JP2002002596A - Air conditioner for aircraft - Google Patents
Air conditioner for aircraftInfo
- Publication number
- JP2002002596A JP2002002596A JP2000185418A JP2000185418A JP2002002596A JP 2002002596 A JP2002002596 A JP 2002002596A JP 2000185418 A JP2000185418 A JP 2000185418A JP 2000185418 A JP2000185418 A JP 2000185418A JP 2002002596 A JP2002002596 A JP 2002002596A
- Authority
- JP
- Japan
- Prior art keywords
- air
- turbine
- compressor
- engine
- bleed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009423 ventilation Methods 0.000 claims description 8
- 230000000740 bleeding effect Effects 0.000 abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000036316 preload Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
- B64D13/06—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
- B64D13/06—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
- B64D2013/0603—Environmental Control Systems
- B64D2013/0644—Environmental Control Systems including electric motors or generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/50—On board measures aiming to increase energy efficiency
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、機内に予圧用空気
を供給し、同時に機内の冷暖房を伴う換気を行い得るよ
うにした航空機用の空調装置(以下、「空調装置」と略
称する)に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for an aircraft (hereinafter, abbreviated as "air conditioner") capable of supplying air for precompression to an airplane and simultaneously performing ventilation accompanied by cooling and heating in the airplane. Things.
【0002】[0002]
【従来の技術】例えば、航空機は、居住室や電子機器室
等の予圧室に適温、適圧の調和空気を供給すべく、一般
に空調装置を備えている。この空調装置は、調温、調圧
を始めとして、除湿の役割、予圧室に酸素を送り込む役
割、筐体から漏れる空気を補う役割など、様々な役割を
兼ねている。そして、これらの役割を果たすために、外
気の取り込みが不可欠なものである。2. Description of the Related Art For example, an aircraft is generally provided with an air conditioner for supplying conditioned air of a suitable temperature and pressure to a precompression room such as a living room or an electronic equipment room. This air conditioner also has various functions such as temperature control, pressure control, dehumidification, oxygen supply to the preload chamber, and air leak from the housing. In order to fulfill these roles, intake of outside air is indispensable.
【0003】このような外気の取り込みに際して、高高
度飛行中は外気をそのまま取り込んでも予圧に必要な圧
力や酸素量を得ることは期待できない。このため、常に
十分な量の外気が存在するエンジンから抽気を得、その
エンジン抽気を調温、調圧して、調和空気として予圧室
に供給する空調装置が確立されている。[0003] When taking in such outside air, it is not expected to obtain the pressure or oxygen amount necessary for preloading even if the outside air is taken in during high altitude flight. For this reason, an air conditioner has been established in which bleed air is always obtained from an engine in which a sufficient amount of outside air is present, the temperature of the bleed air is regulated and regulated, and the bleed air is supplied to the preload chamber as conditioned air.
【0004】そして、この空調装置の中枢を担うエアサ
イクルマシンACMは、図3に概略的に示すように、エ
ンジン抽気BAによってタービンTを駆動し、そのター
ビン動力を単軸結合されたコンプレッサCに伝えて、こ
のコンプレッサCにより、前記タービンTに送り込むエ
ンジン抽気BAを圧縮するように構成されているのが一
般的である。図において符号5で示すものは、コンプレ
ッサCから出たエンジン抽気BAをタービンTに送り込
むためのブートストラップ回路であり、PHX、SHX
は熱交換器である。As schematically shown in FIG. 3, an air cycle machine ACM, which plays a central role in this air conditioner, drives a turbine T by an engine bleed air BA, and transfers the turbine power to a compressor C which is coupled to a single shaft. Generally, the compressor C compresses the engine bleed air BA sent to the turbine T. In the figure, reference numeral 5 denotes a bootstrap circuit for sending the engine bleed air BA from the compressor C to the turbine T, and PHX, SHX
Is a heat exchanger.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、旅客機
のような乗客の多い機体では、必要換気空気量が非常に
多い。このため、全てをエンジン抽気に頼ったのでは、
エンジン抽気量が増加し、エンジンに対するペナルティ
(燃料消費量)が大きくなる結果、航空機の大幅な効率
低下につながるという問題がある。However, an airframe with many passengers, such as a passenger airplane, requires an extremely large amount of ventilation air. For this reason, relying on engine bleeding for everything
As a result of an increase in the amount of engine bleed and an increase in the penalty (fuel consumption) for the engine, there is a problem that the efficiency of the aircraft is greatly reduced.
【0006】[0006]
【課題を解決するための手段】上記の問題点を解消する
ために、本発明は、タービンとコンプレッサを単軸結合
したエアサイクルマシンを主体として構成されるものに
おいて、 前記タービンにエンジン抽気を導入すること
によってエアサイクルマシンを駆動し得るように構成す
るとともに、前記コンプレッサに外気を導入して換気空
気用として昇圧し得るように構成していることを特徴と
する。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to an air cycle machine mainly comprising a turbine and a compressor connected in a single shaft, wherein engine bleed air is introduced into the turbine. By doing so, the air cycle machine can be driven, and outside air can be introduced into the compressor to increase the pressure for ventilation air.
【0007】このような構成によれば、エンジン抽気に
よるタービン動力で外気を圧縮し、これを換気空気とし
て用いることができるので、これによりエンジン抽気量
を低減し、エンジンの燃料ペナルティを抑えることがで
きる。[0007] According to such a configuration, the outside air can be compressed by the turbine power generated by the engine bleed and used as the ventilation air, so that the engine bleed amount can be reduced and the fuel penalty of the engine can be suppressed. it can.
【0008】なお、外気は、通常はラムエアダクトから
取り込まれるが、ファンブリードから抽気して取り込む
ようにしてもよい。The outside air is normally taken in from the ram air duct, but may be taken out by taking in air from the fan bleed.
【0009】[0009]
【実施例】以下、本発明の実施例を、図面を参照して説
明する。 <第1実施例>図1に示す空調装置は、エンジン1と、
居住室や電子機器室等の予圧室2との間を、空調部3を
介して接続したもので、この空調部3は、コンプレッサ
C及びタービンTからなるエアサイクルマシンACMを
主体とし、このエアサイクルマシンACMに、コンプレ
ッサCの入口C1に抽気を導入する抽気ライン4と、コ
ンプレッサCの出口C2とタービンTの入口T1とを連
通させるブートストラップ回路5と、タービンTの出口
T2から出た空気を予圧室2に移送するための給気ライ
ン6とを接続して構成されるものである。Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> An air conditioner shown in FIG.
A precompression chamber 2 such as a living room or an electronic equipment room is connected via an air conditioner 3. The air conditioner 3 mainly includes an air cycle machine ACM including a compressor C and a turbine T. A bleed line 4 for introducing bleed air to the inlet C1 of the compressor C, a bootstrap circuit 5 for communicating the outlet C2 of the compressor C with the inlet T1 of the turbine T, and air exiting from the outlet T2 of the turbine T to the cycle machine ACM. Is connected to an air supply line 6 for transferring the pressure to the preload chamber 2.
【0010】抽気ライン4には、エンジン抽気BAをラ
ムエアLAとの熱交換により冷却して異常な高温抽気が
空調部3に流入することを防ぐ1次熱交換器PHXが配
置してある。A primary heat exchanger PHX is disposed in the bleed line 4 to cool the engine bleed air BA by exchanging heat with the ram air LA to prevent abnormal high-temperature bleed air from flowing into the air conditioning unit 3.
【0011】エアサイクルマシンACMは、コンプレッ
サCとタービンTの間を軸Sで単軸結合した構成からな
るもので、タービンTの発生動力をコンプレッサCに入
力し得るようにしている。The air cycle machine ACM has a configuration in which the compressor C and the turbine T are connected by a single shaft with a shaft S, so that the power generated by the turbine T can be input to the compressor C.
【0012】ブートストラップ回路5は、コンプレッサ
Cで圧縮し昇温させた空気をラムエアLAとの熱交換に
よって効率良く冷却するための2次熱交換器SHXを具
備し、この2次熱交換器SHXを通過した空気をタービ
ンTに入力して、該タービンTにおいて断熱膨脹仕事を
させるようにしている。The bootstrap circuit 5 includes a secondary heat exchanger SHX for efficiently cooling the air compressed and heated by the compressor C by heat exchange with the ram air LA. Is input to the turbine T to perform adiabatic expansion work in the turbine T.
【0013】給気ライン6は、タービンTの出口T2と
予圧室2との間を接続するものである。The air supply line 6 connects between the outlet T2 of the turbine T and the preload chamber 2.
【0014】以上の構成において、本実施例は、1次熱
交換器PHXの出口とコンプレッサCの入口C1との間
から分岐してブートストラップ回路5を経ずに直接ター
ビンTの入口T1につながるバイパス通路7を設け、こ
のバイパス通路7の入口と前記コンプレッサCの入口C
1の上流とにそれぞれバルブB、Aを設けるとともに、
前記コンプレッサCの入口C1に外気を直接導入するた
めに、バルブCを有するラムエア通路8を接続してい
る。さらに、前記ブートストラップ回路5中、2次熱交
換器SHXの出口とタービンTの入口T1との間から分
岐してタービンTを経ずに直接給気ライン6につながる
バイパス通路9を設け、このバイパス通路9の入口と前
記タービンTの入口T1の上流とにそれぞれバルブE、
Dを設けている。In this embodiment, the present embodiment branches off from between the outlet of the primary heat exchanger PHX and the inlet C1 of the compressor C and connects directly to the inlet T1 of the turbine T without passing through the bootstrap circuit 5. A bypass passage 7 is provided, and an inlet of the bypass passage 7 and an inlet C of the compressor C are provided.
Valves B and A are respectively provided upstream of
A ram air passage 8 having a valve C is connected to directly introduce outside air to the inlet C1 of the compressor C. Further, in the bootstrap circuit 5, a bypass passage 9 is provided which branches from between the outlet of the secondary heat exchanger SHX and the inlet T1 of the turbine T and is directly connected to the air supply line 6 without passing through the turbine T. Valves E and E are respectively provided at the inlet of the bypass passage 9 and upstream of the inlet T1 of the turbine T.
D is provided.
【0015】次に、この空調装置の作動について説明す
る。この空調装置は、バルブA〜Eの開閉によって、ノ
ーマルモードかラムモードかが選択される。先ず、ノー
マルモードについて説明する。このモードではバルブ
A、Dを開、バルブB、C、Eを閉にする。これによ
り、エンジン1からの抽気BAは抽気ライン4の始端に
ある1次熱交換器PHXで降温されて、エアサイクルマ
シンACMのコンプレッサ入口C1からコンプレッサC
に入力され、圧縮される。コンプレッサ出口C2から出
た空気は、2次熱交換器SHXで効率良く冷却され、タ
ービン入口T1からタービンTに入力される。その後、
タービンTで断熱膨脹仕事をすることによって自ら自冷
した空気は、適温となってタービン出口T2から出て、
予圧室2に導入される。Next, the operation of the air conditioner will be described. In this air conditioner, a normal mode or a ram mode is selected by opening and closing the valves A to E. First, the normal mode will be described. In this mode, valves A and D are opened and valves B, C and E are closed. As a result, the temperature of the bleed air BA from the engine 1 is reduced by the primary heat exchanger PHX at the beginning of the bleed line 4, and the air is discharged from the compressor inlet C1 of the air cycle machine ACM to the compressor C.
And compressed. The air flowing out of the compressor outlet C2 is efficiently cooled by the secondary heat exchanger SHX, and is input to the turbine T from the turbine inlet T1. afterwards,
The air self-cooled by performing the adiabatic expansion work in the turbine T becomes an appropriate temperature and exits from the turbine outlet T2.
It is introduced into the preload chamber 2.
【0016】また、上空でラムエアを取り入れる場合に
は、ラムモードに切り換える。このラムエアモードでは
バルブA、Dを閉、バルブB、C、Eを開にする。これ
により、エンジン抽気BAはバイパス通路7を経て直接
タービンTに導入され、このタービンTの駆動に供され
る。そして、このタービン動力によって駆動されるコン
プレッサCには、ラムエア通路8を通じて外気が直接取
り込まれ、このコンプレッサCで圧縮された後、2次熱
交換器SHXで冷却され、バイパス通路9を流れた後、
前記タービンTから出てくるエンジン抽気BAと合流さ
れて、適温適圧の換気空気となって与圧室2に導入され
る。When ram air is taken in from above, the mode is switched to the ram mode. In this ram air mode, the valves A and D are closed and the valves B, C and E are opened. As a result, the engine bleed air BA is directly introduced into the turbine T via the bypass passage 7, and is used for driving the turbine T. Then, outside air is directly taken into the compressor C driven by the turbine power through the ram air passage 8, compressed by the compressor C, cooled by the secondary heat exchanger SHX, and flows through the bypass passage 9. ,
The air is merged with the engine bleed air BA coming out of the turbine T and becomes ventilation air at an appropriate temperature and an appropriate pressure and introduced into the pressurized chamber 2.
【0017】このような構成によれば、エンジン抽気B
Aによるタービン動力で外気を圧縮し、この昇圧した外
気を換気空気として用いることができるので、これによ
りエンジン抽気量を低減し、エンジンの燃料ペナルティ
を抑えることができる。According to such a configuration, the engine bleed air B
Since the outside air can be compressed by the turbine power by A and the pressurized outside air can be used as ventilation air, the amount of engine bleed air can be reduced and the fuel penalty of the engine can be suppressed.
【0018】例えば、高度35000ft(10700
m)をM=0.76で巡航している時に、外気圧力が
3.4psia(0.023MPa)、温度が−54℃
(STD Dayの場合)である場合、キャビン内の与
圧である12psia(0.083MPa)まで外気を
圧縮するケースを考える。エンジン抽気が45psia
(0.31MPa)の時、このシステムは図3に示した
従来システムに比べて、エンジン抽気量を約27%低減
することが期待できる。また、重量ペナルティ、ラムペ
ナルティ、電気ペナルティまでを考慮したトータルの効
率を見た場合にも、燃料消費量を約15%程度にまで削
減することが可能となる。For example, an altitude of 35000 ft (10700
m) when cruising at M = 0.76, the outside air pressure is 3.4 psia (0.023 MPa) and the temperature is -54 ° C.
In the case of (STD Day), a case is considered in which the outside air is compressed to 12 psia (0.083 MPa), which is the pressurization in the cabin. Engine bleed is 45 psia
At (0.31 MPa), this system can be expected to reduce the amount of engine bleed air by about 27% compared to the conventional system shown in FIG. Further, even when the total efficiency in consideration of the weight penalty, the ram penalty, and the electric penalty is considered, the fuel consumption can be reduced to about 15%.
【0019】また、この実施例は、外気を取り込むに際
して電動モータ等を使用していないため、コスト的に有
利であり、停電時等を考慮した場合にシステムにより高
い信頼性を確保しておくことができる。 <第2実施例>図2に示す空調装置は、上記実施例の空
調装置を変形させたもので、エアサイクルマシンACM
を3ホイールタイプにするとともに、ブートストラップ
回路5の一部に除湿機構10を設けたものである。な
お、上記第1実施例と共通する部分には同一符号を付
し、その説明を省略している。This embodiment is advantageous in terms of cost because an electric motor or the like is not used when taking in outside air, and it is necessary to secure higher reliability in the system in consideration of a power failure or the like. Can be. <Second Embodiment> An air conditioner shown in FIG. 2 is a modification of the air conditioner of the above embodiment, and is an air cycle machine ACM.
Is a three-wheel type, and a dehumidifying mechanism 10 is provided in a part of the bootstrap circuit 5. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
【0020】この実施例では、両熱交換器SHX、RH
Xに供すべきラムエアLAをラムエアダクトに配置され
たファンF1によって取り込まれるようにしており、こ
のファンF1を前記エアサイクルマシンACMの軸Sに
取り付けたものである。このように単一の軸Sにコンプ
レッサC、タービンT及びファンF1の3つの翼車を取
り付けたエアサイクルマシンを3ホイールタイプと称し
ている。このタイプのものは、特にHot Dayにお
ける駐機時に外気を積極的に取り込むことができる点で
有利である。In this embodiment, both heat exchangers SHX, RH
The ram air LA to be supplied to X is taken in by a fan F1 arranged in a ram air duct, and the fan F1 is attached to a shaft S of the air cycle machine ACM. The air cycle machine in which the three impellers of the compressor C, the turbine T, and the fan F1 are mounted on the single shaft S is called a three-wheel type. This type is advantageous in that outside air can be actively taken in when parking the vehicle, particularly in Hot Day.
【0021】一方、除湿機構10は、前記ブートストラ
ップ回路5に配置したリヒータRH、コンデンサCON
D及びウォータセパレータWSからなる。コンデンサC
ONDは、ブートストラップ回路5においてコンプレッ
サCで圧縮され露点の上がった空気を効率良く冷却して
水分を凝縮させる目的と、給気ライン6においてタービ
ンTの出口T2から流出する空気の極端な低温状態を解
消する目的とを兼ねて、両空気を熱交換させるものであ
る。ウォータセパレータWSは、例えば内部に流入した
空気を旋回流状態にすることのできる内部構造を有した
もので、コンデンサCONDで水分を凝縮させた空気を
導いて旋回流により比重の大きい水分のみを遠心力で分
離し主として除湿した空気のみを流出させ得るものであ
る。リヒータRHは、ブートストラップ回路5の上流に
あってコンデンサCONDに向かう空気の予冷と、同回
路5の下流にあってウォータセパレータWSを出た空気
をタービンTの出口T2で氷結させないために予熱する
こととを兼ねて、両空気を熱交換させるものである。On the other hand, the dehumidifying mechanism 10 includes a reheater RH and a capacitor CON arranged in the bootstrap circuit 5.
D and a water separator WS. Capacitor C
The OND serves to efficiently cool the air having a dew point raised by being compressed by the compressor C in the bootstrap circuit 5 to condense the moisture, and the extremely low temperature condition of the air flowing out of the outlet T2 of the turbine T in the air supply line 6. The purpose of the present invention is also to exchange heat between the two airs for the purpose of solving the problem. The water separator WS has, for example, an internal structure capable of turning the air flowing into the inside into a swirling flow state. The water separator WS guides air condensed by the condenser COND to centrifuge only water having a high specific gravity by the swirling flow. It is capable of flowing out only air separated mainly by force and dehumidified. The reheater RH pre-cools the air upstream of the bootstrap circuit 5 toward the condenser COND and preheats the air downstream of the circuit 5 and exiting the water separator WS so as not to freeze at the outlet T2 of the turbine T. The purpose is to exchange heat between the two airs.
【0022】このように、高圧空気中にて露点を高くし
て水分を凝縮させる除湿機構10はHPWS(ハイプレ
ッシャ・ウオータ・セパレータ)方式と称される。As described above, the dehumidifying mechanism 10 that raises the dew point in high-pressure air to condense water is called an HPWS (High Pressure Water Separator) system.
【0023】以上の構成を付加したものであっても、基
本的には前記実施例と同様、バルブA〜Eの切換操作の
みでノーマルモードとラムエアモードの切り換えを行う
ことができ、これにより特に高高度飛行中におけるエン
ジン抽気を減らし、ペナルティを低く抑えて、高効率の
巡航を高い信頼性の下に行うことが可能となる。Even with the above configuration, switching between the normal mode and the ram air mode can be performed only by switching the valves A to E, basically as in the above embodiment. The engine bleed during high altitude flight is reduced, the penalty is kept low, and highly efficient cruising can be performed with high reliability.
【0024】なお、各部の具体的な構成は、図示実施例
に限定されるものではなく、本発明の趣旨を逸脱しない
範囲で種々変形が可能である。例えば、外気は、ラムエ
アダクトから取り込む以外に、エンジンのファンブリー
ドから抽気して取り込んでもよい。このファンブリード
は、外気を取り込んで圧縮するために流速が与えられて
いるだけであり、圧縮や燃焼のエネルギが付与される前
段階のものであるため、実質的なエンジン抽気への影響
は低く抑えられるものである。The specific structure of each part is not limited to the illustrated embodiment, but can be variously modified without departing from the spirit of the present invention. For example, the outside air may be taken from the fan bleed of the engine instead of being taken in from the ram air duct. This fan bleed is only given a flow velocity to take in the outside air and compress it, and is a stage before the energy of compression and combustion is applied, so that the effect on the actual engine bleeding is low. It can be suppressed.
【0025】[0025]
【発明の効果】以上説明したように、本発明によれば、
特に高高度を巡航中に、エンジン抽気を導入してタービ
ンを駆動し、その動力をコンプレッサに伝えて、このコ
ンプレッサで別途取り込んだ外気を圧縮するようにし
て、エンジン抽気に最低限エアサイクルマシンの駆動に
必要な摂取量を確保すれば足りるようにしたものであ
る。このため、大量の換気空気を必要とする旅客機等に
おいても、エネルギ準位の高いエンジン抽気の抽気量を
減らしてペナルティの大幅な削減を図ることができ、ひ
いてはラムペナルティ等の他のパラメータを含めたトー
タルでのシステム効率も有効に向上させることが可能と
なる。また、エアサイクルマシンの駆動をあくまで機械
的に行うようにしているため、電気系統を採用する場合
に比べて、コストの削減が図れ、信頼性も確実に向上さ
せることが可能となる。As described above, according to the present invention,
Especially during high altitude cruise, engine bleed is introduced to drive the turbine, the power is transmitted to the compressor, and the external air taken in separately by this compressor is compressed. It is enough to secure enough intake for driving. For this reason, even in a passenger aircraft or the like that requires a large amount of ventilation air, it is possible to significantly reduce the penalty by reducing the amount of engine bleed air with a high energy level, and further include other parameters such as a ram penalty. Also, the total system efficiency can be effectively improved. In addition, since the air cycle machine is mechanically driven, the cost can be reduced and the reliability can be reliably improved as compared with the case where an electric system is employed.
【図1】本発明の第1実施例を示す概略的なシステム
図。FIG. 1 is a schematic system diagram showing a first embodiment of the present invention.
【図2】本発明の第2実施例を示す概略的なシステム
図。FIG. 2 is a schematic system diagram showing a second embodiment of the present invention.
【図3】図1に対応した従来システムを示す概略的なシ
ステム図。FIG. 3 is a schematic system diagram showing a conventional system corresponding to FIG. 1;
ACM…エアサイクルマシン BA…エンジン抽気 C…コンプレッサ T…タービン ACM: Air cycle machine BA: Engine bleed C: Compressor T: Turbine
フロントページの続き (72)発明者 瓜生 承治 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内 (72)発明者 佐藤 理 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内Continued on the front page (72) Inventor Seiji Uryu 1 Nishinokyo Kuwabaracho, Nakagyo-ku, Kyoto Co., Ltd. Shimadzu Corporation (72) Inventor Osamu Sato 1 Nishinokyo Kuwabaracho, Nakagyo-ku, Kyoto Co., Ltd. Shimadzu Corporation
Claims (1)
アサイクルマシンを主体として構成されるものにおい
て、 前記タービンにエンジン抽気を導入することによってエ
アサイクルマシンを駆動し得るように構成するととも
に、前記コンプレッサに外気を導入して換気空気用とし
て昇圧し得るように構成していることを特徴とする航空
機用空調装置。1. An air cycle machine mainly comprising a turbine and a compressor connected in a single shaft, wherein the air cycle machine is driven by introducing engine bleed air into the turbine, and the compressor is provided. An air conditioner for an aircraft, characterized in that it is configured so that outside air can be introduced into the air and pressure can be increased for ventilation air.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000185418A JP4206615B2 (en) | 2000-06-20 | 2000-06-20 | Air conditioner for aircraft |
US09/785,560 US6427471B1 (en) | 2000-02-29 | 2001-02-20 | Air cycle machine and air conditioning system using the same |
DE60132506T DE60132506T2 (en) | 2000-02-29 | 2001-02-26 | Air circulation climate control system |
DE60111976T DE60111976T2 (en) | 2000-02-29 | 2001-02-26 | Air circulation climate control system |
EP01103694A EP1129941B1 (en) | 2000-02-29 | 2001-02-26 | Air cycle environmental control system |
EP05009128A EP1555205B1 (en) | 2000-02-29 | 2001-02-26 | Air cycle environmental control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000185418A JP4206615B2 (en) | 2000-06-20 | 2000-06-20 | Air conditioner for aircraft |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002002596A true JP2002002596A (en) | 2002-01-09 |
JP4206615B2 JP4206615B2 (en) | 2009-01-14 |
Family
ID=18685740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000185418A Expired - Fee Related JP4206615B2 (en) | 2000-02-29 | 2000-06-20 | Air conditioner for aircraft |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4206615B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011504844A (en) * | 2007-11-29 | 2011-02-17 | エアバス・オペレーションズ・ゲーエムベーハー | Air conditioning system with mixed bleed air operation |
JP2015113110A (en) * | 2013-12-13 | 2015-06-22 | ザ・ボーイング・カンパニーTheBoeing Company | Air cycle machine pack system and method for improving low inlet pressure cooling performance |
EP3002431A1 (en) * | 2014-09-30 | 2016-04-06 | Hamilton Sundstrand Corporation | Engine bleed air system |
JP2017524092A (en) * | 2014-07-03 | 2017-08-24 | ゼネラル・エレクトリック・カンパニイ | Jet engine cold air cooling system |
-
2000
- 2000-06-20 JP JP2000185418A patent/JP4206615B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011504844A (en) * | 2007-11-29 | 2011-02-17 | エアバス・オペレーションズ・ゲーエムベーハー | Air conditioning system with mixed bleed air operation |
JP2015113110A (en) * | 2013-12-13 | 2015-06-22 | ザ・ボーイング・カンパニーTheBoeing Company | Air cycle machine pack system and method for improving low inlet pressure cooling performance |
JP2017524092A (en) * | 2014-07-03 | 2017-08-24 | ゼネラル・エレクトリック・カンパニイ | Jet engine cold air cooling system |
US10808618B2 (en) | 2014-07-03 | 2020-10-20 | General Electric Company | Jet engine cold air cooling system |
US10815890B2 (en) | 2014-07-03 | 2020-10-27 | General Electric Company | Jet engine cold air cooling system |
EP3002431A1 (en) * | 2014-09-30 | 2016-04-06 | Hamilton Sundstrand Corporation | Engine bleed air system |
US10634065B2 (en) | 2014-09-30 | 2020-04-28 | Hamilton Sundstrand Corporation | Engine bleed air system |
Also Published As
Publication number | Publication date |
---|---|
JP4206615B2 (en) | 2009-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7222499B2 (en) | Closed loop air conditioning system | |
EP0772545B1 (en) | Regenerative condensing cycle | |
US10202197B2 (en) | Aircraft air conditioning system with an electrically driven ambient air compressor and method for operating such an aircraft air conditioning system | |
EP1555205B1 (en) | Air cycle environmental control system | |
CN102596719B (en) | For aerocraft system and the method for improved cooling efficiency | |
US6928832B2 (en) | Electrically driven aircraft cabin ventilation and environmental control system | |
US4963174A (en) | Hybrid vapor cycle/air cycle environmental control system | |
US6257003B1 (en) | Environmental control system utilizing two air cycle machines | |
US7467524B2 (en) | Air-conditioning system and a method for the preparation of air for the air-conditioning of a space | |
JP4489776B2 (en) | Air cycle air conditioning with adaptive ram heat exchanger | |
JP6134326B2 (en) | Energy recovery method and energy recovery architecture in an aircraft | |
JP3563442B2 (en) | Equipment for recovering energy in airplanes, especially in passenger aircraft | |
US20040051002A1 (en) | Environmental control system | |
US10507928B2 (en) | High efficiency electrically driven environmental control system | |
CN108146638B (en) | Aircraft air conditioning system and method for operating an aircraft air conditioning system | |
EP1279594B1 (en) | Air cycle cooling system | |
EP1418123B1 (en) | Air conditioning system | |
CN108128465B (en) | Aircraft air conditioning system and method for operating an aircraft air conditioning system | |
JP4206615B2 (en) | Air conditioner for aircraft | |
JP4023018B2 (en) | Aircraft environmental control equipment | |
JP4170492B2 (en) | Aircraft environmental control equipment | |
JP4023006B2 (en) | Air conditioner for aircraft | |
JP3915263B2 (en) | Air conditioner for aircraft | |
JP2001241791A (en) | Air cycle machine and air conditioning system using it | |
JPH1144463A (en) | Air conditioner for aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080924 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081007 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121031 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121031 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131031 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |