JP2001206785A - Method of producing silicon carbide porous body - Google Patents

Method of producing silicon carbide porous body

Info

Publication number
JP2001206785A
JP2001206785A JP2000015937A JP2000015937A JP2001206785A JP 2001206785 A JP2001206785 A JP 2001206785A JP 2000015937 A JP2000015937 A JP 2000015937A JP 2000015937 A JP2000015937 A JP 2000015937A JP 2001206785 A JP2001206785 A JP 2001206785A
Authority
JP
Japan
Prior art keywords
silicon carbide
particles
porous body
mass
hollow particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000015937A
Other languages
Japanese (ja)
Inventor
Nobuhiro Shinohara
伸広 篠原
Naomichi Miyagawa
直通 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000015937A priority Critical patent/JP2001206785A/en
Publication of JP2001206785A publication Critical patent/JP2001206785A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/22Glass ; Devitrified glass
    • C04B14/24Glass ; Devitrified glass porous, e.g. foamed glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • C04B38/085Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances of micro- or nanosize

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Civil Engineering (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a silicon carbide porous body having high porosity and sufficient mechanical strength. SOLUTION: The method of producing a silicon carbide porous body comprises heat treating a formed body containing 70 to 85 mass % silicon carbide particles having an average diameter of 0.2 to 3 μm and 15 to 25 mass % inorganic hollow particles having an average diameter of 30 to 60 μm, with the proviso that the total amount of the silicon carbide particles and the inorganic hollow particles is >=95 mass %, under a non-oxidizing atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気孔率が高く、し
かも機械的強度に優れた炭化ケイ素質多孔体の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide porous body having high porosity and excellent mechanical strength.

【0002】[0002]

【従来の技術】炭化ケイ素は、高い硬度、優れた耐摩耗
性、優れた化学的安定性に加え、低い熱膨張率、高温で
の高い機械的強度など耐熱材料として優れた特性を有し
ている。このため、炭化ケイ素質多孔体を、ディーゼル
エンジンの脱塵装置用フィルタなど、高温燃焼ガス中に
含まれる灰などを分離するための高温フィルタとして応
用する試みがなされている。
2. Description of the Related Art Silicon carbide has excellent properties as a heat-resistant material such as low thermal expansion coefficient and high mechanical strength at high temperature, in addition to high hardness, excellent wear resistance and excellent chemical stability. I have. For this reason, attempts have been made to apply the silicon carbide porous body as a high-temperature filter for separating ash and the like contained in high-temperature combustion gas, such as a filter for a dust removal device of a diesel engine.

【0003】フィルタとして使用する炭化ケイ素質多孔
体には、耐熱性や耐食性ばかりでなく、流体の透過抵抗
が小さく、かつ高効率で異物粒子を除去できるように、
対象とする異物粒子に応じた細孔直径、気孔率が要求さ
れる。
The silicon carbide porous material used as a filter has not only heat resistance and corrosion resistance, but also low fluid permeation resistance and high-efficiency removal of foreign particles.
A pore diameter and a porosity according to the target foreign particles are required.

【0004】一般に、気孔率や細孔直径を大きくすると
多孔体の機械的強度が低下する傾向がある。例えば、炭
化ケイ素質多孔体の製造方法として、数μm以上の比較
的大きな粒子直径を有する炭化ケイ素粒子を骨材として
用い、それにガラス質または粘土質などの結合材を加え
て成形後、その成形体を前記結合材が溶融する温度で焼
き固める方法が従来から知られている。しかし、このよ
うな従来法では、1μm以上の細孔直径を得ることは比
較的容易であるが、骨材となる炭化ケイ素粒子に粗大な
ものが用いられるために機械的強度が低く、気孔率が3
0〜35%前後の多孔体の場合、機械的強度は20〜3
0MPa程度となるのが通例であった。
Generally, when the porosity or the pore diameter is increased, the mechanical strength of the porous body tends to decrease. For example, as a method for producing a silicon carbide-based porous body, silicon carbide particles having a relatively large particle diameter of several μm or more are used as an aggregate, and a binder such as glassy or clay is added thereto, followed by molding. Methods of baking a body at a temperature at which the binder melts are conventionally known. However, in such a conventional method, it is relatively easy to obtain a pore diameter of 1 μm or more, but since coarse silicon carbide particles are used as the aggregate, the mechanical strength is low and the porosity is low. Is 3
In the case of a porous body of about 0 to 35%, the mechanical strength is 20 to 3
Usually, it was about 0 MPa.

【0005】また、「粉体および粉末冶金」第43巻第
12号1461頁に、平均粒子直径45μmのガラスビ
ーズを用いた炭化ケイ素質多孔体の製造方法が提案され
ているが、この方法でも、気孔率、細孔直径、機械的強
度のバランスがとれた炭化ケイ素質多孔体は得られてい
ない。
Further, a method for producing a silicon carbide porous body using glass beads having an average particle diameter of 45 μm is proposed in “Powder and Powder Metallurgy”, Vol. 43, No. 12, page 1461. However, a silicon carbide-based porous body having a well-balanced porosity, pore diameter, and mechanical strength has not been obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、細孔直径が
大きく、高気孔率で、しかも充分な機械的強度を有する
炭化ケイ素質多孔体の製造方法の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a silicon carbide porous body having a large pore diameter, a high porosity, and a sufficient mechanical strength.

【0007】[0007]

【課題を解決するための手段】本発明は、平均粒子直径
0.2〜3μmの炭化ケイ素粒子70〜85質量%と平
均粒子直径30〜60μmの無機中空粒子15〜25質
量%とを含み、かつ前記炭化ケイ素粒子と前記無機中空
粒子の合量が95質量%以上である成形体を非酸化性雰
囲気下で熱処理することにより多孔体とする炭化ケイ素
質多孔体の製造方法を提供する。
The present invention comprises 70 to 85% by mass of silicon carbide particles having an average particle diameter of 0.2 to 3 μm and 15 to 25% by mass of inorganic hollow particles having an average particle diameter of 30 to 60 μm, The present invention also provides a method for producing a silicon carbide porous body, which is formed into a porous body by heat-treating a molded body having a total amount of the silicon carbide particles and the inorganic hollow particles of 95% by mass or more in a non-oxidizing atmosphere.

【0008】[0008]

【発明の実施の形態】本発明の炭化ケイ素質多孔体の製
造方法(以下、本製造方法という)では、平均粒子直径
0.2〜3μmの炭化ケイ素粒子70〜85質量%と平
均粒子直径30〜60μmの無機中空粒子15〜25質
量%とを含み、かつ前記炭化ケイ素粒子および前記無機
中空粒子の合量が95質量%以上である成形体を使用す
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a silicon carbide based porous material of the present invention (hereinafter referred to as the present production method), 70 to 85% by mass of silicon carbide particles having an average particle diameter of 0.2 to 3 μm and an average particle diameter of 30 A molded article containing 15 to 25% by mass of inorganic hollow particles of about 60 μm and having a total amount of the silicon carbide particles and the inorganic hollow particles of 95% by mass or more is used.

【0009】本発明において、無機中空粒子としては、
熱処理時に気孔を形成し、しかも熱処理過程で炭化ケイ
素粒子に対して焼結助剤的な働きをするものであればい
ずれも好適に使用される。
In the present invention, the inorganic hollow particles include:
Any material that forms pores during the heat treatment and acts as a sintering aid for the silicon carbide particles during the heat treatment is preferably used.

【0010】無機中空粒子が、主としてAl23成分と
SiO2成分とからなるガラス質中空粒子であると焼結
を促進し、多孔体の機械的強度が大きくなるため好まし
い。無機中空粒子中のAl23成分が20〜80質量
%、SiO2成分が80〜20質量%であるとさらに好
ましい。
It is preferred that the inorganic hollow particles are glassy hollow particles mainly composed of an Al 2 O 3 component and a SiO 2 component, because sintering is promoted and the mechanical strength of the porous body is increased. More preferably, the content of the Al 2 O 3 component in the inorganic hollow particles is 20 to 80% by mass, and the content of the SiO 2 component is 80 to 20% by mass.

【0011】無機中空粒子中のAl23成分は、炭化ケ
イ素粒子中に微量不純物として存在するシリカなどの金
属酸化物と反応して液相を形成し、炭化ケイ素粒子間の
結合強化に寄与する他、一部は炭化ケイ素粒子と反応し
てAlO、Al2Oなどのガス成分を発生して系外に揮
散するが、その際に外部と連結した開気孔の形成に寄与
すると考えられる。無機中空粒子中のSiO2成分は、
炭化ケイ素と反応してCO、SiOなどのガス成分を発
生し、Al23成分と同様に連通気孔の形成を促進する
と考えられる。
The Al 2 O 3 component in the inorganic hollow particles reacts with a metal oxide such as silica present as a trace impurity in the silicon carbide particles to form a liquid phase and contributes to strengthening the bond between the silicon carbide particles. In addition, some react with the silicon carbide particles to generate gas components such as AlO and Al 2 O and volatilize out of the system. At this time, it is considered that this contributes to the formation of open pores connected to the outside. The SiO 2 component in the inorganic hollow particles is
It is considered that it reacts with silicon carbide to generate gas components such as CO and SiO, and promotes formation of interconnected pores like the Al 2 O 3 component.

【0012】本発明において無機粒子は、中空であるこ
とが必要である。無機粒子が中空でないと、炭化ケイ素
粒子と反応したあとに多孔体中に気孔として残留するこ
とが難しいためである。無機粒子は、中空であれば外皮
に相当する部分が緻密質でもよいし多孔質でもよい。無
機中空粒子の外形は、球状のものが入手しやすいので好
ましいが、球状以外の形状でもよい。
In the present invention, the inorganic particles need to be hollow. If the inorganic particles are not hollow, it is difficult to remain as pores in the porous body after reacting with the silicon carbide particles. As long as the inorganic particles are hollow, the portion corresponding to the outer skin may be dense or porous. The external shape of the inorganic hollow particles is preferably spherical because it is easily available, but may be a shape other than spherical.

【0013】無機中空粒子の含有量としては、成形体中
に15〜25質量%である。含有量が15質量%未満で
あると、加熱処理の過程で炭化ケイ素粒子と反応する無
機中空粒子の量が少ないため、気孔率が25%程度と低
気孔率になる。一方、含有量が25質量%を超えると気
孔率が60%を超える多孔体も得られるが、反面、多孔
体中に形成される細孔直径が大きくなりすぎ、機械的強
度の低下をもたらす。
The content of the inorganic hollow particles is 15 to 25% by mass in the molded product. If the content is less than 15% by mass, the amount of the inorganic hollow particles that react with the silicon carbide particles during the heat treatment is small, so that the porosity is as low as about 25%. On the other hand, if the content exceeds 25% by mass, a porous body having a porosity of more than 60% can be obtained, but on the other hand, the pore diameter formed in the porous body becomes too large, resulting in a decrease in mechanical strength.

【0014】本発明において、無機中空粒子の平均粒子
直径は、30〜60μmである。無機中空粒子の平均粒
子直径が30μm未満であると、多孔体の機械的強度は
向上するが多孔体の細孔直径が小さくなりすぎる。一
方、無機中空粒子の平均粒子直径が60μmを超える
と、気孔率、平均細孔直径を大きくできるが巨大気孔が
生成されやすく、機械的強度の低下をもたらす。
In the present invention, the average particle diameter of the inorganic hollow particles is 30 to 60 μm. When the average particle diameter of the inorganic hollow particles is less than 30 μm, the mechanical strength of the porous body is improved, but the pore diameter of the porous body becomes too small. On the other hand, when the average particle diameter of the inorganic hollow particles exceeds 60 μm, the porosity and the average pore diameter can be increased, but giant pores are easily generated, resulting in a decrease in mechanical strength.

【0015】無機中空粒子は、表面に炭化ケイ素質層を
有するものであると、無機中空粒子の含有量が多くなっ
ても多孔体の細孔直径が大きくなりすぎるのを抑制し、
その結果、機械的強度低下を防止できるため好ましい。
表面に炭化ケイ素質層を有する無機中空粒子の製造方法
としては、特に限定されないが湿式による方法が便利で
好ましい。
When the inorganic hollow particles have a silicon carbide layer on the surface, even if the content of the inorganic hollow particles increases, the pore diameter of the porous body is prevented from becoming too large,
As a result, a decrease in mechanical strength can be prevented, which is preferable.
The method for producing the inorganic hollow particles having a silicon carbide layer on the surface is not particularly limited, but a wet method is convenient and preferred.

【0016】湿式法の場合、通常の液中では無機中空粒
子が表面に浮遊するため、炭化ケイ素粒子を単に水に分
散させたスラリー中に無機中空粒子を投入するだけで
は、表面を均一に被覆できない。そのため、前記スラリ
ーのpHを6〜8の範囲に調整すると好ましい。炭化ケ
イ素粒子を分散させたpH6〜8のスラリー中では、何
も被覆していない無機中空粒子はおおむね正に帯電する
が、炭化ケイ素粒子は負に帯電するため、無機中空粒子
の表面に炭化ケイ素粒子が静電的に付着し、容易に被覆
される。
In the case of the wet method, the inorganic hollow particles float on the surface in a normal liquid. Therefore, simply adding the inorganic hollow particles into a slurry obtained by dispersing silicon carbide particles in water uniformly coats the surface. Can not. Therefore, it is preferable to adjust the pH of the slurry to a range of 6 to 8. In a slurry having a pH of 6 to 8 in which silicon carbide particles are dispersed, uncoated inorganic hollow particles are generally positively charged, but silicon carbide particles are negatively charged. The particles adhere electrostatically and are easily coated.

【0017】さらに該スラリーを目開きが中空球の直径
よりも小さい篩の上に流し込むことにより、表面に炭化
ケイ素質層を有する無機中空粒子(以下、炭化ケイ素被
覆粒子という)をスラリーから回収できる。この炭化ケ
イ素被覆粒子を乾燥後に、無機中空粒子が軟化しない程
度の温度(例えば500〜800℃)で熱処理すること
で、炭化ケイ素粒子の表面への付着力をさらに強固にで
きる。本操作は1回でも充分であるが、同じ操作を数回
繰り返すとより均一に被覆できる。
Further, by pouring the slurry onto a sieve having an opening smaller than the diameter of the hollow sphere, inorganic hollow particles having a silicon carbide layer on the surface (hereinafter referred to as silicon carbide coated particles) can be recovered from the slurry. . After drying the silicon carbide-coated particles, a heat treatment is performed at a temperature (for example, 500 to 800 ° C.) at which the inorganic hollow particles do not soften, whereby the adhesion of the silicon carbide particles to the surface can be further strengthened. This operation is sufficient even once, but it is possible to coat more uniformly by repeating the same operation several times.

【0018】本発明において、炭化ケイ素粒子の平均粒
子直径は0.2〜3μmである。炭化ケイ素粒子の平均
粒子直径が0.2μm未満であると、原料粉末のハンド
リング性が低下し、無機中空粒子との混合が不充分とな
り多孔体の欠陥を生じやすくなる。炭化ケイ素粒子の平
均粒子直径が3μmを超えると、焼結性が低下して充分
な機械的強度が得られにくくなる。炭化ケイ素粒子の種
類、純度は目的、用途に応じて適宜選択される。
In the present invention, the average particle diameter of the silicon carbide particles is 0.2 to 3 μm. When the average particle diameter of the silicon carbide particles is less than 0.2 μm, the handleability of the raw material powder is reduced, the mixing with the inorganic hollow particles becomes insufficient, and defects in the porous body are likely to occur. When the average particle diameter of the silicon carbide particles exceeds 3 μm, the sinterability is reduced, and it becomes difficult to obtain sufficient mechanical strength. The type and purity of the silicon carbide particles are appropriately selected depending on the purpose and application.

【0019】本発明において、無機中空粒子と炭化ケイ
素粒子との合量は、成形体中95質量%以上である。無
機中空粒子と炭化ケイ素粒子との合量が成形体中95質
量%未満であると所望の特性を有する多孔体が得られな
い。本発明において、無機中空粒子と炭化ケイ素粒子
は、好ましくはボールミルやミキサーなどの一般的な混
合手段により混合する。
In the present invention, the total amount of the inorganic hollow particles and the silicon carbide particles is 95% by mass or more in the molded product. If the total amount of the inorganic hollow particles and the silicon carbide particles is less than 95% by mass in the molded body, a porous body having desired characteristics cannot be obtained. In the present invention, the inorganic hollow particles and the silicon carbide particles are preferably mixed by a general mixing means such as a ball mill or a mixer.

【0020】無機中空粒子と炭化ケイ素粒子とを含む成
形体を作成する方法としては、プレス成形、押出成形な
どの通常のセラミックス成形法が適宜採用される。な
お、成形に際して有機バインダーを加えてもよい。この
ような有機バインダーとしては、ポリビニルアルコール
またはその変成物、でんぷんまたはその変成物、カルボ
キシルメチルセルロース、ヒドロキシルメチルセルロー
ス、ポリビニルピロリドン、アクリル樹脂またはアクリ
ル系共重合体、酢酸ビニル樹脂または酢酸ビニル系共重
合体、等の有機物を使用できる。
As a method for producing a molded article containing inorganic hollow particles and silicon carbide particles, a usual ceramic molding method such as press molding or extrusion molding is appropriately employed. Note that an organic binder may be added during molding. Examples of such an organic binder include polyvinyl alcohol or a modified product thereof, starch or a modified product thereof, carboxymethylcellulose, hydroxylmethylcellulose, polyvinylpyrrolidone, an acrylic resin or an acrylic copolymer, a vinyl acetate resin or a vinyl acetate copolymer, And other organic substances can be used.

【0021】前記成形体を熱処理する条件としては、非
酸化性雰囲気下で1900〜2000℃で1〜10時間
保持するのが好ましい。温度が1900℃未満であると
炭化ケイ素粒子間の結合が弱いため多孔体の機械的強度
が不充分となるおそれがあり、2000℃を超えると炭
化ケイ素が分解するので好ましくない。
The heat treatment of the compact is preferably carried out at 1900 to 2000 ° C. for 1 to 10 hours in a non-oxidizing atmosphere. If the temperature is lower than 1900 ° C., the mechanical strength of the porous body may be insufficient due to weak bonding between silicon carbide particles, and if it exceeds 2000 ° C., silicon carbide is decomposed, which is not preferable.

【0022】温度保持時間が1時間未満であると炭化ケ
イ素粒子と無機中空粒子との反応が充分に進行しないた
め好ましくなく、また温度保持時間が10時間を超える
と炭化ケイ素の分解が進み気孔径や気孔率が大きくなり
すぎて多孔体の機械的強度が低下するので好ましくな
い。
If the temperature holding time is less than 1 hour, the reaction between the silicon carbide particles and the inorganic hollow particles does not proceed sufficiently, which is not preferable. If the temperature holding time is more than 10 hours, the decomposition of silicon carbide proceeds and the pore size increases. In addition, the porosity becomes too large and the mechanical strength of the porous body is reduced, which is not preferable.

【0023】熱処理時の昇温速度は、成形体の大きさ、
形状等により適宜選択されるが、100〜400℃/h
であると成形体内部までほぼ均一に加熱できるので好ま
しい。昇温過程であっても1900〜2000℃の範囲
にある場合は、その経過時間は保持時間に加えるものと
する。ここで、非酸化性雰囲気とは、実質的に酸素を含
まない雰囲気をいい、アルゴンやヘリウムなどの不活性
雰囲気が好ましく採用される。
The rate of temperature rise during the heat treatment depends on the size of the compact,
It is appropriately selected depending on the shape and the like, but 100 to 400 ° C./h
Is preferable because the inside of the compact can be heated almost uniformly. If the temperature is in the range of 1900 to 2000 ° C. even during the heating process, the elapsed time is added to the holding time. Here, the non-oxidizing atmosphere refers to an atmosphere containing substantially no oxygen, and an inert atmosphere such as argon or helium is preferably employed.

【0024】本発明により得られる炭化ケイ素質多孔体
の気孔率は、35〜60%であると好ましい。気孔率が
35%未満であると多孔体の通気性が損なわれるため好
ましくなく、また気孔率が60%を超えると多孔体の機
械的強度低下をもたらすため好ましくない。
The porosity of the porous silicon carbide obtained by the present invention is preferably 35 to 60%. If the porosity is less than 35%, the air permeability of the porous body is impaired, which is not preferable. If the porosity exceeds 60%, the mechanical strength of the porous body is reduced, which is not preferable.

【0025】本発明により得られる炭化ケイ素質多孔体
の水銀圧入法で測定された平均細孔直径は、5〜15μ
mであると好ましい。平均細孔直径が5μm未満である
と多孔体の通気性が損なわれるため好ましくない。平均
細孔直径が15μmを超えると多孔体の機械的強度低下
をもたらすため好ましくない。
The average pore diameter of the silicon carbide porous body obtained by the present invention measured by a mercury porosimetry is 5 to 15 μm.
m is preferable. If the average pore diameter is less than 5 μm, the air permeability of the porous body is impaired, which is not preferable. If the average pore diameter exceeds 15 μm, the mechanical strength of the porous body is reduced, which is not preferable.

【0026】本発明により得られる炭化ケイ素質多孔体
のJIS R1601に準拠した4点曲げ強度が100
MPa以上であると多孔体の壁厚を薄くしても多孔体が
充分な機械的強度を有するためフィルタの軽量化、コン
パクト化が可能となるため好ましい。本発明により得ら
れる炭化ケイ素質多孔体は、炭化ケイ素を80質量%以
上含有するものが好ましい。
The silicon carbide porous body obtained by the present invention has a four-point bending strength of 100 in accordance with JIS R1601.
When the pressure is at least MPa, the porous body has sufficient mechanical strength even if the wall thickness of the porous body is reduced, so that the filter can be reduced in weight and size, which is preferable. The silicon carbide porous body obtained by the present invention preferably contains silicon carbide in an amount of 80% by mass or more.

【0027】[0027]

【実施例】以下に本発明の実施例(例1〜例4)と比較
例(例5〜例10)を示す。なお、多孔体の気孔率、か
さ密度は、アルキメデス法で測定し、4点曲げ強度は、
JIS R1601に準拠して測定した。細孔特性は水
銀ポロシメータ(ユアサアイオニクス社製、AUTOS
CAN−33)で測定した。各例の測定結果を表1に示
す。
Examples Examples of the present invention (Examples 1 to 4) and comparative examples (Examples 5 to 10) are shown below. The porosity and bulk density of the porous body were measured by the Archimedes method.
It was measured in accordance with JIS R1601. Pore characteristics are determined by mercury porosimeter (AUTOS manufactured by Yuasa Ionics, Inc.)
CAN-33). Table 1 shows the measurement results of each example.

【0028】[例1]平均粒子直径約0.6μmの炭化
ケイ素粒子(昭和電工社製、A−1)100gを1Lの
イオン交換水中に投入し、pHを7に調整した後、スタ
ーラーで撹拌しながら超音波分散させて炭化ケイ素粒子
のスラリーを調製した。本スラリー中に平均粒子直径が
45μmの球状ガラス中空粒子(秩父小野田社製MIC
ROCELS SL75)を投入し、スターラーで撹拌
しながら前記球状中空粒子に炭化ケイ素粒子を付着させ
た後、目開きが36μmの篩を通過させて篩上で炭化ケ
イ素粒子を付着させた球状中空粒子を回収した。回収し
た球状中空粒子を大気中500℃で5時間熱処理して炭
化ケイ素被覆粒子とした。
Example 1 100 g of silicon carbide particles (A-1 manufactured by Showa Denko KK) having an average particle diameter of about 0.6 μm were put into 1 L of ion-exchanged water, the pH was adjusted to 7, and the mixture was stirred with a stirrer. While dispersing ultrasonically, a slurry of silicon carbide particles was prepared. Spherical glass hollow particles having an average particle diameter of 45 μm (MIC manufactured by Chichibu Onoda Co., Ltd.)
ROCELS SL75), silicon carbide particles were adhered to the spherical hollow particles while stirring with a stirrer, and then passed through a sieve having an opening of 36 μm, and the spherical hollow particles having silicon carbide particles adhered on the sieve were removed. Collected. The collected spherical hollow particles were heat-treated in the atmosphere at 500 ° C. for 5 hours to obtain silicon carbide-coated particles.

【0029】次に、炭化ケイ素被覆粒子15質量部と、
被覆に使用したものと同一の炭化ケイ素粒子85質量部
とをミキサーによって乾式混合し、混合粒子を得た。混
合粒子を機械プレスによって20.3MPaの圧力下で
40mm×70mm×5mmの大きさに成形した後、こ
の成形体を黒鉛容器に入れ、抵抗加熱炉を用いて熱処理
した。熱処理条件は、アルゴン雰囲気下、昇温速度40
0℃/hで1970℃まで昇温し、1970℃で2時間
保持した。
Next, 15 parts by mass of the silicon carbide-coated particles,
85 parts by mass of the same silicon carbide particles as those used for coating were dry-mixed with a mixer to obtain mixed particles. After the mixed particles were formed into a size of 40 mm × 70 mm × 5 mm by a mechanical press under a pressure of 20.3 MPa, the formed body was placed in a graphite container and heat-treated using a resistance heating furnace. The heat treatment was performed under an argon atmosphere at a heating rate of 40.
The temperature was raised to 1970 ° C. at 0 ° C./h, and kept at 1970 ° C. for 2 hours.

【0030】[例2]例1において炭化ケイ素被覆粒子
の量を15質量部から20質量部に変更し、炭化ケイ素
粒子の量を85質量部から80質量部に変更する他は、
例1と同様にした。
Example 2 In Example 1, the amount of the silicon carbide-coated particles was changed from 15 parts by mass to 20 parts by mass, and the amount of the silicon carbide particles was changed from 85 parts by mass to 80 parts by mass.
Same as Example 1.

【0031】[例3]例2において炭化ケイ素被覆粒子
の代りに炭化ケイ素を被覆していないガラス中空球状粒
子を使用する他は、例2と同様にした。
Example 3 The procedure of Example 2 was repeated except that the silicon carbide-coated particles were replaced with glass hollow spherical particles not coated with silicon carbide.

【0032】[例4]例1において炭化ケイ素被覆粒子
の量を15質量部から25質量部に変更し、炭化ケイ素
粒子の量を85質量部から75質量部に変更する他は、
例1と同様にした。
Example 4 Except that the amount of silicon carbide-coated particles was changed from 15 parts by mass to 25 parts by mass and the amount of silicon carbide particles was changed from 85 parts by mass to 75 parts by mass in Example 1,
Same as Example 1.

【0033】[例5]例1において炭化ケイ素被覆粒子
の量を15質量部から30質量部に変更し、炭化ケイ素
粒子の量を85質量部から70質量部に変更する他は、
例1と同様にした。
Example 5 In Example 1, the amount of the silicon carbide-coated particles was changed from 15 parts by mass to 30 parts by mass, and the amount of the silicon carbide particles was changed from 85 parts by mass to 70 parts by mass.
Same as Example 1.

【0034】[例6]例1において炭化ケイ素被覆粒子
の量を15質量部から10質量部に変更し、炭化ケイ素
粒子の量を85質量部から90質量部に変更する他は、
例1と同様にした。
Example 6 Except that the amount of silicon carbide-coated particles was changed from 15 parts by mass to 10 parts by mass and the amount of silicon carbide particles was changed from 85 parts by mass to 90 parts by mass in Example 1,
Same as Example 1.

【0035】[例7]例6において炭化ケイ素被覆粒子
の代りに炭化ケイ素を被覆していないガラス中空球状粒
子を使用する他は、例6と同様にした。
Example 7 The procedure of Example 6 was repeated, except that the silicon carbide-coated particles were replaced with glass hollow spherical particles not coated with silicon carbide.

【0036】[例8]例1において炭化ケイ素粒子を平
均粒子直径が0.6μmのものから5μmのものに変更
する他は、例1と同様にした。
Example 8 The procedure of Example 1 was repeated except that the average particle diameter of silicon carbide particles was changed from 0.6 μm to 5 μm.

【0037】[例9]例1においてガラス中空球状粒子
を平均粒子直径が45μmのものを20μmのものに変
更する他は、例1と同様にした。
Example 9 The procedure of Example 1 was repeated, except that the hollow glass spherical particles in Example 1 were changed from those having an average particle diameter of 45 μm to 20 μm.

【0038】[例10]例1においてガラス中空球状粒
子を平均粒子直径が45μmのものを100μmのもの
に変更する他は、例1と同様にした。
Example 10 The procedure of Example 1 was repeated, except that the hollow glass spherical particles were changed from those having an average particle diameter of 45 μm to those having a mean particle diameter of 100 μm.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】本発明の製造方法で得られる炭化ケイ素
質多孔体は、高い気孔率、高い機械的強度、さらに比較
的粗い粒子の除去・分離に適した細孔径分布を有する。
高温集塵用フィルタなどに用いた場合、濾過速度の著し
い低下を招くことなく、粉塵を除去でき、かつ充分な耐
久性を有する。
The porous silicon carbide obtained by the production method of the present invention has a high porosity, a high mechanical strength, and a pore size distribution suitable for removing and separating relatively coarse particles.
When used in a high-temperature dust collection filter or the like, dust can be removed without causing a remarkable reduction in filtration speed, and sufficient durability is provided.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】平均粒子直径0.2〜3μmの炭化ケイ素
粒子70〜85質量%と平均粒子直径30〜60μmの
無機中空粒子15〜25質量%とを含み、かつ前記炭化
ケイ素粒子と前記無機中空粒子の合量が95質量%以上
である成形体を非酸化性雰囲気下で熱処理することによ
り多孔体とする炭化ケイ素質多孔体の製造方法。
1. The method according to claim 1, comprising 70 to 85% by weight of silicon carbide particles having an average particle diameter of 0.2 to 3 μm and 15 to 25% by weight of inorganic hollow particles having an average particle diameter of 30 to 60 μm. A method for producing a silicon carbide porous body, wherein a molded body having a total amount of hollow particles of 95% by mass or more is heat-treated in a non-oxidizing atmosphere to be a porous body.
【請求項2】前記無機中空粒子が、主としてAl23
分とSiO2成分とからなるガラス質中空粒子である請
求項1記載の炭化ケイ素質多孔体の製造方法。
2. The method according to claim 1, wherein said inorganic hollow particles are glassy hollow particles mainly composed of an Al 2 O 3 component and a SiO 2 component.
【請求項3】前記無機中空粒子は、表面に炭化ケイ素質
層を有する請求項1または2記載の炭化ケイ素質多孔体
の製造方法。
3. The method according to claim 1, wherein the inorganic hollow particles have a silicon carbide layer on the surface.
【請求項4】前記炭化ケイ素質多孔体の気孔率が35〜
60%、平均細孔直径が5〜15μmである請求項1、
2または3記載の炭化ケイ素質多孔体の製造方法。
4. The porosity of the porous silicon carbide body is 35 to 35.
60%, average pore diameter of 5 to 15 μm.
4. The method for producing a silicon carbide porous body according to 2 or 3.
JP2000015937A 2000-01-25 2000-01-25 Method of producing silicon carbide porous body Pending JP2001206785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000015937A JP2001206785A (en) 2000-01-25 2000-01-25 Method of producing silicon carbide porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000015937A JP2001206785A (en) 2000-01-25 2000-01-25 Method of producing silicon carbide porous body

Publications (1)

Publication Number Publication Date
JP2001206785A true JP2001206785A (en) 2001-07-31

Family

ID=18543154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000015937A Pending JP2001206785A (en) 2000-01-25 2000-01-25 Method of producing silicon carbide porous body

Country Status (1)

Country Link
JP (1) JP2001206785A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082770A1 (en) * 2002-03-29 2003-10-09 Ngk Insulators, Ltd. Silicon carbide based porous material and method for production thereof
EP1493724A4 (en) * 2002-03-29 2006-05-10 Ngk Insulators Ltd Porous material and method for production thereof
WO2007012777A2 (en) * 2005-07-29 2007-02-01 Saint-Gobain Centre De Recherches Et D'etudes Europeen Method for preparing a porous structure using silica-based pore-forming agents
EP2006261A2 (en) * 2006-02-22 2008-12-24 Ngk Insulator, Ltd. Porous object based on silicon carbide and process for producing the same
US7781053B2 (en) 2006-02-22 2010-08-24 NGX Insulators, Inc. Porous object based on silicon carbide and process for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473464B2 (en) 2002-03-29 2009-01-06 Ngk Insulators, Ltd. Porous material and method for production thereof
JPWO2003082770A1 (en) * 2002-03-29 2005-08-04 日本碍子株式会社 Silicon carbide based porous material and method for producing the same
EP1493724A4 (en) * 2002-03-29 2006-05-10 Ngk Insulators Ltd Porous material and method for production thereof
WO2003082770A1 (en) * 2002-03-29 2003-10-09 Ngk Insulators, Ltd. Silicon carbide based porous material and method for production thereof
US8173054B2 (en) 2002-03-29 2012-05-08 Ngk Insulators, Ltd. Silicon carbide based porous material and method for production thereof
US8092740B2 (en) 2002-03-29 2012-01-10 Ngk Insulators, Ltd. Method of manufacturing a porous material
US7452591B2 (en) 2002-03-29 2008-11-18 Ngk Insulators, Ltd. Silicon carbide based porous material and method for production thereof
WO2007012777A2 (en) * 2005-07-29 2007-02-01 Saint-Gobain Centre De Recherches Et D'etudes Europeen Method for preparing a porous structure using silica-based pore-forming agents
JP2009502469A (en) * 2005-07-29 2009-01-29 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Method for producing porous structure using silica-based pore forming agent
WO2007012777A3 (en) * 2005-07-29 2007-09-13 Saint Gobain Ct Recherches Method for preparing a porous structure using silica-based pore-forming agents
FR2889184A1 (en) * 2005-07-29 2007-02-02 Saint Gobain Ct Recherches PROCESS FOR THE PREPARATION OF A POROUS STRUCTURE USING POROGENIC SILICA AGENTS
EP2006261A2 (en) * 2006-02-22 2008-12-24 Ngk Insulator, Ltd. Porous object based on silicon carbide and process for producing the same
EP2006261A4 (en) * 2006-02-22 2010-03-17 Ngk Insulators Ltd Porous object based on silicon carbide and process for producing the same
US7781053B2 (en) 2006-02-22 2010-08-24 NGX Insulators, Inc. Porous object based on silicon carbide and process for producing the same
US7824765B2 (en) 2006-02-22 2010-11-02 Ngk Insulators, Ltd. Porous object based on silicon carbide and process for producing the same

Similar Documents

Publication Publication Date Title
Cao et al. Preparation of porous Al 2 O 3-ceramics by biotemplating of wood
JP3581879B2 (en) Alumina porous body and method for producing the same
Zhu et al. Improvement in the strut thickness of reticulated porous ceramics
Kim et al. Processing and properties of glass-bonded silicon carbide membrane supports
CN109279909B (en) Preparation method of high-strength boron carbide porous ceramic
EP1160223A1 (en) Silicon nitride filter and method of manufacture thereof
US20050084717A1 (en) Silicon carbide based porous structure and method for manufacturing thereof
WO2017004776A1 (en) Porous alumina ceramic ware and preparation method thereof
CN109824381A (en) A kind of silicon carbide ceramic membrane and its preparation method and application
JP4514274B2 (en) Method for producing porous ceramic structure
CN107056306A (en) The preparation method of porous SiN ceramic
CN114956828B (en) Silicon carbide ceramic and preparation method and application thereof
EP1197253B1 (en) Method for producing a silicon nitride filter
US7368076B2 (en) Method for producing a silicon nitride filter
JP2001206785A (en) Method of producing silicon carbide porous body
JP2003206185A (en) Aluminum oxide ceramic porous body and method for producing the same
JP4348429B2 (en) Porous silicon nitride and method for producing the same
JP2002356384A (en) Silicon carbide based porous compact and method of manufacturing the same
JP4420171B2 (en) Sialon ceramic porous body and method for producing the same
JP2001072479A (en) Silicon carbide porous body and production thereof
WO2008026789A1 (en) Whiskered porous body and method for manufacturing the same
CN109503172A (en) A kind of preparation method of the porous silicon carbide ceramic with vermiform crystal grain
JPH01172283A (en) Production of fine porous ceramic body
JP2003522707A (en) Ceramic composite foam with high mechanical strength
CN112535907B (en) High-density ceramic fiber filter material and preparation method thereof