JP2001319687A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery

Info

Publication number
JP2001319687A
JP2001319687A JP2000137002A JP2000137002A JP2001319687A JP 2001319687 A JP2001319687 A JP 2001319687A JP 2000137002 A JP2000137002 A JP 2000137002A JP 2000137002 A JP2000137002 A JP 2000137002A JP 2001319687 A JP2001319687 A JP 2001319687A
Authority
JP
Japan
Prior art keywords
negative electrode
silver
electrode
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000137002A
Other languages
Japanese (ja)
Inventor
Shinichi Komaba
慎一 駒場
Naoaki Kumagai
直昭 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000137002A priority Critical patent/JP2001319687A/en
Publication of JP2001319687A publication Critical patent/JP2001319687A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery that can restrain the deterioration of charge-discharge characteristics due to the elution of the Mn component from a LiMn2O4 positive electrode, by adding a metal species having higher standard oxidation-reduction potential than that of Mn to an electrolyte or an electrode as ions. SOLUTION: This lithium-ion secondary battery uses LiMn2O4 as a positive electrode substance, and a metal species having higher standard oxidation- reduction potential than that of Mn to an electrolyte or an electrode as ions is added. When silver perchlorate, silver hexafluorophosphate and other silver salts are used as a metal species having higher standard oxidation-reduction potential than that of Mn, Ag based film is formed on the negative electrode surface, and the precipitation of Mn is restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、カーボン負極の特性劣
化を抑え、充放電容量を向上させたリチウムイオン二次
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery in which the deterioration of the characteristics of a carbon negative electrode is suppressed and the charge / discharge capacity is improved.

【0002】[0002]

【従来の技術】充電により再使用可能な二次電池として
使用されているリチウムイオン二次電池は、負極にカー
ボンを、正極にコバルト酸リチウムLiCoO2を使用
し、有機電解液を収容している。金属の中で最も卑なリ
チウムを使用することから高い電池電圧が可能で、しか
も電気化学当量が最も小さいためエネルギー密度が高
い。このような長所を活用して、携帯用電子・通信機器
にリチウムイオン二次電池が多用されている。リチウム
イオン二次電池は、たとえば図1に示す円筒形電池で
は、帯状の正極板1と負極板2とをセパレータ3を介し
て渦巻き状に巻き、円筒形の金属容器4に収容してい
る。金属容器4に絶縁板5,ガスケット6を介して正極
端子7が取り付けられ、正極リード8で正極板1を正極
端子7に導通させている。負極板2は、負極リード9を
介して負極端子10に導通している。また、異常発熱を
防止するPTC素子11や非復帰式の安全弁12によ
り、安全性を確保している。
2. Description of the Related Art A lithium ion secondary battery used as a secondary battery that can be reused by charging uses carbon as a negative electrode, lithium cobalt oxide LiCoO 2 as a positive electrode, and contains an organic electrolyte. . High battery voltage is possible due to the use of the lowest lithium among metals, and the energy density is high due to the smallest electrochemical equivalent. Utilizing such advantages, lithium ion secondary batteries are widely used in portable electronic and communication devices. In the lithium ion secondary battery, for example, in the cylindrical battery shown in FIG. 1, a strip-shaped positive electrode plate 1 and a negative electrode plate 2 are spirally wound via a separator 3 and housed in a cylindrical metal container 4. A positive electrode terminal 7 is attached to the metal container 4 via an insulating plate 5 and a gasket 6, and the positive electrode lead 8 connects the positive electrode plate 1 to the positive electrode terminal 7. The negative electrode plate 2 is electrically connected to a negative electrode terminal 10 via a negative electrode lead 9. Further, safety is ensured by the PTC element 11 for preventing abnormal heat generation and the non-return type safety valve 12.

【0003】リチウムイオン二次電池の性能を向上する
ため、従来から種々の改良が提案されているが、大半は
カーボン負極の特性改善を目的としている。たとえば、
フッ酸,炭酸等を添加してカーボン負極の表面にリチウ
ムイオン伝導性の安定皮膜を形成すると、負極の特性が
改善される。また、Ag微粒子を負極表面に担持させる
湿式法(特開平8−273702号公報),Ag,A
u,Zn,Pd,Sn等でカーボン負極の表面を覆う蒸
着等の乾式法〔J. Power Sorces, 81-82, 368 (1999),
J. Electroanal. Chem., 462 (1999)〕等によっても、
負極特性が改善される。
[0003] In order to improve the performance of lithium ion secondary batteries, various improvements have been conventionally proposed, but most of them are aimed at improving the characteristics of carbon anodes. For example,
When a stable film having lithium ion conductivity is formed on the surface of the carbon negative electrode by adding hydrofluoric acid, carbonic acid, or the like, the characteristics of the negative electrode are improved. Further, a wet method of supporting Ag fine particles on the surface of the negative electrode (JP-A-8-273702), Ag, A
Dry method such as vapor deposition covering the surface of the carbon negative electrode with u, Zn, Pd, Sn, etc. [J. Power Sources, 81-82, 368 (1999),
J. Electroanal. Chem., 462 (1999)]
The negative electrode characteristics are improved.

【0004】[0004]

【発明が解決しようとする課題】従来のコバルト酸リチ
ウムLiCoO2に代え、原料コスト,環境保全性,低
毒性等の点で有利なLiMn24が正極物質として使用
され始めている。しかし、LiMn24正極を組み込ん
だリチウムイオン二次電池では、高温作動時に正極から
Mn成分が主にMn2+となって溶出し、還元反応によっ
て負極表面に析出する。負極へのMn析出は、容量低
下,抵抗増大等により電池全体の特性を劣化させる原因
となる。そこで、負極特性を改善するために、溶出した
Mn成分が負極の特性に及ぼす悪影響を抑制することが
要求される。
Instead of the conventional lithium cobaltate LiCoO 2 , LiMn 2 O 4 which is advantageous in terms of raw material cost, environmental preservation, low toxicity and the like has begun to be used as a cathode material. However, in a lithium ion secondary battery incorporating a LiMn 2 O 4 positive electrode, the Mn component mainly elutes as Mn 2+ from the positive electrode during high-temperature operation and precipitates on the negative electrode surface by a reduction reaction. Mn deposition on the negative electrode causes deterioration of the characteristics of the entire battery due to a decrease in capacity, an increase in resistance, and the like. Therefore, in order to improve the negative electrode characteristics, it is required to suppress the adverse effect of the eluted Mn component on the characteristics of the negative electrode.

【0005】[0005]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、Mnよりも標準
酸化還元電位の高い金属種をイオンとして電解液,電極
等の反応場に添加し、Mn析出に優先して当該金属種を
析出させることにより、LiMn24正極から溶出する
Mn成分の悪影響を抑え、良好な負極特性を維持し、充
放電容量の劣化が少ないリチウムイオン二次電池を提供
することを目的とする。本発明のリチウムイオン二次電
池は、その目的を達成するため、LiMn24を正極物
質とし、電解液又は電極にMnよりも標準酸化還元電位
が高い金属種をイオンとして添加していることを特徴と
する。Mnよりも標準酸化還元電位が高い金属種として
は、Ag,,Zn,Sn,Cu,Pt等がある。たとえ
ば、Agイオン供給源として過塩素酸銀,6フッ化リン
酸銀,4フッ化ホウ酸銀,6フッ化ヒ酸銀,硫酸銀,硝
酸銀等を電極や電解液に添加するとき、Mn析出に優先
して電解液からAgが負極表面に析出する。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve such a problem, and uses a metal species having a higher standard oxidation-reduction potential than Mn as an ion to react an electrolyte, an electrode, or the like. By adding the metal species in preference to Mn precipitation, thereby suppressing the adverse effect of the Mn component eluted from the LiMn 2 O 4 positive electrode, maintaining good negative electrode characteristics, and causing less deterioration in charge / discharge capacity. An object is to provide a lithium ion secondary battery. In order to achieve the object, the lithium ion secondary battery of the present invention uses LiMn 2 O 4 as a positive electrode material, and adds a metal species having a higher standard oxidation-reduction potential than Mn to the electrolyte or electrode as an ion. It is characterized by. Metal species having a higher standard oxidation-reduction potential than Mn include Ag, Zn, Sn, Cu, Pt, and the like. For example, when silver perchlorate, silver hexafluorophosphate, silver tetrafluoroborate, silver hexafluoroarsenate, silver sulfate, silver nitrate, or the like is added as an Ag ion supply source to an electrode or an electrolytic solution, Mn precipitates. Ag is precipitated from the electrolytic solution on the surface of the negative electrode.

【0006】[0006]

【作用】本発明者等は、Mn2+が溶存した電解液を含む
リチウムイオン二次電池においてカーボン負極の特性が
劣化する状況を種々調査検討した。負極へのMn析出
は、次の不可逆的還元反応によって生成した金属Mnや
追随する副反応生成物が負極表面に堆積する現象であ
る。 Mn2++2e-→Mn
The present inventors have conducted various investigations and studies on the situation where the characteristics of the carbon negative electrode deteriorate in a lithium ion secondary battery containing an electrolyte solution in which Mn 2+ is dissolved. Mn deposition on the negative electrode is a phenomenon in which metal Mn generated by the next irreversible reduction reaction and following by-products are deposited on the negative electrode surface. Mn 2+ + 2e → Mn

【0007】したがって、Mnの不可逆的反応を抑制す
る成分を電解液,電極等の反応場に存在させると、負極
へのMn析出が抑制されることが判る。このような前提
で、反応場に種々の成分を添加することにより、負極へ
のMn析出に及ぼす影響を調査した。その結果、金属イ
オン添加物としてMnよりも標準酸化還元電位が高い、
すなわち負極で反応しやすい金属種を反応場に存在させ
ると、Mn成分の還元に先行して当該金属種が負極に析
出し、電解液に接する負極材の表面に析出物皮膜が形成
されることが判った。なかでも、電気伝導性の良好なA
gを金属種として使用すると、生成したAg系皮膜によ
り電解液中のMn成分から負極が保護され、しかもAg
系皮膜の優れた電気伝導性によって負極内部の抵抗も低
減する。
[0007] Therefore, it can be seen that when a component that suppresses the irreversible reaction of Mn is present in a reaction field such as an electrolytic solution or an electrode, Mn deposition on the negative electrode is suppressed. Under such a premise, the effect of adding various components to the reaction field on the precipitation of Mn on the negative electrode was investigated. As a result, the standard oxidation-reduction potential is higher than Mn as a metal ion additive,
That is, when a metal species that is easily reacted at the negative electrode is present in the reaction field, the metal species is deposited on the negative electrode prior to the reduction of the Mn component, and a deposit film is formed on the surface of the negative electrode material that is in contact with the electrolytic solution. I understood. Above all, A with good electric conductivity
When g is used as the metal species, the negative electrode is protected from the Mn component in the electrolytic solution by the formed Ag-based film,
The resistance inside the negative electrode is also reduced due to the excellent electrical conductivity of the system coating.

【0008】Agは、過塩素酸銀,6フッ化リン酸銀,
4フッ化ホウ酸銀,6フッ化ヒ酸銀,硫酸銀,硝酸銀等
のAgイオン供給源として電解液に添加される。或い
は、これら銀塩を含む正極又は負極を使用することによ
っても、反応場にAgイオンを存在させることができ
る。正極に含まれる銀塩は、電解液に溶出し、負極では
銀塩が共存することによりMn成分の析出に先行して負
極表面にAg系皮膜となって析出する。この点,従来の
Ag担持負極は湿式又は乾式の前処理によって作成され
ているが、本発明ではこのような前処理を不要とし、A
gイオンを電池内に共存させる簡便な方法を採用し、電
気化学的析出反応を利用して均一なAg系皮膜を負極表
面に生成させているため、少量の添加で十分な効果が発
現される。負極表面がAg系皮膜で覆われるため、Mn
成分による充放電容量の劣化がないことは勿論、Ag無
添加の系に比較して充放電容量自体も向上する。これ
は、負極に皮膜として析出したAgが負極物質のグラフ
ァイトと層間化合物を生成することにより、電極内部の
抵抗が低減し、グラファイト材の構造が安定化すること
によるものと推察される。
Ag is silver perchlorate, silver hexafluorophosphate,
Silver tetrafluoroborate, silver hexafluoroarsenate, silver sulfate, silver nitrate and the like are added to the electrolyte as a source of Ag ions. Alternatively, Ag ions can be made to exist in the reaction field by using a positive electrode or a negative electrode containing these silver salts. The silver salt contained in the positive electrode is eluted into the electrolytic solution, and in the negative electrode, due to the coexistence of the silver salt, is deposited as an Ag-based film on the negative electrode surface prior to the precipitation of the Mn component. In this regard, the conventional Ag-carrying negative electrode is prepared by wet or dry pretreatment, but the present invention does not require such pretreatment, and
A simple method of coexisting g ions in the battery is used, and a uniform Ag-based film is formed on the negative electrode surface by using an electrochemical deposition reaction. . Since the surface of the negative electrode is covered with the Ag-based coating, Mn
Not only does the charge / discharge capacity not deteriorate due to the components, but also the charge / discharge capacity itself is improved as compared with the system without the addition of Ag. This is presumed to be due to the fact that Ag deposited as a film on the negative electrode forms graphite and an intercalation compound as a negative electrode material, thereby reducing the resistance inside the electrode and stabilizing the structure of the graphite material.

【0009】[0009]

【実施例】電解液13に作用極14及び対極15を浸漬
した電池構成(図2)で、電解質が充放電特性に及ぼす
影響を調査した。プロピレンカーボネート+エチレンカ
ーボネート(体積比1:2)混合溶媒に電解質塩として
1モル/dm3のLiClO4を添加することにより電解
液13を調製した。作用極14は、次のように作製され
た電極を使用した。ポリビニリデンジフルオライド(結
着剤)をN−メチルピロリジンに溶解してグラファイト
に混合し、得られた混合物をNi網の片面に塗布し、1
00℃で乾燥させた。次いで、乾燥した塗膜をプレス
し、更に80℃で乾燥することにより板状の電極とし
た。
EXAMPLE In a battery configuration (FIG. 2) in which the working electrode 14 and the counter electrode 15 were immersed in the electrolytic solution 13, the effect of the electrolyte on the charge / discharge characteristics was investigated. An electrolytic solution 13 was prepared by adding 1 mol / dm 3 LiClO 4 as an electrolyte salt to a mixed solvent of propylene carbonate and ethylene carbonate (volume ratio 1: 2). The working electrode 14 used was an electrode manufactured as follows. Polyvinylidene difluoride (binder) is dissolved in N-methylpyrrolidine and mixed with graphite, and the resulting mixture is applied to one surface of a Ni net.
Dried at 00 ° C. Next, the dried coating film was pressed and further dried at 80 ° C. to obtain a plate-like electrode.

【0010】対極15は、塊状リチウムから適当量取り
出した金属リチウム片をNi網集電体に圧着し、エタノ
ールで表面を活性化・清浄化した後、円盤状に成形する
ことにより用意した。また、対極15の影響を抑制しな
がら電位を測定するため、塊状リチウムから適当量取り
出した金属リチウム片をNi網集電体に圧着した参照極
16を使用した。ガラスセル17に収容した電解液13
を室温に保持し、作用極14,対極15及び参照極16
を電解液13に浸漬した。そして、電流密度0.10m
A/cm 2,電位範囲0.02〜1.5V vs. Li/L
+の条件で充放電を繰り返し、一定電流密度で放電終
止電位0.02V,充電終止電位1.5Vとして評価す
ることにより、サイクル数に応じた充放電特性の変化を
調査した。
[0010] The counter electrode 15 is prepared by taking an appropriate amount of bulk lithium.
The metal lithium piece that was taken out was pressed against a Ni net current collector,
After activating and cleaning the surface with a tool, it is shaped into a disk
We prepared by doing. Also, do not suppress the influence of the counter electrode 15.
To measure the potential, take an appropriate amount from the bulk lithium.
Reference electrode obtained by pressing the extracted metal lithium piece to the Ni mesh current collector
16 were used. Electrolyte 13 contained in glass cell 17
Is maintained at room temperature, and the working electrode 14, the counter electrode 15 and the reference electrode 16
Was immersed in the electrolyte 13. And the current density is 0.10 m
A / cm Two, Potential range 0.02-1.5V vs. Li / L
i+The charge and discharge are repeated under the conditions
Evaluation is made with a stop potential of 0.02 V and a charge termination potential of 1.5 V.
Change the charge / discharge characteristics according to the number of cycles.
investigated.

【0011】図3の測定結果にみられるように、Ag無
添加でMnイオンが電解液に溶存していない系では、サ
イクル数が10回に達した段階で放電容量が低下した。
これに対し、過塩素酸銀を電解液に添加した系では、サ
イクル数が10回に達した段階でも放電容量の降下が相
当に小さく、放電容量自体もAg無添加の場合に比較し
て10%以上改善されていた。他方、LiMn24を正
極物質としたリチウムイオン二次電池を想定して、過塩
素酸マンガンを添加した電解液では、サイクル数の増加
に伴って放電容量が大きく低下した。ところが、過塩素
酸マンガン及び過塩素酸銀が共存する電解液では、サイ
クル数が10回に達した段階でも放電初期に比較して放
電容量の減少度が小さく、放電容量の減少が抑制され
た。以上の結果から、電解液にAgイオンを存在させる
ことによって、サイクル数に伴った充放電特性の劣化が
防止されることは勿論、充放電特性自体も改善されるこ
とが確認された。
As can be seen from the measurement results in FIG. 3, in the system in which Ag was not added and Mn ions were not dissolved in the electrolytic solution, the discharge capacity was reduced when the number of cycles reached 10 times.
On the other hand, in the system in which silver perchlorate was added to the electrolyte, the drop in the discharge capacity was considerably small even at the stage when the number of cycles reached 10, and the discharge capacity itself was 10 times smaller than when Ag was not added. % Was improved. On the other hand, assuming a lithium ion secondary battery using LiMn 2 O 4 as a cathode material, in an electrolyte solution to which manganese perchlorate was added, the discharge capacity was significantly reduced with an increase in the number of cycles. However, in the electrolyte in which manganese perchlorate and silver perchlorate coexist, the degree of decrease in the discharge capacity was small compared to the initial stage of the discharge even when the number of cycles reached 10, and the decrease in the discharge capacity was suppressed. . From the above results, it was confirmed that the presence of Ag ions in the electrolytic solution not only prevented the deterioration of the charge / discharge characteristics with the number of cycles, but also improved the charge / discharge characteristics themselves.

【0012】[0012]

【発明の効果】以上に説明したように、本発明のリチウ
ムイオン二次電池は、Ag等のMnに比較して標準酸化
還元電位の高い金属種をイオンとして電極,電解液等の
反応場に存在させることにより、LiMn24正極から
溶出するマンガン成分に起因した負極特性の劣化を抑制
している。添加したAgイオンは、負極表面に電気伝導
性に優れたAg系皮膜を形成するため負極特性の改善も
図られる。このようにして、本発明によるとき、充放電
特性の劣化がなく、高い充放電特性を呈するリチウムイ
オン二次電池が得られる。
As described above, in the lithium ion secondary battery of the present invention, a metal species having a higher standard oxidation-reduction potential as compared with Mn such as Ag is used as an ion in a reaction field of an electrode, an electrolyte or the like. The presence thereof suppresses the deterioration of the negative electrode characteristics due to the manganese component eluted from the LiMn 2 O 4 positive electrode. The added Ag ions form an Ag-based film having excellent electric conductivity on the surface of the negative electrode, so that the characteristics of the negative electrode can be improved. Thus, according to the present invention, a lithium ion secondary battery that exhibits high charge / discharge characteristics without deterioration of the charge / discharge characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 リチウムイオン二次電池の分解斜視図FIG. 1 is an exploded perspective view of a lithium ion secondary battery.

【図2】 実施例で使用した模型電池FIG. 2 is a model battery used in Examples.

【図3】 電解液に含まれるMnイオン及びAgイオン
がグラファイト負極の充放電特性に及ぼす影響を示した
グラフ
FIG. 3 is a graph showing the influence of Mn ions and Ag ions contained in an electrolytic solution on charge and discharge characteristics of a graphite negative electrode.

【符号の説明】[Explanation of symbols]

1:正極板 2:負極板 3:セパレータ 4:
金属容器 13:電解液 14:作用極 15:対極 1
6:参照極
1: Positive electrode plate 2: Negative electrode plate 3: Separator 4:
Metal container 13: Electrolyte 14: Working electrode 15: Counter electrode 1
6: Reference electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 DJ08 EJ03 HJ18 5H050 AA07 AA08 BA17 CA09 CB09 DA02 DA09 EA01 GA10 HA02 HA18  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ03 AJ05 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 DJ08 EJ03 HJ18 5H050 AA07 AA08 BA17 CA09 CB09 DA02 DA09 EA01 GA10 HA02 HA18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 LiMn24を正極物質とし、Mnより
も標準酸化還元電位の高い金属種がイオンとして電解液
又は電極に添加されていることを特徴とするリチウムイ
オン二次電池。
1. A lithium ion secondary battery in which LiMn 2 O 4 is used as a positive electrode material and a metal species having a higher standard oxidation-reduction potential than Mn is added to the electrolyte or the electrode as ions.
【請求項2】 Mnよりも標準酸化還元電位の高い金属
種がAg,Zn,Sn,Cu,Ptから選ばれた1種又
は2種以上である請求項1記載のリチウムイオン二次電
池。
2. The lithium ion secondary battery according to claim 1, wherein the metal species having a higher standard oxidation-reduction potential than Mn is one or more selected from Ag, Zn, Sn, Cu, and Pt.
【請求項3】 過塩素酸銀,6フッ化リン酸銀,4フッ
化ホウ酸銀,6フッ化ヒ酸銀,硫酸銀,硝酸銀から選ば
れた1種又は2種以上をAgイオン供給源とする請求項
2記載のリチウムイオン二次電池。
3. An Ag ion source comprising one or more selected from silver perchlorate, silver hexafluorophosphate, silver tetrafluoroborate, silver hexafluoroarsenate, silver sulfate, and silver nitrate. The lithium ion secondary battery according to claim 2, wherein
JP2000137002A 2000-05-10 2000-05-10 Lithium-ion secondary battery Pending JP2001319687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137002A JP2001319687A (en) 2000-05-10 2000-05-10 Lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137002A JP2001319687A (en) 2000-05-10 2000-05-10 Lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2001319687A true JP2001319687A (en) 2001-11-16

Family

ID=18644861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137002A Pending JP2001319687A (en) 2000-05-10 2000-05-10 Lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2001319687A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217657A (en) * 2002-01-21 2003-07-31 Sony Corp Nonaqueous electrolyte battery
JP2018018785A (en) * 2016-07-29 2018-02-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN110429334A (en) * 2019-07-16 2019-11-08 中国电子新能源(武汉)研究院有限责任公司 Electrolyte and preparation method thereof and battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217657A (en) * 2002-01-21 2003-07-31 Sony Corp Nonaqueous electrolyte battery
JP2018018785A (en) * 2016-07-29 2018-02-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN110429334A (en) * 2019-07-16 2019-11-08 中国电子新能源(武汉)研究院有限责任公司 Electrolyte and preparation method thereof and battery

Similar Documents

Publication Publication Date Title
TWI506838B (en) Nonaqueous electrolyte storage battery and manufacturing method thereof
JP3643825B2 (en) Organic electrolyte for lithium secondary battery and lithium secondary battery using the same
JP6022357B2 (en) Conductive agent for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
EP1119063A1 (en) Positive active material for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP2002075446A (en) Lithium-sulfur cell
JPH09508490A (en) Water-based rechargeable battery
JP2001006678A (en) Rechargeable lithium manganese oxide battery and material for lithium manganese oxide battery
CN103682304A (en) Lithium-rich solid solution anode composite and preparation method thereof, lithium ion battery anode plate and lithium ion battery
JP2021510904A (en) Rechargeable metal halide battery
JP2005063674A (en) Nonaqueous electrolyte secondary battery
JP4297709B2 (en) Nonaqueous electrolyte secondary battery
CN101154725B (en) Negative active material for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same
JP5678826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5082198B2 (en) Lithium ion secondary battery
JP4034940B2 (en) Lithium secondary battery using non-aqueous electrolyte
JP2016100077A (en) Sodium secondary battery
CN110718719B (en) Rechargeable zinc ion battery
JP6233101B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
WO2012094761A1 (en) Ion-exchange battery
JP2001319687A (en) Lithium-ion secondary battery
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2000058120A (en) Electrolyte for lithium secondary battery
JP2004047406A (en) Nonaqueous electrolyte secondary battery
WO2012097456A1 (en) Ion-exchange battery with a plate configuration

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801