JP2002096335A - Mold for molding optical element and method for molding optical element - Google Patents
Mold for molding optical element and method for molding optical elementInfo
- Publication number
- JP2002096335A JP2002096335A JP2000290257A JP2000290257A JP2002096335A JP 2002096335 A JP2002096335 A JP 2002096335A JP 2000290257 A JP2000290257 A JP 2000290257A JP 2000290257 A JP2000290257 A JP 2000290257A JP 2002096335 A JP2002096335 A JP 2002096335A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- optical element
- layer
- molding
- heat insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、ミクロンオーダ
ー以下の形状精度が要求される映像記録、光記録、光通
信機器などに使用される回折光学素子や、光学レンズ、
ミラー等を合成樹脂の射出成形で製造するための光学素
子成形用の金型、及びその金型を使用した光学素子の成
形方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diffractive optical element used for video recording, optical recording, optical communication equipment, etc., which requires a form accuracy of a micron order or less, an optical lens,
The present invention relates to a mold for molding an optical element for manufacturing a mirror or the like by injection molding of a synthetic resin, and a method for molding an optical element using the mold.
【0002】[0002]
【従来の技術】合成樹脂の射出成形により光学素子を製
造する場合に使用される成形型は、従来から鋼などの金
属材料で製作された金型が使用されてきた。このような
従来の金型を用いて0.1μm乃至1mmの微細形状を
持つ回折光学素子を熱可塑性樹脂で射出成形する場合、
溶融樹脂が持つ熱は金型内に射出された瞬間に急速に金
型に移動し、キャビテイ型又はコア型に接触している樹
脂表面は急速に冷却され、固化する。2. Description of the Related Art A mold used for manufacturing an optical element by injection molding of a synthetic resin has conventionally been a mold made of a metal material such as steel. When a diffractive optical element having a fine shape of 0.1 μm to 1 mm is injection-molded with a thermoplastic resin using such a conventional mold,
The heat of the molten resin is rapidly transferred to the mold as soon as it is injected into the mold, and the resin surface in contact with the cavity mold or the core mold is rapidly cooled and solidified.
【0003】このため、樹脂を射出した後の形状転写工
程である保圧工程(樹脂射出後に所定の時間、圧力を維
持する工程)において、十分な転写性が得られない、即
ちミクロンオーダー以下の高い精度で金型の形状を成形
体に転写することができないという不都合がある。For this reason, in the pressure-holding step (a step of maintaining the pressure for a predetermined time after the resin is injected), which is a shape transfer step after the resin is injected, sufficient transferability cannot be obtained, that is, in the order of microns or less. There is a disadvantage that the shape of the mold cannot be transferred to the molded body with high accuracy.
【0004】転写性を改善するための対策としては、射
出圧力を高めたり、射出速度を上げるなどの方策がある
が、転写性を改善するには限界があり、十分に転写性を
改善することはできない。As measures for improving the transferability, there are measures such as increasing the injection pressure and increasing the injection speed. However, there is a limit in improving the transferability, and it is necessary to improve the transferability sufficiently. Can not.
【0005】また、射出成形に先立つて金型を樹脂の転
写可能温度(ガラス転移温度)まで加熱すると転写性は
向上するが、射出成形後は金型を離型可能な温度まで冷
却する必要があり、射出成形の工程に金型加熱工程や金
型冷却工程が加わり、工程数が増加するほか、金型の加
熱冷却設備に多額の費用を要し、現実的な成形方法では
ない。Further, if the mold is heated to a resin transferable temperature (glass transition temperature) prior to injection molding, transferability is improved, but after injection molding, it is necessary to cool the mold to a temperature at which the mold can be released. In addition, a mold heating step and a mold cooling step are added to the injection molding step, so that the number of steps increases, and a large amount of cost is required for heating and cooling equipment for the mold, which is not a realistic molding method.
【0006】このような課題を解決する手段として、金
型表面に断熱層を設け、射出工程において金型内に充填
された樹脂の温度が、その後の形状転写工程である保圧
工程まで高温に保つようにすることで転写性を向上させ
る方法が、主に外観を重視する部品の成形を目的に提案
されている。具体的には、断熱層にポリイミド樹脂を使
用するもの(例えば、特許第267623号、特許第2
706221号、特許第2727303号)や、断熱層
にセラミックスを使用するもの(例えば、特開平6−2
18769号公報、特開平10−149587号公報)
等が提案されている。As means for solving such a problem, a heat insulating layer is provided on the surface of the mold, and the temperature of the resin filled in the mold in the injection step is increased to a high temperature until the pressure-holding step, which is the subsequent shape transfer step. A method of improving the transferability by keeping the same has been proposed mainly for the purpose of molding a part that emphasizes the appearance. Specifically, those using a polyimide resin for the heat insulating layer (for example, Patent No. 267623, Patent No. 2
No. 706221, Japanese Patent No. 2727303), and those using ceramics for the heat insulating layer (for example, JP-A-6-2)
18769, JP-A-10-149587)
Etc. have been proposed.
【0007】[0007]
【発明が解決しようとする課題】上記した断熱層を表面
に設けた金型による光学素子の成形においては、以下の
ような不都合が指摘されている。The following inconveniences have been pointed out in molding an optical element using a mold provided with a heat insulating layer on the surface as described above.
【0008】即ち、断熱層にポリイミド樹脂を使用した
場合は、ポリイミド樹脂硬化物は金属等に比較して粘
弾性があるため、ポリイミド樹脂硬化物で被覆された金
型表面を切削加工や研磨加工により光回折効果をもたら
す溝等の微細形状の形成や光学表面の形成が不可能であ
ること。ポリイミド樹脂硬化物は金属に比較して熱膨
張係数が約5倍大きいため、熱履歴が繰り返し加わる金
型表面にポリイミド樹脂硬化物を被覆した場合は、金型
母材と被覆物との密着性を長期間確保することが困難で
あること。That is, when a polyimide resin is used for the heat insulating layer, the cured polyimide resin is more viscoelastic than metal or the like, so that the mold surface covered with the cured polyimide resin is cut or polished. It is impossible to form a fine shape such as a groove and an optical surface which bring about an optical diffraction effect. Since the cured polyimide resin has a coefficient of thermal expansion about 5 times larger than that of metal, if the cured polyimide resin is coated on the mold surface to which heat history is repeatedly applied, the adhesion between the mold base material and the coating Is difficult to secure for a long time.
【0009】断熱層にセラミックスを使用した場合は、
セラミックスは金属に比較して硬度や脆性が高く、しか
も微粒子により構成されているため、切削加工や研磨加
工により光回折効果をもたらす溝等の微細形状の形成や
光学表面の形成が困難であること。When ceramics are used for the heat insulating layer,
Ceramics have higher hardness and brittleness than metals, and are composed of fine particles, making it difficult to form microscopic shapes such as grooves and optical surfaces that provide an optical diffraction effect by cutting or polishing. .
【0010】断熱層にセラミックスを使用し、充填され
る樹脂との接触面を金属製の別部材として構成した場合
は、充填される樹脂の急冷を防ぐために金属製の別部材
の厚みを薄くする必要がある。しかし、厚みの薄い金属
製の別部材に切削加工や研磨加工を施して光回折効果を
もたらす溝等の微細形状の形成すると、加工応力による
変形が生じ、精度を保証することができない。また、球
面、非球面、自由曲面等を光学部品として要求される高
い精度で加工することも不可能である。In the case where ceramic is used for the heat insulating layer and the contact surface with the resin to be filled is formed as a separate metal member, the thickness of the separate metal member is reduced to prevent rapid cooling of the filled resin. There is a need. However, when a thin metal member is cut or polished to form a fine shape such as a groove that produces an optical diffraction effect, deformation occurs due to processing stress, and accuracy cannot be guaranteed. Further, it is impossible to process a spherical surface, an aspherical surface, a free-form surface, and the like with high precision required as an optical component.
【0011】上記した金属製の別部材を電鋳法により形
成するときは、その形状精度は原理的に金型母型(マス
ター)の形状精度よりも低下するから、高精度が要求さ
れる光学部品製作用の金型としては適当でない。When the above-mentioned separate metal member is formed by the electroforming method, the shape accuracy is in principle lower than the shape accuracy of the mold master (master). It is not suitable as a mold for manufacturing parts.
【0012】上記した金属製の別部材をセラミックス断
熱層の上に接着や圧接により接合固定する場合は、その
接合応力により金属製の別部材に変形が生じ、光学部品
として要求される精度を確保することが困難となる。さ
らに、セラミックス断熱層との間の密着状態が不均一に
なり、金型の温度ムラ、樹脂の流動ムラが発生し、また
冷却固化が不均一になるなどの支障が発生し、光学部品
として要求される高い精度を確保することが困難とな
る。When the above-mentioned separate metal member is bonded and fixed on the ceramic heat-insulating layer by adhesion or pressure welding, the separate metal member is deformed by the bonding stress, and the accuracy required as an optical component is secured. It will be difficult to do. Furthermore, the state of adhesion to the ceramic heat insulating layer becomes non-uniform, uneven temperature of the mold, uneven flow of the resin, and uneven cooling and solidification occur. It is difficult to ensure high accuracy.
【0013】[0013]
【課題を解決するための手段】この発明は、上記課題を
解決することを目的とするもので、請求項1の発明は、
コア型と、該コア型との間に部材成形空間を隔てて配置
されたキャビテイ型とを備えた合成樹脂成形用の金型で
あつて、少なくとも前記コア型及びキャビテイ型のいず
れか一方は、その部材成形空間に対向する面に、金型母
材の上に断熱層を介在させて表面加工層が形成されてい
ることを特徴とする光学素子成形用金型である。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems.
A mold for synthetic resin molding comprising a core mold and a cavity mold arranged with a member molding space interposed between the core mold and at least one of the core mold and the cavity mold, An optical element molding die, characterized in that a surface processed layer is formed on a surface facing the member molding space with a heat insulating layer interposed on a die base material.
【0014】そして、前記表面加工層は、0.1μm乃
至1mmの範囲の微細形状が切削加工により形成され、
或いは面粗度0.05μm以下の光学鏡面が研磨加工若
しくは切削加工により形成されている。[0014] The surface processing layer is formed by cutting a fine shape in a range of 0.1 µm to 1 mm.
Alternatively, an optical mirror surface having a surface roughness of 0.05 μm or less is formed by polishing or cutting.
【0015】また、前記断熱層は、前記コア型又はキャ
ビテイ型の部材成形空間に対向する面にセラミックス系
材料を溶射して形成された断熱層である。The heat insulating layer is a heat insulating layer formed by spraying a ceramic material on a surface facing the core-type or cavity-type member forming space.
【0016】また、前記断熱層は、熱伝導率が10.0
W/m・K以下で、且つ厚みが0.1mm乃至3mmの
範囲内である。The heat insulation layer has a thermal conductivity of 10.0.
It is not more than W / m · K and the thickness is in the range of 0.1 mm to 3 mm.
【0017】そして、前記表面加工層は、前記断熱層の
上に非鉄金属材料をメッキして形成された表面加工層で
ある。[0017] The surface processing layer is a surface processing layer formed by plating a non-ferrous metal material on the heat insulating layer.
【0018】また、前記表面加工層は、厚みが1μm乃
至200μmの範囲内にある。The thickness of the surface-treated layer is in the range of 1 μm to 200 μm.
【0019】そして、前記金型母材、断熱層及び表面加
工層は、それぞれ隣接する金型母材と断熱層或いは断熱
層と表面加工層との間の熱膨張係数の差が15×10-6
/℃以下になるように選択された材料により構成すると
よい。The mold base material, the heat-insulating layer and the surface-treated layer each have a difference in thermal expansion coefficient of 15 × 10 − between the adjacent mold base material and the heat-insulating layer or between the heat-insulating layer and the surface-treated layer. 6
/ ° C. or less.
【0020】請求項9の発明は、請求項1乃至請求項8
のいずれかに記載の光学素子成形用金型を使用した光学
素子の成形方法であつて、前記光学素子成形用金型の部
材成形空間に熱可塑性合成樹脂を射出して光学素子を成
形することを特徴とする光学素子の成形方法である。The invention of claim 9 is the invention of claims 1 to 8
An optical element molding method using the optical element molding die according to any one of the above, wherein a thermoplastic synthetic resin is injected into a member molding space of the optical element molding die to form an optical element. A method for molding an optical element, characterized by the following.
【0021】[0021]
【発明の実施の形態】以下、この発明の実施の形態につ
いて説明する。Embodiments of the present invention will be described below.
【0022】[第1の実施の形態]まず、金型の構成の
概略を説明する。図1は第1の実施の形態の金型10の
構成を説明する断面図で、回折光学素子を製作する金型
の一例が例示されている。図1において、3はステンレ
ス鋼製のコア型、1はコア型3の表面にセラミックス系
材料であるジルコニアを溶射して直接金型母材に一体に
形成した断熱層、2は断熱層1の上に非鉄金属材料であ
るニッケルを無電解メッキして断熱層1に一体に形成し
た表面加工層である。[First Embodiment] First, an outline of the configuration of a mold will be described. FIG. 1 is a cross-sectional view illustrating the configuration of a mold 10 according to the first embodiment, illustrating an example of a mold for manufacturing a diffractive optical element. In FIG. 1, reference numeral 3 denotes a stainless steel core mold, 1 denotes a heat insulating layer formed by spraying zirconia, which is a ceramic material, on the surface of the core mold 3 and directly formed integrally with the mold base material; This is a surface processed layer integrally formed on the heat insulating layer 1 by electroless plating nickel which is a non-ferrous metal material.
【0023】表面加工層2には、製作する光学部品に応
じて切削加工による表面加工が施される。ここでは回折
光学素子の金型として、表面加工層2の表面にピッチ7
μm、高さ3.5μmの回折格子のブレーズ形状2a
が、ダイヤモンド工具による切削加工により形成されて
いる。The surface processing layer 2 is subjected to surface processing by cutting in accordance with the optical component to be manufactured. Here, as a mold of the diffractive optical element, a pitch of 7
μm, 3.5 μm high diffraction grating blaze shape 2a
Are formed by cutting with a diamond tool.
【0024】4及び5はコア型3の周囲を囲んでキャビ
テイを形成するキャビテイ型であつて、コア型3の表面
の断熱層1の上に形成された表面加工層2とキャビテイ
型4及び5との間に形成される部材形成空間6に合成樹
脂が射出され、合成樹脂製の光学部品である回折光学素
子が形成される。Numerals 4 and 5 denote cavities which surround the periphery of the core mold 3 to form cavities. The surface treatment layer 2 formed on the heat insulating layer 1 on the surface of the core mold 3 and the cavity molds 4 and 5 are provided. The synthetic resin is injected into the member forming space 6 formed between them, and a diffractive optical element which is an optical component made of the synthetic resin is formed.
【0025】コア型3、断熱層1及び表面加工層2の物
理的特性は以下のとおりである。コア型3の熱膨張係数
11×10-6/℃、熱伝導率24.0W/m・K、断熱
層1の厚み1mm、熱膨張係数9×10-6/℃、熱伝導
率1.2W/m・K、表面加工層2の厚み0.1mm、
熱膨張係数13×10-6/℃、熱伝導率8.0W/m・
Kである。上記した物理的特性を図2に纏めて示した。The physical characteristics of the core mold 3, the heat insulating layer 1 and the surface processing layer 2 are as follows. Thermal expansion coefficient of core mold 3 11 × 10 −6 / ° C., thermal conductivity 24.0 W / m · K, thickness of heat insulating layer 1 1 mm, thermal expansion coefficient 9 × 10 −6 / ° C., thermal conductivity 1.2 W / M · K, the thickness of the surface-treated layer 2 is 0.1 mm,
Thermal expansion coefficient 13 × 10 −6 / ° C, thermal conductivity 8.0 W / m ·
K. The physical properties described above are summarized in FIG.
【0026】合成樹脂としては、ポリカーボネイト樹脂
(ガラス転移温度148℃)を使用し、射出成形条件
は、成形樹脂温度290℃、金型温度100℃、成形時
間150秒である。As the synthetic resin, a polycarbonate resin (glass transition temperature: 148 ° C.) is used, and the injection molding conditions are a molding resin temperature of 290 ° C., a mold temperature of 100 ° C., and a molding time of 150 seconds.
【0027】次に、上記した条件で製作した回折光学素
子の表面形状の転写精度の測定結果を従来例と比較して
説明する。Next, the measurement result of the transfer accuracy of the surface shape of the diffractive optical element manufactured under the above conditions will be described in comparison with a conventional example.
【0028】図3は、回折光学素子の金型のねらい形
状、コア型形状、及び成形品形状を説明する拡大断面図
で、図3の(a)は従来の金型の各形状を、図3の
(b)は上記した第1の実施の形態の金型の各形状を示
す。FIG. 3 is an enlarged cross-sectional view for explaining the aimed shape, core shape, and molded product shape of the mold of the diffractive optical element. FIG. 3 (a) shows each shape of the conventional mold. 3 (b) shows each shape of the mold of the first embodiment described above.
【0029】従来の金型では、図3の(a)に示すよう
に、回折光学素子のねらい形状21に対し、コア型の形
状22は材料の粘弾性等の影響により先端部分が僅かに
垂れた形状に仕上がり、更にこのコア型による成形品の
形状23は、先端部分が大きく垂れた形状となつてい
る。In the conventional mold, as shown in FIG. 3A, the core shape 22 slightly sags due to the viscoelasticity and the like of the material, while the aim shape 21 of the diffractive optical element. In addition, the shape 23 of the molded product of the core mold has a shape whose tip end portion is drooped greatly.
【0030】そのねらい形状21に対する成形品の形状
誤差Dは、使用する合成樹脂の種類により異なるが、
0.6乃至1.1μm程度であつた。The shape error D of the molded product with respect to the target shape 21 differs depending on the type of synthetic resin used.
It was about 0.6 to 1.1 μm.
【0031】一方、第1の実施の形態の金型では、図3
の(b)に示すように、回折光学素子のねらい形状25
に対し、コア型の形状26はねらい形状25に略一致し
た形状に仕上がり、更にこのコア型による成形品の形状
27もねらい形状25に略一致した形状に成形すること
ができた。On the other hand, in the mold of the first embodiment, FIG.
As shown in (b) of FIG.
On the other hand, the shape 26 of the core mold was finished to have a shape substantially corresponding to the aimed shape 25, and the shape 27 of the molded product by the core mold could be formed to a shape substantially matched to the aimed shape 25.
【0032】そのねらい形状25に対する成形品の形状
誤差Dは、使用する合成樹脂の種類により異なるが、
0.1μm以下であつた。The shape error D of the molded product with respect to the target shape 25 differs depending on the type of synthetic resin used.
It was 0.1 μm or less.
【0033】図4に、従来の金型による成形品の形状誤
差の測定結果と、第1の実施の形態の金型による成形品
の形状誤差の測定結果とを、使用する合成樹脂の種類別
により示す。FIG. 4 shows the measurement result of the shape error of the molded article by the conventional mold and the measurement result of the shape error of the molded article by the mold of the first embodiment, for each type of synthetic resin used. Indicated by.
【0034】図4から明らかなように、第1の実施の形
態の金型によれば、従来の金型に比較して成形品の形状
誤差Dは極めて小さく、使用する合成樹脂の種類にも殆
ど影響の無いことが分かる。As is apparent from FIG. 4, according to the mold of the first embodiment, the shape error D of the molded product is extremely small as compared with the conventional mold, and the type of synthetic resin used is also small. It can be seen that there is almost no effect.
【0035】[第2の実施の形態]図5は、第2の実施
の形態の金型30の構成を説明する断面図で、レーザビ
ームプリンタに使用されるfθミラーを製作する金型の
一例が例示されている。[Second Embodiment] FIG. 5 is a cross-sectional view illustrating the configuration of a mold 30 according to a second embodiment, and is an example of a mold for manufacturing an fθ mirror used in a laser beam printer. Is exemplified.
【0036】図5において、33a及び33bはステン
レス鋼製のコア型、31aはコア型33aの表面にセラ
ミック系材料であるジルコニアを溶射して一体形成した
断熱層、32aは断熱層31aの上に非鉄金属材料であ
るニッケルを無電解メッキして断熱層31aに一体形成
した表面加工層である。In FIG. 5, 33a and 33b are stainless steel core molds, 31a is a heat insulating layer integrally formed by spraying zirconia as a ceramic material on the surface of the core mold 33a, and 32a is on the heat insulating layer 31a. This is a surface processed layer formed integrally with the heat insulating layer 31a by electroless plating nickel, which is a non-ferrous metal material.
【0037】表面加工層32aには、製作する光学部品
に応じて切削加工による表面加工が施される。ここでは
fθミラーの金型として、表面加工層32aの表面に面
粗度0.02μmの自由曲面32bがダイヤモンド工具
による切削加工により形成されている。The surface processing layer 32a is subjected to surface processing by cutting in accordance with the optical component to be manufactured. Here, as a mold for the fθ mirror, a free-form surface 32b having a surface roughness of 0.02 μm is formed on the surface of the surface processing layer 32a by cutting with a diamond tool.
【0038】34及び35はコア型33a、33bの周
囲を囲むキャビテイ型で、コア型33aの表面の断熱層
31aの上に形成された表面加工層32aと、コア型3
3b、キャビテイ型34及び35との間に形成される部
材成形空間36に合成樹脂が射出され、合成樹脂製の光
学部品であるfθミラーが形成される。Numerals 34 and 35 denote cavities surrounding the core molds 33a and 33b, and a surface processed layer 32a formed on the heat insulating layer 31a on the surface of the core mold 33a and a core mold 3a.
3b, synthetic resin is injected into a member molding space 36 formed between the cavity molds 34 and 35, and an fθ mirror, which is an optical component made of synthetic resin, is formed.
【0039】コア型33a、断熱層31a及び表面加工
層32aの物理的特性は以下のとおりである。即ち、コ
ア型33aの熱膨張係数11×10-6/℃、熱伝導率2
4.0W/m・K、断熱層31aの厚み1mm、熱膨張
係数9×10-6/℃、熱伝導率1.2W/m・K、表面
加工層32aの厚み0.15mm、熱膨張係数13×1
0-6/℃、熱伝導率8.0W/m・Kである。この特性
は先に説明した第1の実施の形態の金型の物理的特性と
同じである。The physical characteristics of the core mold 33a, the heat insulating layer 31a and the surface processing layer 32a are as follows. That is, the thermal expansion coefficient of the core mold 33a is 11 × 10 −6 / ° C., and the thermal conductivity is 2
4.0 W / m · K, thickness of heat insulating layer 31 a 1 mm, coefficient of thermal expansion 9 × 10 −6 / ° C, thermal conductivity 1.2 W / m · K, thickness of surface processed layer 32 a 0.15 mm, coefficient of thermal expansion 13x1
0 −6 / ° C., thermal conductivity 8.0 W / m · K. This characteristic is the same as the physical characteristic of the mold of the first embodiment described above.
【0040】なお、上記の金型により、両面を光学鏡面
とする光学部品を形成する場合は、コア型33a及び3
3bの両方に断熱層及び表面加工層を形成すればよい。In the case where an optical component having optical mirror surfaces on both sides is formed by the above-mentioned mold, the core molds 33a and 3d are used.
What is necessary is just to form a heat insulation layer and a surface processing layer in both of 3b.
【0041】以上説明した、第1及び第2の実施の形態
においては、断熱層の材料として、ジルコニアを使用し
たが、断熱層の材料はこれに限られるものではなく、セ
ラミック系材料、即ち、アルミナ、酸化チタン、酸化ク
ロム等を含む各種のセラミックの他、それ等のセラミッ
ク材料と金属材料との混合物であるサーメットなどを使
用することができる。その材料の選定に際しては、その
材料の熱膨張係数が金型母材や表面加工層の材料の熱膨
張係数と大きく異ならない材料を選択するものとする。In the first and second embodiments described above, zirconia is used as the material of the heat insulating layer. However, the material of the heat insulating layer is not limited to this, and a ceramic material, that is, In addition to various ceramics including alumina, titanium oxide, chromium oxide, and the like, cermet, which is a mixture of such a ceramic material and a metal material, can be used. When selecting the material, a material whose coefficient of thermal expansion does not greatly differ from the coefficient of thermal expansion of the material of the mold base material or the surface processing layer is selected.
【0042】即ち、金型母材の熱膨張係数は概略5〜3
0×10-6/℃、断熱層の材料の熱膨張係数は概略3〜
30×10-6/℃、表面加工層の材料の熱膨張係数は概
略5〜30×10-6/℃であるから、これらの材料の選
択・組み合わせに際しては、隣接する金型母材と断熱層
或いは断熱層と表面加工層との間の熱膨張係数の差が1
5×10-6/℃以下になるように材料を選択し組み合わ
せるとよい。That is, the thermal expansion coefficient of the mold base material is approximately 5 to 3
0 × 10 −6 / ° C., the thermal expansion coefficient of the material of the heat insulating layer is approximately 3 to
30 × 10 -6 / ℃, because the thermal expansion coefficient of the material of the surface processed layer is a schematic 5~30 × 10 -6 / ℃, when the selection and combination of these materials, the adjacent mold base material and the heat insulating The difference in the coefficient of thermal expansion between the layer or the heat insulation layer and the surface treatment layer is 1
It is advisable to select and combine the materials so as to be 5 × 10 −6 / ° C. or less.
【0043】また、説明した、第1及び第2の実施の形
態においては、コア型(キャビテイ型でも同じ)の部材
成形空間に対向する面に形成する層は、断熱層と表面加
工層との2層構造としたが、金型母材の表面と断熱層、
断熱層と表面加工層との間の密着力を向上させるため、
又は表面加工層の鏡面性を向上させるため、その間に中
間層を設けてもよい。中間層は、金型母材、断熱層の材
料、表面加工層の材料との間でそれぞれ高い親和力を持
つ材料で構成するものとする。In the first and second embodiments described above, the layer formed on the surface of the core type (same for the cavity type) facing the member forming space is formed by the heat insulating layer and the surface processing layer. Although it has a two-layer structure, the surface of the mold base material and the heat insulating layer,
In order to improve the adhesion between the heat insulation layer and the surface treatment layer,
Alternatively, an intermediate layer may be provided therebetween in order to improve the mirror finish of the surface processing layer. The intermediate layer is made of a material having a high affinity with the mold base material, the material of the heat insulating layer, and the material of the surface processing layer.
【0044】[0044]
【発明の効果】以上説明したとおり、請求項1の発明の
光学素子成形用金型は、少なくともコア型及びキャビテ
イ型のいずれか一方は、その部材成形空間に対向する面
に、金型母材の上に断熱層を介在させて表面加工層が形
成されており、断熱層は金型にセラミックス系材料を溶
射して形成された断熱層で、表面加工層は前記断熱層の
上に非鉄金属材料をメッキして形成された表面加工層で
ある。As described above, according to the optical element molding die of the first aspect of the present invention, at least one of the core die and the cavity die is provided on the surface facing the member molding space. A surface processing layer is formed with a heat insulating layer interposed therebetween, and the heat insulating layer is a heat insulating layer formed by spraying a ceramic material on a mold, and the surface processing layer is a non-ferrous metal on the heat insulating layer. This is a surface processed layer formed by plating a material.
【0045】表面加工層に非鉄金属材料を使用し、その
下側の断熱層にセラミック系材料を使用することで表面
加工層の強度を高めることができるので、表面加工層に
ミクロンオーダー以下の極めて精度の高い金型形状を加
工することが可能となる。By using a non-ferrous metal material for the surface treatment layer and using a ceramic material for the heat insulating layer below the surface treatment layer, the strength of the surface treatment layer can be increased. A highly accurate mold shape can be processed.
【0046】また、表面加工層の下側に断熱層が存在す
ることにより、金型の温度ムラ、樹脂の流動ムラ、冷却
固化の不均一などが発生することがなく、射出工程にお
いて金型内に充填された樹脂の温度を、その後の形状転
写工程である保圧工程まで高温に保つことができるか
ら、表面加工層に形成されたミクロンオーダー以下の極
めて精度の高い金型形状を高い精度で成形品に転写する
ことができ、光学部品として要求される精度を確保する
ことができる等、従来の光学素子成形用金型に見られな
い優れた性能の金型を提供することができる。Further, since the heat insulating layer exists below the surface processing layer, unevenness in the temperature of the mold, uneven flow of the resin, and uneven cooling and solidification do not occur. The temperature of the resin charged into the surface can be kept high until the pressure-holding step, which is the subsequent shape transfer step. It is possible to provide a mold having excellent performance not found in conventional molds for molding optical elements, such as being able to be transferred to a molded article and ensuring the precision required as an optical component.
【0047】更に、請求項9の発明の光学素子成形方法
は、上記した光学素子成形用金型を使用して光学素子を
成形するものであるから、ミクロンオーダー以下の極め
て精度の高い光学素子を成形することができる。Further, in the optical element molding method according to the ninth aspect of the present invention, since the optical element is molded using the above-described mold for molding an optical element, an optical element having extremely high precision on the order of microns or less can be obtained. Can be molded.
【図1】第1の実施の形態の金型の構成を説明する断面
図。FIG. 1 is a sectional view illustrating the configuration of a mold according to a first embodiment.
【図2】コア型、断熱層及び表面加工層の物理的特性を
示す図。FIG. 2 is a view showing physical characteristics of a core mold, a heat insulating layer, and a surface processing layer.
【図3】従来の回折光学素子金型、及び第1の実施の形
態の回折光学素子金型のねらい形状、コア型形状、及び
成形品形状を説明する拡大断面図。FIG. 3 is an enlarged cross-sectional view illustrating a target shape, a core shape, and a molded product shape of a conventional diffractive optical element mold and the diffractive optical element mold of the first embodiment.
【図4】従来の金型による成形品の形状誤差の測定結果
と、第1の実施の形態の金型による成形品の形状誤差の
測定結果を説明する図。FIG. 4 is a diagram illustrating a measurement result of a shape error of a molded product by a conventional mold and a measurement result of a shape error of a molded product by the mold according to the first embodiment.
【図5】第2の実施の形態の金型の構成を説明する断面
図。FIG. 5 is a sectional view illustrating a configuration of a mold according to a second embodiment.
10 第1の実施の形態の金型 1 断熱層 2 表面加工層 2a 回折格子のブレーズ形状 3 コア型 4、5 キャビテイ型 6 部材成形空間 30 第2の実施の形態の金型 31a 断熱層 32a 表面加工層 32b 自由曲面 33a、33b コア型 34、35 キャビテイ型 36 部材成形空間 Reference Signs List 10 Mold of first embodiment 1 Heat insulation layer 2 Surface treatment layer 2a Blazed shape of diffraction grating 3 Core mold 4, 5 Cavity mold 6 Member molding space 30 Mold of second embodiment 31a Heat insulation layer 32a Surface Working layer 32b Free-form surface 33a, 33b Core mold 34, 35 Cavity mold 36 Member forming space
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H049 AA31 AA40 AA63 4F202 AF14 AH73 AJ06 AJ09 AJ13 AR12 AR13 CA11 CB01 CD14 CD18 CD26 CK88 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H049 AA31 AA40 AA63 4F202 AF14 AH73 AJ06 AJ09 AJ13 AR12 AR13 CA11 CB01 CD14 CD18 CD26 CK88
Claims (9)
間を隔てて配置されたキャビテイ型とを備えた合成樹脂
成形用の金型であつて、 少なくとも前記コア型及びキャビテイ型のいずれか一方
は、その部材成形空間に対向する面に、金型母材の上に
断熱層を介在させて表面加工層が形成されていることを
特徴とする光学素子成形用金型。1. A synthetic resin mold comprising a core mold and a cavity mold arranged with a member molding space between the core mold and at least one of the core mold and the cavity mold. Either one is a mold for molding an optical element, characterized in that a surface processing layer is formed on a surface facing a member molding space with a heat insulating layer interposed on a mold base material.
mの範囲の微細形状が切削加工により形成されているこ
とを特徴とする請求項1記載の光学素子成形用金型。2. The surface-treated layer has a thickness of 0.1 μm to 1 m.
2. The optical element molding die according to claim 1, wherein a fine shape in a range of m is formed by cutting.
以下の光学鏡面が研磨加工若しくは切削加工により形成
されていることを特徴とする請求項1記載の光学素子成
形用金型。3. The surface-treated layer has a surface roughness of 0.05 μm.
The optical element molding die according to claim 1, wherein the following optical mirror surface is formed by polishing or cutting.
イ型の部材成形空間に対向する面にセラミックス系材料
を溶射して形成された断熱層であることを特徴とする請
求項1記載の光学素子成形用金型。4. The optical device according to claim 1, wherein the heat insulating layer is a heat insulating layer formed by spraying a ceramic material on a surface facing the core-shaped or cavity-shaped member forming space. Element molding die.
m・K以下で、且つ厚みが0.1mm乃至3mmの範囲
内であることを特徴とする請求項1記載の光学素子成形
用金型。5. The heat insulating layer has a thermal conductivity of 10.0 W /
2. The mold for molding an optical element according to claim 1, wherein the thickness is within a range of 0.1 mm to 3 mm.
鉄金属材料をメッキして形成された表面加工層であるこ
とを特徴とする請求項1記載の光学素子成形用金型。6. The optical element molding die according to claim 1, wherein the surface processing layer is a surface processing layer formed by plating a non-ferrous metal material on the heat insulating layer.
00μmの範囲内にあることを特徴とする請求項1記載
の光学素子成形用金型。7. The surface-treated layer has a thickness of 1 μm to 2 μm.
The mold for molding an optical element according to claim 1, wherein the diameter is within a range of 00 µm.
は、それぞれ隣接する金型母材と断熱層或いは断熱層と
表面加工層との間の熱膨張係数の差が15×10-6/℃
以下になるように選択された材料により構成されている
ことを特徴とする請求項1乃至請求項7のいずれかに記
載の光学素子成形用金型。8. The mold base material, the heat insulating layer and the surface treatment layer each have a difference in thermal expansion coefficient of 15 × 10 − between the adjacent mold base material and the heat insulation layer or between the heat insulation layer and the surface treatment layer. 6 / ℃
The optical element molding die according to any one of claims 1 to 7, comprising a material selected as follows.
の光学素子成形用金型を使用した光学素子の成形方法で
あつて、前記光学素子成形用金型の部材成形空間に熱可
塑性合成樹脂を射出して光学素子を成形することを特徴
とする光学素子の成形方法。9. An optical element molding method using the optical element molding die according to any one of claims 1 to 8, wherein the member molding space of the optical element molding die has thermoplasticity. A method for molding an optical element, comprising molding an optical element by injecting a synthetic resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000290257A JP4135304B2 (en) | 2000-09-25 | 2000-09-25 | Manufacturing method of mold for molding optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000290257A JP4135304B2 (en) | 2000-09-25 | 2000-09-25 | Manufacturing method of mold for molding optical element |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008098059A Division JP4650514B2 (en) | 2008-04-04 | 2008-04-04 | Optical element molding method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002096335A true JP2002096335A (en) | 2002-04-02 |
JP2002096335A5 JP2002096335A5 (en) | 2007-03-01 |
JP4135304B2 JP4135304B2 (en) | 2008-08-20 |
Family
ID=18773509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000290257A Expired - Lifetime JP4135304B2 (en) | 2000-09-25 | 2000-09-25 | Manufacturing method of mold for molding optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4135304B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004175112A (en) * | 2002-11-13 | 2004-06-24 | Maxell Hi Tec Ltd | Molding die and its manufacturing method |
JP2005186513A (en) * | 2003-12-26 | 2005-07-14 | Konica Minolta Holdings Inc | Forming having minute shape, optical element, forming method, and forming apparatus |
JP2006044245A (en) * | 2004-06-29 | 2006-02-16 | Konica Minolta Opto Inc | Mold for injection molding and injection molding method |
JP2006044247A (en) * | 2004-06-29 | 2006-02-16 | Konica Minolta Opto Inc | Injection mold and injection molding method |
JP2006044244A (en) * | 2004-06-29 | 2006-02-16 | Konica Minolta Opto Inc | Mold for injection molding and injection molding method |
JP2006334795A (en) * | 2005-05-31 | 2006-12-14 | Victor Co Of Japan Ltd | Mold |
JP2007015201A (en) * | 2005-07-07 | 2007-01-25 | Takehiko Kitamura | Molding mold |
WO2007020769A1 (en) * | 2005-08-18 | 2007-02-22 | Konica Minolta Opto, Inc. | Metal mold for optical device forming and process for producing the same |
WO2007129673A1 (en) * | 2006-05-02 | 2007-11-15 | Hiroyuki Iwami | Mold for thermoplastic resin molding, cavity mold, and process for producing the cavity mold |
WO2008053732A1 (en) * | 2006-10-31 | 2008-05-08 | Konica Minolta Opto, Inc. | Molding die and method for manufacturing the same |
JP2008246699A (en) * | 2007-03-29 | 2008-10-16 | Konica Minolta Opto Inc | Optical element molding mold and optical element molding mold manufacturing method |
WO2009122862A1 (en) * | 2008-03-31 | 2009-10-08 | コニカミノルタオプト株式会社 | Optical element manufacturing method, optical element molding die, and optical element |
JP2010082838A (en) * | 2008-09-29 | 2010-04-15 | Konica Minolta Opto Inc | Lens manufacturing method |
US7708550B2 (en) | 2004-06-29 | 2010-05-04 | Konica Minolta Opto, Inc. | Cold runner injection mold having an insulated gate |
WO2012008372A1 (en) * | 2010-07-12 | 2012-01-19 | 神戸セラミックス株式会社 | Heat-insulating die and production method thereof |
US8318058B2 (en) | 2006-09-20 | 2012-11-27 | Konica Minolta Opto, Inc. | Method for manufacturing mold for molding optical element |
CN102821926A (en) * | 2010-03-30 | 2012-12-12 | 柯尼卡美能达先进多层薄膜株式会社 | Die |
WO2013146985A1 (en) * | 2012-03-30 | 2013-10-03 | コニカミノルタアドバンストレイヤー株式会社 | Molding die and manufacturing method for same |
JP2017527459A (en) * | 2014-06-26 | 2017-09-21 | テーセェーテク スウェーデン アクチエボラグTCTech Sweden AB | Method and apparatus for injection molding or embossing / pressing |
CN108781061A (en) * | 2016-03-11 | 2018-11-09 | 株式会社索思未来 | Amplifying circuit, receiving circuit and semiconductor integrated circuit |
-
2000
- 2000-09-25 JP JP2000290257A patent/JP4135304B2/en not_active Expired - Lifetime
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004175112A (en) * | 2002-11-13 | 2004-06-24 | Maxell Hi Tec Ltd | Molding die and its manufacturing method |
JP2005186513A (en) * | 2003-12-26 | 2005-07-14 | Konica Minolta Holdings Inc | Forming having minute shape, optical element, forming method, and forming apparatus |
JP4576838B2 (en) * | 2003-12-26 | 2010-11-10 | コニカミノルタホールディングス株式会社 | Molding method |
JP2006044245A (en) * | 2004-06-29 | 2006-02-16 | Konica Minolta Opto Inc | Mold for injection molding and injection molding method |
JP2006044247A (en) * | 2004-06-29 | 2006-02-16 | Konica Minolta Opto Inc | Injection mold and injection molding method |
JP2006044244A (en) * | 2004-06-29 | 2006-02-16 | Konica Minolta Opto Inc | Mold for injection molding and injection molding method |
US7708550B2 (en) | 2004-06-29 | 2010-05-04 | Konica Minolta Opto, Inc. | Cold runner injection mold having an insulated gate |
CN1715034B (en) * | 2004-06-29 | 2011-04-13 | 柯尼卡美能达精密光学株式会社 | Injection mold and injection molding apparatus |
JP2006334795A (en) * | 2005-05-31 | 2006-12-14 | Victor Co Of Japan Ltd | Mold |
JP2007015201A (en) * | 2005-07-07 | 2007-01-25 | Takehiko Kitamura | Molding mold |
JP4694287B2 (en) * | 2005-07-07 | 2011-06-08 | ノア・テクノロジーズ・インターナショナル株式会社 | Mold for molding |
WO2007020769A1 (en) * | 2005-08-18 | 2007-02-22 | Konica Minolta Opto, Inc. | Metal mold for optical device forming and process for producing the same |
US8865042B2 (en) | 2006-05-02 | 2014-10-21 | Mitsubishi Engineering-Plastics Corporation | Mold for thermoplastic resin molding, cavity mold, and process for producing the cavity mold |
JP4975021B2 (en) * | 2006-05-02 | 2012-07-11 | 浩之 石見 | Thermoplastic resin mold, cavity mold, and method of manufacturing the cavity mold |
WO2007129673A1 (en) * | 2006-05-02 | 2007-11-15 | Hiroyuki Iwami | Mold for thermoplastic resin molding, cavity mold, and process for producing the cavity mold |
US8318058B2 (en) | 2006-09-20 | 2012-11-27 | Konica Minolta Opto, Inc. | Method for manufacturing mold for molding optical element |
TWI382920B (en) * | 2006-09-20 | 2013-01-21 | Konica Minolta Opto Inc | Method for manufacturing mold for optical element forming |
WO2008053732A1 (en) * | 2006-10-31 | 2008-05-08 | Konica Minolta Opto, Inc. | Molding die and method for manufacturing the same |
JPWO2008053732A1 (en) * | 2006-10-31 | 2010-02-25 | コニカミノルタオプト株式会社 | Mold for molding and manufacturing method thereof |
JP2008246699A (en) * | 2007-03-29 | 2008-10-16 | Konica Minolta Opto Inc | Optical element molding mold and optical element molding mold manufacturing method |
TWI458635B (en) * | 2007-03-29 | 2014-11-01 | Konica Minolta Opto Inc | Optical element forming metal mold and method of manufacturing optical element forming metal mold |
US7922146B2 (en) | 2007-03-29 | 2011-04-12 | Konica Minolta Opto, Inc. | Optical element forming metal mold and method of manufacturing optical element forming metal mold |
CN101274466B (en) * | 2007-03-29 | 2012-07-18 | 柯尼卡美能达精密光学株式会社 | Optical element forming metal mold and method of manufacturing optical element forming metal mold |
WO2009122862A1 (en) * | 2008-03-31 | 2009-10-08 | コニカミノルタオプト株式会社 | Optical element manufacturing method, optical element molding die, and optical element |
JPWO2009122862A1 (en) * | 2008-03-31 | 2011-07-28 | コニカミノルタオプト株式会社 | Optical element manufacturing method, optical element molding die, and optical element |
JP2010082838A (en) * | 2008-09-29 | 2010-04-15 | Konica Minolta Opto Inc | Lens manufacturing method |
CN102821926A (en) * | 2010-03-30 | 2012-12-12 | 柯尼卡美能达先进多层薄膜株式会社 | Die |
JP4966437B2 (en) * | 2010-07-12 | 2012-07-04 | 神戸セラミックス株式会社 | Thermal insulation mold and manufacturing method thereof |
WO2012008372A1 (en) * | 2010-07-12 | 2012-01-19 | 神戸セラミックス株式会社 | Heat-insulating die and production method thereof |
TWI477381B (en) * | 2010-07-12 | 2015-03-21 | Kobe Ceramics Corp | Heat insulation metal mold and method of manufacturing the same |
WO2013146985A1 (en) * | 2012-03-30 | 2013-10-03 | コニカミノルタアドバンストレイヤー株式会社 | Molding die and manufacturing method for same |
JP2017527459A (en) * | 2014-06-26 | 2017-09-21 | テーセェーテク スウェーデン アクチエボラグTCTech Sweden AB | Method and apparatus for injection molding or embossing / pressing |
CN108781061A (en) * | 2016-03-11 | 2018-11-09 | 株式会社索思未来 | Amplifying circuit, receiving circuit and semiconductor integrated circuit |
CN108781061B (en) * | 2016-03-11 | 2022-04-08 | 株式会社索思未来 | Amplifying circuit, receiving circuit and semiconductor integrated circuit |
Also Published As
Publication number | Publication date |
---|---|
JP4135304B2 (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002096335A (en) | Mold for molding optical element and method for molding optical element | |
JP3382281B2 (en) | Mold for thermoplastic resin injection molding | |
JP4181017B2 (en) | Mold for molding | |
JP4650514B2 (en) | Optical element molding method | |
JP3747983B2 (en) | Molding method of molded product and mold assembly | |
JP4815898B2 (en) | Injection mold and injection molding method | |
US20190283290A1 (en) | Optical element and method for manufacturing optical element | |
JP3991682B2 (en) | Precision drilling method of glass, manufacturing method of ferrule for optical fiber connector, and manufacturing method of magnetic disk glass substrate | |
JPH1134068A (en) | Insert, mold assembly, and production of molding | |
JP4151745B2 (en) | Manufacturing method of mold for molding optical element | |
JP4972760B2 (en) | Optical element manufacturing method | |
US20240239023A1 (en) | Tool insert for a primary shaping tool and primary shaping tool equipped with said tool insert | |
JPH09248829A (en) | Mold assembly for producing preforated molded product and production of perforated molded product | |
JP3578571B2 (en) | Manufacturing method of automobile exterior parts and manufacturing method of automobile pillar | |
JP3550461B2 (en) | Plastic molding method and optical disk manufacturing method | |
JPH08318534A (en) | Mold assembly for molding thermoplastic resin and its cavity insert | |
JP2000247653A (en) | Metal mold for forming optical element and optical element | |
JP2000271970A (en) | Molded product comprising polyacetal resin and production thereof | |
JPH0570155A (en) | Mold for glass lens molding | |
JPH11291292A (en) | Molding die | |
JP3549341B2 (en) | Molding method of molded article made of polymer alloy material | |
JP2000079628A (en) | Mold assembly for molding thermoplastic resin and production of holding | |
JP2005305797A (en) | Optical element molding mold, optical element molding method, and optical element | |
JPH08190007A (en) | Optical reflection mirror and its production | |
JPH03242331A (en) | Production of glass optical part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050622 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050921 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20051005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070705 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080404 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080513 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080526 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4135304 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |