JP2001319883A - Method for producing deposited film - Google Patents

Method for producing deposited film

Info

Publication number
JP2001319883A
JP2001319883A JP2000137278A JP2000137278A JP2001319883A JP 2001319883 A JP2001319883 A JP 2001319883A JP 2000137278 A JP2000137278 A JP 2000137278A JP 2000137278 A JP2000137278 A JP 2000137278A JP 2001319883 A JP2001319883 A JP 2001319883A
Authority
JP
Japan
Prior art keywords
frequency power
deposited film
discharge
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000137278A
Other languages
Japanese (ja)
Inventor
Nobufumi Tsuchida
伸史 土田
Satoshi Furushima
聡 古島
Makoto Aoki
誠 青木
Hiroaki Niino
博明 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000137278A priority Critical patent/JP2001319883A/en
Publication of JP2001319883A publication Critical patent/JP2001319883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a deposited film of amorphous silicon based material exhibiting good electrical characteristics in which deposition rate is enhanced, cracking of the film is reduced while reducing generation of powder and the production yield is improved. SOLUTION: Discharge electrodes are disposed oppositely in a vacuum tight deposition chamber provided with an exhausting means and a material gas supply means, high frequency power is applied to one discharge electrode and a substrate is placed on the other electrode. Glow discharge is then generated between the discharge electrodes by introducing material gas into the deposition chamber and a non-single crystal material principally comprising silicon atoms is formed on the substrate. In such a production method employing a plasma CVD method, high frequency power is converted into pulses of two levels at the time of forming the non-single crystal material and the high level of high frequency power is varied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプラズマCVD法に
よる堆積膜形成方法に関するもので、とりわけ光受容部
材を構成するための、シリコン原子を母体とする非単結
晶材料からなる機能性半導体膜を良好に形成し得る堆積
膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a deposited film by a plasma CVD method, and more particularly to a method for forming a functional semiconductor film made of a non-single-crystal material containing silicon atoms as a base material for forming a light receiving member. The present invention relates to a method for manufacturing a deposited film that can be formed on a substrate.

【0002】[0002]

【従来の技術】半導体などで使用されているプラズマ処
理方法には、それぞれの用途に応じてさまざまな方法が
ある。例えば堆積膜の形成では、高周波電力によるプラ
ズマCVD法を用いたアモルファスシリコン系半導体膜
があって、その特徴を生かす方法が使用されており、さ
らに、近年高品質の膜を高速、且つ、高歩留りで作製で
きる要望も益々強くなって、さまざまな検討が行われて
いる。
2. Description of the Related Art There are various plasma processing methods used for semiconductors and the like according to their respective applications. For example, in forming a deposited film, there is an amorphous silicon-based semiconductor film using a plasma CVD method using high-frequency power, and a method that makes use of its characteristics is used. In recent years, a high-quality film has been formed at a high speed and a high yield. There is an increasing demand for such a device, and various studies are being conducted.

【0003】堆積膜を高速に得ようとするには、高周波
電力、ガス流量を増加させることで対応は可能ではある
が、このような方法では同時に気相重合反応が多くなっ
て多量のポリシランパウダーが発生し、膜の品質および
歩留りの低下をもたらす。
[0003] In order to obtain a deposited film at high speed, it is possible to respond by increasing the high-frequency power and the gas flow rate. However, in such a method, the gas-phase polymerization reaction increases at the same time and a large amount of polysilane powder is obtained. Occurs, resulting in a decrease in film quality and yield.

【0004】一方、このような課題を解決する方法とし
て、従来から用いられている連続放電ではなく、間欠放
電(周期的ON、OFFの周波数40Hz、1kHz、
デューティー比50%付近)を用いてアモルファスシリ
コン膜の形成を行うことで従来の連続放電よりも堆積速
度が向上し、且つ、パウダーの発生を低減した高品質膜
を作製できることが提案されており[Y. Watanabe eta
l., Appl. Phys. Lett., 53(1988)1263., Appl. Phys.L
ett., 57(1990)1616.]、さまざまな工夫がなされてい
る。
On the other hand, as a method for solving such a problem, intermittent discharge (periodic ON / OFF frequency 40 Hz, 1 kHz,
It has been proposed that by forming an amorphous silicon film using a duty ratio of around 50%), the deposition rate can be improved as compared with conventional continuous discharge, and a high-quality film with reduced powder generation can be produced [ Y. Watanabe eta
l., Appl. Phys. Lett., 53 (1988) 1263., Appl. Phys. L
ett., 57 (1990) 1616.], and various ideas have been devised.

【0005】例えば特開平6−291061号公報に
は、シラン系ガスおよび水素ガスをパルス状に位相をず
らして供給し、パルス放電のパワーをシラン系ガス供給
時は相対的に小さく、水素ガス供給時は相対的に大きく
することで、欠陥の少ない品質のアモルファスシリコン
膜を高速で製造することが可能な技術が開示されてい
る。
For example, Japanese Patent Application Laid-Open No. Hei 6-291061 discloses that a silane-based gas and a hydrogen gas are supplied in a pulsed manner with their phases shifted, and the pulse discharge power is relatively small when the silane-based gas is supplied. There has been disclosed a technique capable of producing a high-quality amorphous silicon film with few defects at a high speed by increasing the size relatively.

【0006】そして、特開平7−74110号公報に
は、高周波電力を高低二段にパルス変調させて、高周波
電力の低い方の値をアモルファスシリコン膜の堆積速度
が300Å/分以下にすることで、粉の発生が少なく高
速で明暗導電率の良い膜を作製できる技術が開示されて
いる。
Japanese Unexamined Patent Application Publication No. 7-74110 discloses that high frequency power is pulse-modulated in two stages of high and low so that the lower value of the high frequency power is set so that the deposition rate of the amorphous silicon film is 300 ° / min or less. In addition, there is disclosed a technique capable of producing a film having high light-dark conductivity at high speed with little generation of powder.

【0007】さらに、特開平7−335560号公報に
は、間欠放電においてオン状態が3秒間以下オフ状態が
15ミリ秒間以上にすることで、アモルファスシリコン
膜の高速成膜時におけるゴミの発生量を従来の間欠放電
法より2桁程度減少し、プラズマCVD工程のスループ
ットが向上し、歩留りの改善にも大きな効果がある技術
が開示されている。
Further, Japanese Patent Application Laid-Open No. 7-335560 discloses that the amount of dust generated during high-speed deposition of an amorphous silicon film is reduced by setting the ON state to 3 seconds or less and the OFF state to 15 ms or more in intermittent discharge. There is disclosed a technique which is about two orders of magnitude lower than the conventional intermittent discharge method, improves the throughput of the plasma CVD process, and has a great effect on improving the yield.

【0008】そしてまた、特開平8−288228号公
報には、堆積速度が600Å/分以上、50μs以下の
間欠放電によって、水素化アモルファスシリコン薄膜を
高速で堆積した場合にも高品質な半導体薄膜が高歩留り
で得られ、低コストで高性能の半導体デバイスを提供で
きる技術が開示されている。
Japanese Patent Application Laid-Open No. 8-288228 discloses a high quality semiconductor thin film even when a hydrogenated amorphous silicon thin film is deposited at high speed by intermittent discharge at a deposition rate of 600 ° / min or more and 50 μs or less. There is disclosed a technology capable of providing a high-performance semiconductor device at a low cost and obtained at a high yield.

【0009】これらの技術により、アモルファスシリコ
ン膜の電気的、光学的特性および使用環境特性が向上し
てきた。
[0009] These techniques have improved the electrical, optical and operating environment characteristics of the amorphous silicon film.

【0010】そこで、間欠放電によりアモルファスシリ
コン系材料の堆積膜を作製したところ、確かに従来の連
続放電で作製したアモルファスシリコン系材料の堆積膜
よりも堆積速度が向上し、且つ、パウダーの発生を低減
した堆積膜を得られることが分かった。
Therefore, when a deposited film of an amorphous silicon-based material is produced by intermittent discharge, the deposition rate is certainly higher than that of a deposited film of an amorphous silicon-based material produced by a conventional continuous discharge, and the generation of powder is reduced. It has been found that a reduced deposited film can be obtained.

【0011】[0011]

【発明が解決しようとする課題】しかし、上記従来の方
法で示した間欠放電により作製されたアモルファスシリ
コン系材料の堆積膜は以下のような現象が発生する場合
があることが新たに判明した。
However, it has been newly found that the following phenomenon may occur in the deposited film of the amorphous silicon-based material produced by the intermittent discharge shown in the above conventional method.

【0012】即ち、間欠放電によりアモルファスシリコ
ン系材料の堆積膜を作製した場合、堆積膜にひび割れが
生じる場合があることを認めた。作製した堆積膜、例え
ば電子写真用感光体の堆積膜にひび割れが生じると、電
子写真用感光体としては使用できなくなり、歩留りを大
きく低下させ、コストアップの原因になる。
That is, it has been found that when an amorphous silicon-based material is produced by intermittent discharge, cracks may occur in the deposited film. If cracks occur in the produced deposited film, for example, the deposited film of the electrophotographic photosensitive member, the film cannot be used as the electrophotographic photosensitive member, and the yield is greatly reduced, resulting in an increase in cost.

【0013】さらには、間欠放電によりアモルファスシ
リコン系材料の堆積膜を従来の連続放電と同じ条件で作
製したところ、従来の連続放電で作製したものよりも電
気的特性に関して改善の余地が大きくなる場合があるこ
とを認めた。
Further, when a deposited film of an amorphous silicon-based material is produced by intermittent discharge under the same conditions as a conventional continuous discharge, there is much room for improvement in electrical characteristics as compared with a conventional continuous discharge. Admitted that there is.

【0014】例えば、電子写真用感光体を従来の連続放
電と同じ条件で作製したところ、帯電能、感度および周
囲温度の変化による帯電能の変動(温度特性)、更には
ブランクメモリーおよびゴーストといった光メモリーの
電子写真特性が、従来の連続放電で作製したものよりも
改善の余地が大きくなる場合があり、より一層の高品質
化を実現しなければならないという課題が生じている。
For example, when an electrophotographic photoreceptor is manufactured under the same conditions as those of a conventional continuous discharge, fluctuations in charging ability (temperature characteristics) due to changes in charging ability, sensitivity, and ambient temperature, as well as light such as blank memory and ghost light. In some cases, the electrophotographic characteristics of the memory have more room for improvement than those manufactured by conventional continuous discharge, and there is a problem that higher quality must be realized.

【0015】特に、近年では複写機本体の高性能化が進
み、デジタル機やカラー機の普及に伴い、電子写真装置
の高画質、高速化、高耐久化が急速に進んでおり、電子
写真用感光体においては電気的特性や光導電特性のさら
なる向上とともに、帯電能、感度を維持しつつあらゆる
環境下で大幅に性能を延ばすことが求められている。
In particular, in recent years, the performance of copying machines has been improved, and with the spread of digital machines and color machines, high quality, high speed, and high durability of electrophotographic apparatuses have been rapidly advanced. The photoreceptor is required to further improve its electrical characteristics and photoconductive characteristics, and to significantly extend the performance in all environments while maintaining charging ability and sensitivity.

【0016】したがって、本出願に関わる発明の目的
は、アモルファスシリコン系材料の堆積膜を作製する際
に、堆積速度の向上、パウダーの発生の低減を維持しつ
つ堆積膜にひび割れが生じることを低減して歩留りを改
善し、且つ、電気的特性を飛躍的に向上させた、シリコ
ン原子を母体とする非単結晶材料で構成された堆積膜の
製造を可能にする方法を提供することにある。
Accordingly, it is an object of the invention relating to the present application to reduce the occurrence of cracks in a deposited film while producing a deposited film of an amorphous silicon-based material while improving the deposition rate and reducing the generation of powder. It is an object of the present invention to provide a method for improving the yield and dramatically improving the electrical characteristics and enabling the production of a deposited film composed of a non-single-crystal material containing silicon atoms as a base material.

【0017】例えば、電子写真用感光体においては、帯
電能および感度の向上と、温度特性および光メモリーの
低減を高次元で両立させ画質品質を飛躍的に向上させ
た、シリコン原子を母体とする非単結晶材料で構成され
た光受容層を有する電子写真用感光体の製造を可能にす
る方法を提供することにある。
For example, in an electrophotographic photoreceptor, a silicon atom is used as a base material, in which an improvement in charging ability and sensitivity and a reduction in temperature characteristics and optical memory are achieved at a high level, and image quality is dramatically improved. It is an object of the present invention to provide a method that enables the production of an electrophotographic photoreceptor having a light-receiving layer composed of a non-single-crystal material.

【0018】[0018]

【課題を解決するための手段】上記目的を達成する本発
明の光受容部材の製造方法は、排気手段と原料ガス供給
手段を備えた真空気密可能な堆積室内に、対向する放電
電極を設置し、該放電電極の一方の電極に高周波電力を
印加し、他方の電極上には基板を設置し、該堆積質内へ
原料ガスを導入して該放電電極間にグロー放電を生じさ
せて、該基板上にシリコン原子を母体とする非単結晶材
料を形成するプラズマCVD法による製造方法におい
て、非単結晶材料を形成する際に該高周波電力を高低二
段にパルス変動させ、且つ、該高周波電力の高い方の値
を変化させることを特徴とする。
According to the present invention, there is provided a method for manufacturing a photoreceptor member, comprising the steps of: providing an opposing discharge electrode in a vacuum-tight deposition chamber provided with an exhaust means and a source gas supply means. Applying high frequency power to one of the discharge electrodes, placing a substrate on the other electrode, introducing a source gas into the sediment, causing a glow discharge between the discharge electrodes, In a manufacturing method by a plasma CVD method for forming a non-single-crystal material having silicon atoms as a base material on a substrate, when forming the non-single-crystal material, the high-frequency power is pulse-fluctuated in two steps of high and low, and Is characterized by changing the higher value of.

【0019】従来の連続放電によってアモルファスシリ
コン系材料の光受容部材を作製する場合には、作製した
光受容部材の堆積膜にひび割れが生じると言う現象は殆
ど生じなかった。しかし、図5に示したように高周波電
力のON、OFFによる間欠放電によってアモルファス
シリコン系材料の光受容部材を従来の連続放電と同じ処
方で作製した場合、作製した光受容部材の堆積膜にひび
割れが生じる場合があった。このことについて本発明者
は、成膜中に高周波電力のON、OFFによってプラズ
マが大きく変化することが影響しており、その結果堆積
膜が大きな応力を受けて圧縮応力と引っ張り応力のバラ
ンスを崩しているため、堆積膜にひび割れが生じ易くな
っているのではないかと考えた。
When a light receiving member made of an amorphous silicon-based material is manufactured by a conventional continuous discharge, a phenomenon that cracks occur in a deposited film of the manufactured light receiving member hardly occurs. However, as shown in FIG. 5, when the light receiving member of the amorphous silicon material is manufactured by the same prescription as that of the conventional continuous discharge by intermittent discharge by turning on and off the high frequency power, the deposited film of the manufactured light receiving member is cracked. Sometimes occurred. Regarding this, the present inventor has influenced that the plasma is greatly changed by turning on and off the high-frequency power during the film formation. As a result, the deposited film receives a large stress, and the balance between the compressive stress and the tensile stress is lost. Therefore, it was considered that the deposited film was likely to be cracked.

【0020】また、Y. Hishikawa [J. Appl. Phys. 62
(1987)3150.]によると、プラズマCVD法で作製したア
モルファスシリコンにおいて、2000cmー1付近のS
i−H結合の赤外吸収が増えると圧縮応力が増加し、2
100cmー1付近のSi−H 2結合の赤外吸収が増える
と引っ張り応力が増加するという報告がされている。そ
こで、本発明者は連続放電および間欠放電によって同じ
条件のサンプルを作製して赤外吸収スペクトルの比較を
行った。
Also, Y. Hishikawa [J. Appl. Phys. 62
(1987) 3150.] states that the plasma CVD method
2000cm in morphus siliconー 1Nearby S
As the infrared absorption of the iH bond increases, the compressive stress increases, and 2
100cmー 1Nearby Si-H TwoIncreases infrared absorption of bonds
It has been reported that the tensile stress increases. So
Here, the present inventor has made the same by continuous discharge and intermittent discharge.
Make a sample of the conditions and compare the infrared absorption spectra
went.

【0021】その結果、間欠放電で作製したサンプル
は、連続放電で作製したサンプルよりも2100cmー1
付近のSi−H2結合の赤外吸収が大きいことが分かっ
た。そして、高周波電力を変化させたサンプルも作製し
て赤外吸収スペクトルを比較したところ、間欠放電で作
製したサンプルは連続放電で作製したサンプルよりも、
高周波電力に敏感に2100cmー1付近のSi−H2
合の赤外吸収が変化することが判明した。
As a result, the sample produced by the intermittent discharge was 2100 cm -1 more than the sample produced by the continuous discharge.
It was found that the infrared absorption of the nearby Si—H 2 bond was large. Then, when a sample in which the high-frequency power was changed was also prepared and the infrared absorption spectra were compared, the sample prepared by intermittent discharge was more than the sample prepared by continuous discharge.
Infrared absorption in sensitive Si-H 2 bonds in the vicinity of 2100cm-1 to a high frequency power was found to vary.

【0022】そこで本発明者は、間欠放電のように高周
波電力のON、OFFでは無く、堆積速度の向上および
パウダーの発生の低減を維持しながら、高周波電力を高
低二段にパルス変調させることでプラズマの変化を比較
的に少なくし、且つ、高周波電力の設定方法によって応
力を調整して圧縮応力と引っ張り応力のバランスをとれ
ば、前述した堆積膜にひび割れが生じることを低減でき
るのではないかと考えた。
Accordingly, the present inventor has proposed that the high-frequency power is pulse-modulated in two stages, high and low, while maintaining the improvement of the deposition rate and the reduction of the generation of powder, instead of the ON and OFF of the high-frequency power as in intermittent discharge. If the change in plasma is relatively small, and the stress is adjusted by the setting method of the high-frequency power to balance the compressive stress and the tensile stress, it is possible to reduce the occurrence of cracks in the deposited film described above. Thought.

【0023】さらに、2000cmー1付近のSi−H結
合の赤外吸収が、2100cmー1付近のSi−H2結合
の赤外吸収に比べて大きいほど、キャリアの輸送特性が
優れデバイス特性も一般に良いことから、高周波電力の
設定方法を工夫して圧縮応力と引っ張り応力のバランス
をとりつつ圧縮応力を適度に調整すれば、堆積膜の特性
も改善されるのではないかと考えた。
Furthermore, infrared absorption of Si-H bonds in the vicinity of 2000cm-1 is larger than the infrared absorption of the Si-H 2 bonds in the vicinity of 2100cm-1, the device characteristics superior transport properties of the carrier in general From a good point of view, it was considered that the characteristics of the deposited film could be improved by appropriately adjusting the compressive stress while balancing the compressive stress and the tensile stress by devising a method for setting the high-frequency power.

【0024】以上のことから、本発明者は成膜中の高周
波電力の設定方法に注目して鋭意検討を行った。
From the above, the inventor of the present invention has focused on the method of setting the high frequency power during the film formation and made intensive studies.

【0025】その結果、成膜中に図5に示した間欠放電
のように高周波電力のON、OFFでは無く、図4に示
したように高周波電力を高低二段にパルス変調させ、且
つ、高周波電力の高い方の値を変化させることで堆積膜
のひび割れを低減できることが分かった。さらにその
際、電気的特性が改善された良好な堆積膜が得られるこ
とが分かった。
As a result, during the film formation, the high frequency power is pulse-modulated in two stages of high and low as shown in FIG. 4 instead of the high frequency power ON and OFF as in the intermittent discharge shown in FIG. It was found that cracking of the deposited film could be reduced by changing the higher value of the power. Further, at that time, it was found that a good deposited film having improved electric characteristics was obtained.

【0026】具体的には、高周波電力の高い方の値をP
H、低い方の値をPL、グロー放電に面しているカソー
ド電極の表面積をSとした時、PH/Sを特定の範囲内
で、PH/Sを増加させ続ける部分とPH/Sが一定で
ある部分、或いはPH/Sを減少させ続ける部分とPH
/Sが一定である部分からなり、成膜開始から成膜終了
までにPH/SまでにPH/Sを印加している全時間に
対してPH/Sを増加させ続ける部分或いは減少させ続
ける部分が一定以上あり、且つ、PL/Sを特定の範囲
内にすることで本発明の効果は更に向上することを確認
した。
Specifically, the higher value of the high-frequency power is represented by P
H, where PL is the lower value and S is the surface area of the cathode electrode facing the glow discharge, PH / S is within a specific range, the portion where PH / S is continuously increased, and PH / S is constant. And the part where PH / S continues to decrease and PH
A portion where / S is constant, and a portion where PH / S is continuously increased or decreased for the entire time during which PH / S is applied from the start of film formation to the end of film formation. It was confirmed that the effect of the present invention was further improved by setting PL / S within a specific range.

【0027】特に、アモルファスシリコン感光体を作製
する際、光導電層の成膜開始から成膜終了までのPH/
Sを印加している全時間に対して、PH/Sを増加させ
続ける部分が一定以上あるようにすることによって、円
筒状基体側が緻密になり、露光により発生したキャリア
ーの走行性が改善された光メモリーが減少することが明
かになった。そして、アモルファスシリコン感光体を作
製する際、光導電層の成膜開始から成膜終了までのPH
/Sを印加している全J間に対して、PH/Sを減少さ
せ続ける部分が一定以上あるようにすることによって、
光キャリアーの発生効率を向上することができ、感度が
向上することが判明した。
In particular, when fabricating an amorphous silicon photoreceptor, the PH /
By making the part where PH / S continues to be increased over a certain period for the entire time during which S is applied, the cylindrical substrate side becomes denser, and the mobility of carriers generated by exposure is improved. It has been found that optical memory is reduced. When fabricating an amorphous silicon photoreceptor, the pH from the start of film formation to the end of film formation of the photoconductive layer is adjusted.
By making the part where PH / S continues to be reduced to a certain value or more for all Js to which / S is applied,
It has been found that the generation efficiency of photocarriers can be improved and the sensitivity is improved.

【0028】[0028]

【発明の実施の形態】以下、図面を用いて本発明の光受
容部材の製造方法について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a light receiving member according to the present invention will be described below with reference to the drawings.

【0029】図1は本発明の堆積膜の形成方法に用いる
装置一例を模式的に示したものである。図1において、
100は堆積膜を形成するための堆積室であり、排気口
110を介して不図示の排気装置に接続されている。1
06は原料ガスを堆積室に導入するための原料ガス導入
口であり、不図示のガス供給系から原料ガスを堆積室に
導入する。102は基板であり、接地電極103にセッ
トされている。104は基板102を所定の温度に加熱
するための基板加熱用ヒーターであり、堆積室内に固定
されている。高周波電源112は元となる高周波信号を
パルス状に断続して発生させることのできる高周波信号
発生器111と、それからの高周波信号を電力増幅する
高周波パワーアンプ109とで構成されており、高周波
出力は108の整合器を介してカソード電極101に印
加されるように配線されている。
FIG. 1 schematically shows an example of an apparatus used in the method of forming a deposited film according to the present invention. In FIG.
Reference numeral 100 denotes a deposition chamber for forming a deposited film, which is connected to an exhaust device (not shown) via an exhaust port 110. 1
Reference numeral 06 denotes a source gas inlet for introducing the source gas into the deposition chamber, and the source gas is introduced into the deposition chamber from a gas supply system (not shown). Reference numeral 102 denotes a substrate, which is set on the ground electrode 103. Reference numeral 104 denotes a substrate heating heater for heating the substrate 102 to a predetermined temperature, which is fixed in the deposition chamber. The high-frequency power supply 112 is composed of a high-frequency signal generator 111 capable of intermittently generating an original high-frequency signal in a pulse form and a high-frequency power amplifier 109 for amplifying the high-frequency signal from the high-frequency signal generator 111. It is wired so as to be applied to the cathode electrode 101 via the matching device 108.

【0030】図2は本発明の堆積膜の形成方法に用いる
装置の他の一例を模式的に示したものであり、電子写真
用感光体のような円筒状基体に堆積膜を形成するのに好
適なものである。図2において、200は堆積膜を形成
するための堆積室であり、排気口210を介して不図示
の排気装置に接続されている。206は原料ガスを堆積
室に導入するための原料ガス導入口であり、不図示のガ
ス供給系から原料ガスを堆積室内に導入する。202は
円筒状基体であり、補助基体203にセットされて上部
を回転軸205によって保持されている。回転軸205
は堆積室に回転可能に取りつけられている。204は円
筒状基体を所定の温度に加熱するための基体加熱用ヒー
ターであり、堆積室内に固定されている。円筒状基体2
02は、回転軸205を介して駆動用モーター207に
より回転され、周方向の膜厚の均一化を図る。高周波電
源212は元となる高周波信号をパルス状に断続して発
生させることのできる高周波信号発生器211と、それ
からの高周波信号を電力増幅する高周波パワーアンプ2
09とで構成されており、高周波出力は208の整合器
を介してカソード電極201に印加されるように配線さ
れている。図に示したようにカソード電極201は堆積
室200の内壁を兼ねていても良い。
FIG. 2 schematically shows another example of the apparatus used in the method of forming a deposited film according to the present invention, which is used for forming a deposited film on a cylindrical substrate such as an electrophotographic photosensitive member. It is suitable. In FIG. 2, reference numeral 200 denotes a deposition chamber for forming a deposited film, which is connected to an exhaust device (not shown) via an exhaust port 210. Reference numeral 206 denotes a source gas inlet for introducing the source gas into the deposition chamber, and introduces the source gas into the deposition chamber from a gas supply system (not shown). Reference numeral 202 denotes a cylindrical substrate, which is set on an auxiliary substrate 203 and has an upper portion held by a rotating shaft 205. Rotating shaft 205
Is rotatably mounted in the deposition chamber. Reference numeral 204 denotes a substrate heating heater for heating the cylindrical substrate to a predetermined temperature, which is fixed in the deposition chamber. Cylindrical substrate 2
Numeral 02 is rotated by a driving motor 207 via a rotating shaft 205 to make the film thickness uniform in the circumferential direction. The high-frequency power supply 212 includes a high-frequency signal generator 211 that can generate an original high-frequency signal intermittently in a pulse shape and a high-frequency power amplifier 2 that amplifies the high-frequency signal from the high-frequency signal generator 211
09, and the high-frequency output is wired so as to be applied to the cathode electrode 201 via the matching unit 208. As shown in the figure, the cathode electrode 201 may also serve as the inner wall of the deposition chamber 200.

【0031】図3は他の一例を示しており、補助基体3
03を上部から吊り下げる形で保持している以外は図2
と同様である。図3の様に補助基体303を上部から吊
り下げる形にした場合は、補助基体303の内面が基体
加熱用ヒーター304だけになって補助基体303と基
体加熱用ヒーター304間の空間が広がるので、円筒状
基体の小径化の範囲が広がり好適である。
FIG. 3 shows another example.
FIG. 2 except that 03 is suspended from the top.
Is the same as When the auxiliary base 303 is suspended from above as shown in FIG. 3, the inner surface of the auxiliary base 303 becomes only the base heater 304 and the space between the auxiliary base 303 and the base heater 304 expands. The range of reducing the diameter of the cylindrical substrate is preferably widened.

【0032】上記した接地電極103、円筒状基体20
2、302および補助基体203、303は、使用目的
に応じた材質を有するものであれば良い。材質において
は銅、アルミニューム、金、銀、白金、鉛、ニッケル、
コバルト、鉄、クロム、モリブデン、チタン、ステンレ
スが電気伝導が良好のため好適である。さらにこれらの
材料の中の2種以上の複合材料も耐熱性が向上するため
に望ましい。
The above-mentioned ground electrode 103 and cylindrical substrate 20
The base materials 2 and 302 and the auxiliary bases 203 and 303 may be made of a material suitable for the purpose of use. For materials, copper, aluminum, gold, silver, platinum, lead, nickel,
Cobalt, iron, chromium, molybdenum, titanium, and stainless steel are preferred because of their good electrical conductivity. Further, two or more composite materials among these materials are also desirable for improving heat resistance.

【0033】カソード電極101、201、301の材
質としては銅、アルミニューム、金、銀、白金、鉛、ニ
ッケル、コバルト、鉄、クロム、モリブデン、チタン、
ステンレスなどが熱伝導が良く、電気伝導も良いので好
適である。これらの材料の中の2種以上の複合材料など
も好適に用いられる。また、加工の容易さから電子写真
用感光体を作製する際には、形状は円筒形状が好ましい
が、必要に応じて楕円形、多角形形状を用いても良く、
作製する光受容部材に応じて形状を選択すれば良い。
The materials of the cathode electrodes 101, 201, 301 include copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium,
Stainless steel or the like is preferable because it has good thermal conductivity and good electrical conductivity. Two or more composite materials among these materials are also suitably used. In addition, when producing an electrophotographic photoreceptor from the ease of processing, the shape is preferably a cylindrical shape, but if necessary, an elliptical shape, a polygonal shape may be used,
The shape may be selected according to the light receiving member to be manufactured.

【0034】カソード電極101、201、301は必
要に応じて冷却手段を設けても良い。具体的な冷却手段
としては、水、空気、液体チッ素、ペルチェ素子などに
よる冷却が必要に応じて用いられる。
The cathode electrodes 101, 201 and 301 may be provided with a cooling means as required. As specific cooling means, cooling with water, air, liquid nitrogen, a Peltier element, or the like is used as necessary.

【0035】高周波信号発生器111、211、311
は必要とする光受容部材に適したパルス変動を任意のデ
ューティー比で発生させることができるものであればい
かなる構成のものでも好適に使用出来る。また、パルス
変動させる方法としては、自動的に変化させることが製
造時の煩雑さを避けるために好適であるが、手動で調整
されるものであっても本発明の効果に全く影響はない。
High frequency signal generators 111, 211, 311
Any structure can be suitably used as long as it can generate a pulse variation suitable for a required light receiving member at an arbitrary duty ratio. As a method of changing the pulse, it is preferable to automatically change the pulse in order to avoid complexity during manufacturing. However, even if it is manually adjusted, the effect of the present invention is not affected at all.

【0036】高周波パワーアンプ109、209、30
9は10Wないし5000Wまで、装置に適した電力に
増幅することができればいかなる構成のものでも好適に
使用出来る。
High frequency power amplifiers 109, 209, 30
9 can suitably be used with any configuration as long as it can amplify power from 10 W to 5000 W suitable for the device.

【0037】使用される高周波電源112、212、3
12の発振周波数は通常13.56MHzが使用される
ことが多く好適であるが特に限定は無い。また、出力
は、装置に適した電力を発生することが出来ればいかな
る出力のものでも好適に使用出来る。更に、高周波電源
の出力変動率はいかなる値であっても良い。
The high frequency power supplies 112, 212, 3 used
The oscillation frequency of 12 is usually 13.56 MHz, which is often preferred, but is not particularly limited. As the output, any output can be suitably used as long as power suitable for the device can be generated. Further, the output fluctuation rate of the high frequency power supply may be any value.

【0038】使用される整合器108、208、308
は高周波電源と負荷の整合を取ることができるものであ
ればいかなる構成のものでも好適に使用出来る。また、
整合を取る方法としては、自動的に調整されるものが製
造時に煩雑さを避けるために好適であるが、手動で調整
されるものであっても本発明の効果に全く影響はない。
更に、整合器が配置される位置に関しては、整合が取れ
る範囲においてどこに設置してもなんら問題はないが、
整合器からカソード間の配線のインダクタンスを出来る
だけ小さくするような配置とした方が、広い負荷条件で
整合を取ることが可能になるため望ましい。
The matching units 108, 208, 308 used
Any structure can be suitably used as long as it can match the load with the high-frequency power supply. Also,
As a method for obtaining matching, a method automatically adjusted is preferable in order to avoid complexity during manufacturing, but even if it is adjusted manually, the effect of the present invention is not affected at all.
Furthermore, as for the position where the matching device is arranged, there is no problem where the matching device is installed in a range where the matching can be achieved.
It is desirable to arrange the wiring between the matching unit and the cathode so that the inductance of the wiring is as small as possible, since matching can be performed under a wide load condition.

【0039】図1の装置における堆積膜の形成は次の手
順のように行われる。
The formation of a deposited film in the apparatus shown in FIG. 1 is performed in the following procedure.

【0040】先ず、基板102を接地電極103に取り
つける。次に、排気口110を介して不図示の排気装置
により堆積室100内を一旦排気した後、不図示の原料
ガス導入バルブを開き、加熱用の不活性ガス、例えばア
ルゴンガスを原料ガス導入口106より堆積室100内
に導入し、堆積室100内が所望の圧力になるように、
排気装置の排気速度および加熱用ガスの流量を調整す
る。その後、不図示の温度コントローラーを作動させて
基板102を基板加熱用ヒーター104により加熱す
る。基板102が所望の温度に加熱されたところで不図
示の原料ガス導入バルブを閉じ、堆積室100内へのガ
ス流入を止める。
First, the substrate 102 is mounted on the ground electrode 103. Next, after the inside of the deposition chamber 100 is once evacuated by an exhaust device (not shown) through the exhaust port 110, a source gas introducing valve (not shown) is opened, and an inert gas for heating, for example, argon gas is supplied to the source gas introducing port. Introduced into the deposition chamber 100 from 106, so that the inside of the deposition chamber 100 has a desired pressure.
Adjust the exhaust speed of the exhaust device and the flow rate of the heating gas. After that, the substrate 102 is heated by the substrate heating heater 104 by operating a temperature controller (not shown). When the substrate 102 has been heated to a desired temperature, the unillustrated source gas introduction valve is closed, and the gas flow into the deposition chamber 100 is stopped.

【0041】堆積膜の形成は不図示の原料ガス導入バル
ブを開として原料ガス導入口106から所定の原料ガ
ス、例えばシランガス、水素ガス、メタンガスなどの材
料ガスを、またジボランガス、ホスフィンガスなどのド
ーピングガスを不図示のミキシングパネルにより混合し
た後に堆積室100内に導入し、所望の圧力に維持する
よう排気速度を調整する。圧力が安定した後、高周波電
源112より整合器108を介して例えば周波数13.
56MHzの電力を供給し、グロー放電を生起させる。
このとき整合器108を調整し、反射波が最小となるよ
うに調整する。高周波の入射電力から反射電力を差し引
いた値を所望の値に調整し、所望の膜厚を形成したとこ
ろで電力の供給を停止し、原料ガスの堆積室100への
流入を止めて堆積室内を一旦高真空に引き上げて層の形
成を終える。そして種々の機能を有する堆積膜を積層す
る場合には、上記操作を繰り返し行う。
The deposited film is formed by opening a source gas inlet valve (not shown) and feeding a predetermined source gas, for example, a source gas such as silane gas, hydrogen gas, or methane gas from the source gas inlet 106, or a doping gas such as diborane gas or phosphine gas. After the gas is mixed by a mixing panel (not shown), it is introduced into the deposition chamber 100, and the pumping speed is adjusted to maintain a desired pressure. After the pressure is stabilized, for example, the frequency 13.
A power of 56 MHz is supplied to generate glow discharge.
At this time, the matching unit 108 is adjusted so that the reflected wave is minimized. The value obtained by subtracting the reflected power from the high-frequency incident power is adjusted to a desired value. When a desired film thickness is formed, the supply of power is stopped, the flow of the raw material gas into the deposition chamber 100 is stopped, and the deposition chamber is temporarily stopped. Pull up to high vacuum to complete layer formation. When stacking deposited films having various functions, the above operation is repeated.

【0042】また、電子写真用感光体を作製する際に用
いられる図2の装置における堆積膜の形成は次の手順の
ように行われる。
Further, the formation of a deposited film in the apparatus shown in FIG. 2 used when producing an electrophotographic photosensitive member is performed in the following procedure.

【0043】先ず、旋盤を用いて表面を鏡面加工した円
筒状基体202を補助基体203に取りつけ、堆積室2
00内の回転軸205に取りつける。
First, a cylindrical substrate 202 whose surface is mirror-finished using a lathe is attached to an auxiliary substrate 203, and the deposition chamber 2
Attached to the rotation shaft 205 in 00.

【0044】次に、排気口210を介して不図示の排気
装置により堆積室200内を一旦排気した後、不図示の
原料ガス導入バルブを開き加熱用の不活性ガス、例えば
アルゴンガスを原料ガス導入口206より堆積室200
内に導入し、堆積室200内が所望の圧力になるように
排気装置の排気速度および加熱用ガスの流量を調整す
る。その後、駆動用モーター207により円筒状基体2
02を回転させながら不図示の温度コントローラーを作
動させて円筒状基体202を基体加熱用ヒーター204
により加熱する。尚、図2の堆積膜形成装置では円筒状
基体を回転可能な構成になっているが、本発明の効果が
円筒状基体を回転させなければ得られないというもので
はなく、静止状態でも本発明の効果は得られる。円筒状
基体202が所望の温度に加熱されたところで不図示の
原料ガス導入バルブを閉じ、堆積室内へのガス流入を止
める。
Next, after the inside of the deposition chamber 200 is once evacuated by an exhaust device (not shown) through the exhaust port 210, a source gas introducing valve (not shown) is opened and an inert gas for heating, for example, argon gas is supplied. Deposition chamber 200 from inlet 206
The evacuation speed of the evacuation device and the flow rate of the heating gas are adjusted so that the inside of the deposition chamber 200 has a desired pressure. Thereafter, the cylindrical substrate 2 is driven by the driving motor 207.
02 is operated by rotating a temperature controller (not shown) while the cylindrical substrate 202 is rotated.
To heat. In the deposition film forming apparatus shown in FIG. 2, the cylindrical substrate can be rotated. However, the effect of the present invention cannot be obtained unless the cylindrical substrate is rotated. The effect is obtained. When the cylindrical substrate 202 is heated to a desired temperature, the unillustrated source gas introduction valve is closed to stop the gas from flowing into the deposition chamber.

【0045】堆積膜の形成は不図示の原料ガス導入バル
ブを開として原料ガス導入口206から所定の原料ガ
ス、例えばシランガス、水素ガス、メタンガスなどの材
料ガスを、またジボランガス、ホスフィンガスなどのド
ーピングガスを不図示のミキシングパネルにより混合し
た後に堆積室200内に導入し、所望の圧力に維持する
よう排気速度を調整する。圧力が安定した後、高周波電
源212より整合器208を介して例えば周波数13.
56MHzの電力を供給し、グロー放電を生起させる。
このとき整合器208を調整し、反射波が最小となるよ
うに調整する。高周波の入射電力から反射電力を差し引
いた値を所望の値に調整し、所望の膜厚を形成したとこ
ろで電力の供給を停止し、原料ガスの堆積室200への
流入を止めて堆積室内を一旦高真空に引き上げて層の形
成を終える。この間、周方向の膜厚均等化のために円筒
状基体は回転させながら堆積膜形成を行うことが望まし
い。そして種々の機能を有する堆積膜を積層する場合に
は、上記操作を繰り返し行う。電子写真用感光体を作製
する際に用いられる図3の装置を用いた場合も上述の図2
の装置を用いた場合と同様に堆積膜の形成を行えば良
い。
The deposited film is formed by opening a source gas inlet valve (not shown) and feeding a predetermined source gas, for example, a source gas such as silane gas, hydrogen gas, or methane gas from the source gas inlet 206, or a doping gas such as diborane gas or phosphine gas. After the gas is mixed by a mixing panel (not shown), it is introduced into the deposition chamber 200, and the exhaust speed is adjusted so as to maintain a desired pressure. After the pressure is stabilized, for example, the frequency 13.
A power of 56 MHz is supplied to generate glow discharge.
At this time, the matching unit 208 is adjusted so that the reflected wave is minimized. The value obtained by subtracting the reflected power from the high-frequency incident power is adjusted to a desired value. When a desired film thickness is formed, the supply of power is stopped, the flow of the source gas into the deposition chamber 200 is stopped, and the deposition chamber is temporarily stopped. Pull up to high vacuum to complete layer formation. During this time, it is desirable to form the deposited film while rotating the cylindrical substrate in order to equalize the film thickness in the circumferential direction. When stacking deposited films having various functions, the above operation is repeated. When the apparatus of FIG. 3 used in producing the electrophotographic photoreceptor is used,
The deposited film may be formed in the same manner as in the case of using the apparatus.

【0046】本発明において堆積膜を作製する際には、
高周波電力を高低二段にパルス変動させ、且つ、該高周
波電力の高い方の値を変化させることが好ましい。この
際、高周波電力の高い方の値をPH、低い方の値をP
L、グロー放電に面している前記カソード電極の表面積
をSとした時、 25mW/cm2≦PH/S≦350mW/cm2 の範囲でPH/Sを増加させ続ける部分とPH/Sが一
定である部分、或いはPH/Sを減少させ続ける部分と
PH/Sが一定である部分からなり、成膜開始から成膜
終了までにPH/Sを印加している全時間に対してPH
/Sを増加させ続ける部分或いは減少させ続ける部分が
50%以上あり、且つ、成膜終了時と成膜開始時のPH
/Sの差の絶対値を△PH/Sとした時、 12mW/cm2≦△PH/S≦300mW/cm2 の範囲であることが好ましい。PH/Sが25mW/c
2より小さい或いは350mW/cm2より大きい範
囲、△PH/Sが12mW/cm2より小さい或いは3
00mW/cm2より大きい範囲、およびPH/Sを増
加させ続ける部分或いは減少させ続ける部分が50%よ
り小さい範囲では、堆積膜のひび割れおよび電気的特性
(例えば、電子写真感光体の場合には帯電能、残留電
位、感度、温度特性および光メモリーといった電子写真
特性)の改善に対する効果が小さい。
In producing a deposited film in the present invention,
It is preferable that the high-frequency power is pulse-fluctuated in two stages, high and low, and the higher value of the high-frequency power is changed. At this time, the higher value of the high frequency power is PH, and the lower value is P
L, assuming that the surface area of the cathode electrode facing the glow discharge is S, the portion where PH / S is continuously increased and PH / S is constant in the range of 25 mW / cm 2 ≦ PH / S ≦ 350 mW / cm 2 Or a part where PH / S is continuously reduced and a part where PH / S is constant, and the PH / S is applied for the entire time during which PH / S is applied from the start of film formation to the end of film formation.
/ S is continuously increasing or decreasing at a rate of 50% or more, and PH at the end of film formation and at the start of film formation
Assuming that the absolute value of the difference of / S is ΔPH / S, it is preferable that the range is 12 mW / cm 2 ≦ ΔPH / S ≦ 300 mW / cm 2 . PH / S is 25mW / c
less than m 2 or more than 350 mW / cm 2 , ΔPH / S is less than 12 mW / cm 2 or 3
In a range larger than 00 mW / cm 2 and a range in which the portion where PH / S is continuously increased or decreased is smaller than 50%, cracks and electrical characteristics of the deposited film (for example, charging in the case of an electrophotographic photosensitive member, Performance, residual potential, sensitivity, temperature characteristics, and electrophotographic characteristics such as optical memory).

【0047】さらにPL/Sは 2mW/cm2≦PL/S≦14mW/cm2 を満たすことが好ましい。PL/Sが2mW/cm2
り小さい範囲では堆積膜のひび割れおよび電気的特性
(例えば、電子写真感光体の場合には帯電能、残留電
位、感度、温度特性および光メモリーといった電子写真
特性)の改善に対する効果が小さく、PL/Sが14m
W/cm2より大きい範囲ではパウダーの発生量および
電気的特性(例えば、電子写真感光体の場合には、帯電
能、残留電位、感度、温度特性および光メモリーといっ
た電子写真特性)の改善に対する効果が小さい、なおP
L/Sに関しては、上記の2mW/cm2以上14mW
/cm2以下の範囲内であれば一定であっても、いかに
変動しても何等本発明には影響しない。
[0047] Further PL / S preferably satisfies the 2mW / cm 2 ≦ PL / S ≦ 14mW / cm 2. In the range where PL / S is less than 2 mW / cm 2 , cracks and electrical characteristics of the deposited film (for example, in the case of an electrophotographic photoreceptor, electrophotographic characteristics such as charging ability, residual potential, sensitivity, temperature characteristics and optical memory). Small effect on improvement, PL / S is 14m
In the range of more than W / cm 2, the effect of improving the amount of generated powder and the electrical characteristics (for example, in the case of an electrophotographic photosensitive member, electrophotographic characteristics such as charging ability, residual potential, sensitivity, temperature characteristics, and optical memory). Is small, yet P
Regarding L / S, the above 2 mW / cm 2 or more and 14 mW
/ Cm 2 or less, it does not affect the present invention even if it is constant or varies.

【0048】[0048]

【実施例】以下、実験例および実施例により本発明の効
果を具体的に説明するが、本発明はこれによって何等限
定されるものではない。 実験例1 図1に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源112を用いて、ガラス基板
(コーニング社 7059)120上に表1に示した条
件によりアモルファスシリコン膜を作製した。本実験例
ではアモルファスシリコン膜を作製する際、RF電力を
高低二段にパルス変動(周波数 1kHz)させRF電
力の高い方の値をPH、低い方の値をPL、グロー放電
に面しているカソード電力101の表面積をSとした
時、デューディー比[(PH/S)印加時間/{PH/
S)印加時間+(PL/S)印加時間}]60%、PL
/S=10mW/cm2とし、PH/Sを以下のように
設定した。
EXAMPLES Hereinafter, the effects of the present invention will be specifically described with reference to experimental examples and examples, but the present invention is not limited thereto. Experimental Example 1 Oscillation frequency in the deposited film forming apparatus shown in FIG.
Using a 56 MHz high frequency power supply 112, an amorphous silicon film was formed on a glass substrate (Corning 7059) 120 under the conditions shown in Table 1. In this experimental example, when producing an amorphous silicon film, the RF power is pulsed in two steps of high and low (frequency 1 kHz), and the higher value of the RF power faces PH, the lower value faces PL, and faces glow discharge. When the surface area of the cathode power 101 is S, the duty ratio [(PH / S) application time / ΔPH /
S) application time + (PL / S) application time}] 60%, PL
/ S = 10 mW / cm 2 and PH / S was set as follows.

【0049】[I−A]はRF電力を高低二段にパルス
変動させずにRF電力PH/S=200mW/cm2
定で作製したもので、[I−B]はRF電力をPH/S
=200mW/cm2、PL/S=0と間欠放電で作製
したもので、[I−C]はRF電力を高低二段にパルス
変動させPH/S=200mW/cm2一定作製し、
[II]はRF電力を高低二段にパルス変動させPH/
S=200mW/cm2から300mW/cm2まで図4
(A)に示したように増加させ続け、[III]PH/
S=200mW/cm2から100mW/cm2まで図4
(B)に示したように減少させ続けてアモルファスシリ
コン膜を作製した。
[IA] is an RF power PH / S = 200 mW / cm 2 constant without varying the RF power in two steps, and [IB] is RF power PH / S.
= 200 mW / cm 2 , PL / S = 0 and intermittent discharge, and [IC] pulsed RF power in two steps of high and low to produce PH / S = 200 mW / cm 2 constant,
In [II], the RF power is pulse-fluctuated in two stages, high and low, and PH /
From S = 200 mW / cm 2 to 300 mW / cm 2 FIG.
As shown in (A), the increase was continued and [III] PH /
From S = 200 mW / cm 2 to 100 mW / cm 2 FIG.
As shown in (B), an amorphous silicon film was manufactured by continuously reducing the thickness.

【0050】[0050]

【表1】 [Table 1]

【0051】*《実験例1》、《実験例2》、《実験例
3》、《実験例4》、《実験例5》、《実験例6》、
《実験例7》本文中に表記 実験例1で作製したサンプルを以下に示す方法により評
価した。 (1)堆積膜のひび割れ 実験例1の各々についてサンプルを50回作製して、堆
積膜にひび割れが生じた回数について実験例1[I−
B]を基準として以下のように評価した。
* << Experimental Example 1 >>, << Experimental Example 2 >>, << Experimental Example 3 >>, << Experimental Example 4 >>, << Experimental Example 5 >>, << Experimental Example 6 >>,
<< Experimental example 7 >> Notation in the text The sample produced in Experimental example 1 was evaluated by the following method. (1) Cracking of Deposited Film A sample was prepared 50 times for each of Experimental Example 1 and the number of times that the deposited film cracked was determined in Experimental Example 1 [I-
B] was evaluated as follows.

【0052】 ◎:実験例1の[I−B]より50%以上低減 ○:実験例1の[I−B]より30〜50%低減 □:実験例1の[I−B]と同等〜30%低減 △:実験例1の[I−B]と同等 (2)堆積速度 作製した試料の膜厚は可視分光器により分光透過率を測
定し計算により算出した。膜厚はそれぞれの試料につい
て3箇所求めて平均膜厚を算出し、平均膜厚を成膜時間
で割ることにより堆積速度を求めた。堆積速度の評価基
準は実験例1[I−A]を基準として以下のように評価
した。
A: 50% or more reduction from [IB] of Experimental Example 1 ○: 30 to 50% reduction from [IB] of Experimental Example 1 □: Equivalent to [IB] of Experimental Example 1 30% reduction Δ: equivalent to [IB] of Experimental Example 1 (2) Deposition rate The film thickness of the produced sample was calculated by measuring the spectral transmittance with a visible spectroscope. The film thickness was determined at three locations for each sample, the average film thickness was calculated, and the average film thickness was divided by the film formation time to determine the deposition rate. The evaluation criterion for the deposition rate was evaluated as follows based on Experimental Example 1 [IA].

【0053】 ◎:実験例1の[I−A]よりも25%以上向上 ○:実験例1の[I−A]よりも10〜25%向上 □:実験例1の[I−A]と同等〜10%向上 △:実験例1の[I−A]と同等 (3)パウダーの発生量 堆積室下部にガラス基板を設置しサンプル作製後、取り
出してガラス基板に付着したパウダーの量を電子天秤で
測定した。パウダーの発生量の評価基準は実施例[I−
A]を基準として以下のように評価した。
A: 25% or more improvement over [IA] of Experimental Example 1 O: 10 to 25% improvement over [IA] of Experimental Example 1 □: With [IA] of Experimental Example 1 Equal to 10% improvement △: Equivalent to [IA] of Experimental Example 1 (3) Amount of generated powder After preparing a sample by placing a glass substrate in the lower part of the deposition chamber, taking out the amount of powder adhered to the glass substrate, It was measured with a balance. The evaluation criteria for the amount of generated powder are described in Example [I-
[A] was evaluated as follows.

【0054】 ◎:実験例1の[I−A]より50%以上低減 ○:実験例1の[I−A]より30〜50%低減 □:実験例1の[I−A]と同等〜30%低減 △:実験例1の[I−A]と同等 (4)明暗導電率比および(5)指数関数裾(アーバッ
クテイル)の特性エネルギー(Eu) ガラス基板上の堆積膜に、Crに串型電極を蒸着し、7
mWのヘリウムネオンレーザーを光源として明導電率お
よび暗導電率を測定して明暗導電率比(暗導電率に対す
る明導電率の比)を求めた。そしてさらに、一定光電流
法によりサブバンドギャップ光吸収スペクトルから求め
られる指数関数裾(アーバックテイル)の特性エネルギ
ー(Eu)を測定した。そして、実験例1の[I−B]
を1.0として相対評価を行った。
:: 50% or more reduction from [IA] of Experimental Example 1 ○: 30 to 50% reduction from [IA] of Experimental Example 1 □: Equivalent to [IA] of Experimental Example 1 30% reduction Δ: Equivalent to [IA] of Experimental Example 1 (4) Light-dark conductivity ratio and (5) Characteristic energy (Eu) of exponential function tail (Urbach tail) Cr deposited on glass substrate A skewer electrode is deposited on
The light conductivity and the dark conductivity were measured using a mW helium neon laser as a light source, and the light-dark conductivity ratio (the ratio of the light conductivity to the dark conductivity) was determined. Further, the characteristic energy (Eu) of the exponential function tail (Urbuck tail) obtained from the sub-bandgap light absorption spectrum by the constant photocurrent method was measured. Then, [IB] of Experimental Example 1
Was set to 1.0 and the relative evaluation was performed.

【0055】以上の実験例1の評価結果を表2に示す。Table 2 shows the evaluation results of Experimental Example 1 described above.

【0056】[0056]

【表2】 [Table 2]

【0057】実験例1の結果、即ち表2から分かるよう
に、高周波電力のON、OFFでは無く、高周波電力を
高低二段にパルス変調させ、且つ、高周波電力の高い方
の値を変化させることで堆積速度の向上、パウダーの発
生の低減を維持しつつ堆積膜のひび割れを低減でき、電
気的特性が改善された良好なアモルファスシリコン膜が
得られることが分かった。 実験例2 図1に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源112を用いて、ガラス基板
(コーニング社 7059)102上に表1に示した条
件によりアモルファスシリコン膜を作製した。本実験例
ではアモルファスシリコン膜を作製する際、RF電力を
高低二段にパルス変動(周波数 1kHz)させRF電
力の高い方の値をPH、低い方の値をPL、グロー放電
に面しているカソード電極101の表面積をSとした
時、デューティー比[(PH/S)印加時間/{(PH
/S)印加時間+(PL/S)印加時間}]60%、P
L/S=10mW/cm2とし、PH/Sを以下の
[I]〜[VI]から100mW/cm2図4(A)に
示したように増加させ続けた。
As can be seen from the results of Experimental Example 1, that is, Table 2, not high-frequency power ON / OFF, but pulse modulation of high-frequency power in two stages of high and low, and changing the higher value of high-frequency power. It was found that cracking of the deposited film could be reduced while maintaining the improvement of the deposition rate and the reduction of the generation of powder, and a good amorphous silicon film with improved electrical characteristics could be obtained. Experimental Example 2 Oscillation frequency in the deposited film forming apparatus shown in FIG.
An amorphous silicon film was formed on a glass substrate (Corning 7059) 102 under the conditions shown in Table 1 using a high frequency power supply 112 of 56 MHz. In this experimental example, when producing an amorphous silicon film, the RF power is pulsed in two steps of high and low (frequency 1 kHz), and the higher value of the RF power faces PH, the lower value faces PL, and faces glow discharge. When the surface area of the cathode electrode 101 is S, the duty ratio [(PH / S) application time / {(PH
/ S) application time + (PL / S) application time}] 60%, P
L / S = 10 mW / cm 2 and PH / S was continuously increased from the following [I] to [VI] to 100 mW / cm 2 as shown in FIG. 4 (A).

【0058】[I]20mW/cm2、[II]25m
W/cm2、[III]75mW/cm2、[IV]15
0mW/cm2、[V]250mW/cm2、[VI]3
50mW/cm2
[I] 20 mW / cm 2 , [II] 25 m
W / cm 2 , [III] 75 mW / cm 2 , [IV] 15
0 mW / cm 2 , [V] 250 mW / cm 2 , [VI] 3
50 mW / cm 2

【0059】[0059]

【表3】 [Table 3]

【0060】作製したアモルファスシリコン膜のサンプ
ルを、実験例1と同様に堆積膜のひび割れ、堆積速度、
パウダーの発生量、明暗導電率比および指数関数裾(ア
ーバックテイル)の特性エネルギー(Eu)について評
価した。
A sample of the produced amorphous silicon film was subjected to cracking of the deposited film, deposition rate,
The amount of generated powder, the light-to-dark conductivity ratio, and the characteristic energy (Eu) of the exponential function tail (Urbach tail) were evaluated.

【0061】結果を表3に示す。表3から明らかなよう
に25mW/cm2≦PH/S≦350mW/cm2の範
囲でPH/Sを増加させ続けることで、本発明の効果が
得られることが分かった。 実験例3 図1に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源112を用いて、ガラス基板
(コーニング社 7059)102上に表1に示した条
件によりアモルファスシリコン膜を作製した。本実験例
ではアモルファスシリコン膜を作製する際、RF電力を
高低二段にパルス変動(周波数1kHz)させ、RF電
力の高い方の値をPH、低い方の値をPL、グロー放電
に面しているカソード電極101の表面積をSとした
時、デューティー比[(PH/S)印加時間/{(PH
/S)印加時間+(PL/S)印加時間}]60%、P
L/S=10mW/cm2とし、PH/Sを以下の
[I]〜[VII]から100mW/cm2図4(B)
に示したように減少させ続けた。
Table 3 shows the results. As is clear from Table 3, it was found that the effect of the present invention can be obtained by continuously increasing PH / S in the range of 25 mW / cm 2 ≦ PH / S ≦ 350 mW / cm 2 . Experimental Example 3 Oscillation frequency in the deposited film forming apparatus shown in FIG.
An amorphous silicon film was formed on a glass substrate (Corning 7059) 102 under the conditions shown in Table 1 using a high frequency power supply 112 of 56 MHz. In this experimental example, when producing an amorphous silicon film, the RF power is pulse-fluctuated in two steps of high and low (frequency 1 kHz), and the higher value of the RF power is PH, the lower value is PL, and the RF is facing the glow discharge. When the surface area of the cathode electrode 101 is S, the duty ratio [(PH / S) application time / {(PH
/ S) application time + (PL / S) application time}] 60%, P
L / S = 10 mW / cm 2 and PH / S is 100 mW / cm 2 from the following [I] to [VII].
And continued to decrease as indicated.

【0062】[I]120mW/cm2、[II]12
5mW/cm2、[III]175mW/cm2、[I
V]250mW/cm2、[V]350mW/cm2
[VI]450mW/cm2
[I] 120 mW / cm 2 , [II] 12
5mW / cm 2, [III] 175mW / cm 2, [I
V] 250 mW / cm 2 , [V] 350 mW / cm 2 ,
[VI] 450 mW / cm 2

【0063】[0063]

【表4】 [Table 4]

【0064】作製したアモルファスシリコン膜のサンプ
ルを、実験例1と同様に堆積膜のひび割れ、堆積速度、
パウダーの発生量、明暗導電率比および指数関数裾(ア
ーバックテイル)の特性エネルギー(Eu)について評
価した。
A sample of the produced amorphous silicon film was subjected to cracking of the deposited film, deposition rate,
The amount of generated powder, the light-to-dark conductivity ratio, and the characteristic energy (Eu) of the exponential function tail (Urbach tail) were evaluated.

【0065】結果を表4に示す。表4から明らかなよう
に25mW/cm2≦PH/S≦350mW/cm2の範
囲でPH/Sを減少させ続けることで、本発明の効果が
得られることが分かった。 実験例4 図1に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源112を用いて、ガラス基板
(コーニング社 7059)102上に表1に示した条
件によりアモルファスシリコン膜を作製した。本実験例
ではアモルファスシリコン膜を作製する際、RF電力を
高低二段にパルス変動(周波数1kHz)させ、RF電
力の高い方の値をPH、低い方の値をPL、グロー放電
に面しているカソード電極101の表面積をSとした
時、デューティー比[(PH/S)印加時間/{(PH
/S)印加時間+(PL/S)印加時間}]60%、P
L/S=10mW/cm2とし、成膜開始時と成膜終了
時のPH/Sの差を△PH/Sとした時、成膜開始時の
PH/S=50mW/cm2から△PH/Sを以下の
[I]〜[VI]の範囲で図4(A)に示したように増
加させ続けた。
Table 4 shows the results. As is clear from Table 4, it was found that the effect of the present invention can be obtained by continuously decreasing PH / S in the range of 25 mW / cm 2 ≦ PH / S ≦ 350 mW / cm 2 . Experimental Example 4 Oscillation frequency in the deposited film forming apparatus shown in FIG.
An amorphous silicon film was formed on a glass substrate (Corning 7059) 102 under the conditions shown in Table 1 using a high frequency power supply 112 of 56 MHz. In this experimental example, when producing an amorphous silicon film, the RF power is pulse-fluctuated in two steps of high and low (frequency 1 kHz), and the higher value of the RF power is PH, the lower value is PL, and the RF is facing the glow discharge. When the surface area of the cathode electrode 101 is S, the duty ratio [(PH / S) application time / {(PH
/ S) application time + (PL / S) application time}] 60%, P
When L / S = 10 mW / cm 2 and the difference between PH / S at the start of film formation and at the end of film formation is ΔPH / S, PH / S at the start of film formation is from 50 mW / cm 2 to ΔPH / S was continuously increased in the following ranges [I] to [VI] as shown in FIG.

【0066】[I]10mW/cm2、[II]12m
W/cm2、[III]100mW/cm2、[IV]2
00mW/cm2、[V]300mW/cm2、[VI]
350mW/cm2
[I] 10 mW / cm 2 , [II] 12 m
W / cm 2 , [III] 100 mW / cm 2 , [IV] 2
00 mW / cm 2 , [V] 300 mW / cm 2 , [VI]
350 mW / cm 2

【0067】[0067]

【表5】 [Table 5]

【0068】作製したアモルファスシリコン膜のサンプ
ルを、実験例1と同様に堆積膜のひび割れ、堆積速度、
パウダーの発生量、明暗導電率比および指数関数裾(ア
ーバックテイル)の特性エネルギー(Eu)について評
価した。
A sample of the produced amorphous silicon film was subjected to cracking of the deposited film,
The amount of generated powder, the light-to-dark conductivity ratio, and the characteristic energy (Eu) of the exponential function tail (Urbach tail) were evaluated.

【0069】結果を表5に示す。表5から明らかなよう
に成膜開始時と成膜終了時のPH/Sの差を△PH/S
とした時、12mW/cm2≦△PH/S≦300mW
/cm2の範囲でPH/Sを減少させ続けることで、本
発明の効果が得られることが分かった。 実験例5 図1に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源112を用いて、ガラス基板
(コーニング社 7059)102上に表1に示した条
件によりアモルファスシリコン膜を作製した。本実験例
ではアモルファスシリコン膜を作製する際、RF電力を
高低二段にパルス変動(周波数1kHz)させ、RF電
力の高い方の値をPH、低い方の値をPL、グロー放電
に面しているカソード電極101の表面積をSとした
時、デューティー比[(PH/S)印加時間/{(PH
/S)印加時間+(PL/S)印加時間}]60%、P
L/S=10mW/cm2とし、成膜開始時と成膜終了
時のPH/Sの差を△PH/Sとした時、成膜開始時の
PH/S=350mW/cm2から△PH/Sを以下の
[I]〜[VI]の範囲で図4(B)に示したように減
少させ続けた。
Table 5 shows the results. As is clear from Table 5, the difference between PH / S at the start of film formation and at the end of film formation is expressed as ΔPH / S
12 mW / cm 2 ≦ ΔPH / S ≦ 300 mW
It has been found that the effect of the present invention can be obtained by continuously decreasing PH / S in the range of / cm 2 . Experimental Example 5 Oscillation frequency in the deposited film forming apparatus shown in FIG.
An amorphous silicon film was formed on a glass substrate (Corning 7059) 102 under the conditions shown in Table 1 using a high frequency power supply 112 of 56 MHz. In this experimental example, when producing an amorphous silicon film, the RF power is pulse-fluctuated in two steps of high and low (frequency 1 kHz), and the higher value of the RF power is PH, the lower value is PL, and the RF is facing the glow discharge. When the surface area of the cathode electrode 101 is S, the duty ratio [(PH / S) application time / {(PH
/ S) application time + (PL / S) application time}] 60%, P
When L / S = 10 mW / cm 2 and the difference between PH / S at the start of film formation and at the end of film formation is ΔPH / S, PH / S at the start of film formation is from 350 mW / cm 2 to ΔPH / S was continuously reduced in the following ranges [I] to [VI] as shown in FIG.

【0070】[I]10mW/cm2、[II]12m
W/cm2、[III]100mW/cm2、[IV]2
00mW/cm2、[V]300mW/cm2、[VI]
330mW/cm2
[I] 10 mW / cm 2 , [II] 12 m
W / cm 2 , [III] 100 mW / cm 2 , [IV] 2
00 mW / cm 2 , [V] 300 mW / cm 2 , [VI]
330 mW / cm 2

【0071】[0071]

【表6】 [Table 6]

【0072】作製したアモルファスシリコン膜のサンプ
ルを、実験例1と同様に堆積膜のひび割れ、堆積速度、
パウダーの発生量、明暗導電率比および指数関数裾(ア
ーバックテイル)の特性エネルギー(Eu)について評
価した。
A sample of the produced amorphous silicon film was subjected to cracking of the deposited film, deposition rate,
The amount of generated powder, the light-to-dark conductivity ratio, and the characteristic energy (Eu) of the exponential function tail (Urbach tail) were evaluated.

【0073】結果を表6に示す。表6から明らかなよう
に成膜開始時と成膜終了時のPH/Sの差を△PH/S
とした時、12mW/cm2≦△PH/S≦300mW
/cm2の範囲でPH/Sを減少させ続けることで、本
発明の効果が得られることが分かった。 実験例6 実験例1の[II]および[III]においてPH/S
を成膜開始から成膜終了時迄100mW/cm2変化さ
せる際に、図4(A)に示したように増加させ続ける部
分、および図4(B)に示したように減少させ続ける部
分をPH/Sを印加している全時間に対してそれぞれ
(1)25%、(2)50%、(3)75%および
(4)100%(実験例1の[II]および[III]
に相当)と変化させてアモルファスシリコン膜を作製し
た。(即ちPH/Sを印加している全時間に対してPH
/Sが一定の部分が(1)では75%、(2)では50
%、(3)では25%、および(4)では0となる)。
Table 6 shows the results. As is clear from Table 6, the difference between PH / S at the start of film formation and at the end of film formation is expressed as ΔPH / S
12 mW / cm 2 ≦ ΔPH / S ≦ 300 mW
It has been found that the effect of the present invention can be obtained by continuously decreasing PH / S in the range of / cm 2 . Experimental Example 6 PH / S in Experimental Examples 1 [II] and [III]
When changing 100 mW / cm 2 from the start of the film formation to the end of the film formation, the part that continues to increase as shown in FIG. 4A and the part that continues to decrease as shown in FIG. (1) 25%, (2) 50%, (3) 75% and (4) 100% ([II] and [III] of Experimental Example 1) with respect to the total time during which PH / S was applied.
) To produce an amorphous silicon film. (That is, PH for the entire time of applying PH / S
The part where / S is constant is 75% in (1) and 50% in (2).
%, (3) is 25%, and (4) is 0).

【0074】[0074]

【表7】 [Table 7]

【0075】[0075]

【表8】 [Table 8]

【0076】作製したアモルファスシリコン膜のサンプ
ルを、実験例1と同様に堆積膜のひび割れ、堆積速度、
パウダーの発生量、明暗導電率比および指数関数裾(ア
ーバックテイル)の特性エネルギー(Eu)について評
価した。
A sample of the produced amorphous silicon film was subjected to cracking of the deposited film, deposition rate,
The amount of generated powder, the light-to-dark conductivity ratio, and the characteristic energy (Eu) of the exponential function tail (Urbach tail) were evaluated.

【0077】実験例1の[II]において変化させた結
果を表7、実験例1の[III]において変化させた結
果を表8に示す。表7および表8の結果から明らかなよ
うに、増加させ続ける部分、および減少させ続ける部分
の割合がPH/Sを印加している全時間に対して50%
以上にすることで本発明の効果が得られることが分かっ
た。 実験例7 実験例1の[II]および[III]においてPL/S
をそれぞれ(1)1mW/cm2、(2)2mW/c
2、(3)10mW/cm2(実験例1の[II]およ
び[III]に相当)、(4)14mW/cm2
(5)16mW/cm2と変化させてアモルファスシリ
コン膜を作製した。
Table 7 shows the result of the change in [II] of Experimental Example 1, and Table 8 shows the result of the change in [III] of Experimental Example 1. As is clear from the results of Tables 7 and 8, the proportion of the continuously increasing portion and the continuously decreasing portion was 50% with respect to the total time during which PH / S was applied.
It has been found that the effects of the present invention can be obtained by the above. Experimental Example 7 PL / S in Experimental Examples 1 [II] and [III]
To (1) 1 mW / cm 2 , (2) 2 mW / c
m 2 , (3) 10 mW / cm 2 (corresponding to [II] and [III] in Experimental Example 1), (4) 14 mW / cm 2 ,
(5) An amorphous silicon film was manufactured by changing it to 16 mW / cm 2 .

【0078】[0078]

【表9】 [Table 9]

【0079】[0079]

【表10】 [Table 10]

【0080】作製したアモルファスシリコン膜のサンプ
ルを、実験例1と同様に堆積膜のひび割れ、堆積速度、
パウダーの発生量、明暗導電率比および指数関数裾(ア
ーバックテイル)の特性エネルギー(Eu)について評
価した。
A sample of the produced amorphous silicon film was subjected to cracking of the deposited film, deposition rate,
The amount of generated powder, the light-to-dark conductivity ratio, and the characteristic energy (Eu) of the exponential function tail (Urbach tail) were evaluated.

【0081】実験例1の[II]において変化させた表
9に、実験例1の[III]において変化させた結果を
表10に示す。表9および表10の結果から明らかなよ
うに2mW/cm2≦PL/S≦14mW/cm2の範囲
にすることで、本発明の効果が得られることが分かっ
た。 実施例1 図2に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源212を用いて、アルミニュー
ム製の直径108mmの円筒状基体202上に表11に
示した条件によりアモルファスシリコン電子写真用感光
体を作製した。本実施例では電子写真用感光体の光導電
層を作製する際、RF電力を高低二段にパルス変動(周
波数1kHz)させRF電力の高い方の値をPH、低い
方の値をPL、グロー放電に面しているカソード電極2
01の表面積をSとした時、デューティー比[(PH/
S)印加時間/{(PH/S)印加時間+(PL/S)
印加時間}]50%、PL/S=10mW/cm2
し、PH/Sを以下のように設定した。
Table 9 changed in [II] of Experimental Example 1 and Table 10 shows the result changed in [III] of Experimental Example 1. As is clear from the results of Tables 9 and 10, it was found that the effects of the present invention can be obtained by setting the range of 2 mW / cm 2 ≦ PL / S ≦ 14 mW / cm 2 . Example 1 Oscillation frequency in the deposited film forming apparatus shown in FIG.
Using a 56 MHz high frequency power supply 212, an amorphous silicon electrophotographic photosensitive member was produced on a cylindrical substrate 202 made of aluminum and having a diameter of 108 mm under the conditions shown in Table 11. In this embodiment, when producing the photoconductive layer of the electrophotographic photoreceptor, the RF power is subjected to pulse fluctuation (frequency 1 kHz) in two steps of high and low, and the higher value of the RF power is PH, the lower value is PL, and the glow is glow. Cathode electrode 2 facing discharge
01 as S, the duty ratio [(PH /
S) application time / {(PH / S) application time + (PL / S)
Application time}] 50%, PL / S = 10 mW / cm 2, and PH / S was set as follows.

【0082】[I−A]はRF電力を高低二段にパルス
変動させずにRF電力PH/S=200mW/cm2
定で作製したもので、[I−B]はRF電力をPH/S
=200mW/cm2、PL/S=0と間欠放電で作製
したもので、[I−C]はRF電力を高低二段にパルス
変動させPH/S=200mW/cm2一定で作製し、
[II]はRF電力を高低二段にパルス変動させPH/
S=200mW/cm 2から300mW/cm2まで図4
(A)に示したように増加させ続け、[III]PH/
S=200mW/cm2から100mW/cm2まで図4
(B)に示したように減少させ続けて電子写真用感光体
を作製した。
[IA] indicates that RF power is pulsed in two stages, high and low.
RF power PH / S = 200mW / cm without fluctuationTwoone
[IB] indicates the RF power is PH / S
= 200mW / cmTwo, PL / S = 0 and produced by intermittent discharge
In [IC], RF power is pulsed in two stages, high and low.
Fluctuated PH / S = 200mW / cmTwoMade constant,
In [II], the RF power is pulse-fluctuated in two stages, high and low, and PH /
S = 200mW / cm TwoTo 300mW / cmTwoFigure 4
As shown in (A), the increase was continued and [III] PH /
S = 200mW / cmTwoFrom 100mW / cmTwoFigure 4
(B) As shown in FIG.
Was prepared.

【0083】[0083]

【表11】 [Table 11]

【0084】*《実施例1》本文中に表記 実施例1で作製した電子写真用感光体を以下に示す方法
により評価した。 (1)堆積膜のひび割れ 実施例1の各々について電子写真用感光体を50本作製
して、堆積膜にひび割れが生じた回数について実施例1
[I−B]を基準として以下のように評価した。 ◎:実施例1の[I−B]より50%以上低減 ○:実施例1の[I−B]より30〜50%低減 □:実施例1の[I−B]と同等〜30%低減 △:実施例1の[I−B]と同等 (2)堆積速度 堆積速度は作製した電子写真用感光体の膜厚を過電流方
式膜厚計により、母線方向16箇所、周方向8箇所測定
して平均膜厚を算出し、平均膜厚を成膜時間で割ること
により求めた。堆積速度の評価基準は実施例1[I−
A]を基準として以下のように評価した。 ◎:実施例1の[I−A]よりも25%以上向上 ○:実施例1の[I−A]よりも10〜25%向上 □:実施例1の[I−A]と同等〜10%向上 △:実施例1の[I−A]と同等 (3)パウダーの発生量 堆積室下部にガラス基板を設置し電子写真感光体作製
後、取り出してガラス基板に付着したパウダーの量を電
子天秤で測定した。パウダーの発生量の評価基準は実施
例1[I−A]を基準として以下のように評価した。 ◎:実施例1の[I−A]より50%以上低減 ○:実施例1の[I−A]よりも30〜50%低減 □:実施例1の[I−A]と同等〜30%低減 △:実施例1の[I−A]と同等 (4)電子写真特性 作製した各々の感光体を電子写真装置(キヤノン製NP
−6650を実験用に改造)にセットして、電子写真特
性を評価した。
* << Example 1 >> described in the text The electrophotographic photosensitive member produced in Example 1 was evaluated by the following method. (1) Cracking of Deposited Film For each of Example 1, 50 electrophotographic photoreceptors were manufactured, and the number of times that the deposited film was cracked was evaluated.
The following evaluation was performed based on [IB]. :: 50% or more reduction from [IB] of Example 1 ○: 30 to 50% reduction from [IB] of Example 1 □: Equivalent to [IB] of Example 1 to 30% reduction Δ: equivalent to [IB] of Example 1 (2) Deposition rate The deposition rate was measured by measuring the film thickness of the produced electrophotographic photoreceptor at 16 places in the generatrix direction and 8 places in the circumferential direction using an overcurrent type film thickness meter. The average thickness was calculated by dividing the average thickness by the deposition time. The evaluation criterion for the deposition rate was the same as in Example 1 [I-
[A] was evaluated as follows. ◎: 25% or more improvement over [IA] of Example 1 :: 10 to 25% improvement over [IA] of Example 1 □: Equivalent to [IA] of Example 1 to 10 % Improvement △: equivalent to [IA] of Example 1 (3) Amount of generated powder After a glass substrate was provided at the lower part of the deposition chamber and an electrophotographic photosensitive member was produced, the amount of powder taken out and taken out of the glass substrate was determined by an electron. It was measured with a balance. The evaluation criteria for the amount of generated powder were evaluated as follows based on Example 1 [IA]. ◎: 50% or more reduction from [IA] of Example 1 ○: 30 to 50% reduction from [IA] of Example 1 □: Equivalent to 30% to [IA] of Example 1 Reduction Δ: Equivalent to [IA] of Example 1. (4) Electrophotographic characteristics Each of the produced photoconductors was prepared by using an electrophotographic apparatus (NP manufactured by Canon Inc.).
-6650 was modified for experiment) and the electrophotographic properties were evaluated.

【0085】この際、プロセススピード300mm/s
ec、前露光(波長700nmのLED)4lux・s
ec、像露光(波長680nmのLED)にセットし
て、帯電器の電流値1000μAの条件にて、電子写真
装置の現像器位置にセットした表面電位計(TREK社
Model 344)の電位センサーにより光受容部
材の表面電位を測定し、それを帯電能とし、1.5lu
x・secの時の表面電位を測定し、それを残留電位と
した。
At this time, the process speed was 300 mm / s
ec, pre-exposure (700 nm LED) 4lux · s
ec, set to image exposure (LED having a wavelength of 680 nm), and with a potential sensor of a surface voltmeter (TREK Model 344) set at the developing device position of the electrophotographic apparatus under the condition of a charger current value of 1000 μA. The surface potential of the receiving member was measured, and the measured value was used as the charging ability.
The surface potential at x · sec was measured and defined as the residual potential.

【0086】さらに、光メモリー電位は、上述の条件下
において同様の電位センサーにより非像露光状態での表
面電位と一旦像露光した後に再度帯電した時との電位差
を測定した。
Further, as for the optical memory potential, the potential difference between the surface potential in the non-image exposure state and the potential when the image was exposed and then charged again was measured by the same potential sensor under the above conditions.

【0087】そして、暗電位が400Vとなるよに帯電
条件を設定し、明部電位が50Vになるように光量を調
節し、このときの光量を感度として評価した。
The charging conditions were set so that the dark potential became 400 V, the light amount was adjusted so that the bright portion potential became 50 V, and the light amount at this time was evaluated as sensitivity.

【0088】また、光受容部材に内蔵したドラムヒータ
ーにより温度を室温(約25℃)から45℃まで変え
て、上記の条件にて帯電能を測定し、そのときの温度1
℃当たりの帯電能の変化を温度特性とした。
The temperature was changed from room temperature (about 25 ° C.) to 45 ° C. by a drum heater built in the light receiving member, and the charging ability was measured under the above conditions.
The change in chargeability per ° C was taken as a temperature characteristic.

【0089】そしてその後、ハーフトーン画像、文字原
稿および写真原稿を用いて画像特性の評価を行った。
Thereafter, the image characteristics were evaluated using the halftone image, the text original, and the photographic original.

【0090】それぞれの電位特性に関しては、実験例1
の[I−B]を1.0として帯電能、残留電位、光メモ
リー電位、感度、温度特性、について以下のように相対
評価を行った。 [帯電能、残留電位、光メモリー電位、感度、温度特
性] ◎:実施例1の[I−B]よりも25%以上向上 ○:実施例1の[I−B]よりも10〜25%向上 □:実施例1の[I−B]と同等〜10%低減 △:実施例1の[I−B]と同等
Regarding the respective potential characteristics, an experimental example 1
[IB] of 1.0 was set as 1.0, and the relative evaluation was performed as follows with respect to charging ability, residual potential, optical memory potential, sensitivity, and temperature characteristics. [Charging ability, residual potential, optical memory potential, sensitivity, temperature characteristic]: 25% or more improvement over [IB] of Example 1 :: 10 to 25% over [IB] of Example 1 Improvement □: Equivalent to [IB] of Example 1 to 10% reduction Δ: Equivalent to [IB] of Example 1

【0091】[0091]

【表12】 [Table 12]

【0092】実施例1の結果、即ち表12から分かるよ
うに、高周波電力のON、OFFでは無く、高周波電力
を高低二段にパルス変調させ、且つ、高周波電力の高い
方の値を変化させることで堆積速度の向上、パウダーの
発生の低減を維持しつつ堆積膜のひび割れを低減でき、
電子写真特性が改善された良好なアモルファスシリコン
電子写真用感光体が得られることが分かった。
As can be seen from the results of the first embodiment, that is, Table 12, not high-frequency power ON / OFF but high-frequency power pulse modulation in two stages of high and low, and changing the higher value of high-frequency power. With this, it is possible to reduce the cracks in the deposited film while maintaining the improvement of the deposition rate and the reduction of powder generation,
It has been found that a good amorphous silicon electrophotographic photoreceptor having improved electrophotographic properties can be obtained.

【0093】そして特に、PH/Sを増加させ続けるこ
とで光メモリー電位改善に効果があり、PH/Sを減少
させ続けることで感度改善に効果があることが判明し
た。
In particular, it has been found that the continuous increase of PH / S is effective in improving the optical memory potential, and the continuous decrease of PH / S is effective in improving the sensitivity.

【0094】さらに、得られた電子写真用感光体を実験
用に改造したキヤノン製複写機NP−6650に設置し
画像を出したところ、ハーフトーン画像にムラはなく、
均一な画像が得られた。さらに文字原稿を複写したとこ
ろ、黒濃度が高く鮮明な画像が得られた。また写真原稿
の複写においても原稿に忠実で鮮明な画像を得ることが
出来た。 実施例2 図2に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源212を用いて、アルミニュー
ム製の直径108mm、80mm、60mm、30mm
の円筒状基体202上に表13に示した条件によりアモ
ルファスシリコン電子写真感光体を作製した。本実施例
では電子写真用感光体の光導電層を作製する際、RF電
力を高低二段にパルス変動(周波数1kHz)させ、R
F電力の高い方の値をPH、低い方の値をPL、グロー
放電に面しているカソード電極201の表面積をSとし
た時、デューティー比[(PH/S)印加時間/{(P
H/S)印加時間+(PL/S)印加時間}]55%、
PL/S=8mW/cm2とし、PH/SをPH/S=
350mW/cm2から120mW/cm2まで図4
(B)に示したように減少させ続けて電子写真用感光体
を作製した。
Further, when the obtained electrophotographic photoreceptor was installed in a Canon copier NP-6650 modified for experiment and an image was taken out, there was no unevenness in the halftone image.
A uniform image was obtained. Further, when the text original was copied, a clear image having a high black density was obtained. Also, when copying a photographic original, a clear image faithful to the original could be obtained. Example 2 Oscillation frequency in the deposited film forming apparatus shown in FIG.
Using a high frequency power supply 212 of 56 MHz, aluminum diameters of 108 mm, 80 mm, 60 mm, 30 mm
An amorphous silicon electrophotographic photoreceptor was produced on the cylindrical substrate 202 under the conditions shown in Table 13. In this embodiment, when producing the photoconductive layer of the electrophotographic photoreceptor, the RF power is subjected to pulse fluctuation (frequency 1 kHz) in two steps of high and low, and R
When the higher value of the F power is PH, the lower value is PL, and the surface area of the cathode electrode 201 facing the glow discharge is S, the duty ratio [(PH / S) application time / {(P
H / S) application time + (PL / S) application time}] 55%
PL / S = 8 mW / cm 2 and PH / S = PH / S =
FIG from 350 mW / cm 2 to 120 mW / cm 2 4
As shown in (B), the photoreceptor for electrophotography was manufactured by continuously reducing the amount.

【0095】[0095]

【表13】 [Table 13]

【0096】*《実施例2》本文中に表記 作製した電子写真用感光体を、実施例1と同様に堆積膜
のひび割れ、堆積速度、パウダーの発生量、帯電能、残
留電位、光メモリー電位、感度および温度特性について
評価したところ、いずれの電子写真用感光体についても
実施例1の[III]と同様に良好な結果が得られた。
* << Example 2 >> Notation in the text The prepared electrophotographic photosensitive member was subjected to cracking of the deposited film, deposition rate, amount of generated powder, charging ability, residual potential, and optical memory potential in the same manner as in Example 1. The evaluation was made on the sensitivity, temperature and temperature characteristics. As a result, as with [III] of Example 1, good results were obtained for all the electrophotographic photoconductors.

【0097】さらに、得られた電子写真用感光体を実験
用に改造したキヤノン製複写機NP−6650に設置し
画像を出したところ、ハーフトーン画像にムラはなく、
均一な画像が得られた。さらに文字原稿を複写したとこ
ろ、黒濃度が高く鮮明な画像が得られた。また写真原稿
の複写においても原稿に忠実で鮮明な画像を得ることが
出来た。 実施例3 図3に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源312を用いて、アルミニュー
ム製の直径108mm、80mm、60mm、30mm
の円筒状基体202上に表13に示した条件によりアモ
ルファスシリコン電子写真感光体を作製した。本実施例
では電子写真用感光体の光導電層を作製する際、RF電
力を高低二段にパルス変動(周波数1kHz)させ、R
F電力の高い方の値をPH、低い方の値をPL、グロー
放電に面しているカソード電極201の表面積をSとし
た時、デューティー比[(PH/S)印加時間/{(P
H/S)印加時間+(PL/S)印加時間}]60%、
PL/S=12mW/cm 2とし、PH/SをPH/S
=135mW/cm2から330mW/cm2まで図4
(A)に示したように減少させ続けて電子写真用感光体
を作製した。
Further, the obtained electrophotographic photoreceptor was tested.
Installed on a Canon copier NP-6650 modified for
When I put out the image, there was no unevenness in the halftone image,
A uniform image was obtained. In addition, the text manuscript was copied.
On the other hand, a clear image having a high black density was obtained. Also a photo manuscript
You can obtain a clear image that is faithful to the original even when copying
done. Example 3 Oscillation frequency in the deposited film forming apparatus shown in FIG.
Using a high frequency power supply 312 of 56 MHz,
108mm, 80mm, 60mm, 30mm
Under the conditions shown in Table 13 on the cylindrical substrate 202 of FIG.
A Rufus silicon electrophotographic photosensitive member was manufactured. This embodiment
In the production of the photoconductive layer of the electrophotographic photosensitive member,
The force fluctuates in two steps, high and low (frequency 1 kHz).
The higher value of F power is PH, the lower value is PL, glow
Let S be the surface area of the cathode electrode 201 facing the discharge.
The duty ratio [(PH / S) application time / {(P
H / S) application time + (PL / S) application time}] 60%,
PL / S = 12 mW / cm TwoAnd PH / S is PH / S
= 135mW / cmTwoTo 330mW / cmTwoFigure 4
(A) As shown in FIG.
Was prepared.

【0098】[0098]

【表14】 [Table 14]

【0099】*《実施例3》本文中に表記 作製した電子写真用感光体を、実施例1と同様に堆積膜
のひび割れ、堆積速度、パウダーの発生量、帯電能、残
留電位、光メモリー電位、感度および温度特性について
評価したところ、いずれの電子写真用感光体についても
実施例1の[II]と同様に良好な結果が得られた。
* << Example 3 >> Notation in the text The prepared electrophotographic photosensitive member was subjected to cracking of the deposited film, deposition rate, amount of generated powder, charging ability, residual potential, and optical memory potential in the same manner as in Example 1. The evaluation was made on the sensitivity, temperature and temperature characteristics. As a result, as with [II] of Example 1, good results were obtained for all the electrophotographic photoconductors.

【0100】さらに、得られた電子写真用感光体を実験
用に改造したキヤノン製複写機NP−6650に設置し
画像を出したところ、ハーフトーン画像にムラはなく、
均一な画像が得られた。さらに文字原稿を複写したとこ
ろ、黒濃度が高く鮮明な画像が得られた。また写真原稿
の複写においても原稿に忠実で鮮明な画像を得ることが
出来た。 実施例4 図2に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源212を用いて、アルミニュー
ム製の直径108mm、80mm、60mm、30mm
の円筒状基体202上に表15に示した条件によりアモ
ルファスシリコン電子写真感光体を作製した。本実施例
では電子写真用感光体の光導電層を作製する際、RF電
力を高低二段にパルス変動(周波数1kHz)させ、R
F電力の高い方の値をPH、低い方の値をPL、グロー
放電に面しているカソード電極201の表面積をSとし
た時、デューティー比[(PH/S)印加時間/{(P
H/S)印加時間+(PL/S)印加時間}]65%、
PL/S=2mW/cm2とし、PH/SをPH/S=
200mW/cm2から345mW/cm2まで図4
(A)に示したように減少させ続けて電子写真用感光体
を作製した。
Further, the obtained electrophotographic photoreceptor was set on a Canon copier NP-6650 modified for experiment, and an image was displayed. As a result, there was no unevenness in the halftone image.
A uniform image was obtained. Further, when the text original was copied, a clear image having a high black density was obtained. Also, when copying a photographic original, a clear image faithful to the original could be obtained. Embodiment 4 Oscillation frequency in the deposited film forming apparatus shown in FIG.
Using a high frequency power supply 212 of 56 MHz, aluminum diameters of 108 mm, 80 mm, 60 mm, 30 mm
Under the conditions shown in Table 15, an amorphous silicon electrophotographic photosensitive member was produced on the cylindrical substrate 202 of the above. In this embodiment, when producing the photoconductive layer of the electrophotographic photoreceptor, the RF power is subjected to pulse fluctuation (frequency 1 kHz) in two steps of high and low, and R
When the higher value of the F power is PH, the lower value is PL, and the surface area of the cathode electrode 201 facing the glow discharge is S, the duty ratio [(PH / S) application time / {(P
H / S) application time + (PL / S) application time}] 65%
PL / S = 2 mW / cm 2 , PH / S = PH / S =
FIG from 200 mW / cm 2 to 345 mW / cm 2 4
As shown in (A), the photoreceptor for electrophotography was manufactured by continuously reducing the amount.

【0101】[0101]

【表15】 [Table 15]

【0102】*《実施例4》本文中に表記 作製した電子写真用感光体を、実施例1と同様に堆積膜
のひび割れ、堆積速度、パウダーの発生量、帯電能、残
留電位、光メモリー電位、感度および温度特性について
評価したところ、いずれの電子写真用感光体についても
実施例1の[II]と同様に良好な結果が得られた。
* << Embodiment 4 >> Indicated in the text The prepared electrophotographic photoreceptor was subjected to cracking of the deposited film, deposition speed, amount of generated powder, charging ability, residual potential, and optical memory potential in the same manner as in Example 1. The evaluation was made on the sensitivity, temperature and temperature characteristics. As a result, as with [II] of Example 1, good results were obtained for all the electrophotographic photoconductors.

【0103】さらに、得られた電子写真用感光体を実験
用に改造したキヤノン製複写機NP−6650に設置し
画像を出したところ、ハーフトーン画像にムラはなく、
均一な画像が得られた。さらに文字原稿を複写したとこ
ろ、黒濃度が高く鮮明な画像が得られた。また写真原稿
の複写においても原稿に忠実で鮮明な画像を得ることが
出来た。 実施例5 図3に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源312を用いて、アルミニュー
ム製の直径108mm、80mm、60mm、30mm
の円筒状基体202上に表16に示した条件によりアモ
ルファスシリコン電子写真感光体を作製した。本実施例
では電子写真用感光体の光導電層を作製する際、RF電
力を高低二段にパルス変動(周波数1kHz)させ、R
F電力の高い方の値をPH、低い方の値をPL、グロー
放電に面しているカソード電極201の表面積をSとし
た時、デューティー比[(PH/S)印加時間/{(P
H/S)印加時間+(PL/S)印加時間}]45%、
PL/S=14mW/cm 2とし、PH/SをPH/S
=220mW/cm2から75mW/cm2まで変化させ
る際に、図4(B)に示したように減少させ続ける部分
をPH/Sを印加している全時間に対して65%にして
電子写真用感光体を作製した(即ちPH/Sを印加して
いる全時間に対してPH/Sが一定の部分が35%とな
る)。
Further, the obtained electrophotographic photoreceptor was tested.
Installed on a Canon copier NP-6650 modified for
When I put out the image, there was no unevenness in the halftone image,
A uniform image was obtained. In addition, the text manuscript was copied.
On the other hand, a clear image having a high black density was obtained. Also a photo manuscript
You can obtain a clear image that is faithful to the original even when copying
done. Example 5 Oscillation frequency in the deposited film forming apparatus shown in FIG.
Using a high frequency power supply 312 of 56 MHz,
108mm, 80mm, 60mm, 30mm
Under the conditions shown in Table 16 on the cylindrical substrate 202 of FIG.
A Rufus silicon electrophotographic photosensitive member was manufactured. This embodiment
In the production of the photoconductive layer of the electrophotographic photosensitive member,
The force fluctuates in two steps, high and low (frequency 1 kHz).
The higher value of F power is PH, the lower value is PL, glow
Let S be the surface area of the cathode electrode 201 facing the discharge.
The duty ratio [(PH / S) application time / {(P
H / S) application time + (PL / S) application time}] 45%
PL / S = 14mW / cm TwoAnd PH / S is PH / S
= 220mW / cmTwoFrom 75mW / cmTwoChange to
At the time of the reduction, as shown in FIG.
To 65% of the total time of PH / S application
A photoreceptor for electrophotography was prepared (that is, PH / S was applied
The ratio of PH / S is 35% for the entire time
).

【0104】[0104]

【表16】 [Table 16]

【0105】*《実施例5》本文中に表記 作製した電子写真用感光体を、実施例1と同様に堆積膜
のひび割れ、堆積速度、パウダーの発生量、帯電能、残
留電位、光メモリー電位、感度および温度特性について
評価したところ、いずれの電子写真用感光体についても
実施例1の[III]と同様に良好な結果が得られた。
* << Example 5 >> Notation in the text The prepared electrophotographic photoreceptor was subjected to cracking of the deposited film, deposition rate, amount of generated powder, charging ability, residual potential, and optical memory potential in the same manner as in Example 1. The evaluation was made on the sensitivity, temperature and temperature characteristics. As a result, as with [III] of Example 1, good results were obtained for all the electrophotographic photoconductors.

【0106】さらに、得られた電子写真用感光体を実験
用に改造したキヤノン製複写機NP−6650に設置し
画像を出したところ、ハーフトーン画像にムラはなく、
均一な画像が得られた。さらに文字原稿を複写したとこ
ろ、黒濃度が高く鮮明な画像が得られた。また写真原稿
の複写においても原稿に忠実で鮮明な画像を得ることが
出来た。 実施例6 図3に示した堆積膜形成装置において発振周波数13.
56MHzの高周波電源312を用いて、アルミニュー
ム製の直径108mm、80mm、60mm、30mm
の円筒状基体202上に表17に示した条件によりアモ
ルファスシリコン電子写真感光体を作製した。本実施例
では電子写真用感光体の光導電層を作製する際、RF電
力を高低二段にパルス変動(周波数1kHz)させ、R
F電力の高い方の値をPH、低い方の値をPL、グロー
放電に面しているカソード電極201の表面積をSとし
た時、デューティー比[(PH/S)印加時間/{(P
H/S)印加時間+(PL/S)印加時間}]55%、
PL/S=14mW/cm 2とし、PH/SをPH/S
=310mW/cm2から150mW/cm2まで変化さ
せる際に、図4(A)に示したように増加させ続ける部
分をPH/Sを印加している全時間に対して70%にし
て電子写真用感光体を作製した(即ちPH/Sを印加し
ている全時間に対してPH/Sが一定の部分が30%と
なる)。
The obtained electrophotographic photoreceptor was further tested.
Installed on a Canon copier NP-6650 modified for
When I put out the image, there was no unevenness in the halftone image,
A uniform image was obtained. In addition, the text manuscript was copied.
On the other hand, a clear image having a high black density was obtained. Also a photo manuscript
You can obtain a clear image that is faithful to the original even when copying
done. Embodiment 6 Oscillation frequency in the deposited film forming apparatus shown in FIG.
Using a high frequency power supply 312 of 56 MHz,
108mm, 80mm, 60mm, 30mm
Under the conditions shown in Table 17,
A Rufus silicon electrophotographic photosensitive member was manufactured. This embodiment
In the production of the photoconductive layer of the electrophotographic photosensitive member,
The force fluctuates in two steps, high and low (frequency 1 kHz).
The higher value of F power is PH, the lower value is PL, glow
Let S be the surface area of the cathode electrode 201 facing the discharge.
The duty ratio [(PH / S) application time / {(P
H / S) application time + (PL / S) application time}] 55%
PL / S = 14mW / cm TwoAnd PH / S is PH / S
= 310mW / cmTwoTo 150mW / cmTwoChanged up to
When increasing, as shown in FIG.
To 70% of the total time of PH / S application
To produce an electrophotographic photoreceptor (ie, applying PH / S
30% of PH / S is constant for all time
Become).

【0107】[0107]

【表17】 [Table 17]

【0108】*《実施例6》本文中に表記 作製した電子写真用感光体を、実施例1と同様に堆積膜
のひび割れ、堆積速度、パウダーの発生量、帯電能、残
留電位、光メモリー電位、感度および温度特性について
評価したところ、いずれの電子写真用感光体についても
実施例1の[II]と同様に良好な結果が得られた。
* << Example 6 >> Notation in the text The prepared electrophotographic photosensitive member was subjected to cracking of the deposited film, deposition rate, amount of generated powder, charging ability, residual potential, and optical memory potential in the same manner as in Example 1. The evaluation was made on the sensitivity, temperature and temperature characteristics. As a result, as with [II] of Example 1, good results were obtained for all the electrophotographic photoconductors.

【0109】さらに、得られた電子写真用感光体を実験
用に改造したキヤノン製複写機NP−6650に設置し
画像を出したところ、ハーフトーン画像にムラはなく、
均一な画像が得られた。さらに文字原稿を複写したとこ
ろ、黒濃度が高く鮮明な画像が得られた。また写真原稿
の複写においても原稿に忠実で鮮明な画像を得ることが
出来た。
Further, the obtained electrophotographic photoreceptor was installed in a Canon copier NP-6650 modified for experiment, and an image was displayed. As a result, there was no unevenness in the halftone image.
A uniform image was obtained. Further, when the text original was copied, a clear image having a high black density was obtained. Also, when copying a photographic original, a clear image faithful to the original could be obtained.

【0110】[0110]

【発明の効果】本発明によれば、アモルファスシリコン
系材料の堆積膜を作製する際に、堆積速度の向上、パウ
ダーの発生の低減を維持しつつ堆積膜にひび割れが生じ
ることを低減して歩留りを改善し、且つ、電気的特性を
飛躍的に向上させた、シリコン原子を母体とする非単結
晶材料で構成された堆積膜の製造を可能にする方法を提
供することができる。
According to the present invention, when producing a deposited film of an amorphous silicon material, the yield of the deposited film is reduced by reducing the occurrence of cracks in the deposited film while improving the deposition rate and reducing the generation of powder. And a method for manufacturing a deposited film composed of a non-single-crystal material containing silicon atoms as a base material, which has improved electrical characteristics and dramatically improved electrical characteristics.

【0111】そして、本発明によれば、例えば電子写真
用感光体においては堆積速度の向上させ、パウダーの発
生の低減を維持しつつ堆積膜にひび割れが生じることを
低減して歩留りを改善し、且つ、帯電能および感度の向
上と、温度特性および光メモリーの低減を高次元で両立
して画像品質を飛躍的に向上させた、シリコン原子を母
体とする非単結晶材料で構成された光受容部材を有する
電子写真用感光体の製造を可能にする。
According to the present invention, for example, in a photoreceptor for electrophotography, the deposition rate is improved, the generation of cracks in the deposited film is reduced while the generation of powder is reduced, and the yield is improved. In addition, a photoreceptor composed of a non-single-crystal material based on silicon atoms, which achieves a remarkable improvement in image quality by simultaneously improving the charging ability and sensitivity and reducing the temperature characteristics and optical memory at a high level. It is possible to manufacture an electrophotographic photosensitive member having a member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の堆積膜形成方法を用いて光受容部材を
成膜するのに供される堆積膜形成装置の一例を示す模式
図である。
FIG. 1 is a schematic diagram showing an example of a deposited film forming apparatus provided for depositing a light receiving member using the deposited film forming method of the present invention.

【図2】本発明の堆積膜形成方法を用いて光受容部材を
成膜するのに供される堆積膜形成装置の他の一例を示す
摸式図である。
FIG. 2 is a schematic view showing another example of a deposited film forming apparatus provided for depositing a light receiving member using the deposited film forming method of the present invention.

【図3】本発明の堆積膜形成方法を用いて光受容部材を
成膜するのに供される堆積膜形成装置の他の一例を示す
摸式図である。
FIG. 3 is a schematic view showing another example of a deposited film forming apparatus provided for depositing a light receiving member using the deposited film forming method of the present invention.

【図4】(A)および(B)は本発明の堆積膜形成方法
における高周波電力の変化の一例を示す模式図である。
FIGS. 4A and 4B are schematic diagrams showing an example of a change in high-frequency power in the method for forming a deposited film of the present invention.

【図5】従来の堆積膜形成方法における高周波電力の変
化の一例を示す模式図である。
FIG. 5 is a schematic diagram showing an example of a change in high frequency power in a conventional method for forming a deposited film.

【符号の説明】[Explanation of symbols]

100、200、300 堆積室 101、201、301 カソード電極 102 基板 202、302 円筒状基体 103 接地電極 203、303 補助基体 104 基板加熱用ヒーター 204、304 基体加熱用ヒーター 205、305 回転軸 106、206、306 原料ガス導入口 207、307 駆動用モーター 108、208、308 整合器 109、209、309 高周波パワーアンプ 110、210、310 排気口 111、211、311 高周波信号発生器 112、212、312 高周波電源 100, 200, 300 Deposition chambers 101, 201, 301 Cathode electrode 102 Substrate 202, 302 Cylindrical substrate 103 Ground electrode 203, 303 Auxiliary substrate 104 Substrate heating heater 204, 304 Substrate heating heater 205, 305 Rotating shaft 106, 206 , 306 Source gas inlet 207, 307 Driving motor 108, 208, 308 Matching device 109, 209, 309 High frequency power amplifier 110, 210, 310 Exhaust port 111, 211, 311 High frequency signal generator 112, 212, 312 High frequency power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B01J 19/08 B01J 19/08 H (72)発明者 青木 誠 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 新納 博明 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 2H068 DA00 EA24 4G075 AA24 BC04 BD14 CA47 FB01 4K030 BA30 CA14 EA01 EA11 FA01 KA05 KA24 KA30 LA17 5F045 AA08 AB04 AC19 AD06 AE19 BB16 CA16 DP25 EH14 EH15 EH19 GB15 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B01J 19/08 B01J 19/08 H (72) Inventor Makoto Aoki 3-30 Shimomaruko, Ota-ku, Tokyo 2 Canon Inc. (72) Inventor Hiroaki Shinno 3-30-2 Shimomaruko, Ota-ku, Tokyo F-term in Canon Inc. (Reference) 2H068 DA00 EA24 4G075 AA24 BC04 BD14 CA47 FB01 4K030 BA30 CA14 EA01 EA11 FA01 KA05 KA24 KA30 LA17 5F045 AA08 AB04 AC19 AD06 AE19 BB16 CA16 DP25 EH14 EH15 EH19 GB15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排気手段と原料ガス供給手段を備えた真
空気密可能な堆積室内に、対向する放電電極を設置し、
該放電電極の一方の電極に高周波電力を印加し、他方の
電極上には基板を設置し、該堆積室内へ原料ガスを導入
して該放電電極間にグロー放電を生じさせて、該基板上
にシリコン原子を母体とする非単結晶材料を形成するプ
ラズマCVD法による製造方法において、該非単結晶材
料を形成する際に該高周波電力を高低二段にパルス変動
させ、且つ、該高周波電力の高い方の値を変化させるこ
とを特徴とする堆積膜の製造方法。
An opposing discharge electrode is provided in a vacuum-tight hermetic deposition chamber provided with an exhaust means and a source gas supply means,
A high-frequency power is applied to one of the discharge electrodes, a substrate is placed on the other electrode, a source gas is introduced into the deposition chamber to cause a glow discharge between the discharge electrodes, and a glow discharge is generated on the substrate. In a manufacturing method by a plasma CVD method for forming a non-single-crystal material having silicon atoms as a base, when forming the non-single-crystal material, the high-frequency power is pulse-fluctuated in two steps of high and low, and the high-frequency power is high. A method for producing a deposited film, characterized by changing one of the values.
【請求項2】 前記高周波電力の高い方の値をPH、グ
ロー放電に面している前記高周波電力を印加する放電電
極の表面積をSとした時、 25mW/cm2≦PH/S≦350mW/cm2 の範囲でPH/S増加させ続ける部分とPH/Sが一定
である部分、或いはPH/Sを減少させ続ける部分とP
H/Sが一定である部分からなり、成膜開始から成膜終
了までにPH/Sを印加している全時間に対してPH/
Sを増加させ続ける部分或いは減少させ続ける部分が5
0%以上であり、且つ、成膜終了時と成膜開始時のPH
/Sの差の絶対値を△PH/Sとした時、 12mW/cm2≦△PH/S≦300mW/cm2 であることを特徴とする請求項1に記載の堆積膜の製造
方法。
2. When the higher value of the high frequency power is PH and the surface area of the discharge electrode facing the glow discharge to which the high frequency power is applied is S, 25 mW / cm 2 ≦ PH / S ≦ 350 mW / In the range of cm 2, the part where PH / S is continuously increased and the part where PH / S is constant, or the part where PH / S is continuously decreased and P
It consists of a portion where H / S is constant, and PH / S is applied to the entire time during which PH / S is applied from the start to the end of film formation.
The part that keeps increasing or decreasing S is 5
0% or more, and PH at the end of film formation and at the start of film formation
2. The method according to claim 1, wherein when the absolute value of the difference between / S and △ PH / S is 12 mW / cm 2 ≦ △ PH / S ≦ 300 mW / cm 2 .
【請求項3】 前記高周波電力の低い方のPL、グロー
放電に面している前記高周波電力を印加する放電電極の
表面積をSとした時、2mW/cm2≦PL/S≦14
mW/cm2を満たすことを特徴とする請求項1または
2に記載の堆積膜の製造方法。
3. When the surface area of a discharge electrode for applying the high-frequency power facing the glow discharge is S, the surface area of the discharge electrode facing the glow discharge is 2 mW / cm 2 ≦ PL / S ≦ 14.
3. The method for producing a deposited film according to claim 1, wherein mW / cm 2 is satisfied.
【請求項4】 前記堆積室内に基体加熱ヒーターを固定
し、該基体加熱ヒーターを内包するように、放電電極を
兼ねた補助基体を取りつけた円筒状基体を回転可能に設
置し、該円筒状基体を外包しほぼ同軸上に設けられたカ
ソード電極との間に高周波電力を印加することによりグ
ロー放電を生じさせ、該円筒状基体上に、電子写真用光
受容部材の光導電層を形成することを特徴とする請求項
1ないし3の何れかに記載の堆積膜の製造方法。
4. A substrate heater is fixed in the deposition chamber, and a cylindrical substrate having an auxiliary substrate also serving as a discharge electrode is rotatably installed so as to include the substrate heater. A glow discharge is generated by applying a high-frequency power between a cathode electrode provided substantially coaxially and enclosing a photoconductive layer of an electrophotographic light receiving member on the cylindrical substrate. The method for producing a deposited film according to claim 1, wherein:
JP2000137278A 2000-05-10 2000-05-10 Method for producing deposited film Pending JP2001319883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137278A JP2001319883A (en) 2000-05-10 2000-05-10 Method for producing deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137278A JP2001319883A (en) 2000-05-10 2000-05-10 Method for producing deposited film

Publications (1)

Publication Number Publication Date
JP2001319883A true JP2001319883A (en) 2001-11-16

Family

ID=18645071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137278A Pending JP2001319883A (en) 2000-05-10 2000-05-10 Method for producing deposited film

Country Status (1)

Country Link
JP (1) JP2001319883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269477A (en) * 2004-03-22 2005-09-29 Daihen Corp Output power control method of high frequency power source and high frequency power device
JP2010508448A (en) * 2006-11-02 2010-03-18 ダウ・コーニング・コーポレイション Deposition of amorphous films with graded band gaps by electron cyclotron resonance.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269477A (en) * 2004-03-22 2005-09-29 Daihen Corp Output power control method of high frequency power source and high frequency power device
JP4490142B2 (en) * 2004-03-22 2010-06-23 株式会社ダイヘン High frequency power supply output power control method and high frequency power supply apparatus
JP2010508448A (en) * 2006-11-02 2010-03-18 ダウ・コーニング・コーポレイション Deposition of amorphous films with graded band gaps by electron cyclotron resonance.

Similar Documents

Publication Publication Date Title
US6861373B2 (en) Vacuum processing method and semiconductor device manufacturing method in which high-frequency powers having mutually different frequencies are applied to at least one electrode
JPS6161103B2 (en)
JP4035298B2 (en) Plasma processing method, semiconductor device manufacturing method, and semiconductor device
JPH108259A (en) Plasma treatment and plasma treating apparatus
JPH02133577A (en) Formation of deposited film by microwave plasma cvd and device therefor
JP2001319883A (en) Method for producing deposited film
JP3181165B2 (en) Light receiving member
JP3102722B2 (en) Method of manufacturing amorphous silicon electrophotographic photoreceptor
JP5058511B2 (en) Deposited film forming equipment
JP3513206B2 (en) Method and apparatus for forming deposited film
JP2553331B2 (en) Deposited film forming apparatus by plasma CVD method
JP3402952B2 (en) Method and apparatus for forming deposited film
JPH11181571A (en) Formation of deposited coating and device therefor
US4990423A (en) Photosensitive member for electrophotography
JP2003129244A (en) Vacuum treatment method
JP2007119840A (en) Method and device for forming deposited film and electrophotographic photoreceptor using the same
JP2017155269A (en) Deposition film formation method, and production method of electrophotographic photoreceptor
JP3113453B2 (en) Manufacturing method of electrophotographic photoreceptor
JP2000122323A (en) Electrophotographic photoreceptor member and its production
JP3058522B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JP3634485B2 (en) Apparatus and method for forming deposited film by plasma CVD method
JPH10298766A (en) Apparatus for forming amorphous silicon-based photoreceptor, and method for forming the same
JP2007297660A (en) Deposited film formation device and deposited film formation method
JPH11345779A (en) Apparatus and method for vacuum treating
JPH08236457A (en) Formation of deposited film and electrophotographic photoreceptor