフラッシュさせた(第1段にお
ける重合体のMFRは0.96g/10min、[η]
f1は1.88dL/g)。その後、内容積54.5m
3の第2重合器に導入し、固体触媒成分およびアルキル
アルミニウムは追加せず、ヘキサン4.7m3/hrで
供給し、重合器内容物を所要速度で排出しながら、80
℃においてエチレンを3.86t/hrの速度で供給
し、エチレン濃度1.62wt%、水素を対エチレン濃
度比0.018mol/molに保ち、全圧2.0MP
aG、平均滞留時間1.63hrの条件下にて、第2段
重合を行った。第2重合器から直接サンプリングを行っ
た重合体を含むスラリーをろ過し、乾燥後に得られたパ
ウダーのHLMFRは3.39g/10min、[η]
r2は2.66dL/gであった。第2重合器からのス
ラリーは、1基の脱圧補助槽にて圧力59KPaG、温
度62℃、平均滞留時間0.1hrで、未反応の水素お
よびエチレンをフラッシュさせた。さらにこれに続い
て、直列に接続された1基の脱圧槽にて圧力49KPa
G、温度57℃、平均滞留時間0.4hrで、未反応の
水素およびエチレンをフラッシュさせた後、分離、乾燥
工程を経て、HLMFRが2.86g/10min、
[η]wが2.82dL/g、Ti含量1.1ppmの
重合体粉末を得た。
Example 3 (1) Polymerization In a first polymerization vessel having an internal volume of 37 m 3 , dehydrated and purified hexane 10.4 m 3 / hr, and tri-i-butylaluminum as an organoaluminum compound (B) 1.8 mol / hr. h
r, The solid catalyst component (A) is continuously supplied at a rate of 0.16 kg / hr, and ethylene is supplied at 85 ° C. at a rate of 7.7 t / hr while discharging the polymerization content at a required rate. , Ethylene concentration 0.46 wt%, hydrogen to ethylene concentration ratio 0.26 mol / mol, total pressure 2.7
Under the conditions of MPaG and an average residence time of 1.72 hr, the first-stage polymerization was continuously performed in a liquid full state. The slurry containing the polymer sampled directly from the first polymerization vessel was filtered, and [η] r1 of the powder obtained after drying was 1.8.
It was 3 dL / g. The hexane slurry containing the polymer obtained in the first polymerization vessel was subjected to a pressure of 59 KPaG and a temperature of 65 KPaG.
Unreacted hydrogen and ethylene were flushed in a single depressurization tank at 1.4 ° C. and an average residence time of 1.4 hr (the MFR of the polymer in the first stage was 0.96 g / 10 min, [η]
f1 is 1.88 dL / g). After that, the internal volume 54.5m
3 , the solid catalyst component and alkylaluminum were not added, and hexane was supplied at 4.7 m 3 / hr, and the content of the polymerization reactor was discharged at a required speed.
At a rate of 3.86 t / hr, maintaining an ethylene concentration of 1.62 wt% and a hydrogen to ethylene concentration ratio of 0.018 mol / mol at a total pressure of 2.0 MPa.
The second-stage polymerization was performed under the conditions of aG and an average residence time of 1.63 hr. The slurry containing the polymer sampled directly from the second polymerization vessel was filtered, and the HLMFR of the powder obtained after drying was 3.39 g / 10 min, [η].
r2 was 2.66 dL / g. The unreacted hydrogen and ethylene were flushed from the slurry from the second polymerization vessel at a pressure of 59 KPaG, a temperature of 62 ° C. and an average residence time of 0.1 hr in one auxiliary depressurization tank. Subsequently, the pressure was set to 49 KPa in one depressurization tank connected in series.
G, at a temperature of 57 ° C. and an average residence time of 0.4 hr, after flushing unreacted hydrogen and ethylene, passing through a separation and drying step to obtain an HLMFR of 2.86 g / 10 min.
A polymer powder having [η] w of 2.82 dL / g and a Ti content of 1.1 ppm was obtained.

【0048】実施例1と同様、添加剤を添加せず、23
0℃でペレット化した。得られたエチレン重合体ペレッ
トのHLMFRは2.51g/10minであった。
As in Example 1, 23
Pelleted at 0 ° C. The HLMFR of the obtained ethylene polymer pellet was 2.51 g / 10 min.

【0049】(2)成形肌の評価 上記エチレン系重合体ペレットを用い、実施例1と同様
に評価を行った。得られたドラム成形品およびバレル押
出品の肌は良好であり、メルトフラクチャー、鮫肌は見
られなかった。
(2) Evaluation of Molded Surface The same evaluation as in Example 1 was performed using the above-mentioned ethylene polymer pellets. The skin of the obtained drum molded product and barrel extruded product was good, and no melt fracture or shark skin was observed.

【0050】実施例4 (1)重合 内容積370Lの第1重合器に、脱水精製したヘキサン
150L/hr、有機アルミニウム化合物(B)として
トリ−i−ブチルアルミニウムを18mmol/hr、
上記固体触媒成分(A)を0.63g/hrの速度で連
続的に供給し、重合内容物を所要速度で排出しながら、
80℃においてエチレンを20.0kg/hrの速度で
供給し、エチレン濃度0.71wt%、水素を対エチレ
ン濃度比0.051mol/molに保ち、全圧2.9
MPaG、平均滞留時間1.59hrにおいて、満液状
態で連続的に第1段の重合を行った。第1重合器から直
接サンプリングを行った重合体を含むスラリーをろ過
し、乾燥後に得られたパウダーのHLMFRは0.49
g/10min、[η]r1は3.41dL/gであっ
た。第1重合器で得られた重合体を含むヘキサンスラリ
ーは、圧力59KPaG、温度70℃、平均滞留時間
0.3hrの1基の脱圧槽にて、未反応の水素およびエ
チレンをフラッシュさせた(第1段における重合体のH
LMFRは0.44g/10min、[η]f1は3.
59dL/g)。その後、内容積545Lの第2重合器
に導入し、固体触媒成分およびアルキルアルミニウムは
追加せず、ヘキサン146L/hrで供給し、重合器内
容物を所要速度で排出しながら、85℃において、エチ
レンを20kg/hrの速度で供給し、エチレン濃度
0.87wt%、水素を対エチレン濃度比0.162m
ol/molに保ち、全圧2.0MPaG、平均滞留時
間を1.59hrの条件下に、第2段重合を行った。第
2重合器からのスラリーは、1基の脱圧補助槽にて圧力
59KPaG、温度70℃、平均滞留時間0.2hr
で、未反応の水素およびエチレンをフラッシュさせた。
第2重合器から直接サンプリングを行った重合体を含む
スラリーをろ過し、乾燥後に得られたパウダーのHLM
FRは2.76g/10min、[η]r2は2.89
dL/gであった。さらにこれに続いて、直列に接続さ
れた1基の脱圧槽にて圧力49KPaG、温度60℃、
平均滞留時間0.4hrで、未反応の水素およびエチレ
ンをフラッシュさせた後、分離、乾燥工程を経て、HL
MFRが2.51g/10min、[η]wが2.99
dL/g、Ti含量3.2ppmの重合体粉末を得た。
Example 4 (1) Polymerization In a first polymerization vessel having an inner volume of 370 L, 150 L / hr of dehydrated and purified hexane, 18 mmol / hr of tri-i-butylaluminum as an organoaluminum compound (B),
While continuously supplying the solid catalyst component (A) at a rate of 0.63 g / hr and discharging the polymerization content at a required rate,
At 80 ° C., ethylene was supplied at a rate of 20.0 kg / hr, the ethylene concentration was maintained at 0.71 wt%, hydrogen was maintained at an ethylene concentration ratio of 0.051 mol / mol, and the total pressure was 2.9.
The first-stage polymerization was continuously performed in a liquid full state at an MPaG of an average residence time of 1.59 hr. The slurry containing the polymer sampled directly from the first polymerization vessel was filtered, and the HLMFR of the powder obtained after drying was 0.49.
g / 10 min, and [η] r1 was 3.41 dL / g. The hexane slurry containing the polymer obtained in the first polymerization vessel was flushed with unreacted hydrogen and ethylene in a single depressurization tank having a pressure of 59 KPaG, a temperature of 70 ° C. and an average residence time of 0.3 hr ( H of the polymer in the first stage
LMFR is 0.44 g / 10 min, [η] f1 is 3.
59 dL / g). Thereafter, the mixture was introduced into a second polymerization vessel having an internal volume of 545 L, and the solid catalyst component and alkylaluminum were not added, and the mixture was supplied at 146 L / hr of hexane. Is supplied at a rate of 20 kg / hr, and an ethylene concentration of 0.87 wt% and a hydrogen to ethylene concentration ratio of 0.162 m
ol / mol, the second-stage polymerization was performed under the conditions of a total pressure of 2.0 MPaG and an average residence time of 1.59 hr. The slurry from the second polymerization vessel was subjected to a pressure of 59 KPaG, a temperature of 70 ° C., and an average residence time of 0.2 hr in one auxiliary depressurization tank.
To flush out unreacted hydrogen and ethylene.
The slurry containing the polymer sampled directly from the second polymerization vessel was filtered, and the HLM of the powder obtained after drying was filtered.
FR is 2.76 g / 10 min, [η] r2 is 2.89.
dL / g. Following this, the pressure was 49 KPaG, the temperature was 60 ° C., and the pressure was reduced in one depressurization tank connected in series.
After flushing unreacted hydrogen and ethylene with an average residence time of 0.4 hr, HL
MFR is 2.51 g / 10 min, [η] w is 2.99
A polymer powder having dL / g and a Ti content of 3.2 ppm was obtained.

【0051】実施例2と同様の添加剤および有機過酸化
物を加え、230℃でペレット化した。得られたエチレ
ン重合体ペレットのHLMFRは2.48g/10mi
nであった。
The same additives and organic peroxide as in Example 2 were added and pelletized at 230 ° C. The HLMFR of the obtained ethylene polymer pellet is 2.48 g / 10 mi.
n.

【0052】(2)成形肌の評価 上記エチレン系重合体ペレットを用い、実施例1と同様
に評価を行った。得られたドラム成形品およびバレル押
出品の肌は良好であり、メルトフラクチャー、鮫肌は見
られなかった。
(2) Evaluation of Molded Surface The above-mentioned ethylene polymer pellets were evaluated in the same manner as in Example 1. The skin of the obtained drum molded product and barrel extruded product was good, and no melt fracture or shark skin was observed.

【0053】比較例1 (1)重合 第1重合器および付帯する1基の脱圧槽の条件を実施例
2と同様に行った。第1重合器から直接サンプリングを
行った重合体を含むスラリーをろ過し、乾燥後に得られ
たパウダーの[η]r1は2.11dL/gであった。
(第1段における重合体のMFRは0.20g/10m
in、[η]f1は2.18dL/g)。その後、第2
重合器の条件を実施例2と同様にして第2段重合を行っ
た。第2重合器から直接サンプリングにより得られたパ
ウダーのHLMFRは3.53g/10min、[η]
r2は2.77dL/gであった。第2重合器からのス
ラリーは、1基の脱圧槽にて平均滞留時間を0.2hr
とした以外は実施例2と同じ条件で未反応ガスをフラッ
シュさせた後、分離、乾燥工程を経て、HLMFRが
3.00g/10min、[η]wが2.79dL/
g、Ti含量1.6ppmの重合体粉末を得た。[η]
f2は10.1dL/gであったが、重合体の生成比率
が0.3%と少なかった。
Comparative Example 1 (1) Polymerization The conditions for the first polymerization vessel and the accompanying one depressurization tank were the same as in Example 2. The slurry containing the polymer sampled directly from the first polymerization vessel was filtered, and the [η] r1 of the powder obtained after drying was 2.11 dL / g.
(The MFR of the polymer in the first stage is 0.20 g / 10 m
in, [η] f1 is 2.18 dL / g). Then the second
The second-stage polymerization was carried out in the same manner as in Example 2 except for the polymerization reactor conditions. The HLMFR of the powder obtained by sampling directly from the second polymerization vessel was 3.53 g / 10 min, [η].
r2 was 2.77 dL / g. The slurry from the second polymerization vessel had an average residence time of 0.2 hr in one depressurization tank.
After the unreacted gas was flushed under the same conditions as in Example 2 except that the HMFFR was 3.00 g / 10 min and the [η] w was 2.79 dL /
g and a polymer powder having a Ti content of 1.6 ppm were obtained. [Η]
f2 was 10.1 dL / g, but the production ratio of the polymer was as low as 0.3%.

【0054】実施例2と同様の添加剤および有機過酸化
物を加え、230℃でペレット化した。得られたエチレ
ン重合体ペレットのHLMFRは2.59g/10mi
nであった。
The same additives and organic peroxide as in Example 2 were added and pelletized at 230 ° C. The HLMFR of the obtained ethylene polymer pellet is 2.59 g / 10 mi.
n.

【0055】(2)成形肌の評価 上記エチレン系重合体ペレットを用い、実施例1と同様
に評価を行った。得られたドラム成形品およびバレル押
出品の肌にメルトフラクチャー、鮫肌が確認された。
(2) Evaluation of Molded Surface Evaluation was performed in the same manner as in Example 1 using the above-mentioned ethylene polymer pellets. Melt fracture and shark skin were observed on the skin of the obtained drum molded product and barrel extruded product.

【0056】比較例2 (1)重合 第1重合器および付帯する1基の脱圧槽の条件を実施例
2と同様に行った。第1重合器から直接サンプリングに
より得られたパウダーの[η]r1は2.12dL/
g、脱圧槽における重合体のMFRは0.22g/10
min、[η]f1は2.16dL/gであった。その
後、第2重合器の条件を実施例2と同様にして第2段重
合を行った。第2重合器から直接サンプリングにより得
られたパウダーのHLMFRは3.71g/10mi
n、[η]r2は2.66dL/gであった。第2重合
器からのスラリーは、1基の脱圧槽にて平均滞留時間を
2.3hrとした以外は実施例2と同じ条件で未反応ガ
スをフラッシュさせた後、分離、乾燥工程を経て、HL
MFRが2.81g/10min、[η]wが2.83
dL/g、Ti含量1.5ppmの重合体粉末を得た。
滞留時間を長くした事により、[η]f2が15.8d
L/gと大きくなった。
Comparative Example 2 (1) Polymerization The conditions for the first polymerization vessel and one accompanying depressurization tank were the same as in Example 2. [Η] r1 of the powder obtained by sampling directly from the first polymerization vessel has a value of 2.12 dL /
g, MFR of the polymer in the depressurization tank is 0.22 g / 10
min and [η] f1 were 2.16 dL / g. Thereafter, the second polymerization was performed in the same manner as in Example 2 except for the conditions of the second polymerization reactor. The HLMFR of the powder obtained by sampling directly from the second polymerization vessel is 3.71 g / 10 mi.
n and [η] r2 were 2.66 dL / g. The slurry from the second polymerization vessel was flushed with unreacted gas under the same conditions as in Example 2 except that the average residence time was set to 2.3 hr in one depressurizing tank, followed by a separation and drying step. , HL
MFR is 2.81 g / 10 min, [η] w is 2.83
A polymer powder having dL / g and a Ti content of 1.5 ppm was obtained.
By extending the residence time, [η] f2 is 15.8 d
L / g increased.

【0057】実施例2と同様の添加剤および有機過酸化
物を加え、230℃でペレット化した。得られたエチレ
ン重合体ペレットのHLMFRは2.56g/10mi
nであった。
The same additives and organic peroxide as in Example 2 were added and pelletized at 230 ° C. The HLMFR of the obtained ethylene polymer pellet is 2.56 g / 10 mi.
n.

【0058】(2)成形肌の評価 上記エチレン系重合体ペレットを用い、キャピラリーレ
オメーターを使用して、バレル押出によるサンプルを得
た。得られたバレル押出品の肌にはメルトフラクチャー
や鮫肌が見られた。
(2) Evaluation of Molded Skin Using the above-mentioned ethylene polymer pellets, a sample was obtained by barrel extrusion using a capillary rheometer. Melt fracture and shark skin were observed on the skin of the obtained barrel extruded product.

【0059】比較例3 (1)重合 第1重合器の条件を実施例4と同様に行った。第1重合
器から直接サンプリングにより得られたパウダーのHL
MFRは0.44g/10min、パウダー[η]r1
は3.72dL/gであった。この後、第1重合器で得
られた重合体を含むヘキサンスラリーは、脱圧槽を経由
せずに直接第2重合器に供給された。内容積545Lの
第2重合器では、固体触媒成分およびアルキルアルミニ
ウムは追加せず、ヘキサン146L/hrで供給し、重
合器内容物を所要速度で排出しながら、80℃において
エチレンを20.5kg/hrの速度で供給し、エチレ
ン濃度1.05wt%、水素を対エチレン濃度比0.1
9mol/molに保ち、全圧2.0MPaG、平均滞
留時間1.58hrの条件下に、第2段重合を行った。
第2重合器から直接サンプリングを行った重合体を含む
スラリーをろ過し、乾燥後に得られたパウダーのHLM
FRは3.09g/10min、[η]r2は2.75
dL/gであった。第2重合器からの排出物は、1基の
脱圧槽にて圧力59KPaG、温度70℃、平均滞留時
間1.2hrで、未反応の水素、エチレンをフラッシュ
させた後、分離、乾燥工程を経て、HLMFRが3.1
2g/10min、[η]wが2.82dL/g、Ti
含量1.6ppmの重合体粉末を得た。第1重合器の脱
圧槽をバイパスさせたことにより、[η]fが規定範囲
内の重合体を含まない重合体であった。
Comparative Example 3 (1) Polymerization The conditions for the first polymerization reactor were the same as in Example 4. HL of powder obtained by sampling directly from the first polymerization vessel
MFR is 0.44 g / 10 min, powder [η] r1
Was 3.72 dL / g. Thereafter, the hexane slurry containing the polymer obtained in the first polymerization reactor was directly supplied to the second polymerization reactor without passing through the depressurizing tank. In the second polymerization reactor having an internal volume of 545 L, the solid catalyst component and the alkyl aluminum were not added, and hexane was supplied at 146 L / hr. hr at an ethylene concentration of 1.05 wt% and a hydrogen to ethylene ratio of 0.1
The second-stage polymerization was carried out under the conditions of a total pressure of 2.0 MPaG and an average residence time of 1.58 hr while maintaining the concentration at 9 mol / mol.
The slurry containing the polymer sampled directly from the second polymerization vessel was filtered, and the HLM of the powder obtained after drying was filtered.
FR is 3.09 g / 10 min, [η] r2 is 2.75.
dL / g. After discharging unreacted hydrogen and ethylene at a pressure of 59 KPaG, a temperature of 70 ° C. and an average residence time of 1.2 hr in one depressurization tank, the discharge from the second polymerization vessel is subjected to a separation and drying step. After that, HLMFR was 3.1
2g / 10min, [η] w is 2.82dL / g, Ti
A polymer powder having a content of 1.6 ppm was obtained. By bypassing the depressurization tank of the first polymerization vessel, [η] f was a polymer containing no polymer within the specified range.

【0060】実施例2と同様の添加剤および有機過酸化
物を加え、230℃でペレット化した。得られたエチレ
ン重合体ペレットのHLMFRは2.93g/10mi
nであった。
The same additives and organic peroxide as in Example 2 were added, and pelletized at 230 ° C. The HLMFR of the obtained ethylene polymer pellet is 2.93 g / 10 mi.
n.

【0061】(2)成形肌の評価 上記エチレン系重合体ペレットを用い、比較例2と同様
に評価を行った。得られたバレル押出品の肌にはメルト
フラクチャーや鮫肌が確認された。
(2) Evaluation of Molded Surface The above ethylene polymer pellets were evaluated in the same manner as in Comparative Example 2. Melt fracture and shark skin were confirmed on the skin of the obtained barrel extruded product.

【0062】比較例4 (1)重合 内容積370Lの第1重合器に、脱水精製したヘキサン
150L/hr、有機アルミニウム化合物(B)として
トリ−i−ブチルアルミニウムを36mmol/hr、
上記固体触媒成分(A)を0.51g/hrの速度で連
続的に供給し、重合内容物を所要速度で排出しながら、
85℃においてエチレンを19.2kg/hrの速度で
供給し、エチレン濃度1.07wt%、水素を対エチレ
ン濃度比0.24mol/molに保ち、全圧2.9M
PaG、平均滞留時間を2.13hrの条件下で、連続
的に第1段の重合を行った。第1重合器から直接サンプ
リングを行った重合体を含むスラリーをろ過し、乾燥後
に得られたパウダーの[η]r1は1.24dL/gで
あった。第1重合器で得られた重合体を含むヘキサンス
ラリーは、1基の脱圧槽にて圧力を59KPaG、70
℃下、平均滞留時間0.8hrで、未反応の水素および
エチレンをフラッシュさせた(第1段における重合体の
MFRは1.8g/10min、[η]f1は1.28
dL/g)。その後、内容積545Lの第2重合器に導
入し、固体触媒成分およびアルキルアルミニウムは追加
せず、ヘキサン146L/hrで供給し、重合器内容物
を所要速度で排出しながら、80℃においてエチレンを
20.5kg/hrの速度で供給し、エチレン濃度0.
79wt%、水素を対エチレン濃度比0.037mol
/molに保ち、全圧2.0MPaG、平均滞留時間
1.58hrの条件下に、第2段重合を行った。第2重
合器から直接サンプリングを行った重合体を含むスラリ
ーをろ過し、乾燥後に得られたパウダーのHLMFRは
3.18g/10min、[η]r2は2.70dL/
gであった。第2重合器からの排出物は、1基の脱圧槽
にて圧力59KPaG、温度70℃、平均滞留時間1.
2hrで、水素を500L/hrで供給しながら未反応
の水素、エチレンをフラッシュさせた後、分離、乾燥工
程を経て、HLMFRが3.00g/10min、
[η]wが2.72dL/g、Ti含量1.7ppmの
重合体粉末を得た。脱圧槽に対して水素をフィードした
事により、[η]f2が小さくなった。
Comparative Example 4 (1) Polymerization In a first polymerization vessel having an inner volume of 370 L, 150 L / hr of dehydrated and purified hexane, 36 mmol / hr of tri-i-butylaluminum as an organoaluminum compound (B),
While continuously supplying the solid catalyst component (A) at a rate of 0.51 g / hr and discharging the polymerization content at a required rate,
At 85 ° C., ethylene was supplied at a rate of 19.2 kg / hr, ethylene concentration was maintained at 1.07 wt%, hydrogen was maintained at an ethylene concentration ratio of 0.24 mol / mol, and total pressure was 2.9 M.
The first-stage polymerization was continuously performed under the conditions of PaG and an average residence time of 2.13 hr. The slurry containing the polymer sampled directly from the first polymerization vessel was filtered, and the powder obtained after drying had a [η] r1 of 1.24 dL / g. The hexane slurry containing the polymer obtained in the first polymerization vessel was subjected to pressure of 59 KPaG, 70
Unreacted hydrogen and ethylene were flushed at an average residence time of 0.8 hr at 0 ° C. (the MFR of the polymer in the first stage was 1.8 g / 10 min, and [η] f1 was 1.28)
dL / g). Thereafter, the mixture was introduced into a second polymerization vessel having an internal volume of 545 L, and without adding the solid catalyst component and alkylaluminum, propylene was supplied at 146 L / hr, and ethylene was discharged at 80 ° C. while discharging the polymerization vessel contents at a required speed. It is supplied at a rate of 20.5 kg / hr and has an ethylene concentration of 0.
79wt%, hydrogen to ethylene concentration ratio 0.037mol
/ Mol, and the second-stage polymerization was performed under the conditions of a total pressure of 2.0 MPaG and an average residence time of 1.58 hr. The slurry containing the polymer sampled directly from the second polymerization vessel was filtered, the HLMFR of the powder obtained after drying was 3.18 g / 10 min, and the [η] r2 was 2.70 dL /
g. Effluent from the second polymerization vessel was discharged at a pressure of 59 KPaG, a temperature of 70 ° C., and an average residence time of 1.
After 2 hours, unreacted hydrogen and ethylene were flushed while supplying hydrogen at 500 L / hr. After separation and drying steps, HLMFR was 3.00 g / 10 min.
A polymer powder having [η] w of 2.72 dL / g and a Ti content of 1.7 ppm was obtained. By feeding hydrogen to the depressurizing tank, [η] f2 was reduced.

【0063】実施例2と同様の添加剤および有機過酸化
物を加え、230℃でペレット化した。得られたエチレ
ン重合体ペレットのHLMFRは2.72g/10mi
nであった。
The same additives and organic peroxide as in Example 2 were added, and pelletized at 230 ° C. The HLMFR of the obtained ethylene polymer pellet is 2.72 g / 10 mi.
n.

【0064】(2)成形肌の評価 上記エチレン系重合体ペレットを用い、比較例2と同様
に評価を行った。得られたバレル押出品の肌にはメルト
フラクチャーや鮫肌が確認された。
(2) Evaluation of Molded Surface The same evaluation as in Comparative Example 2 was performed using the above-mentioned ethylene polymer pellets. Melt fracture and shark skin were confirmed on the skin of the obtained barrel extruded product.

【0065】比較例5 (1)重合 実施例3に対して、第1重合器および第2重合器で重合
する分子量をいずれも低下させて、同様の方法で重合を
行い、最終的にパウダーHLMFR30.9g/10m
in、[η]w1.65dL/gの重合体を得た。
Comparative Example 5 (1) Polymerization In Example 3, polymerization was carried out in the same manner as in Example 3 except that the molecular weights to be polymerized in the first polymerization reactor and the second polymerization reactor were reduced, and finally the powder HLMFR30 .9g / 10m
In, [η] w 1.65 dL / g of polymer was obtained.

【0066】実施例2と同様の添加剤および有機過酸化
物を加え、230℃でペレット化した。得られたエチレ
ン重合体ペレットのHLMFRは27.2g/10mi
nであった。重合体は、ESCR80hr、曲げこわさ
810MPa、シャルピー衝撃値6.1kJ/m2であ
った。
The same additives and organic peroxide as in Example 2 were added, and pelletized at 230 ° C. The HLMFR of the obtained ethylene polymer pellet is 27.2 g / 10 mi.
n. The polymer had an ESCR of 80 hr, a stiffness of 810 MPa, and a Charpy impact value of 6.1 kJ / m 2 .

【0067】(2)成形肌の評価 上記エチレン系重合体ペレットを用い、比較例2と同様
に評価を行った。得られたバレル押出品の肌にはメルト
フラクチャーや鮫肌は見られなかった。しかし、[η]
wが小さいために、実施例1に示したドラム成形品の落
下試験では破損した。
(2) Evaluation of Molded Surface Evaluation was carried out in the same manner as in Comparative Example 2 using the above-mentioned ethylene polymer pellets. No melt fracture or shark skin was observed on the skin of the obtained barrel extruded product. However, [η]
Since w was small, the drum molded article shown in Example 1 was broken in the drop test.

【0068】比較例6 (1)重合 実施例2に対して、第2重合器で重合する分子量を上げ
て、同様の方法で重合を行い、最終的にパウダーHLM
FR1.02g/10min、[η]w3.89dL/
gの重合体を得た。
Comparative Example 6 (1) Polymerization In Example 2, polymerization was carried out in the same manner as in Example 2 except that the molecular weight to be polymerized was increased in the second polymerization vessel.
FR 1.02 g / 10 min, [η] w 3.89 dL /
g of polymer was obtained.

【0069】実施例2と同様の添加剤および有機過酸化
物を加え、230℃でペレット化した。得られたエチレ
ン重合体ペレットのHLMFRは0.91g/10mi
nであった。
The same additives and organic peroxide as in Example 2 were added, and pelletized at 230 ° C. The HLMFR of the obtained ethylene polymer pellet is 0.91 g / 10 mi.
n.

【0070】(2)成形肌の評価 上記エチレン系重合体ペレットを用い、比較例2と同様
に評価を行った。得られたバレル押出品の肌にはメルト
フラクチャーや鮫肌が確認された。
(2) Evaluation of Molded Surface Evaluation was performed in the same manner as in Comparative Example 2 using the above-mentioned ethylene polymer pellets. Melt fracture and shark skin were confirmed on the skin of the obtained barrel extruded product.

【0071】[0071]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例および比較例において使用した重合装置
の略図を示す。
FIG. 1 shows a schematic diagram of a polymerization apparatus used in Examples and Comparative Examples.

【図2】実施例および比較例において使用した重合装置
の略図を示す。
FIG. 2 shows a schematic diagram of a polymerization apparatus used in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

AとDは重合器、BとEは脱圧槽、GとHは脱圧補助
槽、CとFはスラリー循環ポンプを示す。a〜dはそれ
ぞれ重合体のサンプリング箇所を示す。
A and D are polymerization reactors, B and E are depressurization tanks, G and H are depressurization auxiliary tanks, and C and F are slurry circulation pumps. a to d each indicate a sampling point of the polymer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高活性チーグラー型触媒の存在下、エチレ
ンまたはエチレンと炭素数3〜20のα−オレフィンを
直列に接続された2基の重合器を用いて、各重合器で異
なる分子量を有する重合体を製造する方法において、 得られる全重合体の極限粘度[η]wが2.0〜3.5
dL/gであり、 2基の重合器にそれぞれ接続された脱圧槽の少なくとも
1基の温度を50〜80℃、圧力を30〜100KPa
Gの条件下に調節することにより、その脱圧槽で得られ
る極限粘度[η]fが7〜15dL/gである重合体が
全重合体に対して0.5〜10重量%含まれるようにす
ることを特徴とするエチレン系重合体の製造方法。
1. In the presence of a highly active Ziegler catalyst, ethylene or ethylene and an α-olefin having 3 to 20 carbon atoms are connected in series using two polymerization reactors, each having a different molecular weight in each polymerization reactor. In the method for producing a polymer, the intrinsic viscosity [η] w of all the obtained polymers is 2.0 to 3.5.
dL / g, and the temperature of at least one depressurization tank connected to each of the two polymerization reactors is 50 to 80 ° C., and the pressure is 30 to 100 KPa.
By adjusting under the conditions of G, the polymer having an intrinsic viscosity [η] f of 7 to 15 dL / g obtained in the depressurization tank is contained in an amount of 0.5 to 10% by weight based on the whole polymer. A method for producing an ethylene-based polymer.
JP2000347451A 2000-11-09 2000-11-09 Method for producing ethylene-based polymer Pending JP2002145908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347451A JP2002145908A (en) 2000-11-09 2000-11-09 Method for producing ethylene-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347451A JP2002145908A (en) 2000-11-09 2000-11-09 Method for producing ethylene-based polymer

Publications (1)

Publication Number Publication Date
JP2002145908A true JP2002145908A (en) 2002-05-22

Family

ID=18821176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347451A Pending JP2002145908A (en) 2000-11-09 2000-11-09 Method for producing ethylene-based polymer

Country Status (1)

Country Link
JP (1) JP2002145908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510121A (en) * 2008-01-14 2011-03-31 フイナ・テクノロジー・インコーポレーテツド Method for producing polyethylene resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510121A (en) * 2008-01-14 2011-03-31 フイナ・テクノロジー・インコーポレーテツド Method for producing polyethylene resin

Similar Documents

Publication Publication Date Title
RU2207347C2 (en) Ethylene polymer composition production process
EP2046846B1 (en) Gas-phase process for preparing heterophasic propylene copolymers
EP2463315B1 (en) Process for preparing a multimodal polyolefin employing a Ziegler-Natta catalyst
HU220636B1 (en) Process for the preparation, of compositions containing ethylene polymers these compositions and use thereof
JP2732857B2 (en) Method for producing polyolefin having broad molecular weight distribution
KR940008983B1 (en) Process for the preparation of polyethylene
KR20190079656A (en) Process for producing polyolefin film composition and film produced therefrom
EP1646668B1 (en) Injection moulding polymer
KR20190055106A (en) High Performance Multimodal Ultra High Molecular Weight Polyethylene
JPS6310647A (en) Polyolefin composition
KR20190052688A (en) Multimodal Polyethylene Pipes
EP1812629B2 (en) Drawn tapes, fibre and filaments comprising a multimodal polyethylene resin
JP2006241451A (en) Polyethylene composition
RU2640594C2 (en) Polymeric composition for blow moulding
JP3752759B2 (en) Ethylene polymer and method for producing the same
CN117480191A (en) Method for producing multimodal ethylene polymer and film made therefrom
JP2009173901A (en) Polypropylene copolymer, and film comprising the same
JPH0368890B2 (en)
CN113195623A (en) Composition comprising a metal oxide and a metal oxide
JP2000129044A (en) Vessel made of polyethylene for high-purity chemicals
JP2002145908A (en) Method for producing ethylene-based polymer
JP6252311B2 (en) Polyethylene for containers and molded body comprising the same
JP3305485B2 (en) Method for producing ethylene copolymer
JP2003213053A (en) Polyethylene composition
JP2003327757A (en) Polyethylene resin composition and production method therefor