JP2002005536A - Heat pump cycle - Google Patents

Heat pump cycle

Info

Publication number
JP2002005536A
JP2002005536A JP2000184769A JP2000184769A JP2002005536A JP 2002005536 A JP2002005536 A JP 2002005536A JP 2000184769 A JP2000184769 A JP 2000184769A JP 2000184769 A JP2000184769 A JP 2000184769A JP 2002005536 A JP2002005536 A JP 2002005536A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
heat
pump cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000184769A
Other languages
Japanese (ja)
Inventor
Kenichi Nishikawa
健一 西川
Koichi Endo
浩一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000184769A priority Critical patent/JP2002005536A/en
Publication of JP2002005536A publication Critical patent/JP2002005536A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a heat pump cycle wherein temperature in an indoor side heat exchanger is raised by increasing the degree of overheating for a suction refrigerant to be sucked into a compressor to ensure air conditioning control of blowing off high temperature warm air. SOLUTION: A cooling/heating change-over heat pump cycle is adapted to include a compressor 1, an indoor side heat exchanger 3, an outdoor heat exchanger 5, an expansion valve 4, and a four-way valve 2 for flowing a refrigerant from the compressor 1 to the outdoor side heat exchanger 5 upon cooling operation while flowing a refrigerant from the compressor 1 to the indoor side heat exchanger 3 upon heating operation. In the heat pump cycle in air conditioning control of the heating operation, a low pressure refrigerant flowing out of the outside heat exchanger 5 and sucked into the compressor 1, and a high pressure refrigerant flowing out from the indoor side heat exchanger 3 into the expansion valve 4, are heat exchanged through a refrigerant heat exchanger 6 where a heat transfer tube 6a is disposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷房運転および暖
房運転が可能な空調用のヒートポンプサイクルに関する
ものであり、特に、暖房運転における空調制御に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump cycle for air conditioning capable of performing a cooling operation and a heating operation, and more particularly to an air conditioning control in a heating operation.

【0002】[0002]

【従来の技術】空調用のヒートポンプサイクルでは、周
知のように室外側熱交換器(蒸発器)で冷媒を蒸発さ
せ、その蒸発した気相冷媒を圧縮機で圧縮した後に室内
側熱交換器(凝縮器)で凝縮させることにより室内を暖
房するものである。そして、この暖房運転の空調制御
は、室温が設定温度に到達すると小能力の制御を行い室
温を一定に保つように制御されるものである。
2. Description of the Related Art In a heat pump cycle for air conditioning, as is well known, a refrigerant is evaporated in an outdoor heat exchanger (evaporator), and the evaporated gas-phase refrigerant is compressed by a compressor. A condenser is used to heat the room. The air-conditioning control of the heating operation is controlled so that when the room temperature reaches the set temperature, the small capacity is controlled and the room temperature is kept constant.

【0003】この制御は、定速式圧縮機のときには、一
般的に、圧縮機の運転を運転/停止の断続制御を行うと
ともに、室内に温風を吹き出す室内送風機の運転を運転
/停止の断続制御を繰り返すことで室温を一定に保つ空
調制御と、可変式圧縮機のときには、圧縮機の回転数を
低速にすることで小能力運転による室温を一定に保つ空
調制御が知られている。
[0003] In the case of a constant-speed compressor, this control generally performs intermittent control of operation / stop of the operation of the compressor and intermittent control of operation / stop of an indoor blower that blows warm air into the room. Air-conditioning control for keeping the room temperature constant by repeating the control, and in the case of a variable compressor, air-conditioning control for keeping the room temperature constant by small-capacity operation by reducing the rotation speed of the compressor are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た空調制御のうち前者の温風の吹き出しを断続させる空
調制御では温風吹き出し、温風停止または温風吹き出
し、冷風吹き出しの繰り返しによる不快感を招く。ま
た、後者の圧縮機の回転数を低下させる空調制御は、凝
縮能力を小能力とすることにより吹き出し温度の低下で
冷風感が大となり、暖房運転にもかかわらず温熱感が得
られず快適性の悪化を招く。さらに、吹き出し温度を高
めるために、送風量を低下させると室内側熱交換器内で
冷媒が十分に凝縮されずサイクルが安定しないという問
題がある。
However, among the above-mentioned air conditioning controls, the former air conditioning control for interrupting the blowing of warm air causes discomfort due to repeated warm air blowing, stopping or blowing hot air, and repeatedly blowing cold air. . In the latter case, the air conditioning control for lowering the rotation speed of the compressor reduces the condensing capacity to lower the blow-out temperature, increasing the feeling of cool air. Causes deterioration. Furthermore, if the amount of air blown is reduced in order to increase the blowing temperature, there is a problem that the refrigerant is not sufficiently condensed in the indoor heat exchanger and the cycle is not stable.

【0005】そこで、本発明の目的は、上記点に鑑み、
圧縮機に吸入させる吸入冷媒の過熱度を高めることで、
室内側熱交換器内の温度を高め高温度の温風を吹き出す
空調制御が行えるヒートポンプサイクルを提供すること
にある。
In view of the above, an object of the present invention is to provide
By increasing the degree of superheat of the refrigerant sucked into the compressor,
An object of the present invention is to provide a heat pump cycle capable of performing air-conditioning control that raises the temperature in an indoor heat exchanger and blows out high-temperature hot air.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1〜6記載の技術的手段を採用する。
In order to achieve the above object, the technical means according to claims 1 to 6 are adopted.

【0007】すなわち、請求項1の発明では、冷媒を圧
縮する圧縮機(1)と、室内側熱交換器(3)と、室外
側熱交換器(5)と絞り手段(4)と、冷房運転時には
圧縮機(1)から室外側熱交換器(5)に向けて流通さ
せ、暖房運転時には圧縮機(1)から室内側熱交換器
(3)に向けて流通させる第1の切替手段(2)とを備
える冷暖房切り替え可能なヒートポンプサイクルにおい
て、暖房運転の空調制御を行うときに、室外側熱交換器
(5)から流出して圧縮機(1)に吸入される低圧冷媒
と室内側熱交換器(3)から流出して絞り手段(4)に
吸入される高圧冷媒とを熱交換させることを特徴として
いる。
That is, according to the first aspect of the present invention, the compressor (1) for compressing the refrigerant, the indoor heat exchanger (3), the outdoor heat exchanger (5), the throttle means (4), and the cooling system A first switching means (1) that allows the compressor (1) to flow from the compressor (1) to the outdoor heat exchanger (5) during operation and the heating operation to flow from the compressor (1) to the indoor heat exchanger (3). 2) In the heat pump cycle capable of switching between cooling and heating, the low-pressure refrigerant flowing out of the outdoor heat exchanger (5) and sucked into the compressor (1) and the indoor heat when performing air conditioning control of the heating operation. It is characterized in that heat is exchanged with the high-pressure refrigerant flowing out of the exchanger (3) and drawn into the throttle means (4).

【0008】請求項1の発明によれば、暖房運転の空調
制御を行うときに、室外側熱交換器(5)から流出する
低圧冷媒と室内側熱交換器(3)から流出する高圧冷媒
とを熱交換させることにより、室内側熱交換器(3)の
凝縮能力(暖房能力)の一部が低圧冷媒との熱交換に奪
われるため、室内側熱交換器(3)を小能力の制御がで
きるとともに、圧縮機(1)に吸入される低圧冷媒が、
高圧冷媒によって加熱されるので圧縮機(1)の吸入側
の低圧冷媒に過熱度を与えることができ、そのため室内
側熱交換器(3)内の気相冷媒の割合で過熱度の高い飽
和ガス域が増加するため、室内側熱交換器(3)内の平
均温度が高くなり高温度の温風を吹き出すことが可能に
なる。
According to the first aspect of the present invention, when performing the air conditioning control of the heating operation, the low pressure refrigerant flowing out of the outdoor heat exchanger (5) and the high pressure refrigerant flowing out of the indoor heat exchanger (3) are used. , Heat exchange of the indoor heat exchanger (3) with a part of the condensing capacity (heating capacity) of the indoor heat exchanger (3) is deprived of heat exchange with the low-pressure refrigerant. And the low-pressure refrigerant sucked into the compressor (1)
Since the refrigerant is heated by the high-pressure refrigerant, a superheat degree can be given to the low-pressure refrigerant on the suction side of the compressor (1). Therefore, the saturated gas having a high superheat degree due to the ratio of the gas-phase refrigerant in the indoor heat exchanger (3). Since the area increases, the average temperature in the indoor heat exchanger (3) increases, and high-temperature hot air can be blown out.

【0009】従って、暖房運転の空調制御を行うとき、
例えば、室温が設定温度に達したときに高温度の温風を
小風量で吹き出す空調制御を行うことによって、従来、
圧縮機を運転/停止による制御方式と比較して冷風感の
ない快適な暖房運転の空調制御ができる。
Therefore, when performing the air conditioning control of the heating operation,
For example, by performing air conditioning control that blows out high-temperature hot air with a small air volume when the room temperature reaches a set temperature,
Compared to the control method by operating / stopping the compressor, air conditioning control of a comfortable heating operation without a feeling of cool air can be performed.

【0010】また、外気温度が低い暖房運転時において
は過熱度が小さく(蒸発量が少なく)なりがちである
が、圧縮機(1)への吸入冷媒が確実に加熱されること
により、液相冷媒が吸入されるのを防止できる。
[0010] Further, during the heating operation in which the outside air temperature is low, the degree of superheat tends to be small (the amount of evaporation is small). However, since the refrigerant sucked into the compressor (1) is reliably heated, the liquid phase is reduced. The refrigerant can be prevented from being sucked.

【0011】請求項2および3の発明では、低圧冷媒と
高圧冷媒との熱交換は、暖房運転のときに、低圧冷媒ま
たは高圧冷媒のいずれか一方を流通させる伝熱手段(6
a、16a)と、この伝熱手段(6a、16a )を含
み、伝熱手段(6a、16a)に流通させる冷媒とは異
なる高圧冷媒または低圧冷媒のいずれか一方を流通させ
る熱交換部(6、16)との間で行うとともに、熱交換
部(6、16)は、室外側熱交換器(5)の流出側と圧
縮機(1)の吸入側との間に設置され、かつ伝熱手段
(6a、16a)の一端が室内側熱交換器(3)の流出
側に接続され、他端が絞り手段(4)の吸入側に接続さ
れるように構成したことを特徴としている。
According to the second and third aspects of the present invention, the heat exchange between the low-pressure refrigerant and the high-pressure refrigerant is performed by the heat transfer means (6) for flowing either the low-pressure refrigerant or the high-pressure refrigerant during the heating operation.
a, 16a) and a heat exchange unit (6) that includes the heat transfer means (6a, 16a) and allows the passage of one of a high-pressure refrigerant and a low-pressure refrigerant that is different from the refrigerant flowing through the heat transfer means (6a, 16a). , 16), and the heat exchange section (6, 16) is provided between the outflow side of the outdoor heat exchanger (5) and the suction side of the compressor (1), and One end of the means (6a, 16a) is connected to the outflow side of the indoor heat exchanger (3), and the other end is connected to the suction side of the throttle means (4).

【0012】請求項2および3の発明によれば、具体的
には、室内側熱交換器(3)から高圧冷媒を流通させる
ように接続された伝熱手段(6a、16a)を設け、こ
の伝熱手段(6a、16a)を含む熱交換部(6、1
6)が、室外側熱交換器(5)と圧縮機(1)の吸入側
との間に設置されるようにしたことにより、圧縮機
(1)の吸入側の低圧冷媒が高圧冷媒によって容易に加
熱されるので過熱度の大きい冷媒を吸入するヒートポン
プサイクルが構成され、上述したように室内側熱交換器
(3)が小能力の制御ができるとともに、室内側熱交換
器(3)内の冷媒温度の平均温度が高くなり、高温度の
温風を吹き出すことが可能である。従って、上述と同様
な作用と効果が奏する。
According to the second and third aspects of the present invention, specifically, the heat transfer means (6a, 16a) connected so as to allow the high-pressure refrigerant to flow from the indoor heat exchanger (3) is provided. Heat exchange section (6, 1) including heat transfer means (6a, 16a)
6) is disposed between the outdoor heat exchanger (5) and the suction side of the compressor (1), so that the low-pressure refrigerant on the suction side of the compressor (1) is easily replaced by the high-pressure refrigerant. As a result, the indoor heat exchanger (3) can control a small capacity as described above, and the indoor heat exchanger (3) The average temperature of the refrigerant temperature increases, and high-temperature hot air can be blown out. Therefore, the same operations and effects as described above are achieved.

【0013】また、請求項4の発明では、伝熱手段(6
a、16a )を配設した熱交換部(6、16)は、室
内側熱交換器(3)の流出側と絞り手段(4)の吸入側
との間に設置され、かつ伝熱手段(6a、16a)の一
端が室外側熱交換器(5)の流出側に接続され、他端が
圧縮機(1)の吸入側に接続されるように構成したこと
を特徴としている。
Further, according to the invention of claim 4, the heat transfer means (6
a, 16a) is disposed between the outflow side of the indoor heat exchanger (3) and the suction side of the throttle means (4), and the heat transfer means (6, 16). 6a, 16a) is characterized in that one end is connected to the outlet side of the outdoor heat exchanger (5) and the other end is connected to the suction side of the compressor (1).

【0014】請求項4の発明によれば、上述した構成の
他に室外側熱交換器(5)から低圧冷媒を流通させるよ
うに接続された伝熱手段(6a、16a)を設け、この
伝熱手段(6a、16a)を含む熱交換部(6、16)
が、室内側熱交換器(5)と絞り手段(4)の吸入側と
の間に設置されるようにしたことにより、上述と同様な
作用と効果が奏する。
According to the fourth aspect of the present invention, in addition to the above-described structure, the heat transfer means (6a, 16a) connected so as to allow the low-pressure refrigerant to flow from the outdoor heat exchanger (5) is provided. Heat exchange section (6, 16) including heating means (6a, 16a)
Is provided between the indoor heat exchanger (5) and the suction side of the throttle means (4), thereby providing the same operation and effect as described above.

【0015】請求項5の発明では、熱交換部(6、1
6)は、伝熱手段(6a、16a)を経由させるか、伝
熱手段(6a、16a)を迂回させるかのいずれか一方
に高圧冷媒を流通させるように切り替える第2の切替手
段(8)と、室温を検出する温度検出手段(14)と、
この温度検出手段(14)の検出出力に応じて第2の切
替手段(8)を切り替える空調制御手段(15)とを有
することを特徴としている。
According to the fifth aspect of the present invention, the heat exchange section (6, 1
6) second switching means (8) for switching the high-pressure refrigerant to flow through either the heat transfer means (6a, 16a) or to bypass the heat transfer means (6a, 16a). Temperature detecting means (14) for detecting room temperature;
An air-conditioning control unit (15) for switching the second switching unit (8) according to the detection output of the temperature detection unit (14) is provided.

【0016】請求項5の発明によれば、温度検出手段
(14)の検出出力に応じて伝熱手段(6a、16a)
を経由させるか、伝熱手段(6a、16a)を迂回させ
るかのいずれか一方に切り替える空調制御手段(15)
を有することにより、例えば、暖房運転の立ち上がりな
ど室温が設定温度に達していないときには、伝熱手段
(6a、16a)を迂回させて冷媒を流通させずに一般
的なヒートポンプサイクルで暖房運転を行い、室温が設
定温度に達したときに第2の切替手段(8)により伝熱
手段(6a、16a)に冷媒を流通させ熱交換部(6、
16)で高圧冷媒と低圧冷媒とを熱交換させることによ
り、室内側熱交換器(3)が小能力の制御ができるとと
もに高温度の温風を吹きだすことが可能となるため室温
が設定温度に達したときの能力制御に好適である。
According to the invention of claim 5, the heat transfer means (6a, 16a) according to the detection output of the temperature detection means (14).
Air-conditioning control means (15) for switching to either one of the following, or to bypass the heat transfer means (6a, 16a).
Therefore, for example, when the room temperature has not reached the set temperature such as at the start of the heating operation, the heating operation is performed by a general heat pump cycle without circulating the refrigerant by bypassing the heat transfer means (6a, 16a). When the room temperature reaches the set temperature, the second switching means (8) allows the refrigerant to flow through the heat transfer means (6a, 16a) and causes the heat exchange section (6,
By exchanging heat between the high-pressure refrigerant and the low-pressure refrigerant in 16), the indoor heat exchanger (3) can control a small capacity and blow out high-temperature hot air, so that the room temperature is set to the set temperature. It is suitable for controlling the capacity when the pressure has reached.

【0017】そこで、室内側熱交換器(3)側に風量小
で吹き出させる風量制御を行うことにより高温度の吹き
出し空気が得られる。従って、従来、圧縮機(1)およ
び室内側の風量を運転/停止の空調制御を行う方式と比
較して、室内熱交換器(3)が高温度の吹き出し空気が
得られる制御が可能となり、冷風感のない快適性良好な
空調制御ができる。
Therefore, high-temperature blown air can be obtained by controlling the amount of air blown to the indoor heat exchanger (3) with a small amount of air. Therefore, as compared with the conventional method of controlling the air flow of the compressor (1) and the indoor side to control the operation / stop of the air flow, the indoor heat exchanger (3) can perform control to obtain high-temperature blown air, Comfortable and good air-conditioning control without the feeling of cool air.

【0018】また、従来の圧縮機(1)の回転数を低下
させて小能力の制御を行うことで空調制御を行う方式と
比較して、高温度の吹き出し空気を得られるとともに、
構造および制御が簡単な熱交換部(6)および制御手段
(15)で対応できるため、インバータ制御などの複雑
な制御や電源電圧を可変させる各種電気装置が不要とな
り、低コストの製品が提供できる。請求項6の発明で
は、空調制御手段(15)は、絞り手段(4)により圧
縮機(1)の吸入側の過熱度が20〜30℃程度となる
ように開度の調節を行うことを特徴としている。
In addition, compared with the conventional method of controlling the small capacity by lowering the rotation speed of the compressor (1), a high-temperature blown air can be obtained as compared with the method of controlling the air conditioning.
Since the heat exchange section (6) and the control means (15) are simple in structure and control, complicated control such as inverter control and various electric devices for varying the power supply voltage are unnecessary, and a low-cost product can be provided. . In the invention of claim 6, the air conditioning control means (15) adjusts the opening degree by the throttle means (4) so that the degree of superheat on the suction side of the compressor (1) is about 20 to 30 ° C. Features.

【0019】請求項4の発明によれば、圧縮機(1)の
吸入側の過熱度が20〜30℃程度とすることにより、
室内熱交換器(3)内を圧力を高めずに高温度とするこ
とができるとともに、圧縮機(1)への液相冷媒の吸入
されるのを防止できるものである。
According to the fourth aspect of the present invention, by setting the degree of superheat on the suction side of the compressor (1) to about 20 to 30 ° C.,
The temperature inside the indoor heat exchanger (3) can be raised without increasing the pressure, and the liquid-phase refrigerant can be prevented from being sucked into the compressor (1).

【0020】なお、上記各手段の括弧内の符号は、後述
する実施形態の具体的手段との対応関係を示すものであ
る。
Note that the reference numerals in parentheses of the above means indicate the correspondence with the concrete means of the embodiment described later.

【0021】[0021]

【発明の実施の形態】以下、本発明の冷暖房切り替え可
能なヒートポンプサイクルの一実施形態を図1〜5に基
づいて説明する。まず、図1に示すように、本発明のヒ
ートポンプサイクルにおいて、1は冷媒を吸入して圧縮
する圧縮機、2は暖房または冷房の運転モードによって
圧縮機1から吐出される冷媒を、室内側熱交換器3に向
けて流通させる場合と室外側熱交換器5に向けて流通さ
せる場合とを切り替える四方弁である。そして、暖房運
転のときには、図1に示すように、圧縮機1から室内側
熱交換器3に向けて流通させるように切り替える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a heat pump cycle capable of switching between cooling and heating according to the present invention will be described below with reference to FIGS. First, as shown in FIG. 1, in the heat pump cycle of the present invention, reference numeral 1 denotes a compressor for sucking and compressing a refrigerant, and 2 denotes a refrigerant discharged from the compressor 1 in a heating or cooling operation mode. This is a four-way valve that switches between the case of flowing toward the exchanger 3 and the case of flowing toward the outdoor heat exchanger 5. Then, during the heating operation, as shown in FIG. 1, switching is performed so as to circulate from the compressor 1 to the indoor heat exchanger 3.

【0022】この室内側熱交換器3は、冷媒と室内空気
とを熱交換するものであり、冷房運転時には蒸発器とし
て機能し暖房運転時には凝縮器として機能する。また、
室外側熱交換器5は、冷媒と室外空気と熱交換するもの
であり、冷房運転時には凝縮器として機能し暖房運転時
には蒸発器として機能する。なお、3aは室内側送風機
で室内空気を取り入れ室内側熱交換器3の蒸発熱(冷
風)または凝縮熱(温風)のいずれか一方を室内に吹き
出す送風機であり、強速、中速、低速、および微速の4
速の風量モードに切り替わる。5aは室外側送風機で室
外空気を取り入れ室外側熱交換器5の蒸発熱(冷風)ま
たは凝縮熱(温風)を室外に吹き出す送風機である。
The indoor heat exchanger 3 exchanges heat between the refrigerant and the indoor air, and functions as an evaporator during a cooling operation and as a condenser during a heating operation. Also,
The outdoor heat exchanger 5 exchanges heat between the refrigerant and the outdoor air, and functions as a condenser during a cooling operation and functions as an evaporator during a heating operation. Reference numeral 3a denotes an indoor blower that takes in indoor air and blows out either the heat of evaporation (cold air) or the heat of condensation (warm air) of the indoor heat exchanger 3 into the room. , And slow 4
The mode switches to the fast air volume mode. 5a is an outdoor blower that takes in outdoor air and blows out the heat of evaporation (cold air) or the heat of condensation (warm air) of the outdoor heat exchanger 5 to the outside.

【0023】そして、4は圧縮機1で圧縮された高圧冷
媒を減圧する膨張弁で、例えば、電子膨張弁などのよう
に弁開度を任意に制御するものである。6は暖房運転の
空調制御時(後述する)に室内側熱交換器3から流出さ
れる高圧冷媒と室外側熱交換器3から流出される低圧冷
媒とを熱交換する冷媒熱交換器である。低圧冷媒を流通
させる冷媒熱交換器6中に配設した伝熱管6aに高圧冷
媒を流通させて低圧冷媒側に熱交換するものである。
Reference numeral 4 denotes an expansion valve for reducing the pressure of the high-pressure refrigerant compressed by the compressor 1. The expansion valve arbitrarily controls the degree of valve opening, such as an electronic expansion valve. Reference numeral 6 denotes a refrigerant heat exchanger that exchanges heat between the high-pressure refrigerant flowing out of the indoor heat exchanger 3 and the low-pressure refrigerant flowing out of the outdoor heat exchanger 3 during air-conditioning control (described later) of the heating operation. The high-pressure refrigerant is circulated through the heat transfer tube 6a provided in the refrigerant heat exchanger 6 for circulating the low-pressure refrigerant, and exchanges heat with the low-pressure refrigerant.

【0024】従って、冷媒熱交換器6の一端は室外側熱
交換器5の流出側と接続され、他端は四方弁2、アキュ
ームレータ7を介して圧縮機1の吸入側に通ずる側と接
続されている。一方の伝熱管6aの一端は室内側熱交換
器3の流出側から三方弁8を介して接続され、他端は第
1の逆止弁9aを介して膨張弁4の吸入側に接続されて
いる。なお、伝熱管6aの一端は上述した冷媒熱交換器
6の他端の圧縮機1の吸入側に通ずる側に形成され、低
圧冷媒と高圧冷媒が対向流で熱交換されるように構成さ
れている。
Accordingly, one end of the refrigerant heat exchanger 6 is connected to the outflow side of the outdoor heat exchanger 5, and the other end is connected to the side communicating with the suction side of the compressor 1 via the four-way valve 2 and the accumulator 7. ing. One end of one heat transfer tube 6a is connected from the outlet side of the indoor heat exchanger 3 via a three-way valve 8, and the other end is connected to the suction side of the expansion valve 4 via a first check valve 9a. I have. One end of the heat transfer tube 6a is formed on the other end of the refrigerant heat exchanger 6 which communicates with the suction side of the compressor 1, so that the low-pressure refrigerant and the high-pressure refrigerant exchange heat in opposite flows. I have.

【0025】また、アキュームレータ7はヒートポンプ
サイクル中の余剰冷媒を蓄えるとともに冷媒を気相冷媒
と液相冷媒とに分離させて気相冷媒を圧縮機1の吸入側
に流出するように設けられている。
The accumulator 7 is provided so as to store surplus refrigerant during the heat pump cycle, separate the refrigerant into a gaseous refrigerant and a liquid-phase refrigerant, and flow the gaseous refrigerant to the suction side of the compressor 1. .

【0026】また、三方弁8の一端は、室内側熱交換器
3の流出側に接続され、他端の一方を冷媒熱交換器6の
伝熱管6aの一端に接続され、他端のもう一方は伝熱管
6aを迂回する第1のバイパス通路10aおよび第1の
逆止弁9aを介して膨張弁4の吸入側に接続されてい
る。すなわち、室内側熱交換器3から取り入れた高圧冷
媒を伝熱管6aに流通させ、低圧冷媒と熱交換されたの
ち膨張弁4の吸入側に流通させるか、伝熱管6aを迂回
する第1のバイパス通路10aを介して膨張弁4の吸入
側に流通させるかいずれか一方に切り替える切替弁であ
る。
One end of the three-way valve 8 is connected to the outlet side of the indoor heat exchanger 3, one end of the three-way valve 8 is connected to one end of the heat transfer tube 6 a of the refrigerant heat exchanger 6, and the other end is connected to the other end. Is connected to the suction side of the expansion valve 4 via a first bypass passage 10a bypassing the heat transfer tube 6a and a first check valve 9a. In other words, the high-pressure refrigerant introduced from the indoor heat exchanger 3 is passed through the heat transfer tube 6a, and after the heat exchange with the low-pressure refrigerant, is passed through the suction side of the expansion valve 4, or the first bypass bypassing the heat transfer tube 6a. This is a switching valve that switches the flow to the suction side of the expansion valve 4 via the passage 10a.

【0027】ここで、この三方弁8は、暖房運転の立ち
上がり時(後述する)に伝熱管6aを迂回する第1のバ
イパス通路10aを経由するように流通させ、空調制御
時(後述する)に伝熱管6aを経由するように流通させ
るように切り替えるものである。
Here, the three-way valve 8 is circulated through the first bypass passage 10a that bypasses the heat transfer tube 6a at the time of the start of the heating operation (described later), and during air-conditioning control (described later). Switching is performed so as to circulate through the heat transfer tube 6a.

【0028】次に、第1の逆止弁9aおよび第2の逆止
弁9bは、冷媒の流れ方向を一方向にのみ流通する弁で
あり、第1の逆止弁9aは、暖房運転時に伝熱管6aま
たは三方弁8のいずれか一方から流出した冷媒を膨張弁
4へ流通させるように膨張弁4の吸入側と伝熱管6aの
一端に通ずる第1のバイパス通路10aとの間に設けら
れている。第2の逆止弁9bは、冷房運転時に膨張弁4
から伝熱管6aおよび三方弁8を迂回して室内側熱交換
器3に流通するように第2のバイパス通路10bを形成
させこの第2のバイパス通路10bに設けられている。
Next, the first check valve 9a and the second check valve 9b are valves that allow the refrigerant to flow only in one direction, and the first check valve 9a operates during the heating operation. It is provided between the suction side of the expansion valve 4 and the first bypass passage 10a communicating with one end of the heat transfer tube 6a so that the refrigerant flowing out of either the heat transfer tube 6a or the three-way valve 8 flows to the expansion valve 4. ing. The second check valve 9b is connected to the expansion valve 4 during the cooling operation.
A second bypass passage 10b is formed so as to bypass the heat transfer tube 6a and the three-way valve 8 and flow to the indoor heat exchanger 3, and is provided in the second bypass passage 10b.

【0029】次に、11は圧力センサ、12は冷媒温度
センサであり、冷媒熱交換器6の流出側に設置され暖房
運転時に冷媒熱交換器6通過後の気相冷媒の過熱度を検
出するためのものである。13は吹出温度センサで室内
側熱交換器3より吹き出される吹き出し空気温度を検出
する温度センサで所定温度以下の冷風が室内に吹き出さ
れることを防止するためのものである。14は室内温度
センサで室温を検出する温度センサである。
Next, 11 is a pressure sensor, 12 is a refrigerant temperature sensor, which is installed on the outlet side of the refrigerant heat exchanger 6 and detects the degree of superheat of the gas phase refrigerant after passing through the refrigerant heat exchanger 6 during the heating operation. It is for. Reference numeral 13 denotes a blowout temperature sensor for detecting the temperature of blown air blown out of the indoor heat exchanger 3 for preventing cool air having a predetermined temperature or less from being blown into the room. A room temperature sensor 14 detects a room temperature.

【0030】これらのセンサ群11、12、13、1
4、からの検出信号は電気制御装置(以下ECUと呼
ぶ)15に入力される。ECU15は、これらの信号以
外に図示しない運転スイッチ、運転モード切り替えスイ
ッチ、送風モード切替スイッチ、設定温度スイッチなど
の信号を入力して予め設定されたプログラムに従って所
定の演算処理を行って圧縮機1の運転/停止、四方弁2
の切替制御、膨張弁4の弁開度の制御、室内側送風機3
aの風量制御、三方弁8の切替制御など電気機器の作動
を制御するものである。
These sensor groups 11, 12, 13, 1
4, the detection signal is input to an electric control device (hereinafter referred to as ECU) 15. The ECU 15 inputs signals such as an operation switch (not shown), an operation mode changeover switch, a blow mode changeover switch, and a set temperature switch other than these signals, performs predetermined arithmetic processing in accordance with a preset program, and executes the processing of the compressor 1. Start / stop, four-way valve 2
Switching control, control of the opening degree of the expansion valve 4, the indoor blower 3
It controls the operation of electric equipment such as the air flow control a and the switching control of the three-way valve 8.

【0031】なお、運転モード切り替えスイッチは、暖
房運転または冷房運転のいずれかの運転モードを選択す
るスイッチであり、送風モード切替スイッチは室内側送
風機3aの送風量を強速、中速、低速のいずれの風量モ
ードを選択するスイッチである。また、設定温度スイッ
チは使用者がお好みの室温を設定するための選択スイッ
チである。
The operation mode changeover switch is a switch for selecting one of a heating operation and a cooling operation, and the blower mode changeover switch is used to change the amount of air blown by the indoor blower 3a between high speed, medium speed and low speed. This switch is used to select any air volume mode. The set temperature switch is a selection switch for the user to set a desired room temperature.

【0032】次に、上述したECU15には、図2に示
すような制御プログラムに基づいた暖房運転の空調制御
手段を備えている。以下、制御プログラムに従って説明
する。まず、ステップ100において、運転モードを暖
房側に選択し、運転スイッチを作動させて暖房運転を開
始すると、ステップ110において、四方弁2を圧縮機
1から吐出される冷媒を室内側熱交換器3に向けて流通
させるように暖房回路側に作動させるとともに、三方弁
8を伝熱管6aを迂回する第1のバイパス通路10aに
流通するように切り替えが行われる。これにより、図3
に示すようなヒートポンプサイクルが形成される。
Next, the above-described ECU 15 is provided with air-conditioning control means for heating operation based on a control program as shown in FIG. Hereinafter, description will be given according to the control program. First, in step 100, the operation mode is selected to the heating side, and the operation switch is operated to start the heating operation. In step 110, the four-way valve 2 is connected to the indoor heat exchanger 3 by the refrigerant discharged from the compressor 1. Is operated so as to flow toward the heating circuit side, and switching is performed such that the three-way valve 8 flows through the first bypass passage 10a that bypasses the heat transfer tube 6a. As a result, FIG.
A heat pump cycle as shown in FIG.

【0033】すなわち、圧縮機1から吐出した冷媒が室
内側熱交換器3を介して第1のバイパス通路10aを経
由し膨張弁4に流入し、室外側熱交換器5、アキューム
レータ7を経由して圧縮機1に吸入される冷媒回路が形
成され、伝熱管6aに冷媒を循環させない。ここで、圧
縮機1を作動させると圧縮された高圧冷媒が室内側熱交
換器3に循環され暖房運転が開始される。なお、室外側
送風機5aも所定の風量で作動する。
That is, the refrigerant discharged from the compressor 1 flows into the expansion valve 4 via the first heat exchanger 3 through the first bypass passage 10a, and then flows through the outdoor heat exchanger 5 and the accumulator 7. Thus, a refrigerant circuit to be drawn into the compressor 1 is formed, and the refrigerant is not circulated through the heat transfer tube 6a. Here, when the compressor 1 is operated, the compressed high-pressure refrigerant is circulated to the indoor heat exchanger 3 to start the heating operation. Note that the outdoor blower 5a also operates at a predetermined air volume.

【0034】次に、ステップ120において、室温を検
出する室内温度センサ14と使用者が設定した設定温度
との判定を行うものである。具体的には、室温と設定温
度との差Xが所定の温度制御幅Tに対してXが−Tより
も小のときにはステップ130に移行する。なお、この
温度制御幅Tを例えば、0.5℃とおくとX<−0.5
℃のときにステップ130に移行する。因みに、暖房運
転などの立ち上がりなど室温が設定温度に対して未達の
ときはステップ130に移行する。
Next, in step 120, a judgment is made between the room temperature sensor 14 for detecting the room temperature and the set temperature set by the user. Specifically, when the difference X between the room temperature and the set temperature is smaller than −T with respect to the predetermined temperature control width T, the process proceeds to step 130. If the temperature control width T is, for example, 0.5 ° C., X <−0.5
When the temperature is ° C, the process proceeds to step 130. Incidentally, when the room temperature has not reached the set temperature, such as when the heating operation starts, the process proceeds to step 130.

【0035】次に、ステップ130において、室内側送
風機3aを風量大(強速、中速、低速)のいずれか選択
された送風モードで運転させるとともに、膨張弁4の弁
開度を冷媒熱交換器6の流出側で過熱度が5〜10℃の
範囲内になるように冷媒温度センサ12により冷媒温度
を検出して制御を行う。
Next, at step 130, the indoor side blower 3a is operated in the blow mode selected from the large air volume (high speed, medium speed, and low speed), and the opening degree of the expansion valve 4 is changed by the refrigerant heat exchange. Control is performed by detecting the refrigerant temperature by the refrigerant temperature sensor 12 so that the degree of superheat is in the range of 5 to 10 ° C. on the outlet side of the vessel 6.

【0036】このときには、室内側熱交換器3から流出
した高圧冷媒は、第1のバイパス通路10aを経由して
膨張弁4に流通する冷媒回路のため冷媒熱交換器6側の
低圧冷媒との熱交換が行われない。従って、室内側熱交
換器3の凝縮能力をすべて室内の暖房に寄与するもので
ある。
At this time, the high-pressure refrigerant flowing out of the indoor heat exchanger 3 communicates with the low-pressure refrigerant on the refrigerant heat exchanger 6 side because of the refrigerant circuit flowing to the expansion valve 4 via the first bypass passage 10a. No heat exchange. Therefore, all the condensing ability of the indoor heat exchanger 3 contributes to indoor heating.

【0037】なお、暖房運転の直後などの立ち上がりの
ときには、室内側熱交換器3が所定の凝縮温度に達して
いないことによる室内側送風機3aが室内に冷風を吹き
出さないために吹出温度センサ13が所定の温度に達す
るまでは作動しないようになっている。そして、吹出温
度センサ13が所定の温度に達すると室内に温風が吹き
出され暖房運転が行われる。
At the time of start-up immediately after the heating operation or the like, since the indoor-side blower 3a does not blow cool air into the room due to the indoor heat exchanger 3 not reaching the predetermined condensation temperature, the blow-out temperature sensor 13 Does not operate until the predetermined temperature is reached. Then, when the blowout temperature sensor 13 reaches a predetermined temperature, warm air is blown into the room, and a heating operation is performed.

【0038】次に、室温が上昇して設定温度に達したと
きには、再びステップ120に移行し室温と設定温度と
の差を判定する。具体的には、室温と設定温度との差X
が所定の温度制御幅Tに対して−Tよりも等しいか大き
く所定の温度制御幅Tよりも等しいか小のとき(−T≦
X≦T)にはステップ140に移行する。
Next, when the room temperature rises and reaches the set temperature, the process returns to step 120 to determine the difference between the room temperature and the set temperature. Specifically, the difference X between the room temperature and the set temperature
Is greater than or equal to −T with respect to the predetermined temperature control width T and is equal to or smaller than the predetermined temperature control width T (−T ≦
If X ≦ T, the process proceeds to step 140.

【0039】このステップ140(空調制御手段)で
は、まず、三方弁8を伝熱管6aを経由するように流通
させるように切り替える。そして、室内側送風機3aを
風量小(微速)の送風モードで運転させるとともに、膨
張弁4の弁開度を冷媒熱交換器6の流出側で過熱度が2
0〜30℃の範囲内になるように冷媒温度センサ12に
より冷媒温度を検出して制御を行う。
In step 140 (air conditioning control means), first, the three-way valve 8 is switched so as to flow through the heat transfer tube 6a. Then, the indoor-side blower 3a is operated in a small-volume (slow-speed) air-blowing mode, and the degree of opening of the expansion valve 4 is set to 2 at the outflow side of the refrigerant heat exchanger 6.
The control is performed by detecting the refrigerant temperature by the refrigerant temperature sensor 12 so as to be within the range of 0 to 30 ° C.

【0040】これにより、図1に示すようなヒートポン
プサイクルが形成される。すなわち、室内側熱交換器3
を流出した高圧冷媒が、室外側熱交換器5から流出した
低圧冷媒が流通する冷媒熱交換器6の伝熱管6aに流通
し熱交換されるとともに、膨張弁4は、冷媒熱交換器6
で放熱された冷媒を吸入して冷媒熱交換器6の流出側の
気相冷媒の過熱度が20〜30℃の範囲内になるように
弁開度を制御するように運転される。なお、室内側送風
機3aは高温度の吹出しを得るため微速で運転される。
Thus, a heat pump cycle as shown in FIG. 1 is formed. That is, the indoor heat exchanger 3
The high-pressure refrigerant that has flowed out flows through the heat transfer tube 6a of the refrigerant heat exchanger 6 through which the low-pressure refrigerant that flows out of the outdoor heat exchanger 5 flows, and exchanges heat.
The refrigerant radiated in the step (1) is operated to control the valve opening so that the superheat degree of the gas-phase refrigerant on the outlet side of the refrigerant heat exchanger 6 is in the range of 20 to 30 ° C. In addition, the indoor side blower 3a is operated at a very low speed in order to obtain high-temperature blowing.

【0041】ここで、本実施形態の特徴である暖房運転
時の空調制御手段におけるサイクルの挙動について説明
する。図4のモリエル線図(p−h線図)上において、
破線で示めされるサイクル図(ABCD)は、ステップ
130における立ち上がり時のサイクルの挙動を示して
おり、周知のごとく、A点は室外側熱交換器5の流出側
の状態を示し、B点は圧縮機1の吐出側での状態を示
し、C点は膨張弁4の吸入側での状態を示し、D点は室
外側熱交換器5の吸入側での状態を示している。また、
B−Cが室内側熱交換器3の凝縮能力を示し、A−Dが
室外側熱交換器5の蒸発能力を示す。
Here, the behavior of the cycle in the air-conditioning control means during the heating operation, which is a feature of this embodiment, will be described. On the Mollier diagram (ph diagram) in FIG.
The cycle diagram (ABCD) shown by the broken line shows the behavior of the cycle at the time of start-up in step 130. As is well known, point A indicates the state on the outflow side of the outdoor heat exchanger 5, and point B Indicates a state on the discharge side of the compressor 1, point C indicates a state on the suction side of the expansion valve 4, and point D indicates a state on the suction side of the outdoor heat exchanger 5. Also,
BC indicates the condensation capacity of the indoor heat exchanger 3, and AD indicates the evaporation capacity of the outdoor heat exchanger 5.

【0042】次に、実線で示めされるサイクル図(EF
GH)は、ステップ140における空調制御手段のサイ
クルの挙動を示す。上述した冷媒熱交換器6で高圧冷媒
と低圧冷媒が熱交換されるとともに、冷媒熱交換器6の
流出側の過熱度を高めることにより、この特性は、圧縮
機1の吐出側の冷媒温度を高めるため、室内側熱交換器
3入口側のエンタルピが高まり凝縮能力が大きくなる。
しかし、高圧冷媒が流れる冷媒熱交換器6(J−G間)
と低圧冷媒が流れる冷媒熱交換器6(K−E間)で相殺
されるため、室内側熱交換器3の凝縮能力は図中のF−
J間となる。これにより、室内側熱交換器3の凝縮能力
を小能力にすることで設定温度に接近した室温を一定に
保つときなどの熱負荷の少ないときの空調制御に好適で
ある。
Next, a cycle diagram (EF) shown by a solid line
GH) shows the cycle behavior of the air-conditioning control unit in step 140. The heat exchange between the high-pressure refrigerant and the low-pressure refrigerant is performed in the above-described refrigerant heat exchanger 6, and the superheat degree on the outlet side of the refrigerant heat exchanger 6 is increased, so that this characteristic reduces the refrigerant temperature on the discharge side of the compressor 1. In order to increase the enthalpy, the enthalpy on the inlet side of the indoor heat exchanger 3 increases, and the condensing capacity increases.
However, the refrigerant heat exchanger 6 through which the high-pressure refrigerant flows (between J and G)
And the refrigerant heat exchanger 6 (between KE) through which the low-pressure refrigerant flows, the condensing capacity of the indoor heat exchanger 3 is F-F in the figure.
It is between J. This is suitable for air conditioning control when the heat load is small, such as when keeping the room temperature close to the set temperature constant by reducing the condensation capacity of the indoor heat exchanger 3 to a small capacity.

【0043】また、室内側熱交換器3内の気相冷媒の占
める割合で、過熱度の高い飽和ガス域が増加するため、
室内側熱交換器3内の平均温度が高くなるとともに、風
量を小とすることで高温度の温風を室内に吹き出すこと
が可能となる。
Further, the proportion of the gas-phase refrigerant in the indoor heat exchanger 3 increases the saturated gas region having a high degree of superheat,
The average temperature in the indoor heat exchanger 3 is increased, and by reducing the air volume, high-temperature hot air can be blown into the room.

【0044】また、室内側熱交換器3で高温度、小風量
の放熱であっても膨張弁4の吸入側へは過冷却された液
相冷媒が流入することによりヒートポンプサイクルを安
定させる。さらに、圧縮機1の吸入側の冷媒が過熱度が
加わることで気相冷媒が供給され液相圧縮が皆無とな
る。
Further, even if the heat is radiated at a high temperature and a small air volume in the indoor heat exchanger 3, the supercooled liquid-phase refrigerant flows into the suction side of the expansion valve 4 to stabilize the heat pump cycle. Further, when the refrigerant on the suction side of the compressor 1 is added with a degree of superheat, the gas-phase refrigerant is supplied, and the liquid-phase compression is completely eliminated.

【0045】なお、以上の空調制御手段で室温を設定温
度に接近させるように制御していても、熱負荷の少ない
使用環境条件下では、室温が設定温度を上回ってしまう
ことがある。このときには、再びステップ120に移行
し室温と設定温度との差を判定する。具体的には、室温
と設定温度との差Xが所定の温度制御幅Tに対してTよ
りも大きいときには(T<X)にはステップ150に移
行する。
Even if the above-described air-conditioning control means controls the room temperature to approach the set temperature, the room temperature may exceed the set temperature under a use environment condition with a small heat load. At this time, the process returns to step 120 to determine the difference between the room temperature and the set temperature. Specifically, when the difference X between the room temperature and the set temperature is larger than T with respect to the predetermined temperature control width T (T <X), the process proceeds to step 150.

【0046】このステップ150においては、圧縮機
1、室内送風機3aおよび室外側送風機5aをすべて停
止させるように空調制御を行い、室温の上昇を設定温度
以上にすることを防止するものである。その後もステッ
プ120で室温と設定温度との差を判定し、ステップ1
40またはステップ150を繰り返して室内の空調制御
を行う。
In step 150, air-conditioning control is performed so that the compressor 1, the indoor blower 3a, and the outdoor blower 5a are all stopped to prevent the room temperature from rising above the set temperature. Thereafter, the difference between the room temperature and the set temperature is determined in Step 120, and Step 1 is performed.
Step 40 or step 150 is repeated to control the indoor air conditioning.

【0047】以上が運転モードのうち暖房運転で説明し
たが、冷房運転のときには図5に示すように、四方弁2
が室外側熱交換器5側に向けて流通させることで、圧縮
機1から吐出した高圧冷媒が冷媒熱交換器6、室外側熱
交換器5を介して膨張弁4に流入し、膨張弁4で減圧さ
れた冷媒が第2のバイパス通路10bを介して室内側熱
交換器3、アキュームレータ7を経由して圧縮機1に吸
入される冷媒回路が形成されるものである。これによ
り、室内側熱交換器3が蒸発器として機能し、室外蒸発
器5が凝縮器として機能されることで室内を冷房するも
のである。
While the heating mode has been described above as the operation mode, during the cooling operation, as shown in FIG.
Flows toward the outdoor heat exchanger 5, whereby the high-pressure refrigerant discharged from the compressor 1 flows into the expansion valve 4 via the refrigerant heat exchanger 6 and the outdoor heat exchanger 5, and Thus, a refrigerant circuit is formed in which the refrigerant decompressed in the above is sucked into the compressor 1 via the indoor heat exchanger 3 and the accumulator 7 via the second bypass passage 10b. Thus, the indoor heat exchanger 3 functions as an evaporator, and the outdoor evaporator 5 functions as a condenser to cool the room.

【0048】なお、この冷房運転のときは、三方弁8が
第1のバイパス通路10a側と室内側熱交換器3の吸入
側とに通ずるように切り替えてある。従って、伝熱管6
aに冷媒が循環しないため冷房運転に支障をきたすこと
なく運転できる。
In the cooling operation, the three-way valve 8 is switched so as to communicate with the first bypass passage 10a and the suction side of the indoor heat exchanger 3. Therefore, the heat transfer tube 6
Since the refrigerant does not circulate in a, the operation can be performed without hindering the cooling operation.

【0049】以上の本実施形態によるヒートポンプサイ
クルによれば、暖房運転の空調制御を行うときに、室外
側熱交換器5から流出する低圧冷媒と室内側熱交換器3
から流出する高圧冷媒とを熱交換させることにより、室
内側熱交換器3の凝縮能力(暖房能力)の一部を低圧冷
媒との熱交換に奪われるため、室内側熱交換器3が小能
力制御ができるとともに、圧縮機1に吸入される低圧冷
媒が高圧冷媒によって加熱されるので圧縮機1の吸入側
の低圧冷媒に過熱度を与えることになるので室内側熱交
換器3の気相冷媒の占める割合で、過熱度の高い飽和ガ
ス域が増加するため、室内側熱交換器3内の冷媒の平均
温度が高くなり、高温度の温風を吹き出すことが可能で
ある。
According to the heat pump cycle of this embodiment, the low-pressure refrigerant flowing out of the outdoor heat exchanger 5 and the indoor heat exchanger 3
Is exchanged with the high-pressure refrigerant flowing out of the heat exchanger, a part of the condensing capacity (heating capacity) of the indoor heat exchanger 3 is deprived of heat exchange with the low-pressure refrigerant. In addition to the control, the low-pressure refrigerant sucked into the compressor 1 is heated by the high-pressure refrigerant, so that the low-pressure refrigerant on the suction side of the compressor 1 is overheated. , The average temperature of the refrigerant in the indoor heat exchanger 3 increases, and high-temperature hot air can be blown out.

【0050】従って、暖房運転の空調制御を行うとき、
例えば、室温が設定温度に達したときに高温度の温風を
小風量で吹き出す空調制御を行うことによって、従来、
圧縮機を運転/停止による制御方式と比較して冷風感の
ない快適な暖房運転の空調制御ができる。
Therefore, when performing the air conditioning control of the heating operation,
For example, by performing air conditioning control that blows out high-temperature hot air with a small air volume when the room temperature reaches a set temperature,
Compared to the control method by operating / stopping the compressor, air conditioning control of a comfortable heating operation without a feeling of cool air can be performed.

【0051】また、外気温度が低い暖房運転時において
は過熱度が小さく(蒸発量が少なく)なりがちである
が、冷媒熱交換器6で圧縮機1への吸入冷媒が確実に加
熱されることにより液相冷媒が吸入されるのを防止でき
る。
In the heating operation in which the outside air temperature is low, the degree of superheat tends to be small (the amount of evaporation is small), but the refrigerant heat exchanger 6 surely heats the refrigerant sucked into the compressor 1. Accordingly, the liquid refrigerant can be prevented from being sucked.

【0052】また、伝熱管6aの流通回路の上流側に三
方弁8と下流側に第1の逆止弁9aを設け暖房運転の空
調制御のときのみに冷媒を流通させることにより、暖房
運転の立ち上がり時および冷房運転に支障をきたすこと
なく運転できる。
A three-way valve 8 is provided upstream of the flow circuit of the heat transfer tube 6a and a first check valve 9a is provided downstream of the heat transfer tube 6a, so that the refrigerant flows only during the air conditioning control of the heating operation. It can be operated at the time of startup and without hindering the cooling operation.

【0053】さらに、従来、圧縮機1の回転数を低下さ
せて小能力の制御を行うことで空調制御を行う方式と比
較して、高温度の吹き出し空気を得られるとともに、構
造および制御が簡単な冷媒熱交換器6および空調制御手
段で対応できるため、インバータ制御などの複雑な制御
や電源電圧を可変させる各種電気装置が不要となり、低
コストの製品が提供できる。
Further, compared with the conventional system in which the rotation speed of the compressor 1 is reduced to control the small capacity and the air conditioning is controlled, a high-temperature blown air can be obtained, and the structure and control are simple. Since the refrigerant heat exchanger 6 and the air conditioning control means can cope with the above, complicated control such as inverter control and various electric devices for varying the power supply voltage are not required, and a low-cost product can be provided.

【0054】(他の実施形態)以上の一実施形態では、
第1の逆止弁9aを膨張弁4の吸入側と伝熱管6aの一
端に通ずる第1のバイパス通路10aとの間に設けた
が、図6に示すように、伝熱管6aの一端と膨張弁4と
の間で、第1のバイパス通路10aの一端と交わる手前
に膨張弁4の吸入側に向けて冷媒が流れるように設ける
良い。
(Other Embodiments) In the above embodiment,
Although the first check valve 9a is provided between the suction side of the expansion valve 4 and the first bypass passage 10a communicating with one end of the heat transfer tube 6a, as shown in FIG. It may be provided that the refrigerant flows toward the suction side of the expansion valve 4 before intersecting with one end of the first bypass passage 10 a with the valve 4.

【0055】この構成による三方弁8の切替制御は、暖
房運転の空調制御を行うとき、すなわち、室温が設定温
度に達したときに、伝熱管6aに流通するように切替制
御を行い、暖房運転の立ち上がりなどの室温が設定温度
に未達の時と冷房運転時には伝熱管16aを迂回するよ
うに切替制御を行うものである。
The switching control of the three-way valve 8 according to this configuration is performed when the air-conditioning control of the heating operation is performed, that is, when the room temperature reaches the set temperature, the switching control is performed so as to flow through the heat transfer pipe 6a. The switching control is performed so as to bypass the heat transfer tube 16a when the room temperature does not reach the set temperature, such as when the air conditioner rises, and during the cooling operation.

【0056】以上の構成によれば、第2の逆止弁9bお
よび第2のバイパス通路10bが不要となるため部品コ
ストの低減が図れる。
According to the above configuration, since the second check valve 9b and the second bypass passage 10b are not required, the cost of parts can be reduced.

【0057】また、以上の本実施形態では、伝熱管6a
を配設した冷媒熱交換器6を暖房運転の空調制御を室外
側熱交換器5の流出側と圧縮機1の吸入側との間に設置
して、室内側熱交換器3より伝熱管6aに高圧冷媒を流
通させるように説明したが、これに限らず、伝熱管6a
を配設した冷媒熱交換器6を室内側熱交換器3の流出側
に設置しても良い。
In the above embodiment, the heat transfer tubes 6a
Is installed between the outflow side of the outdoor heat exchanger 5 and the suction side of the compressor 1 by controlling the air conditioning control of the heating operation with the refrigerant heat exchanger 6 provided therein. It has been described that the high-pressure refrigerant flows through the heat transfer tube 6a.
May be installed on the outflow side of the indoor heat exchanger 3.

【0058】図7に示すように、三方弁8の一端は、室
外側熱交換器5の流出側に接続され、他端の一方を第2
の冷媒熱交換器16の第2の伝熱管16aの一端に接続
され、他端のもう一方は圧縮機1の吸入側に通ずるよう
に接続されている。そして、第2の冷媒熱交換器16の
一端を室内側熱交換器3の流出側に接続され他端を膨張
弁4の吸入側に接続されるとともに、第2の伝熱管16
aの一端を三方弁8の他端の一方に接続され、他端を第
1の逆止弁9aを介して三方弁8の他端のもう一方の他
端に通ずるように接続されている。なお、三方弁8は、
暖房運転の空調制御を行うとき、すなわち、室温が設定
温度に達したときに、第2の伝熱管16aに流通するよ
うに切替制御を行い、暖房運転の立ち上がりなどの室温
が設定温度に未達の時と冷房運転時には第2の伝熱管1
6aを迂回するように切替制御を行うものである。
As shown in FIG. 7, one end of the three-way valve 8 is connected to the outlet side of the outdoor heat exchanger 5 and one of the other ends is connected to the second end.
Is connected to one end of a second heat transfer tube 16 a of the refrigerant heat exchanger 16, and the other end is connected to communicate with the suction side of the compressor 1. One end of the second refrigerant heat exchanger 16 is connected to the outflow side of the indoor heat exchanger 3 and the other end is connected to the suction side of the expansion valve 4.
One end of the three-way valve 8 is connected to one of the other ends of the three-way valve 8, and the other end is connected to the other end of the other end of the three-way valve 8 via the first check valve 9a. The three-way valve 8 is
When performing the air conditioning control of the heating operation, that is, when the room temperature reaches the set temperature, the switching control is performed so as to flow through the second heat transfer tube 16a, and the room temperature such as at the start of the heating operation does not reach the set temperature. And the second heat transfer tube 1 during cooling operation.
Switching control is performed so as to bypass 6a.

【0059】以上の構成によれば、高圧冷媒と低圧冷媒
の熱交換が第2の冷媒熱交換器16で行うことができ
る。従って、一実施形態と同様の作用と効果が奏する。
According to the above configuration, heat exchange between the high-pressure refrigerant and the low-pressure refrigerant can be performed in the second refrigerant heat exchanger 16. Therefore, the same operations and effects as those of the embodiment are achieved.

【0060】また、この構成によれば、第2の逆止弁9
bおよび第2のバイパス通路10bを不要とすることが
できるため部品コストの低減が図れる。
Further, according to this configuration, the second check valve 9
b and the second bypass passage 10b can be dispensed with, so that the cost of parts can be reduced.

【0061】また、以上の実施形態では、運転モード切
り替えスイッチおよび送風モード切替スイッチをマニア
ル操作で説明したが、これに限らず、室内温度センサ1
4の入力信号を入力して運転モードおよび送風モードを
ECU15により、オート制御させても良い。
In the above embodiment, the operation mode changeover switch and the ventilation mode changeover switch have been described by the manual operation. However, the present invention is not limited to this.
The operation mode and the air blowing mode may be automatically controlled by the ECU 15 by inputting the input signal of No. 4.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における暖房運転のヒート
ポンプサイクルの冷媒流れを示す説明図である。
FIG. 1 is an explanatory diagram showing a refrigerant flow in a heat pump cycle in a heating operation according to an embodiment of the present invention.

【図2】本発明の一実施形態における空調制御手段を示
すフローチャートである。
FIG. 2 is a flowchart illustrating an air conditioning control unit according to the embodiment of the present invention.

【図3】本発明の一実施形態における暖房運転のヒート
ポンプサイクルの冷媒流れを示す説明図である。
FIG. 3 is an explanatory diagram showing a refrigerant flow in a heat pump cycle in a heating operation according to one embodiment of the present invention.

【図4】本発明の一実施形態におけるヒートポンプサイ
クルを示すサイクル線図である。
FIG. 4 is a cycle diagram showing a heat pump cycle in one embodiment of the present invention.

【図5】本発明の一実施形態における冷房運転のヒート
ポンプサイクルの冷媒流れを示す説明図である。
FIG. 5 is an explanatory diagram showing a refrigerant flow in a heat pump cycle in a cooling operation according to one embodiment of the present invention.

【図6】他の実施形態における暖房運転のヒートポンプ
サイクルの冷媒流れを示す説明図である。
FIG. 6 is an explanatory diagram showing a refrigerant flow in a heat pump cycle in a heating operation according to another embodiment.

【図7】他の実施形態における暖房運転のヒートポンプ
サイクルの冷媒流れを示す説明図である。
FIG. 7 is an explanatory diagram showing a refrigerant flow in a heat pump cycle of a heating operation in another embodiment.

【符号の説明】[Explanation of symbols]

1…圧縮機 2…四方弁(第1の切替手段) 3…室内側熱交換器 4…膨張弁(絞り手段) 5…室外側熱交換器 6…冷媒熱交換器(熱交換部) 6a…伝熱管(伝熱手段) 8…三方弁(第2の切替手段) 14…室内温度センサ(温度検出手段) 15…電気制御装置(空調制御手段) 16…第2の冷媒熱交換器(熱交換部) 16a…第2の伝熱管(伝熱手段) DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Four-way valve (1st switching means) 3 ... Indoor heat exchanger 4 ... Expansion valve (throttle means) 5 ... Outdoor heat exchanger 6 ... Refrigerant heat exchanger (heat exchange part) 6a ... Heat transfer tube (heat transfer means) 8 ... three-way valve (second switching means) 14 ... indoor temperature sensor (temperature detection means) 15 ... electric control device (air conditioning control means) 16 ... second refrigerant heat exchanger (heat exchange) Part) 16a: second heat transfer tube (heat transfer means)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮する圧縮機(1)と、 室内に配置され、室内を空調する室内側熱交換器(3)
と、 室外に配置された室外側熱交換器(5)と前記両熱交換
器(3、5)との間に設置された絞り手段(4)と、 冷房運転時には前記圧縮機(1)から吐出された吐出冷
媒を前記室外側熱交換器(5)に向けて流通させ、暖房
運転時には前記圧縮機(1)から吐出された吐出冷媒を
前記室内側熱交換器(3)に向けて流通させる第1の切
替手段(2)とを備える冷暖房切り替え可能なヒートポ
ンプサイクルにおいて、 暖房運転の空調制御を行うときに、前記室外側熱交換器
(5)から流出して前記圧縮機(1)に吸入される低圧
冷媒と前記室内側熱交換器(3)から流出して前記絞り
手段(4)に吸入される高圧冷媒とを熱交換させること
を特徴とするヒートポンプサイクル。
A compressor (1) for compressing a refrigerant, and an indoor heat exchanger (3) disposed indoors and air-conditioning the indoors.
A throttle means (4) installed between an outdoor heat exchanger (5) arranged outdoors and the heat exchangers (3, 5); and a compressor (1) for cooling operation. The discharged refrigerant discharged is circulated to the outdoor heat exchanger (5), and the refrigerant discharged from the compressor (1) is circulated to the indoor heat exchanger (3) during the heating operation. In the heat pump cycle capable of switching between cooling and heating, the first switching means (2) for controlling the air conditioner to perform air conditioning control for heating operation, flows out of the outdoor heat exchanger (5) and flows to the compressor (1). A heat pump cycle characterized in that heat is exchanged between the sucked low-pressure refrigerant and the high-pressure refrigerant flowing out of the indoor heat exchanger (3) and drawn into the throttle means (4).
【請求項2】 前記低圧冷媒と前記高圧冷媒との熱交換
は、暖房運転のときに、前記低圧冷媒または前記高圧冷
媒のいずれか一方を流通させる伝熱手段(6a、16
a)と、前記伝熱手段(6a、16a )を配設して前
記伝熱手段(6a、16a )に流通させる冷媒とは異
なる前記高圧冷媒または前記低圧冷媒のいずれか一方を
流通させる熱交換部(6、16)との間で行うことを特
徴とする請求項1に記載のヒートポンプサイクル。
2. The heat exchange between the low-pressure refrigerant and the high-pressure refrigerant is performed by a heat transfer means (6a, 16) for flowing one of the low-pressure refrigerant and the high-pressure refrigerant during a heating operation.
a) and heat exchange in which either the high-pressure refrigerant or the low-pressure refrigerant, which is different from the refrigerant provided with the heat transfer means (6a, 16a) and passed through the heat transfer means (6a, 16a), flows. The heat pump cycle according to claim 1, wherein the heat pump cycle is performed between the heat pump cycle and the heat pump cycle.
【請求項3】 前記伝熱手段(6a、16a )を配設
した前記熱交換部(6、16)は、前記室外側熱交換器
(5)の流出側と前記圧縮機(1)の吸入側との間に設
置され、かつ前記伝熱手段(6a、16a)の一端が前
記室内側熱交換器(3)の流出側に接続され、他端が前
記絞り手段(4)の吸入側に接続されるように構成した
ことを特徴とする請求項2に記載のヒートポンプサイク
ル。
3. The heat exchange section (6, 16) provided with the heat transfer means (6a, 16a) is connected to an outflow side of the outdoor heat exchanger (5) and suction of the compressor (1). And one end of the heat transfer means (6a, 16a) is connected to the outlet side of the indoor heat exchanger (3), and the other end is connected to the suction side of the throttle means (4). The heat pump cycle according to claim 2, wherein the heat pump cycle is configured to be connected.
【請求項4】 前記伝熱手段(6a、16a )を配設
した前記熱交換部(6、16)は、前記室内側熱交換器
(3)の流出側と前記絞り手段(4)の吸入側との間に
設置され、かつ前記伝熱手段(6a、16a)の一端が
前記室外側熱交換器(5)の流出側に接続され、他端が
前記圧縮機(1)の吸入側に接続されるように構成した
ことを特徴とする請求項2に記載のヒートポンプサイク
ル。
4. The heat exchange section (6, 16) provided with the heat transfer means (6a, 16a) is connected to the outlet side of the indoor heat exchanger (3) and the suction of the throttle means (4). And one end of the heat transfer means (6a, 16a) is connected to the outlet side of the outdoor heat exchanger (5), and the other end is connected to the suction side of the compressor (1). The heat pump cycle according to claim 2, wherein the heat pump cycle is configured to be connected.
【請求項5】 前記熱交換部(6、16)は、前記伝熱
手段(6a、16a)を経由させるか前記伝熱手段(6
a、16a)を迂回させるかのいずれか一方に高圧冷媒
を流通させるように切り替える第2の切替手段(8)
と、室温を検出する温度検出手段(14)と、前記温度
検出手段(14)の検出出力に応じて前記第2の切替手
段(8)を切り替える空調制御手段(15)とを有する
ことを特徴とする請求項1ないし請求項4のいずれか1
項に記載のヒートポンプサイクル。
5. The heat exchange section (6, 16) is provided via the heat transfer means (6a, 16a) or the heat transfer means (6, 16a).
a switching means (8) for switching the high-pressure refrigerant to flow through any one of the bypass means (a, 16a).
A temperature detection unit (14) for detecting a room temperature; and an air conditioning control unit (15) for switching the second switching unit (8) in accordance with a detection output of the temperature detection unit (14). Any one of claims 1 to 4
The heat pump cycle according to the paragraph.
【請求項6】 前記空調制御手段(15)は、前記絞り
手段(4)により前記圧縮機(1)の吸入側の過熱度が
20〜30℃程度となるように開度の調節を行うことを
特徴とする請求項5に記載のヒートポンプサイクル。
6. The air-conditioning control means (15) controls the degree of opening by the throttling means (4) such that the degree of superheat on the suction side of the compressor (1) is about 20 to 30 ° C. The heat pump cycle according to claim 5, wherein
JP2000184769A 2000-06-20 2000-06-20 Heat pump cycle Withdrawn JP2002005536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184769A JP2002005536A (en) 2000-06-20 2000-06-20 Heat pump cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184769A JP2002005536A (en) 2000-06-20 2000-06-20 Heat pump cycle

Publications (1)

Publication Number Publication Date
JP2002005536A true JP2002005536A (en) 2002-01-09

Family

ID=18685173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184769A Withdrawn JP2002005536A (en) 2000-06-20 2000-06-20 Heat pump cycle

Country Status (1)

Country Link
JP (1) JP2002005536A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243881A (en) * 2009-07-30 2009-10-22 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
CN103307818A (en) * 2013-06-25 2013-09-18 Tcl空调器(中山)有限公司 Air-conditioning system and liquid impact prevention and control method thereof
JP2014126216A (en) * 2012-12-25 2014-07-07 Denso Corp Heat pump system
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
KR101560825B1 (en) 2008-07-29 2015-10-15 엘지전자 주식회사 Air conditioning system
KR101945464B1 (en) * 2016-06-17 2019-02-08 이완호 Hybrid heat pump providing both hot and cool water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
USRE43998E1 (en) 2004-10-18 2013-02-19 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
KR101560825B1 (en) 2008-07-29 2015-10-15 엘지전자 주식회사 Air conditioning system
JP2009243881A (en) * 2009-07-30 2009-10-22 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
JP2014126216A (en) * 2012-12-25 2014-07-07 Denso Corp Heat pump system
CN103307818A (en) * 2013-06-25 2013-09-18 Tcl空调器(中山)有限公司 Air-conditioning system and liquid impact prevention and control method thereof
KR101945464B1 (en) * 2016-06-17 2019-02-08 이완호 Hybrid heat pump providing both hot and cool water

Similar Documents

Publication Publication Date Title
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
KR20030097179A (en) Heat-Pump Air Conditioner&#39;s Operating Method
KR19980076725A (en) Control method of HVAC and HVAC
WO2019053876A1 (en) Air conditioning device
EP1813888A2 (en) Heat pump type air conditioner
JPH08110117A (en) Equipment and method of controlling air conditioner
JP2004170023A (en) Control method for multicellular air-conditioner
JP2002372320A (en) Refrigerating device
JP2004338447A (en) Air conditioner
KR20040045095A (en) Air-conditioner&#39;s noise reducing control method
JP2002005536A (en) Heat pump cycle
JP3194652B2 (en) Air conditioner
JP2002098387A (en) Air conditioner
JP2003139436A (en) Air conditioner
JPH1114125A (en) Multichamber type air conditioner
JP4074422B2 (en) Air conditioner and its control method
JP2002243307A (en) Air conditioning apparatus
JP7462830B2 (en) Air Conditioning Equipment
JP2005016881A (en) Air conditioning system
JPH0526501A (en) Air conditioning facility
JP2002286273A (en) Air conditioner
JP2003294296A (en) Air conditioner
JP3380384B2 (en) Control device for air conditioner
KR0141541B1 (en) Refrigerant Heating Air Conditioning Unit
JP2001248919A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904