JP2001287988A - Vitrified carbon and method for producing the same - Google Patents
Vitrified carbon and method for producing the sameInfo
- Publication number
- JP2001287988A JP2001287988A JP2000100785A JP2000100785A JP2001287988A JP 2001287988 A JP2001287988 A JP 2001287988A JP 2000100785 A JP2000100785 A JP 2000100785A JP 2000100785 A JP2000100785 A JP 2000100785A JP 2001287988 A JP2001287988 A JP 2001287988A
- Authority
- JP
- Japan
- Prior art keywords
- glassy carbon
- curing
- resin
- defects
- reduced pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
- Magnetic Record Carriers (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガラス状カーボン
及びその製造方法に関し、更に詳述すると、従来に比べ
て欠陥が非常に少なく、特にプラズマエッチング電極等
の半導体用途、ハードディスク等の記録媒体などに好適
なガラス状カーボン及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to glassy carbon and a method for producing the same. More specifically, the present invention has very few defects as compared with the prior art. And a method for producing the same.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】ガラス
状カーボンは、ガラス質の緻密な組織構造を有し、ガス
不透過性、耐摩耗性、耐蝕性、自己潤滑性、表面の平滑
性、非汚染性及び堅牢性等の優れた特性を備えているこ
とからプラズマエッチング電極等の半導体用途、ハード
ディスク等の記録媒体などの各種用途に実用化が図られ
ている。BACKGROUND OF THE INVENTION Vitreous carbon has a vitreous dense structure, gas impermeability, abrasion resistance, corrosion resistance, self-lubricating property, surface smoothness, and the like. Due to its excellent properties such as non-contamination and robustness, it has been put to practical use in various applications such as semiconductor applications such as plasma etching electrodes and recording media such as hard disks.
【0003】このようなガラス状カーボンは、通常、フ
ェノール樹脂等の熱硬化性樹脂を成形し、硬化してなる
成形体を炭化焼成することにより製造されているが、こ
の製造プロセスにおいて生じる縮合水や分解ガス、溶媒
等が微細な気泡となって残存すると炭化焼成時に破損し
たり、得られるガラス状カーボンが多くの欠陥(ポア)
を含む組織となり、ガス不透過性、材質強度、耐酸化性
等が低下する原因となる。このため、従来から欠陥の発
生を低減する方策が種々提案されている。[0003] Such a glassy carbon is usually produced by molding a thermosetting resin such as a phenol resin and carbonizing and firing a molded product obtained by curing the same. If gas, decomposition gas, solvent, etc. remain in the form of fine bubbles, they will be damaged during carbonization and firing, and the resulting glassy carbon will have many defects (pores).
This causes a decrease in gas impermeability, material strength, oxidation resistance, and the like. For this reason, various measures for reducing the occurrence of defects have been conventionally proposed.
【0004】例えば、熱硬化性樹脂初期縮合物に、硬
化剤として酸性度(PKa)が0〜1の酸触媒を添加し
て常温減圧下に一次硬化し、次いで加熱して二次硬化し
た後、不活性雰囲気中で焼成炭化することにより、硬化
反応時に生成する縮合水や分解ガスを除去することがで
きるガラス状炭素の製造方法が提案されている(特公平
4−55122号公報)。熱硬化性樹脂に分散剤を添
加して縮合水を分散化することにより、ポアの減少を図
ることができるガラス状炭素の製造方法が提案されてい
る(特開平7−82028号公報)。熱硬化性樹脂を
成形硬化してなる成形体を800℃乃至1000℃の大
気圧下の不活性雰囲気中で炭化焼成した後、1torr
以下の減圧不活性雰囲気中又は真空下で1200℃乃至
2000℃で炭化焼成するガラス状炭素材の製造方法が
提案されている(特開平8−133715号公報)。
成形前に、原料の熱硬化性樹脂液を薄膜流として減圧系
に保持された真空容器内の傾斜面を流下させて予め脱泡
処理を施すガラス状カーボンの製造方法が提案されてい
る(特開平7−300306号公報)。HIP(Ho
t−Isostatic−Pressing;熱間静水
圧成形)処理により炭素材料中のポアを等方的に押し潰
し、緻密化する方法が提案されている(特開昭63−2
79078号公報)。For example, an acid catalyst having an acidity (PKa) of 0 to 1 is added as a curing agent to a thermosetting resin precondensate, and the mixture is subjected to primary curing under reduced pressure at room temperature, and then to secondary curing by heating. There has been proposed a method for producing glassy carbon capable of removing condensed water and decomposed gas generated during a curing reaction by firing and carbonizing in an inert atmosphere (Japanese Patent Publication No. 4-55122). There has been proposed a method for producing glassy carbon in which pores can be reduced by adding a dispersant to a thermosetting resin to disperse condensed water (Japanese Patent Application Laid-Open No. 7-82028). A molded product obtained by molding and curing a thermosetting resin is carbonized and fired in an inert atmosphere at a temperature of 800 ° C. to 1000 ° C. under atmospheric pressure, and then 1 torr.
The following method for producing a glassy carbon material which is carbonized and fired at 1200 ° C. to 2000 ° C. in a reduced-pressure inert atmosphere or under vacuum has been proposed (Japanese Patent Application Laid-Open No. 8-133715).
Prior to molding, there has been proposed a method for producing glassy carbon in which a thermosetting resin liquid as a raw material is flowed as a thin film flow on an inclined surface in a vacuum vessel held in a decompression system to perform a defoaming treatment in advance (particularly). JP-A-7-300306). HIP (Ho
A method has been proposed in which pores in a carbon material are isotropically crushed and densified by t-isostatic-pressing (hot isostatic pressing) treatment (Japanese Unexamined Patent Publication No. Sho 63-2).
79078).
【0005】しかしながら、上記〜の方法では、あ
る程度の縮合水や分解ガス、溶媒等を除去することはで
きるが、いずれも縮合水や分解ガス、溶媒等を完全に除
去することができないため、焼成炭化により得られるガ
ラス状カーボンに欠陥が生じてしまい、特に欠陥を嫌う
プラズマエッチング電極等の半導体用途、ハードディス
ク等の記録媒体の用途に用いることができないという問
題がある。また、上記の方法では、高価なHIP処理
装置が必要となりコスト高を招くと共に、高温、高圧ガ
スの制御操作が煩雑であるという問題がある。However, in the above methods (1) to (4), a certain amount of condensed water, decomposed gas, solvent and the like can be removed, but none of them can completely remove condensed water, decomposed gas, solvent and the like. There is a problem in that the glassy carbon obtained by carbonization has a defect, and cannot be used for a semiconductor application such as a plasma etching electrode, which particularly dislikes a defect, and a recording medium such as a hard disk. In addition, the above-described method requires an expensive HIP processing apparatus, resulting in an increase in cost, and also has a problem that a control operation of a high-temperature and high-pressure gas is complicated.
【0006】このように従来のガラス状カーボンの製造
方法は、いずれも一長一短があり、十分満足できる高品
質なガラス状カーボンを効率良く、低コストで得られる
ものではなく、更なる改良、開発が望まれていた。As described above, all of the conventional methods for producing glassy carbon have advantages and disadvantages, and are not capable of efficiently and at a low cost obtaining a sufficiently satisfactory high-quality glassy carbon. Was desired.
【0007】本発明は、上記事情に鑑みなされたもの
で、従来に比べて欠陥が非常に少なく、優れた均質緻密
な組織構造を有する高品質なガラス状カーボン及びこの
ガラス状カーボンを効率良く、低コストで製造する方法
を提供することを目的とする。The present invention has been made in view of the above circumstances, and provides a high-quality vitreous carbon having very few defects compared to the prior art, having an excellent homogeneous and dense texture structure, and this vitreous carbon efficiently. An object is to provide a method for manufacturing at low cost.
【0008】[0008]
【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を重ねた結
果、熱硬化性樹脂を主成分とするガラス状カーボン用樹
脂組成物を成形し、硬化した後、不活性雰囲気中又は真
空下で焼成炭化してなるガラス状カーボンにおいて、上
記焼成炭化前の硬化を減圧下又は真空下で行うことによ
り得られるガラス状カーボンが、欠陥が非常に少なく、
均質緻密な組織構造を有することを知見した。Means for Solving the Problems and Embodiments of the Invention The present inventors have made intensive studies to achieve the above object, and as a result, have found that a resin composition for glassy carbon containing a thermosetting resin as a main component has been obtained. After being molded and cured, in a glassy carbon obtained by calcining and carbonizing in an inert atmosphere or under vacuum, the glassy carbon obtained by performing the curing before the above calcining under reduced pressure or under vacuum has defects. Very little,
It was found that it had a homogeneous and dense tissue structure.
【0009】即ち、熱硬化性樹脂を主成分とするガラス
状カーボン用樹脂組成物を成形し、硬化した後、不活性
雰囲気中又は真空下で焼成炭化してなるガラス状カーボ
ンにおいて、上記焼成炭化前の硬化を減圧下又は真空下
で行うことにより、樹脂溶媒、樹脂硬化反応時に発生す
る縮合水、反応生成ガス、溶媒等を効率よく系外に排除
することができ、得られるガラス状カーボンのSEM測
定(倍率1000倍)による欠陥の総数が300個/2
5cm2以下と、従来に比べて極めて少なくなり、優れ
た均質緻密な組織構造を有する高品質なガラス状カーボ
ンが得られ、特にプラズマエッチング電極等の半導体用
途、ハードディスク等の記録媒体などの内部欠陥の発生
を嫌う用途に最適なものであることを見出し、本発明を
なすに至った。That is, a resin composition for glassy carbon containing a thermosetting resin as a main component is molded, cured, and then calcined and carbonized in an inert atmosphere or under vacuum. By performing the previous curing under reduced pressure or vacuum, the resin solvent, condensed water generated during the resin curing reaction, the reaction product gas, the solvent and the like can be efficiently removed from the system, and the obtained glassy carbon Total number of defects by SEM measurement (magnification 1000 times) is 300/2
5 cm 2 or less, which is extremely small as compared with the conventional one, and high-quality glassy carbon having an excellent homogeneous and dense structure can be obtained. Particularly, semiconductor defects such as plasma etching electrodes, and internal defects such as recording media such as hard disks. The present invention was found to be most suitable for applications that do not like the occurrence of water, and the present invention was accomplished.
【0010】また、本発明のガラス状カーボンの製造方
法によれば、焼成炭化前の熱硬化を減圧下又は真空下で
行うことにより、樹脂溶媒、熱硬化反応において生成す
る縮合水や分解ガス、溶媒等を効率よく強制的に系外に
除去し得、これらが微細な気泡となって硬化物中に残存
することなく、欠陥の発生が可及的に防止できると共
に、特別な装置や煩雑な制御操作が不要であり、効率よ
く、低コストで高品質なガラス状カーボンを製造するこ
とができるものである。Further, according to the method for producing glassy carbon of the present invention, by performing thermosetting under reduced pressure or vacuum before calcining and carbonizing, a resin solvent, condensed water and decomposition gas generated in the thermosetting reaction, Solvents and the like can be efficiently and forcibly removed from the system, and these do not become fine bubbles and remain in the cured product, and the occurrence of defects can be prevented as much as possible. No control operation is required, and high-quality glassy carbon can be efficiently produced at low cost.
【0011】従って、本発明は、第1に、熱硬化性樹脂
を主成分とするガラス状カーボン用樹脂組成物を成形
し、硬化した後、不活性雰囲気中又は真空下で焼成炭化
してなるガラス状カーボンにおいて、上記ガラス状カー
ボンのSEM測定(倍率1000倍)による欠陥の総数
が300個/25cm2以下であることを特徴とするガ
ラス状カーボン、第2に、熱硬化性樹脂を主成分とする
ガラス状カーボン用樹脂組成物を成形し、硬化した後、
不活性雰囲気中又は真空下で焼成炭化してなるガラス状
カーボンにおいて、上記焼成炭化前の硬化を減圧下又は
真空下で行って得られることを特徴とするガラス状カー
ボン、及び第3に、熱硬化性樹脂を主成分とするガラス
状カーボン用樹脂組成物を成形し、硬化した後、不活性
雰囲気中又は真空下で焼成炭化することによりガラス状
カーボンを製造する方法において、上記焼成炭化前の硬
化を減圧下又は真空下で行うことを特徴とするガラス状
カーボンの製造方法を提供する。Accordingly, the present invention firstly comprises molding and curing a resin composition for glassy carbon containing a thermosetting resin as a main component, followed by firing and carbonizing in an inert atmosphere or under vacuum. In glassy carbon, the total number of defects of the above glassy carbon determined by SEM measurement (magnification: 1000 times) is 300/25 cm 2 or less. After molding and curing the glassy carbon resin composition to be,
In a glassy carbon obtained by calcining and carbonizing in an inert atmosphere or under vacuum, the glassy carbon is obtained by performing the above-mentioned curing before calcining under reduced pressure or under vacuum, and In a method of producing a glassy carbon by molding and curing a resin composition for glassy carbon containing a curable resin as a main component, and then curing the resin composition in an inert atmosphere or under vacuum, A method for producing glassy carbon, wherein curing is performed under reduced pressure or vacuum.
【0012】以下、本発明について更に詳しく説明す
る。本発明のガラス状カーボンは、SEM(走査電子顕
微鏡)測定(倍率1000倍)による欠陥の総数が30
0個/25cm2以下であることを特徴とし、このガラ
ス状カーボンは欠陥の極めて少ない均質緻密な組織構造
を有する高品質なものである。Hereinafter, the present invention will be described in more detail. The glassy carbon of the present invention has a total number of defects of 30 by SEM (scanning electron microscope) measurement (magnification: 1000 times).
The glassy carbon is characterized in that the number is not more than 0/25 cm 2 , and the glassy carbon is of high quality having a homogenous and dense structure with few defects.
【0013】ここで、本発明におけるガラス状カーボン
の欠陥(ポア)の測定は、厚み3.0mmのガラス状カ
ーボンを5cm角に切り出した試験片を、例えば平均粒
子径0.6μmmのアルミナ砥粒で研磨(研磨1回目)
した後、SEM(走査電子顕微鏡)を用いて倍率100
0倍で観察し、表面欠陥の大きさと数を測定するもので
ある。また、試験片を上記アルミナ砥粒で0.5mm研
磨(研磨2回目)した後、同様に表面欠陥の大きさと数
を測定するものである。Here, the measurement of the defects (pores) of the glassy carbon in the present invention is performed by cutting a test piece obtained by cutting a glassy carbon having a thickness of 3.0 mm into a square of 5 cm, for example, using an alumina abrasive having an average particle diameter of 0.6 μmm. Polishing (first polishing)
After that, using a scanning electron microscope (SEM), a magnification of 100
Observation is performed at a magnification of 0, and the size and number of surface defects are measured. Further, after the test piece is polished by the above-mentioned alumina abrasive grains by 0.5 mm (second polishing), the size and the number of surface defects are measured in the same manner.
【0014】この場合、欠陥の総数が300個/25c
m2以下であることが必要であり、好ましくは200個
/25cm2以下、より好ましくは100個/25cm2
以下、更に好ましくは50個/25cm2以下、最も好
ましくは30個/25cm2以下である。欠陥の総数が
多すぎると得られるガラス状カーボンのガス不透過性、
材質強度、耐酸化性等の特性が低下する。In this case, the total number of defects is 300 / 25c
m 2 or less, preferably 200 pieces / 25 cm 2 or less, more preferably 100 pieces / 25 cm 2.
The number is more preferably 50 pieces / 25 cm 2 or less, most preferably 30 pieces / 25 cm 2 or less. Gas impermeability of glassy carbon obtained if the total number of defects is too large,
Characteristics such as material strength and oxidation resistance decrease.
【0015】また、本発明では、上記欠陥の総数範囲を
満たした上で、欠陥の大きさ(欠陥が球状の場合はその
直径、欠陥が角状の場合はその対角線長さ)が小さいも
のであることが好ましい。特にSEM測定(倍率100
0倍)による欠陥の大きさが10μm以下、好ましくは
5μm以下であり、より好ましくは1μm以下である。
この場合、欠陥の大きさが1μm以下のものが大部分
(50%以上、特に80%以上)を占めるガラス状カー
ボンはハードディスクなどの記録媒体の基板として有用
である。In the present invention, the size of the defect (the diameter of the defect if it is spherical, and the length of the diagonal line if the defect is angular) is small after satisfying the total number range of defects. Preferably, there is. Especially SEM measurement (magnification 100
(0 times), the size of the defect is 10 μm or less, preferably 5 μm or less, and more preferably 1 μm or less.
In this case, glassy carbon in which the size of the defect is 1 μm or less (50% or more, especially 80% or more) is useful as a substrate of a recording medium such as a hard disk.
【0016】更に、本発明のガラス状カーボンの欠陥の
大きさの分布は、下記の通りであることが好ましい。 10μm超の大きさの欠陥が0〜10%、好ましくは
0〜5%、より好ましくは0%である。 1〜10μmの大きさの欠陥が0〜30%、好ましく
は0〜20%、より好ましくは0〜10%である。 1μm未満の大きさの欠陥が残部である。Further, the distribution of the size of the defects in the glassy carbon of the present invention is preferably as follows. Defects with a size of more than 10 μm are 0 to 10%, preferably 0 to 5%, more preferably 0%. Defects having a size of 1 to 10 μm are 0 to 30%, preferably 0 to 20%, more preferably 0 to 10%. Defects with a size of less than 1 μm are the remainder.
【0017】本発明のガラス状カーボンは、上記第1回
目の研磨後の欠陥の総数及び大きさが上記範囲を満たし
た上で、第2回目の研磨後においても第1回目の研磨後
と同程度の欠陥の総数及び大きさを有することが好まし
い。即ち、ガラス状カーボンの表面付近(第1回目の研
磨)だけでなく、ガラス状カーボンの内部(第2回目の
研磨)においても欠陥の発生が極めて少ないことが好ま
しい。The glassy carbon of the present invention has the same number and size of defects as those after the first polishing, and the same as those after the first polishing after the second polishing. Preferably, it has a total number and magnitude of defects of the order. That is, it is preferable that the generation of defects is extremely small not only in the vicinity of the surface of the glassy carbon (the first polishing) but also in the inside of the glassy carbon (the second polishing).
【0018】このような本発明のガラス状カーボンは、
熱硬化性樹脂を主成分とするガラス状カーボン用樹脂組
成物を成形し、硬化した後、不活性雰囲気中又は真空下
で焼成炭化してなり、上記焼成炭化前の硬化を減圧下又
は真空下で行うことにより得られるものである。Such a glassy carbon of the present invention comprises:
A resin composition for glassy carbon containing a thermosetting resin as a main component is molded and cured, and then calcined and carbonized in an inert atmosphere or under vacuum. It is obtained by performing in.
【0019】ここで、上記熱硬化性樹脂としては、特に
制限されないが、焼成炭化処理によりガラス状カーボン
に転化する炭素源であることが好ましい。例えば、液状
のレゾールタイプのフェノール樹脂、固体状のノボラッ
クタイプのフェノール樹脂に代表されるフェノール系樹
脂、フルフリルアルコール樹脂、フルフリルアルコール
フルフラール樹脂、フルフリルアルコールフェノール樹
脂などのフラン系樹脂、ポリイミド系樹脂、ポリカルボ
ジイミド系樹脂、ポリアクリロニトリル系樹脂、ピレン
−フェナントレン系樹脂、エポキシ系樹脂又はこれらの
誘導体などが挙げられ、これらの1種を単独で又は2種
以上を組み合わせて用いることができる。中でも、窒
素、アルゴン等の不活性雰囲気下で800℃以上の温度
により焼成したときに残留炭素率が45質量%以上であ
るフェノール系樹脂、フラン系樹脂又はこれらの混合樹
脂が好ましい。なお、フェノール系樹脂を用いる場合に
はホルムアルデヒド等の硬化促進剤を添加することもで
きる。Here, the thermosetting resin is not particularly limited, but is preferably a carbon source which is converted into glassy carbon by a firing carbonization treatment. For example, furan resin such as liquid resol type phenol resin, phenol resin represented by solid novolak type phenol resin, furfuryl alcohol resin, furfuryl alcohol furfural resin, furfuryl alcohol phenol resin, and polyimide resin Resins, polycarbodiimide-based resins, polyacrylonitrile-based resins, pyrene-phenanthrene-based resins, epoxy-based resins, and derivatives thereof, and the like can be used. One of these can be used alone, or two or more can be used in combination. Among them, a phenolic resin, a furan-based resin, or a mixed resin thereof having a residual carbon ratio of 45% by mass or more when calcined at a temperature of 800 ° C or more in an inert atmosphere such as nitrogen or argon is preferable. When a phenolic resin is used, a curing accelerator such as formaldehyde can be added.
【0020】上記熱硬化性樹脂は、水又は有機溶媒と混
合して液状樹脂として用いることが好ましい。この場
合、液状樹脂の粘度は25℃で20Pa・s以下、好ま
しくは0.1〜1Pa・sであり、樹脂濃度は固形分
(不揮発分)換算で40質量%以上、好ましくは50質
量%以上である。有機溶媒としては、例えばメタノー
ル、エタノール、ブタノール等のアルコール類、アセト
ン、メチルエチルケトン、メチルイソブチルケトン等の
ケトン類、エチレングリコール、ジエチレングリコール
等のグリコール類、フラン、フルフラール、フルフリル
アルコール等のフラン類、テトラヒドロフラン(TH
F)、N,N−ジメチルホルムアミド(DMF)、メチ
ルエチルケトン(MEK)又はこれらと水との混合溶媒
などが挙げられ、これらの1種を単独で又は2種以上を
組み合わせて用いることができる。中でも、水、水/ア
ルコール系が取り扱い性の点から好ましい。The thermosetting resin is preferably used as a liquid resin by mixing with water or an organic solvent. In this case, the viscosity of the liquid resin at 25 ° C. is 20 Pa · s or less, preferably 0.1 to 1 Pa · s, and the resin concentration is 40% by mass or more, preferably 50% by mass or more in terms of solid content (non-volatile content). It is. Examples of the organic solvent include alcohols such as methanol, ethanol and butanol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; glycols such as ethylene glycol and diethylene glycol; furans such as furan, furfural and furfuryl alcohol; and tetrahydrofuran. (TH
F), N, N-dimethylformamide (DMF), methyl ethyl ketone (MEK), or a mixed solvent thereof with water, and the like. One of these can be used alone, or two or more can be used in combination. Among them, water and a water / alcohol system are preferred from the viewpoint of handleability.
【0021】本発明のガラス状カーボンは、上記組成の
ガラス状カーボン用樹脂組成物を焼成炭化前の硬化を減
圧下又は真空下で行うことにより得られるものである。
この場合、焼成炭化前の硬化を55kPa以下、好まし
くは15kPa以下、より好ましくは10kPa以下、
更に好ましくは3kPa以下の減圧又は真空下で行うこ
とが好ましい。焼成炭化前の硬化の減圧の程度が上記範
囲を上回ると、従来技術と差異が認められず、ガラス状
カーボンに欠陥が多数生じる場合がある。The glassy carbon of the present invention is obtained by curing the resin composition for glassy carbon having the above composition before firing and carbonizing under reduced pressure or vacuum.
In this case, the curing before firing and carbonization is 55 kPa or less, preferably 15 kPa or less, more preferably 10 kPa or less,
More preferably, it is performed under reduced pressure of 3 kPa or less or under vacuum. If the degree of decompression of the curing before calcining exceeds the above range, there is no difference between the prior art and the glassy carbon may have many defects.
【0022】なお、本発明のガラス状カーボンの密度は
密度勾配管による測定で1.4〜1.65g/cm3、
好ましくは1.48〜1.58g/cm3であり、面内
密度差0.01g/cm3以内の均一なものである。The density of the glassy carbon of the present invention is 1.4 to 1.65 g / cm 3 as measured by a density gradient tube.
Preferably, it is 1.48 to 1.58 g / cm 3 , and the density is uniform within an in-plane density difference of 0.01 g / cm 3 .
【0023】次に、本発明のガラス状カーボンの製造方
法は、熱硬化性樹脂を主成分とするガラス状カーボン用
樹脂組成物を成形し、硬化した後、不活性雰囲気中又は
真空下で焼成炭化することによりガラス状カーボンを製
造する方法において、上記焼成炭化前の硬化を減圧下又
は真空下で行うものである。ここで、焼成炭化前の硬化
は後述する二次硬化を指し、二次硬化の前に行う一次硬
化は減圧下又は真空下で行っても行わなくてもよい。こ
の場合、焼成炭化前の硬化は55kPa以下の減圧下又
は真空下で行うことが好ましい。Next, in the method for producing glassy carbon of the present invention, a resin composition for glassy carbon containing a thermosetting resin as a main component is molded, cured, and then fired in an inert atmosphere or under vacuum. In the method of producing glassy carbon by carbonization, the above-mentioned curing before calcination and carbonization is performed under reduced pressure or vacuum. Here, curing before calcining refers to secondary curing described below, and primary curing performed before secondary curing may or may not be performed under reduced pressure or vacuum. In this case, it is preferable to carry out the curing before calcining under reduced pressure or vacuum of 55 kPa or less.
【0024】具体的なガラス状カーボンの製造方法の一
例は、以下の通りである。 (1)粘度0.3Pa・s以下(25℃)の液状のガラ
ス状カーボン用樹脂組成物をメンブランフィルター等を
用いて濾過し、樹脂中に含まれる不純物等を除去する。 (2)所望の形状の金型を用い、この金型内に(1)の
濾過後の樹脂組成物を注入し、減圧下(少なくとも大気
圧以下)で十分に脱気を行い、樹脂組成物中の巻込みエ
アを除去する。この場合、用いる金型の材質は特に制限
されず、通常の金属製又はプラスチック製のものを用い
ることができる。また、金型は樹脂硬化時に発生する縮
合水、反応生成ガス、溶媒等を効率よく系外に除去でき
るように、少なくとも一部が開放若しくは開閉可能な金
型を用いることが好ましい。更に、樹脂組成物の金型へ
の注入量に拘わらず、金型内での樹脂組成物の厚み(金
型の深さ)は100mm以下、好ましくは30mm以下
である。厚すぎると硬化時に発生する縮合水、反応生成
ガス、溶媒等が樹脂組成物中に残り易くなる場合があ
る。 (3)熱硬化は、まず、樹脂組成物を金型から取り出せ
る程度の硬さ(半固体状)まで熱硬化(一次硬化)を行
う(例えばメタノールを溶媒として使用した場合、40
〜60℃で40時間程度)。次いで、得られた半固体状
物を金型から取り出した状態で更に熱硬化(二次硬化)
を行う。これは、二次硬化の工程において半固体状物の
全周囲から縮合水、反応生成ガス、溶媒等を効率よく系
外に除去するためである。なお、一次硬化は樹脂中の溶
媒の除去、ハンドリング可能な硬さとするために行うも
のであり、特に減圧下又は真空下で行う必要はないが、
減圧下又は真空下で行っても差し支えない。 (4)二次硬化は、55kPa以下、好ましくは15k
Pa以下、より好ましくは10kPa以下、更に好まし
くは3kPa以下の減圧の雰囲気中又は真空下で50〜
150℃の温度範囲において3℃/時間以下、特に1〜
3℃/時間の昇温速度で行うことが好ましい。この際、
樹脂の種類に応じて硬化反応が急激に進む温度領域、使
用する溶媒の沸点付近の温度領域で一定時間温度を保持
して熱硬化を行うことが樹脂溶媒、反応時に生成するガ
ス、縮合水等を効率よく除去する上で好ましい。 (5)得られた樹脂硬化物を加熱炉を用いて窒素、アル
ゴン等の不活性雰囲気中、800℃以上で50〜500
時間、好ましくは1200〜1500℃で100〜20
0時間炭化焼成することによりガラス状カーボンが得ら
れる。An example of a specific method for producing glassy carbon is as follows. (1) A liquid glass-like carbon resin composition having a viscosity of 0.3 Pa · s or less (25 ° C.) is filtered using a membrane filter or the like to remove impurities and the like contained in the resin. (2) Using a mold having a desired shape, injecting the filtered resin composition of (1) into the mold, sufficiently degassing under reduced pressure (at least below atmospheric pressure), Remove any entrained air. In this case, the material of the mold to be used is not particularly limited, and an ordinary metal or plastic material can be used. In addition, it is preferable to use a mold that can be opened or closed at least partially so that condensed water, a reaction product gas, a solvent, and the like generated during curing of the resin can be efficiently removed from the system. Further, regardless of the amount of the resin composition injected into the mold, the thickness (depth of the mold) of the resin composition in the mold is 100 mm or less, preferably 30 mm or less. If it is too thick, condensed water, reaction product gas, solvent and the like generated during curing may easily remain in the resin composition. (3) In the thermosetting, first, thermosetting (primary curing) is performed until the resin composition has a hardness (semi-solid state) enough to be taken out of the mold (for example, when methanol is used as a solvent, 40%).
6060 ° C. for about 40 hours). Next, the obtained semi-solid material is further thermally cured (secondary curing) in a state of being taken out of the mold.
I do. This is because the condensed water, the reaction product gas, the solvent and the like are efficiently removed from the entire periphery of the semi-solid material in the secondary curing step. The primary curing is performed to remove the solvent in the resin and to make the handleable hardness, and it is not particularly necessary to perform under reduced pressure or vacuum,
It may be performed under reduced pressure or under vacuum. (4) Secondary curing is 55 kPa or less, preferably 15 kPa
Pa or less, more preferably 10 kPa or less, still more preferably 3 kPa or less in a reduced pressure atmosphere or under vacuum.
3 ° C./hour or less in a temperature range of 150 ° C., particularly 1 to
It is preferable to carry out the heating at a rate of 3 ° C./hour. On this occasion,
Resin solvent, gas generated during reaction, condensed water, etc. can be thermally cured by maintaining the temperature for a certain period of time in the temperature region where the curing reaction proceeds rapidly according to the type of resin, in the temperature region near the boiling point of the solvent used, etc. From the viewpoint of efficiently removing. (5) The obtained cured resin is heated in an inert atmosphere such as nitrogen or argon in a heating furnace at 800 ° C. or higher at 50 to 500 ° C.
Time, preferably 100-20 ° C at 1200-1500 ° C
Glassy carbon is obtained by carbonizing and firing for 0 hours.
【0025】本発明のガラス状カーボンの製造方法によ
れば、高価な設備を用いることなく、また簡便な操作に
より、樹脂溶媒、製造プロセスにおいて生成する縮合水
や分解ガス、溶媒等を効率よく強制的に系外に除去し
得、これらが微細な気泡となって残存することなく、欠
陥の発生が可及的に防止できるものである。According to the method for producing glassy carbon of the present invention, a resin solvent, condensed water generated in the production process, decomposed gas, a solvent and the like can be efficiently forcibly used without using expensive equipment and simple operations. It can be removed out of the system, and these do not remain in the form of fine bubbles, and the generation of defects can be prevented as much as possible.
【0026】本発明のガラス状カーボンは、従来に比べ
て欠陥が非常に少なく、均質緻密な組織構造を有し、特
に内部欠陥の発生を嫌うプラズマエッチング電極等の半
導体用途、ハードディスク等の記録媒体などに好適なも
のであるが、更に、電池用電極、電解用電極、イオン注
入装置用部材、磁気ヘッド用基材、光学反射基板などに
幅広く用いることができるものである。The glassy carbon of the present invention has a very small number of defects compared to the prior art, has a uniform and dense structure, and is particularly used for semiconductors such as a plasma etching electrode which does not like the occurrence of internal defects, and a recording medium such as a hard disk. It can be widely used as an electrode for a battery, an electrode for electrolysis, a member for an ion implanter, a base material for a magnetic head, an optical reflection substrate, and the like.
【0027】[0027]
【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に制限される
ものではない。EXAMPLES The present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
【0028】〔実施例1〕フェノール樹脂PL−480
4〔群栄化学工業株式会社製;水溶媒中で不揮発分65
質量%、粘度0.25Pa・s(25℃)〕200gを
10cm角、高さ30mmの上部が開放系のステンレス
製シャーレに入れて、55kPaの減圧下で脱気した
後、50℃で40時間加熱してハンドリング可能な硬さ
まで樹脂を熱硬化させた(一次硬化)。次いで、一次硬
化物を金型から取り出して加熱炉を用い、55kPaの
減圧下、70℃で40時間、100℃で20時間、15
0℃で20時間熱硬化(二次硬化)して、樹脂硬化物を
得た。得られた樹脂硬化物を不活性雰囲気下で1℃/分
の昇温速度で1200℃まで焼成して実施例1のガラス
状カーボンを作成した。このガラス状カーボンの密度は
密度勾配管による測定で1.54g/cm3であり、面
内密度差0.01g/cm3以内の均一なものであっ
た。Example 1 Phenol resin PL-480
4 [Gunei Chemical Industry Co., Ltd .;
Mass%, viscosity 0.25 Pa · s (25 ° C.)] 200 g was put into a 10 cm square, 30 mm height open stainless steel petri dish, degassed under reduced pressure of 55 kPa, and then heated at 50 ° C. for 40 hours. The resin was thermally cured by heating to a hardness that can be handled (primary curing). Next, the primary cured product was taken out of the mold, and was heated under a reduced pressure of 55 kPa at 70 ° C. for 40 hours and at 100 ° C. for 20 hours under a reduced pressure of 55 kPa.
Thermal curing (secondary curing) was performed at 0 ° C. for 20 hours to obtain a cured resin. The obtained cured resin was fired in an inert atmosphere at a rate of 1 ° C./min to 1200 ° C. to produce the glassy carbon of Example 1. The density of this glassy carbon was 1.54 g / cm 3 as measured by a density gradient tube, and was uniform with an in-plane density difference of 0.01 g / cm 3 or less.
【0029】〔実施例2〕二次硬化を3kPaの減圧
下、70℃で40時間、100℃で20時間、150℃
で20時間で行った以外は実施例1と同様にして実施例
2のガラス状カーボンを作成した。このガラス状カーボ
ンの密度は密度勾配管による測定で1.54g/cm3
であり、面内密度差0.01g/cm3以内の均一なも
のであった。Example 2 The secondary curing was carried out under reduced pressure of 3 kPa at 70 ° C. for 40 hours, at 100 ° C. for 20 hours, and at 150 ° C.
The glassy carbon of Example 2 was prepared in the same manner as in Example 1 except that the reaction was performed for 20 hours. The density of this glassy carbon was 1.54 g / cm 3 as measured by a density gradient tube.
And the uniformity within the in-plane density difference of 0.01 g / cm 3 was obtained.
【0030】〔実施例3〕二次硬化を1Paの減圧下、
70℃で40時間、100℃で20時間、150℃で2
0時間で行った以外は実施例1と同様にして実施例3の
ガラス状カーボンを作成した。このガラス状カーボンの
密度は密度勾配管による測定で1.53g/cm3であ
り、面内密度差0.01g/cm3以内の均一なもので
あった。Example 3 The secondary curing was performed under reduced pressure of 1 Pa.
40 hours at 70 ° C., 20 hours at 100 ° C., 2 at 150 ° C.
A glassy carbon of Example 3 was prepared in the same manner as in Example 1 except that it was performed at 0 hour. The density of this glassy carbon was 1.53 g / cm 3 as measured by a density gradient tube, and was uniform with an in-plane density difference of 0.01 g / cm 3 or less.
【0031】〔比較例1〕二次硬化を65kPaの減圧
下、70℃で40時間、100℃で20時間、150℃
で20時間で行った以外は実施例1と同様にして比較例
1のガラス状カーボンを作成した。このガラス状カーボ
ンの密度は密度勾配管による測定で1.54g/cm3
であり、面内密度差は0.01〜0.03g/cm3で
あった。[Comparative Example 1] Secondary curing was performed at 70 ° C for 40 hours, 100 ° C for 20 hours, and 150 ° C under a reduced pressure of 65 kPa.
The glassy carbon of Comparative Example 1 was prepared in the same manner as in Example 1 except that the reaction was carried out for 20 hours. The density of this glassy carbon was 1.54 g / cm 3 as measured by a density gradient tube.
And the in-plane density difference was 0.01 to 0.03 g / cm 3 .
【0032】〔比較例2〕二次硬化を大気圧下、70℃
で40時間、100℃で20時間、150℃で20時間
熱硬化した以外は実施例1と同様にして比較例2のガラ
ス状カーボンを作成した。このガラス状カーボンの密度
は密度勾配管による測定で1.55g/cm3であり、
面内密度差は0.01〜0.04g/cm3であった。[Comparative Example 2] Secondary curing was carried out at atmospheric pressure at 70 ° C.
, And a glassy carbon of Comparative Example 2 was prepared in the same manner as in Example 1 except that the composition was thermally cured at 100 ° C. for 20 hours and at 150 ° C. for 20 hours. The density of this glassy carbon was 1.55 g / cm 3 as measured by a density gradient tube,
The in-plane density difference was 0.01 to 0.04 g / cm 3 .
【0033】〔比較例3〕フェノール樹脂PL−480
4 200gを10cm角の上部が開放系のステンレス
製シャーレに入れて、55kPaの減圧下で脱気をした
後、101kPa(大気圧下)、50℃で40時間、7
0℃で40時間、100℃で20時間、150℃で20
時間熱硬化し、樹脂硬化物を得た。得られた樹脂硬化物
を不活性雰囲気下で1℃/分の昇温速度で1200℃ま
で焼成して比較例3のガラス状カーボンを作成した。こ
のガラス状カーボンの密度は密度勾配管による測定で
1.55g/cm3であり、面内密度差は0.01〜
0.04g/cm3であった。Comparative Example 3 Phenol Resin PL-480
4 200 g was put in a 10 cm square stainless steel Petri dish with an open top, degassed under reduced pressure of 55 kPa, and then heated at 101 kPa (atmospheric pressure) at 50 ° C. for 40 hours for 7 hours.
40 hours at 0 ° C, 20 hours at 100 ° C, 20 hours at 150 ° C
Heat curing was performed for a time to obtain a resin cured product. The obtained cured resin was fired in an inert atmosphere at a rate of 1 ° C./min to 1200 ° C. to produce glassy carbon of Comparative Example 3. The density of this glassy carbon was 1.55 g / cm 3 as measured by a density gradient tube, and the in-plane density difference was 0.01 to
It was 0.04 g / cm 3 .
【0034】〔比較例4〕フェノール樹脂PL−480
4 200gを10cm角の上部が開放系のステンレス
製シャーレに入れて、脱気をせずに、101kPa(大
気圧下)、50℃で40時間、70℃で40時間、10
0℃で20時間、150℃で20時間熱硬化し、樹脂硬
化物を得た。得られた樹脂硬化物を不活性雰囲気中で1
℃/分の昇温速度で1200℃まで焼成して比較例4の
ガラス状カーボンを作成した。このガラス状カーボンの
密度は密度勾配管による測定で1.55g/cm3であ
り、面内密度差0.01〜0.04g/cm3であっ
た。Comparative Example 4 Phenol Resin PL-480
4 200 g was placed in a 10 cm square stainless steel Petri dish with an open top, and without degassing, 101 kPa (under atmospheric pressure) at 50 ° C. for 40 hours, 70 ° C. for 40 hours, 10 hours.
The resin was thermally cured at 0 ° C. for 20 hours and at 150 ° C. for 20 hours to obtain a cured resin. The obtained cured resin is placed in an inert atmosphere for 1 hour.
The glassy carbon of Comparative Example 4 was prepared by firing at 1200 ° C. at a temperature rising rate of ° C./min. The density of the glassy carbon is 1.55 g / cm 3 as determined by a density gradient tube was plane density difference 0.01-0.04 / cm 3.
【0035】次に、得られた実施例1〜3、比較例1〜
4のガラス状カーボンを5cm角に切り出して、平均粒
子径0.6μmのアルミナ砥粒で研磨(研磨1回目)
し、SEMを用いて倍率1000倍で観察し、欠陥の大
きさと数を測定した。また、研磨1回目後のガラス状カ
ーボンを上記アルミナ砥粒を用いて0.5mm研磨(研
磨2回目)し、同様に欠陥の大きさと数を測定した。結
果を表1に示す。Next, the obtained Examples 1 to 3 and Comparative Examples 1 to
Cut the glassy carbon of No. 4 into 5 cm squares and polish them with alumina abrasive grains having an average particle diameter of 0.6 μm (the first polishing)
Then, the size and the number of defects were measured by observing at a magnification of 1000 times using an SEM. Further, the glassy carbon after the first polishing was polished by the above-mentioned alumina abrasive grains by 0.5 mm (the second polishing), and the size and number of defects were measured in the same manner. Table 1 shows the results.
【0036】[0036]
【表1】 [Table 1]
【0037】[0037]
【発明の効果】本発明のガラス状カーボン及びその製造
方法は、下記の優れた効果を奏するものである。 (1)本発明の製造方法によれば、焼成炭化前の熱硬化
を減圧下又は真空下で行うことにより、樹脂溶媒、反応
時に発生する縮合水、反応生成ガス、溶媒等を強制的に
系外に排除できると共に、特別な装置や煩雑な制御操作
が不要であり、効率よく低コストで高品質なガラス状カ
ーボンを得ることができる。 (2)樹脂組成物を乾燥中に強制排気するので、系内に
不純物が混入することを防止できる。 (3)減圧下で樹脂組成物を乾燥することにより、溶媒
の沸点が下がり、大気中で乾燥するよりも短時間で樹脂
硬化物を得ることができる。 (4)本発明のガラス状カーボンは、欠陥が極めて少な
い均質緻密な組織構造を有しており、特に内部欠陥を嫌
うプラズマエッチング電極等の半導体用途、ハードディ
スク等の記録媒体などに好適に用いることができるもの
である。The glassy carbon of the present invention and the method for producing the same exhibit the following excellent effects. (1) According to the production method of the present invention, the resin solvent, condensed water generated during the reaction, reaction product gas, solvent, etc. are forcibly systemized by performing thermosetting before calcining under reduced pressure or under vacuum. It is possible to obtain high-quality vitreous carbon efficiently and at low cost without special equipment or complicated control operations, as well as being able to be removed outside. (2) Since the resin composition is forcibly exhausted during drying, it is possible to prevent impurities from being mixed into the system. (3) By drying the resin composition under reduced pressure, the boiling point of the solvent is lowered, and a cured resin can be obtained in a shorter time than drying in the air. (4) The glassy carbon of the present invention has a homogeneous and dense texture structure with extremely few defects, and is suitably used particularly for semiconductor applications such as plasma etching electrodes that dislike internal defects and recording media such as hard disks. Can be done.
Claims (7)
ーボン用樹脂組成物を成形し、硬化した後、不活性雰囲
気中又は真空下で焼成炭化してなるガラス状カーボンに
おいて、上記ガラス状カーボンのSEM測定(倍率10
00倍)による欠陥の総数が300個/25cm2以下
であることを特徴とするガラス状カーボン。1. A glassy carbon obtained by molding and curing a resin composition for glassy carbon containing a thermosetting resin as a main component, and then calcining and firing in an inert atmosphere or under vacuum. SEM measurement of carbon (magnification 10
The glassy carbon is characterized in that the total number of defects due to (00 ×) is 300/25 cm 2 or less.
率1000倍)による欠陥の大きさが10μm以下であ
る請求項1記載のガラス状カーボン。2. The vitreous carbon according to claim 1, wherein the size of the defect in the vitreous carbon determined by SEM measurement (magnification: 1000 times) is 10 μm or less.
率1000倍)による欠陥の大きさが下記の通りの分布
である請求項1記載のガラス状カーボン。 10μm超の欠陥 :0〜10% 1〜10μmの欠陥 :0〜30% 1μm未満の欠陥 :残部3. The glassy carbon according to claim 1, wherein the size of the defect in the glassy carbon measured by SEM (at a magnification of 1000) is as follows. Defects of more than 10 μm: 0 to 10% Defects of 1 to 10 μm: 0 to 30% Defects of less than 1 μm: balance
ーボン用樹脂組成物を成形し、硬化した後、不活性雰囲
気中又は真空下で焼成炭化してなるガラス状カーボンに
おいて、上記焼成炭化前の硬化を減圧下又は真空下で行
って得られることを特徴とするガラス状カーボン。4. A glassy carbon obtained by molding and curing a resin composition for glassy carbon containing a thermosetting resin as a main component, and then baking it in an inert atmosphere or under vacuum. A glassy carbon obtained by performing the previous curing under reduced pressure or under vacuum.
ーボン用樹脂組成物を成形し、硬化した後、不活性雰囲
気中又は真空下で焼成炭化してなるガラス状カーボンに
おいて、上記焼成炭化前の硬化を減圧下又は真空下で行
って得られる請求項1,2又は3記載のガラス状カーボ
ン。5. A glassy carbon obtained by molding and curing a resin composition for glassy carbon containing a thermosetting resin as a main component, and then baking it in an inert atmosphere or under vacuum. The vitreous carbon according to claim 1, 2 or 3, which is obtained by performing the previous curing under reduced pressure or under vacuum.
ーボン用樹脂組成物を成形し、硬化した後、不活性雰囲
気中又は真空下で焼成炭化することによりガラス状カー
ボンを製造する方法において、上記焼成炭化前の硬化を
減圧下又は真空下で行うことを特徴とするガラス状カー
ボンの製造方法。6. A method for producing a glassy carbon by molding and curing a resin composition for glassy carbon containing a thermosetting resin as a main component, followed by firing and carbonizing in an inert atmosphere or under vacuum. A method for producing glassy carbon, wherein the curing before calcining is performed under reduced pressure or vacuum.
の減圧下又は真空下で行う請求項6記載のガラス状カー
ボンの製造方法。7. The method for producing glassy carbon according to claim 6, wherein the hardening before the calcination is performed under reduced pressure of 55 kPa or less or under vacuum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000100785A JP2001287988A (en) | 2000-04-03 | 2000-04-03 | Vitrified carbon and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000100785A JP2001287988A (en) | 2000-04-03 | 2000-04-03 | Vitrified carbon and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001287988A true JP2001287988A (en) | 2001-10-16 |
Family
ID=18614932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000100785A Pending JP2001287988A (en) | 2000-04-03 | 2000-04-03 | Vitrified carbon and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001287988A (en) |
-
2000
- 2000-04-03 JP JP2000100785A patent/JP2001287988A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115551818A (en) | Method for producing ceramic sintered body and ceramic sintered body | |
CN114276143A (en) | SiC-SiO based on 3D printing2Two-step sintering method of ceramic green body | |
TWI297002B (en) | ||
CN112272658A (en) | Method for manufacturing ceramic component | |
EP0178753B1 (en) | Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure | |
JPH1067565A (en) | Sintered silicon carbide body and its production | |
JP2001287988A (en) | Vitrified carbon and method for producing the same | |
CN109020552A (en) | SiC-based multiphase ceramic and preparation method thereof | |
KR20160024060A (en) | Pressureless sintered silicon carbide ceramics with high fracture toughness and high hardness, compositions thereof and Process for producing the Same | |
US20060240287A1 (en) | Dummy wafer and method for manufacturing thereof | |
JP2543159B2 (en) | Carbon material and its manufacturing method | |
JPS64321B2 (en) | ||
JP2002280316A (en) | Wafer and manufacturing method therefor | |
JPS62138361A (en) | Manufacture of high density formed body from carbon material | |
JP3553329B2 (en) | Manufacturing method of glassy carbon material | |
CN117735991B (en) | B for reflector4C composite material and preparation method thereof | |
JP4002325B2 (en) | Method for producing sintered silicon carbide | |
CN115710134B (en) | Interface modified ceramic matrix composite material and preparation method thereof | |
JP2005119925A (en) | High-resistivity silicon carbide sintered compact | |
JPS6362472B2 (en) | ||
JPS60171206A (en) | Molded article of vitrified carbonaceous material | |
JPH07300307A (en) | Production of glassy carbon material | |
JPH061604A (en) | Vitreous carbon and production of same | |
JP2000327422A (en) | Manufacture of glassy carbon substrate for dummy wafer | |
JPS60171211A (en) | Manufacture of vitrified carbonaceous material |