JP2002115053A - Film thickness control method, and apparatus therefor - Google Patents
Film thickness control method, and apparatus thereforInfo
- Publication number
- JP2002115053A JP2002115053A JP2000310919A JP2000310919A JP2002115053A JP 2002115053 A JP2002115053 A JP 2002115053A JP 2000310919 A JP2000310919 A JP 2000310919A JP 2000310919 A JP2000310919 A JP 2000310919A JP 2002115053 A JP2002115053 A JP 2002115053A
- Authority
- JP
- Japan
- Prior art keywords
- film thickness
- film
- monitor
- vacuum
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Optical Filters (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液晶プロジェクタ
やTVカメラに用いられるダイクロイック膜(色分解用
光学素子)等の光学多層膜における膜厚制御方法及びそ
の装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling the thickness of an optical multilayer film such as a dichroic film (optical element for color separation) used for a liquid crystal projector or a TV camera.
【0002】[0002]
【従来の技術】従来、光学多層膜の膜厚制御方法には、
成膜されるモニタ基板、このモニタ基板を交換するモニ
タ基板交換機構、投光部、制御波長フィルタ交換部、受
光部、強度計測部から成る光学式の膜厚制御モニタが用
いられている。2. Description of the Related Art Conventionally, methods for controlling the thickness of an optical multilayer film include:
An optical film thickness control monitor including a monitor substrate on which a film is formed, a monitor substrate exchange mechanism for exchanging the monitor substrate, a light projecting unit, a control wavelength filter exchanging unit, a light receiving unit, and an intensity measuring unit is used.
【0003】しかし近年、より高精度の膜厚制御を行う
ために、特開平7−72307号公報に示すように、製
品自体又は製品代用モニタの成膜途中の光学特性を測定
し、その測定結果に基づいて直接に最終目標特性に近付
くように、製品の初期目標膜厚(又は屈折率)を修正制
御する方法が提案されている。特開平7−72307号
公報にはスパッタ法の例が示されており、膜厚形成速度
が比較的安定している時間制御により膜厚を制御できる
ため、修正目標膜厚を得るために有効と考えられてい
る。However, in recent years, in order to perform film thickness control with higher precision, as shown in Japanese Patent Application Laid-Open No. 7-72307, optical characteristics during film formation of a product itself or a product substitute monitor are measured, and the measurement results are obtained. There has been proposed a method of correcting and controlling the initial target film thickness (or refractive index) of a product so as to directly approach the final target characteristic based on the above. Japanese Patent Application Laid-Open No. 7-72307 discloses an example of a sputtering method. Since the film thickness can be controlled by time control in which the film forming speed is relatively stable, it is effective to obtain a corrected target film thickness. It is considered.
【0004】また、特開平5−255850号公報に示
すように、製品に代る特性モニタと従来の膜厚制御モニ
タを併用し、その特性モニタの光学特性の結果から膜厚
制御モニタにより修正目標膜厚(又は屈折率)を制御す
る方法が提案されている。Further, as disclosed in Japanese Patent Application Laid-Open No. 5-255850, a characteristic monitor instead of a product is used in combination with a conventional film thickness control monitor. A method for controlling the film thickness (or the refractive index) has been proposed.
【0005】なお、特開平5−255850号公報には
蒸着法の例が示されており、従来の膜厚制御モニタに加
えて、積層特性を得るための固定の特性モニタを設け、
目標膜厚を修正制御して製品特性の向上、安定化を達成
している。Japanese Patent Application Laid-Open No. 5-255850 discloses an example of a vapor deposition method. In addition to a conventional film thickness control monitor, a fixed characteristic monitor for obtaining lamination characteristics is provided.
Correction and control of the target film thickness achieves improvement and stabilization of product characteristics.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、特に前
述の特開平5−255850号公報の場合には、目標特
性からの誤差を小さくするように、特性モニタの特性結
果に応じて初期目標膜厚を修正し、順次に成膜すること
が述べられているが、実際の修正法等については開示さ
れていない。例えば、ダイクロイック膜等の光学多層膜
特性を得る場合には、膜厚制御モニタにおいて、複数モ
ニタ基板のどの基板で何層、どの制御波長を使用するか
等の制御方法が重要である。However, in particular, in the case of the above-mentioned Japanese Patent Laid-Open No. 5-255850, the initial target film thickness is set according to the characteristic result of the characteristic monitor so as to reduce the error from the target characteristic. It is described that the films are corrected and the films are sequentially formed, but no actual correction method or the like is disclosed. For example, when obtaining the characteristics of an optical multi-layer film such as a dichroic film, it is important to control a film thickness control monitor such as how many layers and which control wavelength are to be used among a plurality of monitor substrates.
【0007】表1は蒸着赤ダイクロイック膜(プリズム
タイプ、接合面入射角45度)の構成例を示しており、
層数とは基板側からの層番号を示し、奇数層はAl2O3
層、偶数層はTiO2層を示している。目標Dsは物理
膜厚(nm)、大588Nは単膜から予め求められた波
長588nmでの大気中平均屈折率を示しており、真5
88nは波長588nmにおける真空中平均屈折率であ
る。また、真588nDは波長588nmにおける真空
中の光学膜厚(nm)を示している。Table 1 shows an example of the structure of a vapor-deposited red dichroic film (prism type, incidence angle at the bonding surface of 45 degrees).
The number of layers indicates the layer number from the substrate side, and the odd-numbered layers are Al 2 O 3
Layers and even layers indicate TiO 2 layers. The target Ds is a physical film thickness (nm), and the large 588N is an average refractive index in the atmosphere at a wavelength of 588 nm previously obtained from a single film.
88n is the average refractive index in vacuum at a wavelength of 588 nm. True 588 nD indicates the optical film thickness (nm) in vacuum at a wavelength of 588 nm.
【0008】平S/Mは特性モニタ基板と膜厚モニタ基
板の平均膜厚比を示しており、特性モニタ基板の膜厚は
製品上の膜厚を反映、つまり相関を持たせるように設定
してある。この平均膜厚比平S/Mは、制御波長から予
想される膜厚モニタ基板上の膜厚Dmと特性モニタから
求められる膜厚Dsにより、平均値として予め求めたも
のである。この平均膜厚比平S/Mにより新たに制御波
長を決定する。The flat S / M indicates the average film thickness ratio between the characteristic monitor substrate and the film thickness monitor substrate. The film thickness of the characteristic monitor substrate reflects the film thickness on the product, that is, is set so as to have a correlation. It is. The average film thickness ratio S / M is obtained in advance as an average value from the film thickness Dm on the film thickness monitor substrate expected from the control wavelength and the film thickness Ds obtained from the characteristic monitor. A control wavelength is newly determined based on the average thickness ratio S / M.
【0009】また、モニタ番号とは各層の成膜に用いる
ための複数枚のモニタ基板の番号を示しており、例えば
モニタ基板1は1層目、3層目、15層目、17層目に
用いる。The monitor number indicates the number of a plurality of monitor substrates to be used for forming each layer. For example, the monitor substrate 1 has the first, third, fifteenth, and seventeenth layers. Used.
【0010】 表1 層数 目標Ds 大588N 真588n 真588nD 平S/M 制御波長 モニタ番号 1 89 1.63 1.59 141 1.04 487 1 2 95 2.38 2.26 215 1.03 425 2 3 136 1.63 1.59 215 1.04 445 1 4 95 2.38 2.26 214 1.05 429 2 5 85 1.63 1.59 136 1.10 445 3 6 102 2.38 2.26 232 1.04 445 4 7 84 1.63 1.59 134 1.06 470 3 8 101 2.38 2.26 229 1.05 450 4 9 84 1.63 1.59 134 1.02 495 3 10 101 2.38 2.26 229 1.05 451 4 11 79 1.63 1.59 125 1.01 491 3 12 95 2.38 2.26 214 1.05 448 4 13 123 1.63 1.59 196 1.01 548 3 14 84 2.38 2.26 190 1.03 420 2 15 136 1.63 1.59 216 1.00 541 1 16 92 2.38 2.26 208 1.05 420 2 17 103 1.63 1.59 164 0.99 567 1Table 1 Number of layers Target Ds Large Ds 588N True 588n True 588nD Flat S / M Control wavelength Monitor number 1 89 1.63 1.59 141 1.04 487 1 2 95 2.38 2.26 215 1.03 425 2 3 136 1.63 1.59 215 1.04 445 1 4 95 2.38 2.26 214 1.05 429 2 5 85 1.63 1.59 136 1.10 445 3 6 102 2.38 2.26 232 1.04 445 4 7 84 1.63 1.59 134 1.06 470 3 8 101 2.38 2.26 229 1.05 450 4 9 84 1.63 1.59 134 1.02 495 3 10 101 2.38 2.26 229 1.05 451 4 11 79 1.63 1.59 125 1.01 491 3 12 95 2.38 2.26 214 1.05 448 4 13 123 1.63 1.59 196 1.01 548 3 14 84 2.38 2.26 190 1.03 420 2 15 136 1.63 1.59 216 1.00 541 1 16 92 2.38 2.26 208 1.05 420 2 17 103 1.63 1.59 164 0.99 567 1
【0011】図5は表1の条件に基づいて、TiO2膜
の成膜時のガス圧は酸素を導入して1×10-4Tor
r、Al2O3膜の成膜時のガス圧は0.8×10-4To
rrとし、これを標準ガス圧とし、赤ダイクロイック膜
を製作した結果を示している。Ts設計値は大気中定数
によるS偏光成分透過率の設計値を示し、Ts真空設計
値は真空中で測定した真空平均屈折率から真空中の特性
を予想したものである。Ts実測値が製作した結果を示
しており、成膜から1週間経過した後の接合後の特性値
である。FIG. 5 shows that the gas pressure at the time of forming the TiO 2 film is 1 × 10 -4 Torr by introducing oxygen based on the conditions shown in Table 1.
The gas pressure during the formation of the r, Al 2 O 3 film is 0.8 × 10 −4 To
rr is used as a standard gas pressure, and the result of producing a red dichroic film is shown. The Ts design value indicates the design value of the transmittance of the S-polarized light component based on the atmospheric constant, and the Ts vacuum design value is a value obtained by predicting the characteristics in a vacuum from the vacuum average refractive index measured in a vacuum. The measured values of Ts indicate the results of fabrication, and are the characteristic values after joining one week after film formation.
【0012】S偏光成分の透過特性に示すように、大気
中目標特性の半値波長(S偏光成分透過率50%の波
長)と成膜後の実際の大気中特性の半値波長は一致して
しない。この際の真空中の半値波長(Ts真空設計値)
から、大気中半値波長への移動量は約21nmである。As shown in the transmission characteristics of the S-polarized light component, the half-value wavelength of the target characteristics in the atmosphere (the wavelength at which the transmittance of the S-polarized light component is 50%) does not coincide with the actual half-value wavelength of the air characteristics after film formation. . Half-value wavelength in vacuum at this time (Ts vacuum design value)
Therefore, the shift amount to the half-value wavelength in the atmosphere is about 21 nm.
【0013】一致しない要因としては、単層の場合にお
いても、多層の場合においても成膜条件が同一であれ
ば、真空中の屈折率は同一であると想定したが、単層の
場合と多層の場合では大気中における屈折率が異なると
考えられる。即ち、大気中で求めた平均屈折率大588
Nを用いて設計し製作すると、目標特性、特に半値波長
が得られないという問題が生ずる。The reason for the inconsistency is that the refractive index in vacuum is assumed to be the same if the film forming conditions are the same in the case of a single layer and in the case of a multilayer. In the case of, it is considered that the refractive index in the atmosphere is different. That is, an average refractive index of 588 obtained in the atmosphere
When designing and manufacturing using N, there arises a problem that a target characteristic, in particular, a half-value wavelength cannot be obtained.
【0014】また、特性モニタ基板上に成膜された膜特
性を測定して真空中の膜定数(屈折値ns、膜厚Ds)
を求め、この膜定数を固定して次層以降の膜厚を真空中
目標特性に合わせて再設計し、次層又はそれ以降の層の
修正真空目標光学膜厚(nD)sを決定し、既成膜層の
膜厚比(=Ds/Dm)と膜厚制御用モニタ基板上の既
成膜層の定数を考慮して、特性モニタ基板上の次層の修
正真空目標光学膜厚(nD)mに対応する単色制御波長
を決めて膜厚制御を行っても、目標とする真空特性に近
い特性は得られるが、目標である大気中の特性が得られ
ない。The characteristics of the film formed on the characteristic monitor substrate are measured to determine the film constant in vacuum (refractive value ns, film thickness Ds).
Is fixed, the film constant is fixed, the film thickness of the next layer and subsequent layers is redesigned in accordance with the target characteristics in vacuum, and the corrected vacuum target optical film thickness (nD) s of the next layer and subsequent layers is determined. Considering the film thickness ratio (= Ds / Dm) of the film-formed layers and the constant of the film-formed layers on the film thickness control monitor substrate, the corrected vacuum target optical film thickness (nD) m of the next layer on the characteristic monitor substrate When the film thickness is controlled by determining the monochromatic control wavelength corresponding to the above, the characteristics close to the target vacuum characteristics can be obtained, but the target characteristics in the atmosphere cannot be obtained.
【0015】また、大気中設計値と成膜結果の特性の不
一致、特に半値波長の不一致は設計に用いた屈折率と実
際に成膜された屈折率とが異なることに起因する。即
ち、成膜標準条件として決定した条件における単層膜の
平均屈折率は、成膜後の放置時間に依存するが、1週間
程度で膜空孔中に水が十分取り込まれた状態となる。一
方、積層後の膜の屈折率は同一放置時間に対して、膜空
孔中に未だ水が十分取り込まれていない状態である。Further, the mismatch between the design value in the atmosphere and the characteristics of the film formation result, especially the mismatch between the half-value wavelengths, results from the difference between the refractive index used for the design and the refractive index actually formed. In other words, the average refractive index of the single-layer film under the conditions determined as the standard conditions for film formation depends on the standing time after film formation, but in about one week, water is sufficiently taken into the film pores. On the other hand, the refractive index of the film after lamination is a state in which water has not yet been sufficiently taken into the film pores for the same standing time.
【0016】本発明の目的は、上述の問題点を解消し、
目標とする大気屈折率特性が正確に得られる膜厚制御法
及びその装置を提供することにある。An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a film thickness control method and an apparatus for accurately obtaining a target atmospheric refractive index characteristic.
【0017】[0017]
【課題を解決するための手段】上記目的を達成するため
の請求項1に係る本発明は、膜厚を制御する膜厚制御用
モニタと積層膜の反射又は透過特性を測光する特性モニ
タとの両方を有する真空装置において、真空中で測定し
た膜屈折率(n)から大気中膜屈折率(N)を予想し、
予想した該大気中膜屈折率を用いて目標大気中光学膜厚
(ND)を決定し、該目標大気中光学膜厚に対応する真
空中光学膜厚(nD)を得るための単色制御波長を決め
て膜厚制御を行うことを特徴とする膜厚制御法である。According to a first aspect of the present invention, there is provided a film thickness control monitor for controlling a film thickness and a characteristic monitor for measuring the reflection or transmission characteristics of a laminated film. In a vacuum apparatus having both, an atmospheric film refractive index (N) is estimated from a film refractive index (n) measured in a vacuum,
The target atmospheric optical film thickness (ND) is determined using the predicted atmospheric film refractive index, and the monochromatic control wavelength for obtaining the vacuum optical film thickness (nD) corresponding to the target atmospheric optical film thickness is determined. This is a film thickness control method characterized in that the film thickness is determined and controlled.
【0018】請求項2に係る本発明は、膜厚を制御する
膜厚制御用モニタと積層膜の反射又は透過特性を測光す
る特性モニタとの両方を有する真空装置において、成膜
中は前記膜厚制御用モニタの単色制御波長により膜厚制
御用モニタ基板の膜厚を制御し、成膜後は特性モニタの
特性モニタ基板上に成膜された膜特性を真空中で測定し
て真空中の膜定数(屈折率ns、膜厚Ds)を求め、該
膜定数を大気中の膜定数(屈折率Ns、膜厚Ds)に予
想換算し、該予想定数を固定して次層以降の膜厚を大気
中目標特性に合わせて再設計し、次層又は以降の層の修
正大気目標光学膜厚(ND)sを決定し、既成膜層の膜
厚比(=Ds/Dm)と前記膜厚制御用モニタ基板上の
既成膜層の定数を考慮して、前記モニタ基板上の次層の
修正真空目標光学膜厚(nD)mに対応する単色制御波
長を決めて膜厚制御を行うことを特徴とする膜厚制御方
法である。According to a second aspect of the present invention, there is provided a vacuum apparatus having both a film thickness control monitor for controlling the film thickness and a characteristic monitor for measuring the reflection or transmission characteristics of the laminated film, wherein the film is formed during film formation. The thickness of the monitor substrate for film thickness control is controlled by the monochromatic control wavelength of the monitor for thickness control. The film constants (refractive index ns, film thickness Ds) are obtained, and the film constants are converted into the film constants (refractive index Ns, film thickness Ds) in the atmosphere, and the film thicknesses of the next and subsequent layers are fixed by fixing the predicted constants. Is redesigned according to the target characteristics in the atmosphere, the corrected target optical thickness (ND) s of the next layer or the subsequent layer is determined, and the film thickness ratio (= Ds / Dm) of the already formed layer and the film thickness are determined. In consideration of the constants of the already formed layers on the control monitor substrate, the modified vacuum target optics of the next layer on the monitor substrate Decide monochromatic control wavelength corresponding to the thickness (nD) m is a film thickness control method and performing film thickness control.
【0019】請求項3に係る本発明は、請求項1又は2
の膜厚制御方法を用いて膜厚制御を行うことを特徴とす
る成膜装置である。According to a third aspect of the present invention, there is provided the first or second aspect.
A film forming apparatus characterized in that the film thickness is controlled using the film thickness controlling method described above.
【0020】[0020]
【発明の実施の形態】本発明を図示の実施の形態に基づ
いて詳細に説明する。図1は第1の実施の形態における
膜厚制御装置の構成図を示しており、真空装置1内の下
部には蒸発源2が設けられ、蒸発源2の上方には特性モ
ニタ基板3、膜厚制御モニタ基板4、製品の基板を設置
する傘状の基板ホルダ5が配置されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiment. FIG. 1 shows a configuration diagram of a film thickness control device according to the first embodiment. An evaporation source 2 is provided at a lower portion in a vacuum device 1, and a characteristic monitor substrate 3 and a film are provided above the evaporation source 2. A thickness control monitor board 4 and an umbrella-shaped board holder 5 on which a product board is placed are arranged.
【0021】特性モニタ基板3に対して、投受光部6か
らの光束が投受光できるようにされており、投受光部6
は計測部7を介して演算部8に接続されている。一方、
膜厚制御モニタ基板4に対して、投受光部9からの光束
が投受光できるようにされており、投受光部9は計測部
10を介して演算部8に接続されている。なお、図示は
省略しているが、真空装置1内には特性モニタ基板3、
膜厚制御モニタ基板4を交換し、更には蒸発源2からの
蒸発材料を遮蔽する機構が内蔵されている。The light beam from the light emitting / receiving unit 6 can be sent / received to / from the characteristic monitor board 3.
Is connected to the calculation unit 8 via the measurement unit 7. on the other hand,
A light beam from the light emitting / receiving unit 9 can be sent / received to / from the film thickness control monitor substrate 4, and the light emitting / receiving unit 9 is connected to the calculation unit 8 via the measuring unit 10. Although not shown, the characteristic monitor substrate 3 and the
A mechanism for replacing the film thickness control monitor substrate 4 and shielding the evaporation material from the evaporation source 2 is built in.
【0022】また、特性モニタ基板3等から成る特性モ
ニタでは、測定された測定値は演算部8に取り込まれ特
性モニタ基板3上に成膜された真空中の膜定数(屈折率
ns、膜厚Ds)の導出に用いられる。この膜定数を用
いて、成膜中に目標特性を得るため再設計することが可
能となる。In the characteristic monitor composed of the characteristic monitor substrate 3 and the like, the measured values are taken into the arithmetic unit 8 and the film constants (refractive index ns, film thickness) in vacuum formed on the characteristic monitor substrate 3 are formed. Ds). Using this film constant, it is possible to redesign to obtain target characteristics during film formation.
【0023】また、膜厚制御基板4等から成る膜厚制御
モニタは、通常は膜厚制御モニタ基板4における設計し
た単色反射率又は透過率のピークを検知し、成膜値を知
って制御する。The film thickness control monitor composed of the film thickness control substrate 4 or the like usually detects the designed monochromatic reflectance or transmittance peak on the film thickness control monitor substrate 4 and controls the film thickness by knowing the film formation value. .
【0024】図5に示すように、従来では制御波長を変
更して半値波長を合わせるという試行錯誤を繰り返して
目標特性を得ていた。しかしながら、特性モニタにより
得られる真空中の膜定数(屈折率n、膜厚D)から積層
後の大気中の膜定数(屈折率N、膜厚D)を予想するこ
とができれば、膜定数(N、D)を大気中設計値に用い
ることにより製作値との誤差を小さくできる。また、大
気中設計値に対して成膜条件の変動があっても、得られ
た大気中の予想膜定数により修正を行えば、大気中設計
値に近い特性を得られるはずである。As shown in FIG. 5, conventionally, the target characteristic was obtained by repeating trial and error of adjusting the half-wavelength by changing the control wavelength. However, if the film constant (refractive index N, film thickness D) in the air after lamination can be predicted from the film constant in vacuum (refractive index n, film thickness D) obtained by the characteristic monitor, the film constant (N , D) can be used as the design values in the atmosphere to reduce errors from the production values. Further, even if the film formation conditions fluctuate with respect to the design values in the atmosphere, if the correction is performed based on the obtained film constants in the atmosphere, characteristics close to the design values in the atmosphere should be obtained.
【0025】即ち、膜厚を制御する膜厚制御用モニタ
と、積層膜の反射又は透過特性を測光する特性モニタと
の両方を有する真空装置において、成膜中は膜厚制御用
モニタの単色制御波長で膜厚制御モニタ基板4の膜厚を
制御し、成膜後は特性モニタ基板3上に成膜された膜特
性を測定して真空中の膜定数(ns、Ds)を求め、こ
の値を大気中の膜定数(Ns、Ds)に予想換算し、膜
定数を固定して次層以降の膜厚を大気中目標特性に合わ
せて再設計し、次層或いは以降の層の修正大気目標光学
膜厚(ND)sを決定し、既成膜層の膜厚比(=Ds/
Dm)と膜厚制御用モニタ基板4上の既成膜層の定数を
考慮して、モニタ基板4上の次層の修正真空目標光学膜
厚(nD)mに対応する単色制御波長を決めて膜厚制御
を行うことが重要である。That is, in a vacuum apparatus having both a film thickness control monitor for controlling the film thickness and a characteristic monitor for measuring the reflection or transmission characteristics of the laminated film, the monochromatic control of the film thickness control monitor during film formation. The film thickness of the film thickness control monitor substrate 4 is controlled by the wavelength, and after film formation, the film characteristics formed on the characteristic monitor substrate 3 are measured to obtain film constants (ns, Ds) in vacuum. To the film constants in the atmosphere (Ns, Ds), fix the film constants and redesign the film thickness of the next and subsequent layers according to the target characteristics in the atmosphere, and correct the corrected atmospheric target of the next or subsequent layers. The optical film thickness (ND) s is determined, and the film thickness ratio (= Ds /
Dm) and the constant of the film-formed layer on the film thickness control monitor substrate 4 are taken into consideration, and the monochromatic control wavelength corresponding to the corrected vacuum target optical film thickness (nD) m of the next layer on the monitor substrate 4 is determined. It is important to control the thickness.
【0026】なお、真空中の膜定数(n、D)から積層
後の大気中の膜定数(N、D)を予想する手段として
は、実際の大気積層特性から求めた経験的な値を用い
る。又は、膜密度の式(ローレンツ)を応用する等の方
法がある。As means for estimating the film constants (N, D) in the atmosphere after lamination from the film constants (n, D) in vacuum, empirical values obtained from actual atmospheric lamination characteristics are used. . Alternatively, there is a method of applying a film density equation (Lorentz).
【0027】この方法によって、TiO2/Al2O3の
交互層赤ダイクロイック膜をBK7プリズムの上に形成
し、1週間後に他方のプリズムと接合し評価した。Ti
O2膜の成膜時のガス圧は酸素を導入して1×10-4T
orr、Al2O3膜の成膜時のガス圧は0.8×10-4
Torrとし、これを標準ガス圧とした。According to this method, an alternate layer red dichroic film of TiO 2 / Al 2 O 3 was formed on the BK7 prism, and one week later, it was bonded to the other prism and evaluated. Ti
The gas pressure at the time of forming the O 2 film is 1 × 10 −4 T by introducing oxygen.
orr, the gas pressure during the formation of the Al 2 O 3 film is 0.8 × 10 −4
Torr, which was the standard gas pressure.
【0028】表2は第1の実施の形態における目標条件
を示しており、大588Nは標準ガス圧条件における真
588nの値から予想した大気中屈折率であり、この値
と膜厚の目標Dsとから目標大気設計値(真588n
D)を決定する。この目標大気設計値(真588nD)
の特性を得るために、各モニタに対する制御波長を既知
の平均膜厚比(平S/M)を用いて決定し成膜する。Table 2 shows the target conditions in the first embodiment. The large 588N is the refractive index in the atmosphere estimated from the true 588n value under the standard gas pressure condition. And the target atmospheric design value (true 588n
D) is determined. This target atmospheric design value (true 588 nD)
In order to obtain the characteristics described above, the control wavelength for each monitor is determined using a known average film thickness ratio (flat S / M), and a film is formed.
【0029】 表2 層数 目標Ds 大588N 真588n 真588nD 平S/M 制御波長 モニタ番号 1 96 1.63 1.59 152 1.04 522 1 2 98 2.33 2.26 222 1.03 436 2 3 135 1.63 1.59 215 1.04 445 1 4 96 2.33 2.26 218 1.05 440 2 5 87 1.63 1.59 137 1.10 455 3 6 104 2.33 2.26 235 1.04 450 4 7 86 1.63 1.59 136 1.06 481 3 8 103 2.33 2.26 232 1.05 456 4 9 86 1.63 1.59 136 1.02 504 3 10 103 2.33 2.26 233 1.05 457 4 11 80 1.63 1.59 127 1.01 503 3 12 96 2.33 2.26 218 1.05 452 4 13 123 1.63 1.59 195 1.01 529 3 14 85 2.33 2.26 193 1.03 437 2 15 136 1.63 1.59 216 1.00 514 1 16 94 2.33 2.26 214 1.05 441 2 17 106 1.63 1.59 168 0.99 562 1Table 2 Number of layers Target Ds Large 588N True 588n True 588nD Flat S / M Control wavelength Monitor number 1 96 1.63 1.59 152 1.04 522 1 2 98 2.33 2.26 222 1.03 436 2 3 135 1.63 1.59 215 1.04 445 1 4 96 2.33 2.26 218 1.05 440 2 5 87 1.63 1.59 137 1.10 455 3 6 104 2.33 2.26 235 1.04 450 4 7 86 1.63 1.59 136 1.06 481 3 8 103 2.33 2.26 232 1.05 456 4 9 86 1.63 1.59 136 1.02 504 3 10 103 2.33 2.26 233 1.05 457 4 11 80 1.63 1.59 127 1.01 503 3 12 96 2.33 2.26 218 1.05 452 4 13 123 1.63 1.59 195 1.01 529 3 14 85 2.33 2.26 193 1.03 437 2 15 136 1.63 1.59 216 1.00 514 1 16 94 2.33 2.26 214 1.05 441 2 17 106 1.63 1.59 168 0.99 562 1
【0030】図2は第1の実施の形態における成膜結果
を示しており、Ts設計値は大気中のS偏光成分透過率
の設計値を示し、1週間後の実測値であるTs実測値の
半値波長は良くこれと一致する。特性モニタで得られた
真空中の各膜定数(n、Ds)も、表2の真588nと
良く一致しており、真空中の半値波長(Ts真空予想
値)から、大気中半値波長への移動量は約20nmであ
る。FIG. 2 shows the results of the film formation in the first embodiment. The Ts design value indicates the design value of the transmittance of the S-polarized light component in the atmosphere, and the Ts measured value which is the measured value one week later. Has a good agreement with this. The film constants (n, Ds) in vacuum obtained by the characteristic monitor are also in good agreement with the true 588n in Table 2, and the half-wavelength in vacuum (predicted value of Ts vacuum) is changed from the half-wavelength in vacuum to the half-wavelength in air. The movement amount is about 20 nm.
【0031】表3は第2の実施例における目標条件を示
しており、第1の実施の形態と同様に赤ダイクロイック
膜を形成する。ただし、ガス圧条件はTiO2膜の成膜
時には1.4×10-4Torr、Al2O3の時に1×1
0-4Torrとした。これは蒸着装置の真空度の経時的
変化(分圧の変化、測定ゲージの劣化等)を想定したも
のである。Table 3 shows target conditions in the second embodiment, in which a red dichroic film is formed as in the first embodiment. However, the gas pressure conditions were 1.4 × 10 −4 Torr when the TiO 2 film was formed and 1 × 1 when the Al 2 O 3 was formed.
0 -4 Torr. This is based on the assumption that the degree of vacuum of the vapor deposition apparatus changes over time (change in partial pressure, deterioration of the measurement gauge, etc.).
【0032】 表3 層数 目標Ds 修正Ds 真588n 真588nD 平S/M 制御波長 モニタ番号 1 96 97 1.56 152 1.04 522 1 2 98 101 2.20 222 1.03 436 2 3 135 137 1.56 214 1.04 458 1 4 96 100 2.20 220 1.05 439 2 5 87 89 1.56 139 1.10 456 3 6 104 107 2.20 235 1.04 450 4 7 86 88 1.56 138 1.06 482 3 8 103 105 2.20 231 1.05 455 4 9 86 88 1.56 138 1.02 509 3 10 103 106 2.20 233 1.05 458 4 11 80 83 1.56 130 1.01 506 3 12 96 99 2.20 218 1.05 453 4 13 123 124 1.56 194 1.01 558 3 14 85 88 2.20 194 1.03 429 2 15 136 137 1.56 214 1.00 550 1 16 94 99 2.20 218 1.05 430 2 17 106 109 1.56 170 0.99 578 1Table 3 Number of Layers Target Ds Modified Ds True 588n True 588nD Flat S / M Control Wavelength Monitor Number 1 96 97 1.56 152 1.04 522 1 2 98 101 2.20 222 1.03 436 2 3 135 137 1.56 214 1.04 458 1 4 96 100 2.20 220 1.05 439 2 5 87 89 1.56 139 1.10 456 3 6 104 107 2.20 235 1.04 450 4 7 86 88 1.56 138 1.06 482 3 8 103 105 2.20 231 1.05 455 4 9 86 88 1.56 138 1.02 509 3 10 103 106 2.20 233 1.05 458 4 11 80 83 1.56 130 1.01 506 3 12 96 99 2.20 218 1.05 453 4 13 123 124 1.56 194 1.01 558 3 14 85 88 2.20 194 1.03 429 2 15 136 137 1.56 214 1.00 550 1 16 94 99 2.20 218 1.05 430 2 17 106 109 1.56 170 0.99 578 1
【0033】表3における目標Dsは第1の実施の形態
と同様である。しかしながら、ガス圧が異なるため真空
中で得られる屈折率も異なり、この屈折率から大気中の
屈折率を予想し、以降の層を第1の実施の形態における
目標特性に近い特性が得られるように再設計し、修正膜
厚(修正Ds)を決定し、この膜厚を得るため各モニタ
に対する制御波長を既知の平均膜厚比(平S/M)を用
いて決定し成膜する。The target Ds in Table 3 is the same as in the first embodiment. However, since the gas pressure is different, the refractive index obtained in a vacuum is also different. From this refractive index, the refractive index in the atmosphere is estimated, and the subsequent layers are obtained so that the characteristics close to the target characteristics in the first embodiment can be obtained. In order to obtain this film thickness, the control wavelength for each monitor is determined using a known average film thickness ratio (flat S / M) to form a film.
【0034】図3は表3の条件に基づいて赤ダイクロイ
ック膜を製作した結果を示しており、Ts設計値は第1
の実施の形態と同様である。Ts実測値が製作した結果
であり、成膜から1週間後の接合後の特性である。ガス
圧条件が異なるにも拘わらず、Ts実測値はTs設計値
と良く一致する。この際の真空中の半値波長(Ts真空
予想値)から、大気中半値波長への移動量は約24nm
である。FIG. 3 shows the result of fabricating a red dichroic film based on the conditions in Table 3, and the Ts design value is the first.
This is the same as the embodiment. The measured values of Ts are the results of fabrication, and are the characteristics after bonding one week after film formation. Although the gas pressure conditions are different, the measured Ts value agrees well with the Ts design value. At this time, the amount of movement from the half-wavelength in vacuum (Ts vacuum expected value) to the half-wavelength in the atmosphere is about 24 nm.
It is.
【0035】表4は比較例を示しており、従来例と同様
に赤ダイクロイック膜を作成した。ただし、ガス圧条件
はTiO2膜の成膜時には1.4×10-4Torr、A
l2O 3膜の成膜時には1×10-4Torr とした。従
来例においては、大気中設計値から換算された真空中膜
厚(588nD)を得るため制御波長を決定して製作し
たが、本比較例においては従来例における図5の真空設
計値を目標に再設計し、第2の実施例と同様に修正膜厚
(修正Ds)を決定し、この膜厚を得るため各モニタに
対する制御波長を既知の平均膜厚比(平S/M)を用い
て決定し成膜を行っている。Table 4 shows a comparative example, which is the same as the conventional example.
A red dichroic film was prepared. However, gas pressure conditions
Is TiOTwo1.4 × 10 at the time of film formation-FourTorr, A
lTwoO Three1 × 10 at the time of film formation-FourTorr. Obedience
In the previous example, the vacuum film was converted from the atmospheric design value.
Determine the control wavelength to obtain the thickness (588 nD)
However, in this comparative example, the vacuum setup of FIG.
Redesigned with the measured value as the target, and corrected the film thickness as in the second embodiment.
(Correction Ds) is determined, and each monitor is used to obtain this film thickness.
Using a known average film thickness ratio (flat S / M)
The film is determined and determined.
【0036】 表4 真空中目標値 層数 目標Ds 修正Ds 真588n 真588nD 平S/M 制御波長 モニタ番号 1 89 90 1.56 141 1.04 487 1 2 95 98 2.20 216 1.03 425 2 3 136 135 1.56 211 1.04 440 1 4 95 98 2.20 216 1.05 431 2 5 85 88 1.56 138 1.10 450 3 6 102 106 2.20 232 1.04 446 4 7 84 87 1.56 136 1.06 477 3 8 101 104 2.20 229 1.05 451 4 9 84 87 1.56 136 1.02 501 3 10 101 104 2.20 229 1.05 452 4 11 79 84 1.56 131 1.01 502 3 12 95 100 2.20 221 1.05 451 4 13 123 114 1.56 178 1.01 543 3 14 84 93 2.20 206 1.03 429 2 15 136 133 1.56 208 1.00 531 1 16 92 98 2.20 216 1.05 430 2 17 103 81 1.56 127 0.99 530 1Table 4 Target value in vacuum Layer number Target Ds Corrected Ds True 588n True 588nD Flat S / M Control wavelength Monitor number 1 89 90 1.56 141 1.04 487 1 2 95 98 2.20 216 1.03 425 2 3 136 135 1.56 211 1.04 440 1 4 95 98 2.20 216 1.05 431 2 5 85 88 1.56 138 1.10 450 3 6 102 106 2.20 232 1.04 446 4 7 84 87 1.56 136 1.06 477 3 8 101 104 2.20 229 1.05 451 4 9 84 87 1.56 136 1.02 501 3 10 101 104 2.20 229 1.05 452 4 11 79 84 1.56 131 1.01 502 3 12 95 100 2.20 221 1.05 451 4 13 123 114 1.56 178 1.01 543 3 14 84 93 2.20 206 1.03 429 2 15 136 133 1.56 208 1.00 531 1 16 92 98 2.20 216 1.05 430 2 17 103 81 1.56 127 0.99 530 1
【0037】図4は表4に基づいて製作した比較例の結
果を示しており、Ts真空予想値はTs真空設計値と良
く一致しており、このときの真空中の半値波長(Ts真
空予想値)から大気中半値波長への移動量は約25nm
である。また、ガス圧を変化させたため、得られた実測
値はたまたま第1の比較例のTs設計値に近いが、これ
は真空中特性に対して再設計、修正を行っても、大気中
目標値に対しては成膜条件の変化により特性が安定して
いないことを示している。FIG. 4 shows the results of a comparative example manufactured based on Table 4, where the predicted value of Ts vacuum is in good agreement with the designed value of Ts vacuum. Value) to the half-value wavelength in the atmosphere is about 25 nm
It is. In addition, because the gas pressure was changed, the obtained measured value happened to be close to the Ts design value of the first comparative example. Indicates that the characteristics are not stable due to changes in the film forming conditions.
【0038】[0038]
【発明の効果】以上説明したように本発明に係る膜厚制
御方法及びその装置は、大気中特性が目標値と良く一致
し、ダイクロイック膜等の高性能な光学多層膜を安定し
て製造することが可能となる。As described above, the method and the apparatus for controlling the film thickness according to the present invention stably produce a high-performance optical multilayer film such as a dichroic film in which the characteristics in the atmosphere match the target value well. It becomes possible.
【図1】膜厚制御装置構成の模式図である。FIG. 1 is a schematic diagram of a configuration of a film thickness control device.
【図2】第1の実施の形態におけるS偏光透過率特性を
示している。FIG. 2 shows S-polarized light transmittance characteristics in the first embodiment.
【図3】第2の実施の形態におけるS偏光透過率特性を
示している。FIG. 3 shows S-polarized light transmittance characteristics in a second embodiment.
【図4】比較例におけるS偏光透過率特性を示してい
る。FIG. 4 shows S-polarized light transmittance characteristics in a comparative example.
【図5】従来例におけるS偏光透過率特性を示してい
る。FIG. 5 shows S-polarized light transmittance characteristics in a conventional example.
1 真空装置 2 蒸発源 3 特性モニタ基板 4 膜厚制御モニタ基板 5 基板ホルダ 6 投受光部 7、10 計測部 8 演算部 9 投受光部 DESCRIPTION OF SYMBOLS 1 Vacuum apparatus 2 Evaporation source 3 Characteristic monitor board 4 Film thickness control monitor board 5 Substrate holder 6 Light emitting / receiving section 7, 10 Measurement section 8 Calculation section 9 Light emitting / receiving section
Claims (3)
膜の反射又は透過特性を測光する特性モニタとの両方を
有する真空装置において、真空中で測定した膜屈折率
(n)から大気中膜屈折率(N)を予想し、予想した該
大気中膜屈折率を用いて目標大気中光学膜厚(ND)を
決定し、該目標大気中光学膜厚に対応する真空中光学膜
厚(nD)を得るための単色制御波長を決めて膜厚制御
を行うことを特徴とする膜厚制御方法。In a vacuum apparatus having both a film thickness control monitor for controlling the film thickness and a characteristic monitor for measuring the reflection or transmission characteristics of the laminated film, the film refractive index (n) measured in a vacuum is used to determine the atmospheric pressure. Estimate the median film refractive index (N), determine the target atmospheric optical film thickness (ND) using the predicted atmospheric film film refractive index, and determine the optical film thickness in vacuum corresponding to the target atmospheric optical film thickness A film thickness control method comprising determining a monochromatic control wavelength for obtaining (nD) and performing film thickness control.
膜の反射又は透過特性を測光する特性モニタとの両方を
有する真空装置において、成膜中は前記膜厚制御用モニ
タの単色制御波長により膜厚制御用モニタ基板の膜厚を
制御し、成膜後は特性モニタの特性モニタ基板上に成膜
された膜特性を真空中で測定して真空中の膜定数(屈折
率ns、膜厚Ds)を求め、該膜定数を大気中の膜定数
(屈折率Ns、膜厚Ds)に予想換算し、該予想定数を
固定して次層以降の膜厚を大気中目標特性に合わせて再
設計し、次層又は以降の層の修正大気目標光学膜厚(N
D)sを決定し、既成膜層の膜厚比(=Ds/Dm)と
前記膜厚制御用モニタ基板上の既成膜層の定数を考慮し
て、前記モニタ基板上の次層の修正真空目標光学膜厚
(nD)mに対応する単色制御波長を決めて膜厚制御を
行うことを特徴とする膜厚制御方法。2. In a vacuum apparatus having both a film thickness control monitor for controlling the film thickness and a characteristic monitor for measuring the reflection or transmission characteristics of the laminated film, monochromatic control of the film thickness control monitor is performed during film formation. The film thickness of the monitor substrate for film thickness control is controlled by the wavelength, and after the film is formed, the characteristics of the film formed on the characteristic monitor substrate of the characteristic monitor are measured in a vacuum, and the film constants (refractive index ns, Film thickness Ds) is obtained, and the film constant is estimated and converted into a film constant (refractive index Ns, film thickness Ds) in the atmosphere. Redesigned, and the corrected atmospheric target optical film thickness (N
D) After determining s, taking into account the film thickness ratio (= Ds / Dm) of the already formed layers and the constant of the already formed layers on the monitor substrate for film thickness control, the modified vacuum of the next layer on the monitor substrate is adjusted. A film thickness control method characterized in that a film thickness is controlled by determining a monochromatic control wavelength corresponding to a target optical film thickness (nD) m.
膜厚制御を行うことを特徴とする成膜装置。3. A film forming apparatus, wherein the film thickness is controlled by using the film thickness controlling method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000310919A JP2002115053A (en) | 2000-10-11 | 2000-10-11 | Film thickness control method, and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000310919A JP2002115053A (en) | 2000-10-11 | 2000-10-11 | Film thickness control method, and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002115053A true JP2002115053A (en) | 2002-04-19 |
Family
ID=18790781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000310919A Pending JP2002115053A (en) | 2000-10-11 | 2000-10-11 | Film thickness control method, and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002115053A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008166782A (en) * | 2006-12-26 | 2008-07-17 | Seoul Semiconductor Co Ltd | Light-emitting element |
CN117488248A (en) * | 2024-01-02 | 2024-02-02 | 上海米蜂激光科技有限公司 | Correction plate design method, correction plate, coating device and coating method |
-
2000
- 2000-10-11 JP JP2000310919A patent/JP2002115053A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008166782A (en) * | 2006-12-26 | 2008-07-17 | Seoul Semiconductor Co Ltd | Light-emitting element |
US8405304B2 (en) | 2006-12-26 | 2013-03-26 | Seoul Semiconductor Co., Ltd. | Light emtting device |
US8569944B2 (en) | 2006-12-26 | 2013-10-29 | Seoul Semiconductor Co., Ltd. | Light emitting device |
CN117488248A (en) * | 2024-01-02 | 2024-02-02 | 上海米蜂激光科技有限公司 | Correction plate design method, correction plate, coating device and coating method |
CN117488248B (en) * | 2024-01-02 | 2024-03-12 | 上海米蜂激光科技有限公司 | Correction plate design method, correction plate, coating device and coating method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002069000A1 (en) | Multi-layer film cut filter and production method therefor, uv cut filter, dustproof glass, display panel and projection type display unit | |
JP4667204B2 (en) | Method for forming multilayer film | |
US20030044728A1 (en) | Method of manufacturing diffractive optical element | |
JP2011077552A (en) | Reflective mask blank, reflective mask, and multilayer film reflecting mirror | |
JP2002115053A (en) | Film thickness control method, and apparatus therefor | |
US20140347735A1 (en) | Etalon and method for producing etalon | |
JP2001305337A (en) | Optical filter and method for manufacturing the optical filter | |
US6261696B1 (en) | Optical element with substrate containing fluorite as main ingredient, and method and apparatus for producing the optical element | |
JPH077124B2 (en) | Anti-reflection film | |
JP2005154804A (en) | Apparatus and method for forming optical thin film | |
JP3754874B2 (en) | Film forming method and film forming apparatus | |
KR101193096B1 (en) | Optical filter and method of manufacturing optical filter | |
JP2008158258A (en) | Optical interference filter and its fabrication | |
JP2002053957A (en) | Method and apparatus for film deposition | |
WO2007129375A1 (en) | Optical device component | |
JP2003029026A (en) | Device for deposition of optical thin film, method for depositing film and optical filter | |
JP4443425B2 (en) | Optical multilayer device | |
JP2008058561A (en) | Optical filter and color separation prism | |
JP2008009117A (en) | Method of forming dielectric multilayer film | |
JP2003248116A (en) | Multilayer film filter, its manufacturing method and its manufacturing apparatus | |
JP2002258035A (en) | Multilayered film cut filter and method of manufacturing the same | |
JP2001174628A (en) | Method of controlling film thickness of multi-layer optical interference thin film | |
JPH10125580A (en) | X-ray mask | |
JP2004069865A (en) | Multilayer film optical filter and its manufacturing method and optical part using it | |
JP2007010743A (en) | Method for manufacturing optical filter |