JP2001207342A - Method for producing vapor-grown carbon fiber - Google Patents

Method for producing vapor-grown carbon fiber

Info

Publication number
JP2001207342A
JP2001207342A JP2000019910A JP2000019910A JP2001207342A JP 2001207342 A JP2001207342 A JP 2001207342A JP 2000019910 A JP2000019910 A JP 2000019910A JP 2000019910 A JP2000019910 A JP 2000019910A JP 2001207342 A JP2001207342 A JP 2001207342A
Authority
JP
Japan
Prior art keywords
gas
heating
carbon fiber
carbon
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000019910A
Other languages
Japanese (ja)
Inventor
Masakazu Sato
雅一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2000019910A priority Critical patent/JP2001207342A/en
Publication of JP2001207342A publication Critical patent/JP2001207342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an industrially advantageous method for producing vapor- grown carbon fibers by which the production stability enabling the continuous production and quality of the carbon fibers are remarkably improved. SOLUTION: This method comprises contact heating a pyrolytic gas of a hydrocarbon, especially at 600-1,300 deg.C in the presence of an organotransition metal compound catalyst by using the electromagnetic induction heating as a heating method. In the method, the continuous production of the vapor-grown carbon fibers can be carried.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気相中で炭素繊維
を製造する方法の改良に関する。更に詳細には、本発明
は、炭化水素原料を加熱して炭素繊維を製造するに際
し、加熱方法として電磁誘導加熱を用いる点に特徴を有
する気相成長炭素繊維の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing carbon fibers in a gas phase. More specifically, the present invention relates to a method for producing a vapor-grown carbon fiber, characterized in that electromagnetic induction heating is used as a heating method when producing a carbon fiber by heating a hydrocarbon raw material.

【0002】[0002]

【従来の技術】気相成長炭素繊維は結晶配向性に優れて
いるため、機械的特性、電気的特性、生化学的特性等に
おいて、従来の炭素繊維に見られない優れた特性を有
し、その効率的な工業生産法が望まれている。従来、気
相成長炭素繊維の製造方法としては、例えば電気炉内に
アルミナ、黒鉛などの基板を置き、この基板表面に鉄、
ニッケルなどの超微粒子触媒を形性せしめ、この上にベ
ンゼンなどの炭化水素ガスと水素ガス等のキャリアガス
との混合ガスを導入し、1010℃〜1300℃の温度
下に炭化水素を分解せしめることにより、基板上に炭素
繊維を成長させる方法が特開昭48−41039号公
報、特公昭51−33210号公報などで知られてい
る。
2. Description of the Related Art Since a vapor-grown carbon fiber has excellent crystal orientation, it has excellent mechanical properties, electrical properties, biochemical properties, etc. which are not found in conventional carbon fibers. An efficient industrial production method is desired. Conventionally, as a method for producing a vapor-grown carbon fiber, for example, a substrate such as alumina or graphite is placed in an electric furnace, and iron,
To form an ultra-fine particle catalyst such as nickel, and to introduce a mixed gas of a hydrocarbon gas such as benzene and a carrier gas such as hydrogen gas thereon to decompose the hydrocarbon at a temperature of 1010 to 1300 ° C. Thus, a method of growing carbon fibers on a substrate is known in Japanese Patent Application Laid-Open No. 48-41039, Japanese Patent Publication No. 51-33210, and the like.

【0003】しかし、これら方法では、基板表面上の微
妙な温度ムラや、周囲の繊維の密生度によって長さの不
均一が起こりやすいこと、また、炭素の供給源としての
ガスが反応によって消費される事により反応管の入り口
の出口に近いところで繊維径が相当異なる等、炭素繊維
の品質が低い等の問題があった。また基板表面でのみ生
成が行われるため反応管の中心部分は反応に寄与せず収
率が悪いこと、更に超微粒子基板への分散、還元、成
長、ついで繊維の取り出しという独立に実施を必要とす
る行程があるため連続製造が不可能であり、従って生産
性が悪い等の問題点を有していた。
However, in these methods, the length tends to be non-uniform due to minute temperature unevenness on the substrate surface and the density of the surrounding fibers, and the gas as a carbon source is consumed by the reaction. Therefore, there is a problem that the fiber diameter is considerably different near the inlet and outlet of the reaction tube, and the quality of the carbon fiber is low. In addition, since the production is carried out only on the substrate surface, the central part of the reaction tube does not contribute to the reaction and the yield is poor, and it is necessary to perform independent dispersion, reduction, growth on the ultrafine particle substrate, and then take out the fiber Therefore, there is a problem that continuous production is impossible due to the steps to be performed, and therefore, productivity is low.

【0004】また、気相法による炭素繊維の連続製造方
法について例えば特開昭60−54998などに示され
るように、炭化水素化合物のガスと有機遷移金属化合物
のガスとキャリアガスとの混合ガスを600℃〜130
0℃にて加熱する気相成長法による炭素繊維の連続製造
方法なども知られているが、この方法でも、反応管の入
口、出口、中心部と、外壁とで温度ムラが大きく、得ら
れる炭素繊維の長さや形状が不均一であり品質が低いと
いう問題がある。また、連続生産に伴う炭素繊維の回収
について、時間の経過と共に電気炉末端に溜まってしま
い、作業性が悪く、この炭素繊維塊を取り出すときに押
出棒を設置しても電気炉内の冷却効果によりヒートショ
ックを生じてしまい、炉芯管がアルミナ等であるために
温度差に対する耐久性が悪く炉芯管が割れてしまうこと
があるため長時間の連続運転ができない等の生産性が低
いという問題は解決されていたなかった。
Further, as for a continuous production method of carbon fiber by a gas phase method, for example, as disclosed in JP-A-60-54998, a mixed gas of a hydrocarbon compound gas, an organic transition metal compound gas and a carrier gas is used. 600 ° C ~ 130
A method of continuously producing carbon fibers by a vapor phase growth method of heating at 0 ° C. is also known. However, even with this method, a large temperature unevenness is obtained at the inlet, outlet, center, and outer wall of the reaction tube. There is a problem that the length and shape of the carbon fiber are not uniform and the quality is low. In addition, regarding the collection of carbon fibers associated with continuous production, the carbon fiber accumulates at the end of the electric furnace with the lapse of time, and the workability is poor. Heat shock occurs, and the furnace core tube is made of alumina or the like, so the durability against the temperature difference is poor and the furnace core tube may be broken, so that long-term continuous operation cannot be performed and productivity is low. The problem had not been solved.

【0005】[0005]

【発明が解決しようとする課題】本発明は、工業的に優
位な気相成長法による炭素繊維の製造方法において、連
続生産可能な製造安定性による高い生産性の達成と炭素
繊維の品質を大幅に向上させる製造方法について提供
し、さらには本方法によって高品質の炭素繊維を供給す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a method for producing carbon fiber by a vapor phase growth method, which is industrially advantageous, and achieves high productivity due to continuous production stability and greatly improves the quality of carbon fiber. It is another object of the present invention to provide a production method for improving the carbon fiber quality and to supply high-quality carbon fiber by the present method.

【0006】[0006]

【課題を解決するための手段】本発明者等は前記課題を
解決するため、生産性向上と品質を高めることのできる
気相成長法による炭素繊維の連続製造方法につき鋭意研
究を重ねた結果、加熱方法として特定の電磁誘導加熱を
用いて600℃〜1300℃の範囲で加熱すると言う特
定の気相成長法による炭素繊維の連続製造方法により、
高い品質の炭素繊維を工業的に高い生産性にて製造でき
ることを見出し、本発明を完成するに至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on a continuous production method of carbon fiber by a vapor growth method capable of improving productivity and quality. As a heating method, a specific method of continuous production of carbon fibers by a specific vapor phase growth method of heating in a range of 600 ° C. to 1300 ° C. using a specific electromagnetic induction heating,
The inventors have found that high quality carbon fibers can be industrially produced with high productivity, and have completed the present invention.

【0007】即ち、本発明は: 炭化水素の熱分解によるガスを有機遷移金属化合物
の存在下に、電磁誘導加熱体に接触加熱させる炭素繊維
の製造方法を提供する。また、 該熱分解が、加熱高融点金属あるいは金属化合物の
微粒粉末を、炭化水素の熱分解帯域に浮遊させる点にも
特徴を有する。また、 該熱分解が、有機遷移金属化合物のガスとキャリア
ガス及び炭化水素ガスとの混合ガスを加熱する点にも特
徴を有する。また、 該加熱が、600℃〜1300℃である点にも特徴
を有する。また、 該電磁誘導加熱が、ガスが通る非磁性体で形成され
た通路中に炭素・セラミックス複合材料で構成した発熱
体を設置した点にも特徴を有する。また、 該電磁誘導加熱が、発熱体とそのコイルとで構成す
る加熱段をガスの移動方向に複数段設け、最初の加熱段
の発熱体を金属で構成し、次の加熱段以降の加熱段の発
熱体を炭素・セラミックス複合材料で構成した装置を用
いる点にも特徴を有する。また、 該セラミックス複合材料が、カーボンを主体としこ
れに炭化硼素および炭化珪素を複合させたものである点
にも特徴を有する。また、 該電磁誘導加熱が、ガス通路内周に嵌合する外周を
有し前記ガス通過用の孔を有する部材に形成された発熱
体を有する装置を用いる点にも特徴を有する。また、 該電磁誘導加熱が、前記発熱体が複数の部材からな
り且つガス通過路を形成するように該通路内に非磁性体
で支持されている装置を用いる点にも特徴を有する。ま
た、 (10) 〜のいずれかに記載の方法で作られた炭素繊
維を提供する。要約すると、本発明は、炭化水素の熱分
解によるガスを有機繊維金属化合物存在下に、電磁誘導
加熱体に接触加熱させることを特徴とする炭素繊維の製
造方法と本方法によって得られた高品質炭素繊維を提供
するものである。
That is, the present invention provides: A method for producing carbon fibers, in which a gas obtained by thermal decomposition of a hydrocarbon is heated in contact with an electromagnetic induction heater in the presence of an organic transition metal compound. In addition, the thermal decomposition is characterized in that fine powder of a heated refractory metal or metal compound is suspended in a hydrocarbon thermal decomposition zone. Further, the thermal decomposition is characterized in that a mixed gas of a gas of an organic transition metal compound, a carrier gas and a hydrocarbon gas is heated. It is also characterized in that the heating is performed at 600 ° C. to 1300 ° C. Also, the electromagnetic induction heating is characterized in that a heating element made of a carbon / ceramic composite material is installed in a passage formed of a non-magnetic material through which a gas passes. In the electromagnetic induction heating, a plurality of heating stages including a heating element and its coil are provided in the direction of gas movement, and the heating element of the first heating stage is formed of metal, and the heating stages subsequent to the next heating stage are formed. It is also characterized by using a device in which the heating element is made of a carbon / ceramic composite material. Also, the ceramic composite material is characterized in that it is mainly composed of carbon and is made of a composite of boron carbide and silicon carbide. Further, the electromagnetic induction heating is characterized in that a device having a heating element formed on a member having an outer periphery fitted into the inner periphery of the gas passage and having the gas passage hole is used. Also, the electromagnetic induction heating is characterized in that a device in which the heating element is composed of a plurality of members and is supported by a non-magnetic material in the passage so as to form a gas passage is used. Also provided is a carbon fiber produced by the method according to any one of (10) to (10). In summary, the present invention provides a method for producing carbon fibers, which comprises heating a gas obtained by thermal decomposition of hydrocarbons in the presence of an organic fiber metal compound in contact with an electromagnetic induction heating body, and the high quality obtained by the method. It is intended to provide carbon fiber.

【0008】[0008]

【発明の実施の形態】本発明において、主な炭素源供給
原料である炭化水素化合物とは、有機鎖式化合物又は有
機環式化合物からなる炭化水素化合物全般が対象となる
が、特に高い収率を得るには、脂肪族炭化水素、芳香族
炭化水素である。また、これらの他、窒素、酸素、硫
黄、フッ素、臭素、沃素、燐、砒素等の元素を含んだ誘
導体も使用可能である。具体的な個々の化合物の例の一
部を挙げると、メタン、エタン等のアルカン化合物;エ
チレン、ブタジエン等のアルケン化合物;アセチレン等
のアルキン化合物;ベンセン、トルエン、スチレン等の
アリール炭化水素化合物;インデン、ナフタリン、フエ
ナントレン等の縮合環を有する芳香族炭化水素;シクロ
プロパン、シクロヘキサン等のシクロパラフィン化合
物;シクロペンテン、シクロヘキセン等のシクロオレフ
ィン化合物;ステロイド等縮合環を有する脂環式炭化水
素化合物;メチルチオール、メツリェチルスルフィド、
ジメチルチオケトン等の含硫脂肪族化合物;フェニルチ
オール、ジフェニルスルフィド等の含硫芳香族化合物;
ベンゾチオフェン、チオフェン等の含硫複素環式化合物
等である。また、以上の化合物の2種類以上の混合物を
使用することも可能である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a hydrocarbon compound as a main carbon source feedstock is intended to include all hydrocarbon compounds comprising an organic chain compound or an organic cyclic compound. Are required to be aliphatic hydrocarbons and aromatic hydrocarbons. In addition, derivatives containing elements such as nitrogen, oxygen, sulfur, fluorine, bromine, iodine, phosphorus, and arsenic can also be used. Specific examples of individual compounds include alkane compounds such as methane and ethane; alkene compounds such as ethylene and butadiene; alkyne compounds such as acetylene; aryl hydrocarbon compounds such as benzene, toluene and styrene; An aromatic hydrocarbon having a condensed ring such as naphthalene and phenanthrene; a cycloparaffin compound such as cyclopropane and cyclohexane; a cycloolefin compound such as cyclopentene and cyclohexene; an alicyclic hydrocarbon compound having a condensed ring such as steroid; methylthiol; Metulethyl sulfide,
Sulfur-containing aliphatic compounds such as dimethyl thioketone; sulfur-containing aromatic compounds such as phenylthiol and diphenyl sulfide;
And sulfur-containing heterocyclic compounds such as benzothiophene and thiophene. It is also possible to use a mixture of two or more of the above compounds.

【0009】また、本発明におけるガスとは、純ガス以
外にガスに固体または液体の微粒子を包含する燃霧質も
含める広義のガスを意味するものとする。キャリアガス
とは、周期律0族のアルゴン、ヘリウム等の希ガス及び
水素、窒素又はこれらの混合ガスの中から選択されるガ
スを主体とし、高収率を得るには水素ガスがもっとも好
ましい。主体とするという意味は上記以外に他のガスを
含むことが許されることを意味し、その割合はキャリア
ガス成分中20%以内である。この種の少量成分ガスは
硫化水素及び/又は二硫化炭素が好ましい。
Further, the gas in the present invention means a gas in a broad sense including not only a pure gas but also a mist containing solid or liquid fine particles in the gas. The carrier gas is mainly composed of a rare gas such as argon or helium of the periodic group 0 and a gas selected from hydrogen, nitrogen or a mixed gas thereof, and hydrogen gas is most preferable for obtaining a high yield. Mainly means that other gases are allowed to be contained in addition to the above, and the ratio is within 20% of the carrier gas component. Such minor component gases are preferably hydrogen sulfide and / or carbon disulfide.

【0010】本発明において、触媒源として使用する有
機遷移金属化合物とは、アルキル基と金属が結合したア
ルキル金属、アリル基と金属が結合したアリル錯体;炭
素間二重結合や三重結合と金属とが結合したπコンプレ
ックスとキレート型化合物等に代表される有機遷移金属
化合物である。これらのうちキレート型化合物が好適で
ある。また、ここで遷移金属はスカンジウム、チタン、
バナジウム、クロム、マンガン、鉄、コバルト、ニッケ
ル、イットリウム、ジルコニウム、ニオブ、モリブデ
ン、ルテニウム、ロジウム、パラジウム、タンタル、タ
ングステン、レニウム、イリジウム、白金をさすもので
あるが、これらのうち特に周期律表8族に属するもの、
そのうちで特に鉄、コバルト、ニッケルが好適であっ
て、鉄がもっとも好適である。また、これらの混合物の
使用も可能である。
In the present invention, an organic transition metal compound used as a catalyst source includes: an alkyl metal having an alkyl group and a metal bonded; an allyl complex having an allyl group and a metal bonded; Is an organic transition metal compound typified by a π complex and a chelate-type compound or the like bonded to the compound. Among these, chelate type compounds are preferred. The transition metals here are scandium, titanium,
It refers to vanadium, chromium, manganese, iron, cobalt, nickel, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, rhenium, iridium, and platinum. Belonging to a tribe,
Among them, iron, cobalt, and nickel are particularly preferred, and iron is most preferred. It is also possible to use these mixtures.

【0011】本発明における加熱温度は、炭化水素化合
物ガスと有機遷移金属化合物のガスと0〜20%の少量
ガスを含むキャリアガスとの混合物を好ましくは600
℃〜1300℃、更に好適には1050℃〜1200℃
に加熱する温度である。この場合、600℃未満である
と十分に有機遷移金属化合物が気化しないため炭素繊維
が生成されず、1300℃以上であると反応速度が速く
なり、長さ方向に十分成長できないまま反応が終了して
しまうので繊維状にならない。
[0011] The heating temperature in the present invention is preferably a mixture of a hydrocarbon compound gas, an organic transition metal compound gas and a carrier gas containing a small amount of 0 to 20% of a gas.
C. to 1300 C., more preferably 1050 C. to 1200 C.
Is the temperature at which heating is performed. In this case, if the temperature is lower than 600 ° C., the organic transition metal compound is not sufficiently vaporized, so that carbon fibers are not generated. So it does not become fibrous.

【0012】このように、触媒並びに炭素供給源を兼ね
る有機遷移金属化合物は、主な炭素供給源である炭化水
素化合物と共に上記温度範囲で加熱されると、両者は熱
分解して(炭素源)ガス化され、該有機遷移金属化合物
の熱分解により遊離した加熱高融点金属又は金属化合物
の微粒粉末が該炭化水素化合物の熱分解帯域に浮遊し
て、その微粒粉末を触媒点として両者のガスからの炭素
源が気相成長して炭素繊維が生成するものと考えられ
る。
As described above, when the organic transition metal compound serving also as the catalyst and the carbon supply source is heated in the above-mentioned temperature range together with the hydrocarbon compound which is the main carbon supply source, both are thermally decomposed (carbon source). The heat-melting metal or fine particles of the metal compound, which are gasified and released by the thermal decomposition of the organic transition metal compound, float in the thermal decomposition zone of the hydrocarbon compound, and the fine particles are used as catalyst points from both gases. It is considered that the carbon source is vapor grown to produce carbon fibers.

【0013】また、炭化水素化合物と有機遷移金属化合
物のガスが、キャリアガスとの混合ガス中に占める割合
は、好ましくは各々0〜40wt%、0.05〜10w
t%である。ここで炭素化合物の濃度が0でも良いの
は、有機遷移金属化合物の骨格中に十分な炭素を含有し
ている場合は必ずしも炭素化合物のガスを必要としない
という意味である。炭化水素化合物の割合が40wt%
を超えて多くなると炭素繊維の成長を阻害するために十
分な反応が行われず有機遷移金属の触媒活性が失活して
しまう。更に、炭化水素化合物の割合が40wt%を超
えて多くなった場合は、炭素繊維の直進性を阻害し、枝
分かれしたような分岐繊維が増加する。また、有機遷移
金属化合物の割合が0.1wt%未満と少ない場合は、
繊維の成長起点となるものが少なくなるので収量が減少
する。そのため両者の割合は上記範囲が好ましい。
The ratio of the hydrocarbon compound and the organic transition metal compound in the mixed gas with the carrier gas is preferably 0 to 40 wt% and 0.05 to 10 w%, respectively.
t%. Here, the reason why the concentration of the carbon compound may be 0 means that when the skeleton of the organic transition metal compound contains sufficient carbon, the gas of the carbon compound is not necessarily required. The ratio of hydrocarbon compounds is 40wt%
When the amount exceeds the limit, a sufficient reaction is not performed to inhibit the growth of carbon fibers, and the catalytic activity of the organic transition metal is deactivated. Further, when the proportion of the hydrocarbon compound exceeds 40 wt%, the straightness of the carbon fiber is hindered, and the number of branched fibers increases. Further, when the ratio of the organic transition metal compound is as small as less than 0.1 wt%,
Since the starting point of fiber growth is reduced, the yield is reduced. Therefore, the ratio of the two is preferably in the above range.

【0014】本発明において混合ガスの加熱方法として
は、電磁誘導加熱による方法を採用する点に特徴があ
る。この加熱方法の原理は、例えば図1の電磁誘導加熱
装置に示されるように、基本的にガスが通るように非磁
性体、例えば窒化ケイ素、セラミックス等で形成された
通路中に電磁誘導により発熱する発熱体を設置し、電磁
誘導加熱した前記発熱体に前記通路内を通るガスを接触
させることにより、発熱するものである。このとき、前
記発熱体が炭素・セラミックス複合材料である事が好ま
しい。炭素・セラミックス複合材料として必要な耐熱
性、機械的強度、電気比抵抗を備えたものを使用する
と、電磁誘導加熱により該複合材料を発熱させてその温
度を大気中で600〜1300℃とすることが可能とな
り、その温度で長時間維持しても殆ど劣化がない利点を
有する。なお、炭素・セラミックス複合材料及び製造方
法は公知の技術であり、例えば、特開昭56−1400
75号公報に記載されるように、摩砕処理したコークス
粉末とセラミックス粉末との混合粉末を金型中で加圧成
形した後に不活性雰囲気下で両者の反応温度以下で焼成
することにより製造できる。また、該炭素・セラミック
ス複合材料は、組成的にはカーボンを主体としこれに炭
化硼素および炭化珪素を複合させたものが好ましい。こ
の場合、炭化硼素および炭化珪素の配合比を変えること
により電気比抵抗と熱衝撃に対する強さを変化できるか
ら、耐久性、電気的効率の良い電磁誘導加熱装置とでき
る。
The present invention is characterized in that a method using electromagnetic induction heating is employed as a method for heating the mixed gas. The principle of this heating method is that, as shown in, for example, the electromagnetic induction heating device of FIG. 1, heat is generated by electromagnetic induction in a passage made of a non-magnetic material, for example, silicon nitride, ceramics or the like so that gas basically passes through. A heating element is provided, and heat is generated by bringing a gas passing through the passage into contact with the heating element heated by electromagnetic induction. At this time, it is preferable that the heating element is a carbon / ceramic composite material. When a carbon-ceramic composite material having the necessary heat resistance, mechanical strength, and electrical resistivity is used, the composite material is heated by electromagnetic induction heating, and the temperature is set to 600 to 1300 ° C. in the atmosphere. This has the advantage that there is almost no deterioration even if the temperature is maintained for a long time. The carbon-ceramic composite material and the production method are well-known technologies.
As described in Japanese Patent No. 75, it can be produced by pressing a mixed powder of a milled coke powder and a ceramic powder in a mold and then baking the mixture at a reaction temperature or lower under an inert atmosphere. . In addition, the carbon-ceramic composite material is preferably composed mainly of carbon and composited with boron carbide and silicon carbide. In this case, by changing the mixing ratio of boron carbide and silicon carbide, the electrical resistivity and the strength against thermal shock can be changed, so that an electromagnetic induction heating device with high durability and electrical efficiency can be obtained.

【0015】また、電磁誘導加熱装置の構成は、例え
ば、前記発熱体とそのコイルとで構成する加熱段を、前
記ガスの移動方向に複数段設け、最初の加熱段の発熱体
を金属等で構成し、次の加熱段以降の加熱段の発熱体を
炭素・セラミックス複合材料で構成することができる。
この場合、最初の加熱段の発熱体を金属としたから、こ
の段の発熱体の温度は、金属発熱体の耐久性を考慮する
とその材質に応じた限界温度があり、例えば、その限界
温度が500°C程度であるとすると、この温度以下に
昇温を制御しておき、次の加熱段以降で、炭素・セラミ
ックス複合材料の発熱体を用いて、600〜1300°
Cに昇温して使用することが望ましい。
[0015] The electromagnetic induction heating device may be configured, for example, by providing a plurality of heating stages each composed of the heating element and its coil in the moving direction of the gas, wherein the heating element of the first heating stage is made of metal or the like. The heating element of the heating stage after the next heating stage can be made of a carbon / ceramic composite material.
In this case, since the heating element in the first heating stage is made of metal, the temperature of the heating element in this stage has a limit temperature according to the material in consideration of the durability of the metal heating element. Assuming that the temperature is about 500 ° C., the temperature is controlled to be lower than this temperature, and after the next heating stage, using a heating element made of a carbon / ceramic composite material, the temperature is raised to 600 to 1300 ° C.
It is desirable that the temperature be raised to C before use.

【0016】これによって、最初の加熱段で耐久性に無
理のない範囲で金属発熱体を発熱作用させ、所定温度ま
でガスを加熱しておくことができるから、多量のガスの
昇温処理においては、次の加熱段以降の負荷がその分低
減し、最初の加熱段で一挙に最高温度に昇温でき、ま
た、ガスの昇温処理が短時間で可能になり耐久性や電気
的効率も向上する。更に、前記炭素・セラミックス複合
材料で構成した発熱体を、前記通路内周に嵌合する外周
を有し前記ガス通過用の孔を有する部材に形成すること
もでき、発熱体の外周が通路内周に嵌合しているからそ
の間をガスが殆ど通過しないで、ガス通過用の穴を通過
することにより、ガスが均一に加熱される。また、前記
炭素・セラミックス複合材料で構成した発熱体は、複数
の部材で構成することもでき、ガス通過路を形成する前
記通路内に非磁性体で支持されているため、ガス通過路
を屈曲させて形成したり、ガス通過路内面に凹凸を設け
たりすることが可能で、ガス通過路を通るガスを発熱体
に十分に接触させ、所定通路長さに対して効果的に昇温
させることができる。
[0016] This allows the metal heating element to generate heat within the reasonable range of durability in the first heating stage, thereby heating the gas to a predetermined temperature. , The load after the next heating stage is reduced by that much, the temperature can be raised to the maximum temperature at once in the first heating stage, and the gas temperature can be raised in a short time, improving durability and electrical efficiency I do. Further, the heating element made of the carbon / ceramic composite material may be formed as a member having an outer periphery fitted to the inner periphery of the passage and having the gas passage hole, and the outer periphery of the heating element may be formed in the passage. The gas is uniformly heated by passing through the gas passage hole with little gas passing therethrough because it fits around the circumference. Further, the heating element made of the carbon / ceramic composite material can be made up of a plurality of members. Since the heating element is supported by a non-magnetic material in the passage forming the gas passage, the gas passage is bent. The gas passing through the gas passage can be sufficiently contacted with the heating element, and the temperature can be effectively raised for a predetermined length of the passage. Can be.

【0017】本発明における電磁誘導加熱に用いる電磁
誘導加熱装置は、その機能が発揮できれば特に制限され
ないが、図1に示す装置を用いることが好ましい。図1
に示される電磁誘導加熱装置の概要を以下に説明する。
図1において、1は炭素供給源としての炭化水素化合物
及び触媒並びに炭素供給源を兼ねる有機遷移金属化合物
等を収納した原料液容器、2は原料液を送る液添ポン
プ、3は流量調整バルブ、4はキャリアガスとしての水
素ガスボンベ、5は流量調整バルブ、6は原料液供給
管、7は水素ガス供給管、8は耐熱性窒化珪素炉芯管、
9は熱分解ガス残差排出管、10は装置の防爆のための
2導入口、11はアルゴンガス導入口、12は流量調
整バルブ、13はキャリアガスとしてのアルゴンガスボ
ンベ、14は押出棒、15は気相成長炭素繊維の回収ボ
ックス、16は電磁コイルである。
The electromagnetic induction heating apparatus used for electromagnetic induction heating in the present invention is not particularly limited as long as it can exhibit its function, but it is preferable to use the apparatus shown in FIG. FIG.
The outline of the electromagnetic induction heating device shown in FIG.
In FIG. 1, 1 is a raw material liquid container containing a hydrocarbon compound and a catalyst as a carbon supply source, an organic transition metal compound also serving as a carbon supply source, 2 is a liquid addition pump for sending a raw material liquid, 3 is a flow control valve, 4 is a hydrogen gas cylinder as a carrier gas, 5 is a flow control valve, 6 is a raw material liquid supply pipe, 7 is a hydrogen gas supply pipe, 8 is a heat resistant silicon nitride furnace core pipe,
9 pyrolysis gas residual discharge pipe 10 N 2 inlet for the explosion-proof equipment, 11 argon gas inlet, 12 is the flow rate adjusting valve, 13 is an argon gas cylinder as a carrier gas, 14 push rod, Reference numeral 15 denotes a vapor growth carbon fiber collection box, and reference numeral 16 denotes an electromagnetic coil.

【0018】本発明の電磁誘導加熱装置の機構を説明す
る。炭素供給源としての炭化水素化合物及び触媒源とし
ての有機遷移金属化合物を入れた原料液容器1から原料
液が液添ポンプ2および液供給管6により電磁誘導加熱
帯域に送られる。該電磁誘導加熱帯域は、Fe合金等の
金属材料構成した発熱体1と前記炭素・セラミックス複
合材料で構成した発熱体2とからなり、この両側に電磁
コイルを配備し別に設けた高周波電源により操作する電
磁誘導加熱炉である。該加熱炉に水平に設置された窒化
珪素炉芯管(内径60mm、長さ2000mm)8の一
端にガス導入管7および液供給管6、他端にガス残渣排
出管9を接続し、炉芯管内8をアルゴンガスボンベ13
からのアルゴンガスで置換後、水素ガスボンベ4からの
水素ガスを所定の流速で(通常20〜60L/分)にて
発熱体1に導入しつつ発熱体2の温度が1100℃にな
るまで昇温した。昇温後、原料液を所定の流速(通常7
〜20g/分)で供給して、熱分解加熱帯域中に浮遊す
る有機遷移金属化合物から形成された加熱高融点金属又
は金属化合物の微粒粉末を成長点として炭化水素化合物
ガスからの炭素供給源が順次成長して、加熱帯域に炭素
繊維フロックが生成し、これを押出棒14で掻き出し
て、上方にガス残渣排出管9と下方に防爆用の窒素ガス
導入口10を設けた回収ボックス15に貯める。もちろ
ん、炭素繊維の製造はバッチ運転でも連続運転でも構わ
ない。
The mechanism of the electromagnetic induction heating device of the present invention will be described. A raw material liquid is sent from a raw material liquid container 1 containing a hydrocarbon compound as a carbon supply source and an organic transition metal compound as a catalyst source to an electromagnetic induction heating zone by a liquid addition pump 2 and a liquid supply pipe 6. The electromagnetic induction heating zone includes a heating element 1 made of a metal material such as an Fe alloy and a heating element 2 made of the carbon / ceramic composite material. Is an electromagnetic induction heating furnace. A gas introduction pipe 7 and a liquid supply pipe 6 are connected to one end of a silicon nitride furnace core pipe (inner diameter 60 mm, length 2000 mm) 8 horizontally installed in the heating furnace, and a gas residue discharge pipe 9 is connected to the other end. Argon gas cylinder 13 in tube 8
After the hydrogen gas from the hydrogen gas cylinder 4 is introduced into the heating element 1 at a predetermined flow rate (usually 20 to 60 L / min), the temperature of the heating element 2 is raised to 1100 ° C. did. After the temperature is raised, the raw material liquid is supplied at a predetermined flow rate (usually 7
-20 g / min), and a carbon source from a hydrocarbon compound gas is grown with a fine powder of a heated refractory metal or metal compound formed from an organic transition metal compound floating in a pyrolysis heating zone as a growth point. Growing sequentially, carbon fiber flocs are generated in the heating zone, scraped out with an extrusion rod 14, and stored in a recovery box 15 provided with a gas residue discharge pipe 9 above and a nitrogen gas inlet 10 for explosion proof below. . Of course, the production of carbon fibers may be either batch operation or continuous operation.

【0019】なお、図2に示されるように、発熱体の構
造は、炭化水素化合物等からの熱分解ガスが電磁誘導加
熱体に十分に接触加熱されるように、複数の部材の発熱
体17から構成し、それら発熱体の間に孔からなるガス
通路18を形成させても良い。図2において、8は炉芯
管、16はコイル、17は発熱体、18はガス通路、1
9は高周波電源である。
As shown in FIG. 2, the structure of the heating element 17 includes a plurality of heating elements 17 so that a pyrolysis gas from a hydrocarbon compound or the like is sufficiently heated by contact with the electromagnetic induction heating element. And a gas passage 18 composed of a hole may be formed between the heating elements. In FIG. 2, 8 is a furnace core tube, 16 is a coil, 17 is a heating element, 18 is a gas passage, 1
9 is a high frequency power supply.

【0020】本発明の方法で製造された炭素繊維は、各
種樹脂と混練する事により強化材料、導電材料、易塗装
材料、帯電防止材料などに用いることができ、また単体
でも水素吸蔵材料などに応用することができる。本発明
を実施例に基づいて以下に説明する。
The carbon fiber produced by the method of the present invention can be used as a reinforcing material, a conductive material, an easily coated material, an antistatic material, etc. by kneading with various resins. Can be applied. The present invention will be described below based on examples.

【実施例】本発明にて生成された炭素繊維の重量を計量
し、その原材料重量に対する生成量について収率を求め
た。また、透過型電子顕微鏡(日立製HF-200:加速電圧
200kv)にて炭素繊維の径、デジタルマイクロスコ
ープ(キーエンス社製VH6300)にて長さをそれぞれ測定
し、X線回折装置(マックスサイエンス社製MXP-18)に
てカーボン由来ピークである2θ=25.5のエリア値
より結晶性を評価した。 (実施例1)図1に示される装置を用いて、トルエン中
にフェロセンを1wt%、チオフェンを1.1wt%混
合し、均一になるまで攪拌する。この原料液を液添ポン
プ2および液供給管6に接続された原料液容器1に移
す。前記発熱体1、2を備えた電磁誘導加熱炉に水平に
設置された窒化珪素炉芯管(内径60mm、長さ200
0mm)8の一端にガス導入管7および液供給管6、他
端にガス残渣排出管9を接続し、炉芯管8内をアルゴン
ガスで置換後、水素ガスを60L/分にて導入しつつ発
熱体2の温度が1100℃になるまで昇温した。昇温
後、原料液を20g/分にて30分間フィードし、バッ
チ運転を行った。その後、アルゴンガスに切り替えて冷
却し生成炭素繊維を取出し収量を測定した。得られた炭
素繊維の評価結果を表1に示す。また、得られた炭素繊
維の断面の透過型電子顕微鏡写真を図3に且つX線回折
測定結果を図5に示す。
EXAMPLES The weight of the carbon fibers produced in the present invention was weighed, and the yield based on the weight of the raw materials was determined. In addition, the diameter of the carbon fiber and the length were measured using a transmission electron microscope (Hitachi HF-200: accelerating voltage 200 kv) and a digital microscope (Keyence VH6300), respectively, and an X-ray diffractometer (Max Science) The crystallinity was evaluated from an area value of 2θ = 25.5, which is a peak derived from carbon, using MXP-18). Example 1 1% by weight of ferrocene and 1.1% by weight of thiophene were mixed in toluene using the apparatus shown in FIG. 1, and the mixture was stirred until it became uniform. This raw material liquid is transferred to the raw material liquid container 1 connected to the liquid addition pump 2 and the liquid supply pipe 6. A silicon nitride furnace core tube (inner diameter 60 mm, length 200 mm) installed horizontally in an electromagnetic induction heating furnace equipped with the heating elements 1 and 2
0 mm) 8 is connected to a gas introduction pipe 7 and a liquid supply pipe 6 at one end, and a gas residue discharge pipe 9 to the other end. After the inside of the furnace core tube 8 is replaced with argon gas, hydrogen gas is introduced at 60 L / min. While heating, the temperature of the heating element 2 was raised to 1100 ° C. After the temperature was raised, the raw material liquid was fed at 20 g / min for 30 minutes, and a batch operation was performed. Thereafter, the gas was switched to argon gas and cooled, and the produced carbon fibers were taken out and the yield was measured. Table 1 shows the evaluation results of the obtained carbon fibers. FIG. 3 shows a transmission electron micrograph of a cross section of the obtained carbon fiber, and FIG. 5 shows the result of X-ray diffraction measurement.

【0021】(比較例1)図1の装置において、発熱体
としてシリコンユニット発熱体を備えた通常の電気炉に
変更し、炉芯管をムライト材質炉芯管(内径60mm、
長さ2000mm)に変更し、水平に設置した。実施例
1と同様の原材料にて同時間処理を行い生成炭素繊維を
取出した後、収量を測定し、実施例1と同様の方法で評
価を行った。その結果を表1に示す。また、透過型電子
顕微鏡写真を図4に且つX線回折測定結果を図6示す。
(Comparative Example 1) In the apparatus shown in FIG. 1, a normal electric furnace having a silicon unit heating element as a heating element was changed to a furnace core tube made of mullite material (inner diameter: 60 mm, inner diameter: 60 mm).
The length was changed to 2000 mm) and it was installed horizontally. After the same raw material as in Example 1 was treated for the same time to take out the produced carbon fiber, the yield was measured and evaluated in the same manner as in Example 1. Table 1 shows the results. FIG. 4 shows a transmission electron micrograph and FIG. 6 shows the results of X-ray diffraction measurement.

【0022】(実施例2)図1に示される装置に炉芯管
端部に蓄積した炭素繊維塊を押し出すための押出棒14
および生成炭素繊維を回収するための回収ボックス15
を設置した装置を用い、実施例1に示される操作方法お
よび処理温度、原料導入量にて2時間の連続運転を行っ
た。実験途中、炉芯管端部に炭素繊維塊が発生するた
め、蓄積量が増加するごとに随時、押出棒を用いて炭素
繊維塊を0.5m/hrの速度で挿入し、炭素繊維塊を
回収ボックスに落としながら連続運転を行い、生成繊維
を取り出した後、収量を測定し実施例1と同様の方法で
評価を行った。その結果を表1に示す。
(Example 2) An extruding rod 14 for extruding the carbon fiber mass accumulated at the end of the furnace core tube into the apparatus shown in FIG.
And a collection box 15 for collecting the produced carbon fiber
, A continuous operation was performed for 2 hours at the operating method, the processing temperature and the raw material introduction amount shown in Example 1. During the experiment, carbon fiber lump is generated at the end of the furnace core tube. Therefore, whenever the accumulated amount increases, the carbon fiber lump is inserted at a speed of 0.5 m / hr using an extruder rod, and the carbon fiber lump is removed. Continuous operation was carried out while dropping into the collection box, and after the produced fiber was taken out, the yield was measured and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0023】[0023]

【比較例2】図1の装置において、発熱体をシリコンユ
ニット発熱体を備えた電気炉に変更し、炉芯管をムライ
ト材質炉芯管(内径60mm、長さ2000mm)に変
更し、水平に設置した。また、実施例2と同様に炉芯管
端部に押出棒と回収ボックスを設置し、実施例2と同様
の原材料にて生成を行い、実施例2と同様に炭素繊維塊
を押出棒にて回収ボックスに落とそうとしたところ、最
初の一回目回収時に炉芯管にヒビが入ったため78分に
て実験を中止した。生成炭素繊維を取出した後、収量を
測定し実施例1と同様の方法で評価を行った。その結果
を表1に示す。
Comparative Example 2 In the apparatus shown in FIG. 1, the heating element was changed to an electric furnace equipped with a silicon unit heating element, the furnace core tube was changed to a mullite material furnace core tube (inner diameter 60 mm, length 2000 mm), and the furnace was horizontally moved. installed. In addition, an extruding rod and a collection box were installed at the end of the furnace core tube in the same manner as in Example 2, and the same raw material as in Example 2 was used to produce carbon fiber lump using an extruding rod as in Example 2. Attempting to drop it in the collection box, the experiment was stopped at 78 minutes due to cracks in the furnace core tube during the first collection. After taking out the produced carbon fiber, the yield was measured and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0024】[0024]

【表1】 比較例2については、炉芯管が割れを生じ、運転時間は
78分である。なお、変動率は標準偏差/平均値×10
0にて求めた。X線回折エリア値はNet-BG値であり、値
の大きなものほどシャープなピークを示す。以上から明
らかなように、電気炉加熱にて試作した炭素繊維は長さ
・径共に平均変動率が大きく、ばらつきが大きいのに対
し、電磁誘導加熱にて試作した炭素繊維は長さ・径共に
平均変動率が小さいため、均一な炭素繊維が得られる。
また、X線回折測定結果、透過型電子顕微鏡写真から、
従来方法で製造された炭素繊維よりも結晶性が高く高品
質ある。さらに、長時間運転においては電気炉加熱にて
試作した場合は押出棒のヒートショックで炉芯管が割れ
を生じる。以上の結果から、電磁誘導加熱にて得られた
炭素繊維は電気炉加熱で得られたものよりも高品質で、
かつ安定性の高い製造方法であることが明かである。
[Table 1] In Comparative Example 2, the furnace core tube cracked, and the operation time was 78 minutes. The fluctuation rate is standard deviation / average value × 10
It was determined at 0. The X-ray diffraction area value is a Net-BG value, and a larger value indicates a sharper peak. As is clear from the above, the carbon fiber prototyped by electric furnace heating has a large average variation rate and large variation in both length and diameter, whereas the carbon fiber prototyped by electromagnetic induction heating has both length and diameter. Since the average fluctuation rate is small, uniform carbon fibers can be obtained.
Also, from the results of the X-ray diffraction measurement and the transmission electron micrograph,
Higher crystallinity and higher quality than carbon fibers produced by conventional methods. Further, in a long-time operation, when a prototype is manufactured by heating in an electric furnace, the furnace core tube is cracked by the heat shock of the extrusion rod. From the above results, carbon fiber obtained by electromagnetic induction heating is higher quality than that obtained by electric furnace heating,
It is clear that the production method is highly stable.

【0025】[0025]

【発明の効果】本発明によれば従来製造方法と比較して
反応が均一に、全域にわたっているため高収率が得ら
れ、温度ムラもないため各繊維は均一な長さ、径を有
し、更に結晶性も高く高品質である。また、電磁誘導加
熱法により、炉芯管はおよび発熱体はヒートショックに
強いため連続運転が可能になり、高速で炭素繊維を抜き
出しても炉芯管が割れないため製造安定性が高く、長期
連続運転が可能となり高い生産性が発現される。
According to the present invention, as compared with the conventional production method, the reaction is uniform, the whole area is obtained, a high yield is obtained, and since there is no temperature unevenness, each fiber has a uniform length and diameter. It also has high crystallinity and high quality. In addition, the electromagnetic induction heating method enables the furnace core tube and the heating element to be continuously operated because they are resistant to heat shock. Continuous operation becomes possible and high productivity is developed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における電磁誘導加熱装置の概要を示す
模式図である。
FIG. 1 is a schematic diagram showing an outline of an electromagnetic induction heating device according to the present invention.

【図2】本発明に用いた電磁誘導加熱装置において、好
適な発熱体の側面構造を示す模式図である。
FIG. 2 is a schematic view showing a side structure of a suitable heating element in the electromagnetic induction heating device used in the present invention.

【図3】実施例1にて得られた炭素繊維断面の透過型電
子顕微鏡写真を示す。
FIG. 3 shows a transmission electron micrograph of a cross section of the carbon fiber obtained in Example 1.

【図4】比較例1にて得られた炭素繊維断面の透過型電
子顕微鏡写真を示す。
FIG. 4 shows a transmission electron micrograph of a cross section of the carbon fiber obtained in Comparative Example 1.

【図5】実施例1にて得られた炭素繊維のX線回折測定
結果を示すグラフである。
FIG. 5 is a graph showing the results of X-ray diffraction measurement of the carbon fiber obtained in Example 1.

【図6】比較例1にて得られた炭素繊維のX線回折測定
結果を示すグラフである。
FIG. 6 is a graph showing the results of X-ray diffraction measurement of the carbon fiber obtained in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 原料液容器 2 液添ポンプ 3 流量調整バルブ 4 水素ガスボンベ 5 流量調整バルブ 6 原料液供給管 7 水素ガス供給管 8 窒化珪素炉芯管 9 ガス残差排出管 10 N2導入口 11 アルゴンガス導入口 12 流量調整バルブ 13 アルゴンガスボンベ 14 押出棒 15 回収ボックス 16 コイル 17 発熱体 18 ガス通路 19 高周波電源REFERENCE SIGNS LIST 1 raw material liquid container 2 liquid addition pump 3 flow rate control valve 4 hydrogen gas cylinder 5 flow rate control valve 6 raw material liquid supply pipe 7 hydrogen gas supply pipe 8 silicon nitride furnace core pipe 9 gas residual discharge pipe 10 N 2 inlet 11 argon gas introduction Mouth 12 Flow control valve 13 Argon gas cylinder 14 Extrusion rod 15 Collection box 16 Coil 17 Heating element 18 Gas passage 19 High frequency power supply

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素の熱分解によるガスを有機遷移
金属化合物の存在下に、電磁誘導加熱体に接触加熱させ
ることを特徴とする炭素繊維の製造方法。
1. A method for producing carbon fiber, comprising heating a gas obtained by thermal decomposition of a hydrocarbon in contact with an electromagnetic induction heater in the presence of an organic transition metal compound.
【請求項2】 該熱分解が、加熱高融点金属あるいは金
属化合物の微粒粉末を、炭化水素の熱分解帯域に浮遊さ
せて行うことを特徴とする請求項1に記載される炭素繊
維の製造方法。
2. The method for producing carbon fibers according to claim 1, wherein the pyrolysis is carried out by floating fine powder of a high-melting metal or a metal compound in a hydrocarbon pyrolysis zone. .
【請求項3】 該熱分解が、有機遷移金属化合物のガス
とキャリアガス及び炭化水素ガスとの混合ガスを加熱し
て行うことを特徴とする請求項1又は2記載の炭素繊維
の製造方法。
3. The method for producing carbon fibers according to claim 1, wherein the thermal decomposition is performed by heating a mixed gas of an organic transition metal compound gas, a carrier gas and a hydrocarbon gas.
【請求項4】 該加熱が、600℃〜1300℃である
ことを特徴とする請求項1〜3のいずれかに記載の炭素
繊維の製造方法。
4. The method for producing carbon fibers according to claim 1, wherein the heating is performed at a temperature of 600 ° C. to 1300 ° C.
【請求項5】 該電磁誘導加熱が、ガスが通る非磁性体
で形成された通路中に炭素・セラミックス複合材料で構
成した発熱体を設置したことを特徴とする請求項1〜4
のいずれかに記載の炭素繊維の製造方法。
5. A heating element made of a carbon / ceramic composite material is installed in a passage formed of a non-magnetic material through which a gas passes, in the electromagnetic induction heating.
The method for producing a carbon fiber according to any one of the above.
【請求項6】 該電磁誘導加熱が、発熱体とそのコイル
とで構成する加熱段をガスの移動方向に複数段設け、最
初の加熱段の発熱体を金属で構成し、次の加熱段以降の
加熱段の発熱体を炭素・セラミックス複合材料で構成し
た装置を用いることを特徴とする、請求項1〜5のいず
れかに記載の炭素繊維の製造方法。
6. In the electromagnetic induction heating, a plurality of heating stages including a heating element and a coil thereof are provided in a moving direction of the gas, a heating element of a first heating stage is formed of metal, The method for producing carbon fibers according to any one of claims 1 to 5, wherein an apparatus in which the heating element of the heating stage is made of a carbon / ceramic composite material is used.
【請求項7】 該セラミックス複合材料が、カーボンを
主体としこれに炭化硼素および炭化珪素を複合させたも
のであることを特徴とする、請求項5又は6記載の炭素
繊維の製造方法。
7. The method for producing carbon fibers according to claim 5, wherein said ceramics composite material is mainly composed of carbon and composited with boron carbide and silicon carbide.
【請求項8】 該電磁誘導加熱が、ガス通路内周に嵌合
する外周を有し前記ガス通過用の孔を有する部材に形成
された発熱体を有する装置を用いることを特徴とする、
請求項5〜7のいずれかに記載の炭素繊維の製造方法。
8. The apparatus according to claim 1, wherein the electromagnetic induction heating uses an apparatus having a heating element formed on a member having an outer periphery fitted into an inner periphery of a gas passage and having a hole for gas passage.
A method for producing a carbon fiber according to any one of claims 5 to 7.
【請求項9】 該電磁誘導加熱が、前記発熱体が複数の
部材からなり且つガス通過路を形成するように該通路内
に非磁性体で支持されている装置を用いることを特徴と
する、請求項5〜8のいずれかに記載の炭素繊維の製造
方法。
9. The electromagnetic induction heating using a device in which the heating element is composed of a plurality of members and is supported by a non-magnetic material in the passage so as to form a gas passage. A method for producing a carbon fiber according to any one of claims 5 to 8.
【請求項10】 請求項1〜9のいずれかに記載の方法
で作られたことを特徴とする炭素繊維。
10. A carbon fiber produced by the method according to claim 1. Description:
JP2000019910A 2000-01-28 2000-01-28 Method for producing vapor-grown carbon fiber Pending JP2001207342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000019910A JP2001207342A (en) 2000-01-28 2000-01-28 Method for producing vapor-grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000019910A JP2001207342A (en) 2000-01-28 2000-01-28 Method for producing vapor-grown carbon fiber

Publications (1)

Publication Number Publication Date
JP2001207342A true JP2001207342A (en) 2001-08-03

Family

ID=18546543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000019910A Pending JP2001207342A (en) 2000-01-28 2000-01-28 Method for producing vapor-grown carbon fiber

Country Status (1)

Country Link
JP (1) JP2001207342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030945A1 (en) * 2004-09-14 2006-03-23 Showa Denko K.K. Electroconductive resin composition, production method and use thereof
KR20230098426A (en) * 2021-12-24 2023-07-04 재단법인 한국섬유기계융합연구원 The Apparatus for Manufacturing Recycled Carbon Fiber and the Method of manufacturing Recycled Carbon Fiber by Using the Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030945A1 (en) * 2004-09-14 2006-03-23 Showa Denko K.K. Electroconductive resin composition, production method and use thereof
KR20230098426A (en) * 2021-12-24 2023-07-04 재단법인 한국섬유기계융합연구원 The Apparatus for Manufacturing Recycled Carbon Fiber and the Method of manufacturing Recycled Carbon Fiber by Using the Same
KR102578947B1 (en) 2021-12-24 2023-09-18 재단법인 한국섬유기계융합연구원 The Apparatus for Manufacturing Recycled Carbon Fiber and the Method of manufacturing Recycled Carbon Fiber by Using the Same

Similar Documents

Publication Publication Date Title
EP2025643B1 (en) Method for producing single-walled carbon nanotubes
KR101460373B1 (en) Method for the production of carbon nanotubes in a fluidized bed
US6333016B1 (en) Method of producing carbon nanotubes
Qin CVD synthesis of carbon nanotubes
JPS62242B2 (en)
US7052667B2 (en) RF plasma method for production of single walled carbon nanotubes
KR20130041152A (en) Vapor grown carbon fiber aggregate
JP4020410B2 (en) Catalyst for carbon material production
Li et al. A simple and efficient route to synthesize hafnium carbide nanowires by catalytic pyrolysis of a polymer precursor
JP2001207342A (en) Method for producing vapor-grown carbon fiber
US20020009589A1 (en) Carbon fibrils and method for producing same
JP6020850B2 (en) Carbon fiber manufacturing method and carbon fiber
EP0214302A1 (en) Gas phase method of manufacturing carbon fibers
JPS58110493A (en) Production of graphite whisker
JP3751906B2 (en) Method and apparatus for producing vapor grown carbon fiber
JP2003089930A (en) Fine carbon fiber mixture and composition containing the same
JP2018016521A (en) Method for producing single layer carbon nanotube-containing composition
JP2670040B2 (en) Hollow carbon fiber by fluidized vapor deposition
EP4421030A1 (en) Carbon nanotube synthesis apparatus
JP2004238791A (en) Fine carbon fiber
JPH11124740A (en) Carbon micro-coil and its production
Suda et al. Syntheses and electronic applications of Helical carbon nanofibers
JPWO2018123796A1 (en) Method for producing single-walled carbon nanotube-containing composition
JPH0813254A (en) Hollow carbon yarn by fluidized vapor-phase growth method
JP2531739B2 (en) Method for producing vapor grown carbon fiber