JP2001200211A - Electroconductive coating material - Google Patents

Electroconductive coating material

Info

Publication number
JP2001200211A
JP2001200211A JP2000017834A JP2000017834A JP2001200211A JP 2001200211 A JP2001200211 A JP 2001200211A JP 2000017834 A JP2000017834 A JP 2000017834A JP 2000017834 A JP2000017834 A JP 2000017834A JP 2001200211 A JP2001200211 A JP 2001200211A
Authority
JP
Japan
Prior art keywords
boron
fiber
mass
less
fine carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000017834A
Other languages
Japanese (ja)
Other versions
JP3606782B2 (en
Inventor
Masato Murakami
村上  真人
Kunio Nishimura
邦夫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000017834A priority Critical patent/JP3606782B2/en
Publication of JP2001200211A publication Critical patent/JP2001200211A/en
Application granted granted Critical
Publication of JP3606782B2 publication Critical patent/JP3606782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide electroconductive coating materials which have a low electrical resistance and withstand long-term service and are suitably used particularly in destaticizing and electromagnetic wave shielding. SOLUTION: The electroconductive coating materials comprise 70-99.8 mass% thermoplastic resin or thermosetting resin and 30-0.2 mass% fine carbon fibers having a diameter of 0.01-5 μm and an aspect ratio of >=10 and containing 0.1-3 mass% boron therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気抵抗が低く、
長期間の使用に耐える導電性塗料に関するものであり、
特に静電塗装、静電気防止や電磁波シールドを目的に、
または抵抗体、回路やコピー機ロール用の導電性インク
等に好適に使用される導電性塗料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
It is related to conductive paint that can withstand long-term use,
Especially for the purpose of electrostatic painting, static electricity prevention and electromagnetic wave shielding,
Alternatively, the present invention relates to a conductive paint suitably used for a conductive ink for a resistor, a circuit, a roll of a copying machine, and the like.

【0002】[0002]

【従来の技術】最近、電子機器などの電磁波シールド
性、制電性、静電気防止性が要求される分野において、
導電性の塗料が使用されるようになっている。これらの
塗料においては、フィラーとして銀、アルミニウム、銅
などの金属粉、カーボン粉などが使用されている。ま
た、静電塗装用の下地塗料にも導電性の良好な塗料が要
求されている。
2. Description of the Related Art Recently, in fields where electromagnetic wave shielding properties, antistatic properties, and antistatic properties are required for electronic devices and the like,
Conductive paints have been used. In these paints, metal powders such as silver, aluminum and copper, carbon powders and the like are used as fillers. Further, a paint having good conductivity is also required as a base paint for electrostatic coating.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、銀は高
価で高比重であり、また他の金属粉は酸化、腐食等によ
り導電性が低下するという欠点がある。一方、カーボン
粉は安価で金属粉のような問題は少ないが、導電性が不
十分であるなどの欠点があった。これはカーボン粉自身
の導電性が金属粉に比べて低いことと、アスペクト比
(長さ/径)が小さいことに起因する。このためこの分
野では、導電性が高く、低比重で、アスペクト比が大き
く、安価なフィラーが望まれている。
However, silver has the disadvantage that it is expensive and has a high specific gravity, and the conductivity of other metal powders is reduced due to oxidation, corrosion and the like. On the other hand, carbon powder is inexpensive and has few problems like metal powder, but has drawbacks such as insufficient conductivity. This is because the conductivity of the carbon powder itself is lower than that of the metal powder and the aspect ratio (length / diameter) is small. For this reason, in this field, an inexpensive filler having high conductivity, low specific gravity, high aspect ratio, and low conductivity is desired.

【0004】そこで、特公平6−39576号公報にお
ける繊維径が小さくアスペクト比が大きい特異な構造を
有する易黒鉛化性の炭素質繊維や、特開平7−1021
97号公報における微細糸状の炭素フィブリルが互いに
絡み合った凝集体からなる炭素フィブリル材料など、前
記の欠点を改良するフィラーが提案されている。しか
し、これらフィラーでは、十分な導電性を得ようとする
と数十質量%という多量を添加する必要があり、少なか
らずコストアップにつながるだけでなく、樹脂との混合
時に取り扱いが煩雑になったり、混合後の塗料の流動性
が低下して塗布が難しくなるといった問題が起こってく
る。
Accordingly, graphitizable carbonaceous fibers having a unique structure with a small fiber diameter and a large aspect ratio disclosed in Japanese Patent Publication No. Hei 6-39576,
No. 97, there is proposed a filler which improves the above-mentioned disadvantages, such as a carbon fibril material comprising an aggregate in which fine thread-like carbon fibrils are entangled with each other. However, in order to obtain sufficient conductivity, it is necessary to add a large amount of several tens of mass% to these fillers, which not only leads to a considerable increase in cost, but also complicates handling when mixed with the resin, A problem arises in that the fluidity of the paint after mixing is reduced and application becomes difficult.

【0005】従って、本発明は導電性が高く、化学的に
安定であり、かつ低コストの導電性塗料を提供すること
を目的とする。
Accordingly, an object of the present invention is to provide a conductive paint which has high conductivity, is chemically stable, and is inexpensive.

【0006】[0006]

【課題を解決するための手段】本発明者らは、先に、特
願平11−81260号明細書において、従来得られな
かった高い結晶性を持つ微細な炭素繊維とその製造法、
及びその繊維をフィラーとしてより性能の高い電池用電
極を開示した。その炭素繊維は、直径が0.01〜5μ
m、アスペクト比が10以上で、繊維中にホウ素を0.
1〜3質量%含有する微細な炭素繊維で、X線回折法で
求めた炭素の面間隔d002 が3.385Å以下、結晶の
c軸方向の厚さLcが400Å以下である微細な炭素繊
維である。
SUMMARY OF THE INVENTION The present inventors have previously disclosed in Japanese Patent Application No. 11-81260 a fine carbon fiber having high crystallinity and a method for producing the same, which could not be obtained conventionally.
And a battery electrode having higher performance using the fiber as a filler. The carbon fiber has a diameter of 0.01 to 5 μm.
m, the aspect ratio is 10 or more, and boron is contained in the fiber in an amount of 0.
A fine carbon fiber containing 1 to 3% by mass and having a carbon spacing d 002 of 3.385 ° or less and a thickness Lc in the c-axis direction of the crystal of 400 ° or less determined by X-ray diffraction. It is.

【0007】この微細な炭素繊維は高い結晶性を持つた
め導電性に優れる。そこで、本発明者らは前記の従来の
導電性塗料の欠点を改良するため、この微細な炭素繊維
について検討を進めた結果、少量の添加で高い導電性を
有する導電性塗料が得られることを見い出した。さら
に、同じ添加量であれば抵抗値を従来の値の2分の1以
下にできることも見い出した。
The fine carbon fibers have high crystallinity and are therefore excellent in conductivity. Therefore, the present inventors have studied the fine carbon fiber in order to improve the drawbacks of the conventional conductive paint, and as a result, have found that a conductive paint having high conductivity can be obtained with a small amount of addition. I found it. Further, they have found that the resistance value can be reduced to half or less of the conventional value with the same addition amount.

【0008】こうして、本発明は、熱可塑性樹脂または
熱硬化性樹脂70〜99.8質量部と、直径が0.01
〜5μm、アスペクト比が10以上で、繊維中にホウ素
を0.1〜3質量%含有する微細な炭素繊維30〜0.
2質量部を含有してなることを特徴とする導電性塗料を
提供する。微細な炭素繊維の、X線回折法で求めた炭素
の面間隔d002 は3.385Å以下で、結晶のc軸方向
の厚さLcが400Å以下であることができる。
Thus, according to the present invention, 70 to 99.8 parts by mass of a thermoplastic resin or a thermosetting resin,
Fine carbon fibers having an aspect ratio of 10 to 5 μm and containing boron in the fiber in an amount of 0.1 to 3% by mass.
Provided is a conductive paint characterized by containing 2 parts by mass. The plane distance d 002 of carbon of fine carbon fibers obtained by X-ray diffraction can be 3.385 ° or less, and the thickness Lc in the c-axis direction of the crystal can be 400 ° or less.

【0009】また、微細な炭素繊維の粉体抵抗が嵩密度
0.8g/cm3 のとき0.01Ω・cm以下であり、得ら
れる乾燥塗料の抵抗値は0.01Ω・cm以下であること
ができる。
The powder resistance of the fine carbon fiber is 0.01 Ω · cm or less when the bulk density is 0.8 g / cm 3 , and the resistance value of the obtained dry paint is 0.01 Ω · cm or less. Can be.

【0010】[0010]

【発明の実施の形態】(微細な炭素繊維)本発明の導電
性塗料に添加する炭素繊維は直径が0.01〜5μm、
アスペクト比が10以上の微細な炭素繊維である。繊維
径が0.01μm未満であると繊維の強度が弱く、フィ
ラーとして使用した場合に繊維の切断が多くなり、繊維
としての機能が損なわれやすい。一方、繊維は、フィラ
ーとしての添加率(質量%)を一定とした場合、径が太
くなるとそれだけ繊維の本数が減ることになり、フィラ
ーとしての繊維の機能が十分発揮されない。また、径が
5μmより太くなると繊維自体の生産性が著しく低下す
るので、工業的にコストが高くなる。これらの理由から
繊維径は0.01〜5μmである。1μm以下の繊維径
のものが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION (Fine carbon fibers) The carbon fibers to be added to the conductive paint of the present invention have a diameter of 0.01 to 5 μm.
It is a fine carbon fiber having an aspect ratio of 10 or more. When the fiber diameter is less than 0.01 μm, the strength of the fiber is weak, and when used as a filler, the fiber is frequently cut, and the function as the fiber is easily impaired. On the other hand, when the addition rate (mass%) of the fiber is fixed, the number of fibers decreases as the diameter increases, and the function of the fiber as a filler is not sufficiently exhibited. On the other hand, when the diameter is larger than 5 μm, the productivity of the fiber itself is remarkably reduced, so that the cost becomes industrially high. For these reasons, the fiber diameter is 0.01-5 μm. Those having a fiber diameter of 1 μm or less are preferred.

【0011】また、繊維のアスペクト比が10未満では
炭素繊維を塗料に添加した場合の塗料の導電性が十分で
はない。好ましくはアスペクト比が50以上である。微
細な炭素繊維の長さは特に制限はなく、その下限はアス
ペクト比の下限から定まる長さが好ましい。繊維の長さ
は、長すぎると繊維の絡み合い等によりフィラーとして
の分散性に問題が生じる、あるいは塗膜表面に凹凸を生
じやすいので、上限は400μmが好ましく、さらに好
ましくは100μmである。したがって、例えばアスペ
クト比が50以上の場合、繊維径が0.01μmでは繊
維長さは0.5μm以上、径が1μmでは長さは50μ
m以上が好ましい。その上限はいずれも好ましくは40
0μm、さらに好ましくは100μmである。
When the aspect ratio of the fiber is less than 10, the conductivity of the paint when carbon fiber is added to the paint is not sufficient. Preferably, the aspect ratio is 50 or more. The length of the fine carbon fiber is not particularly limited, and the lower limit is preferably a length determined from the lower limit of the aspect ratio. If the length of the fiber is too long, problems may occur in the dispersibility as a filler due to entanglement of the fiber, or irregularities may easily occur on the surface of the coating film. Therefore, the upper limit is preferably 400 μm, more preferably 100 μm. Therefore, for example, when the aspect ratio is 50 or more, when the fiber diameter is 0.01 μm, the fiber length is 0.5 μm or more, and when the fiber diameter is 1 μm, the length is 50 μm.
m or more is preferable. The upper limit of each is preferably 40
It is 0 μm, more preferably 100 μm.

【0012】本発明に用いる微細な炭素繊維はその結晶
内にホウ素を含有することを特徴とする。本発明者ら
は、微細な炭素繊維の結晶内にホウ素を含ませることに
より、所望の導電性などの特性を得ることに成功したも
のである。その製法については後述するが、ホウ素含有
量0.1〜3質量%で効果的に高結晶化、即ち、高導電
性が達成される。好ましくは0.2〜3質量%のホウ素
を含む。しかし、ホウ素は熱処理における繊維の結晶化
の際に存在すればよく、高結晶化した後さらに高温で処
理する等によりホウ素が揮散し、含有量が0.1質量%
を下回らない範囲で添加量よりも濃度が低くなっても構
わない。
The fine carbon fiber used in the present invention is characterized in that its crystal contains boron. The present inventors have succeeded in obtaining desired properties such as conductivity by incorporating boron into fine carbon fiber crystals. Although the production method will be described later, high crystallization, that is, high conductivity is effectively achieved at a boron content of 0.1 to 3% by mass. Preferably, it contains 0.2 to 3% by mass of boron. However, boron only needs to be present at the time of crystallization of the fiber in the heat treatment, and after high crystallization, the boron is volatilized by treatment at a higher temperature or the like, and the content is 0.1% by mass.
The concentration may be lower than the addition amount as long as it does not fall below the range.

【0013】また、本発明に用いるホウ素を結晶内に含
有する微細な炭素繊維は、結晶性が高く、X線回折法で
求めた面間隔d002 が3.385Å以下であり、結晶の
c軸方向の厚さLcが400Å以下の範囲のものである
ことができる。微細な炭素繊維において面間隔d002
3.385Å以下にすることは従来可能ではなかった。
さらに、この微細な炭素繊維はd002 が小さいにもかか
わらず、結晶のc軸方向の厚さLcが400Å以下であ
ることができることも従来にない特徴である。また、こ
の微細な炭素繊維は、ホウ素を含有し、d002 及びLc
の値が上記の範囲内にあり、かつラマン吸収スペクトル
のR値(1580cm-1の吸収強度IG と1360cm-1
吸収強度ID の比R=ID /IG )が0.5以上となる
特徴を有する。
Further, the fine carbon fiber containing boron in the crystal used in the present invention has high crystallinity, the plane spacing d 002 determined by the X-ray diffraction method is 3.385 ° or less, and the c-axis of the crystal is The thickness Lc in the direction can be in the range of 400 ° or less. Conventionally, it has not been possible to reduce the interplanar spacing d 002 to 3.385 ° or less in fine carbon fibers.
Further, although the fine carbon fiber has a small d 002 , the thickness Lc of the crystal in the c-axis direction can be 400 ° or less, which is an unconventional feature. This fine carbon fiber contains boron, and d 002 and Lc
Value is within the above range, and (ratio R = I D / I G of the absorption intensity I D of the absorption intensity I G and 1360 cm -1 in 1580 cm -1) R value of Raman absorption spectrum of 0.5 or more It has the following features.

【0014】さらに、この微細な炭素繊維の粉体抵抗
は、嵩密度が0.8g/cm3 のとき、0.01Ω以下で
あることができる。微細な炭素繊維がこのように高い導
電性を有することにより、それを含有する塗料の導電性
も向上する。 (微細な炭素繊維の製法)本発明で使用する上記の微細
な炭素繊維はホウ素を繊維の結晶構造の中に取り込み、
その触媒的な作用により製造することができる。高結晶
化に効果的なホウ素の含有量は、上記の如く、一般的に
は0.1〜3質量%、好ましくは0.2〜3質量%であ
る。
Further, the powder resistance of the fine carbon fiber can be 0.01 Ω or less when the bulk density is 0.8 g / cm 3 . When the fine carbon fibers have such high conductivity, the conductivity of the paint containing the fine carbon fibers is also improved. (Preparation method of fine carbon fiber) The fine carbon fiber used in the present invention incorporates boron into the crystal structure of the fiber,
It can be produced by its catalytic action. As described above, the content of boron effective for high crystallization is generally 0.1 to 3% by mass, preferably 0.2 to 3% by mass.

【0015】出発原料とする炭素繊維は、ベンゼン等の
有機化合物の熱分解により気相で成長させた微細な炭素
繊維を用いることができる。この炭素繊維は、例えば特
開平7−150419号公報、特開平5−321039
号公報、特開昭60−215816号公報、特開昭61
−70014号公報、特公平5−36521号公報、特
公平3−61768号公報等に示される方法で製造する
ことができる。また、繊維径が0.01μm以上であれ
ば、同じ年輪構造をもつカーボンナノチューブやカーボ
ンナノファイバーと呼ばれる微細な繊維状物質も使用で
きる。従って、アーク放電法やレーザー法等によって製
造される多重構造のカーボンナノチューブ、カーボンナ
ノファイバー等についても使用できる。
As the carbon fiber used as a starting material, fine carbon fiber grown in the gas phase by thermal decomposition of an organic compound such as benzene can be used. This carbon fiber is used, for example, in JP-A-7-150419 and JP-A-5-321039.
JP-A-60-215816, JP-A-60-215816
It can be manufactured by the method described in Japanese Patent Application Publication No. -70014, Japanese Patent Publication No. 5-36521, Japanese Patent Publication No. 3-61768, and the like. If the fiber diameter is 0.01 μm or more, fine fibrous substances called carbon nanotubes or carbon nanofibers having the same annual ring structure can be used. Accordingly, carbon nanotubes, carbon nanofibers, and the like having a multi-structure manufactured by an arc discharge method, a laser method, or the like can be used.

【0016】本発明者らの検討によって、このような微
細な炭素繊維は、熱処理で結晶性を上げることはできる
が、熱処理だけではd002 は3.385Åが限界であ
り、それより結晶性の向上が望めないことがわかった。
そこでさらに、高結晶化するために黒鉛化の触媒につい
て検討した結果、ホウ素が特に有効であった。通常の炭
素材料については、ホウ素を添加して熱処理し結晶性を
高めることは種々検討されている。(「炭素」199
6、No. 172、89〜94頁、特開平3−24545
8号公報、特開平5−251080号公報、特開平5−
266880号公報、特開平7−73898号公報、特
開平8−31422号公報、特開平8−306359号
公報、特開平9−63584号公報、特開平9−635
85号公報)しかし、径が5μm以下の微細な気相法炭
素繊維に対して、ホウ素を導入して特性を改善した例は
今までにない。その理由は下記〜のように、形状の
特徴からなかなかホウ素を用いた黒鉛化が行いにくいこ
とと、繊維が特殊な構造を持つためにホウ素の触媒効果
が期待できないためであった。
[0016] a study of the present inventors, such fine carbon fibers, although it is possible to improve the crystallinity by a heat treatment, the d 002 only heat treatment is limit 3.385A, crystalline than It turned out that no improvement could be expected.
Then, as a result of further study on a graphitization catalyst for high crystallization, boron was particularly effective. Regarding ordinary carbon materials, various studies have been made on adding boron to a heat treatment to increase crystallinity. ("Carbon" 199
6, No. 172, pp. 89-94, JP-A-3-24545
8, JP-A-5-251080, JP-A-5-251080
266880, JP-A-7-73898, JP-A-8-31422, JP-A-8-306359, JP-A-9-63584, JP-A-9-635
No. 85) However, there is no example in which the properties of fine vapor grown carbon fibers having a diameter of 5 μm or less have been improved by introducing boron. The reason is that graphitization using boron is hard to be easily performed due to the shape characteristics as described below, and the catalytic effect of boron cannot be expected because the fiber has a special structure.

【0017】 気相法炭素繊維は、繊維の切断面の結
晶構造が同心円状に発達した長ねぎ状の繊維である。 繊維の長さは製造条件によって異なるが、例えば
0.01〜0.5μm程度の径の繊維では単繊維だけで
なく枝分かれした繊維も多く存在するので明確には規定
しがたいが、直線部分を走査型電子顕微鏡で測定した限
りでは、平均が少なくとも5μm以上あるものがほとん
どである。
The vapor grown carbon fiber is an onion-like fiber in which the crystal structure of the cut surface of the fiber has developed concentrically. Although the length of the fiber varies depending on the manufacturing conditions, for example, in the case of a fiber having a diameter of about 0.01 to 0.5 μm, not only a single fiber but also a large number of branched fibers exist, so it is difficult to clearly define the straight part. In most cases, the average is at least 5 μm or more as measured by a scanning electron microscope.

【0018】 また、この繊維は長繊維に加えて枝分
かれした微細な繊維も含むために、長い繊維はもちろん
のこと、5μm程度の短い繊維であっても、少なくとも
大きさが10μm以上、場合によっては100μm以上
の大きなフロック状になりやすい。 したがって、集合体としての嵩密度は小さく、0.
05g/cm3 以下、通常は0.01g/cm3 以下であ
る。しかもフロック状の立体構造を持っているので、黒
鉛化触媒との接触が難しく、均一にホウ素化しがたい。
In addition, since the fibers include fine fibers branched in addition to long fibers, not only long fibers but also short fibers of about 5 μm have a size of at least 10 μm or more, and in some cases, A large floc having a size of 100 μm or more tends to be formed. Therefore, the bulk density as an aggregate is small,
05g / cm 3 or less, usually is 0.01g / cm 3 or less. In addition, since it has a floc-shaped three-dimensional structure, it is difficult to contact with a graphitization catalyst, and it is difficult to uniformly boronize.

【0019】 また、微細な炭素繊維は表面がしっか
りしたベーサルプレーン(六角網目構造の平面)で覆わ
れているので、ホウ素を用いて黒鉛化してもポリゴニゼ
ーション時に立体障害のため結晶性の向上が阻害され
る。本発明者らは、微細な炭素繊維にホウ素をドーピン
グすることにより高結晶化できることを見い出した。
In addition, since the fine carbon fibers are covered with a solid basal plane (a hexagonal network structure), the surface of the fine carbon fibers is sterically hindered even during graphitization using boron. Is inhibited. The present inventors have found that high crystallization can be achieved by doping fine carbon fibers with boron.

【0020】ホウ素をドーピングするためには、原料の
微細な炭素繊維として、ドーピングしやすいあまり結晶
の発達していない低温処理品、好ましくは1500℃以
下で熱処理された炭素繊維を用いることが好ましい。低
温処理の炭素繊維であっても、ホウ素を触媒として用い
た処理(ホウ素化処理)の時に最終的には黒鉛化温度ま
で加熱処理されるので、結晶の未発達の未熱処理品でも
十分使用できる。2000℃以上、好ましくは2300
℃以上の温度で黒鉛化処理された炭素繊維を用いること
もできなくはないが、エネルギーの削減の面から考えれ
ば何ら前もって黒鉛化処理しておく必要はなく、むしろ
低温処理品を用いて黒鉛化と同時に触媒作用を働かせる
ほうが好ましい。
In order to dope boron, it is preferable to use, as the fine carbon fiber as a raw material, a low-temperature-treated product which is easy to dope and has little crystal development, preferably a carbon fiber which has been heat-treated at 1500 ° C. or lower. Even low-temperature-treated carbon fibers are finally heated to the graphitization temperature during the treatment using boron as a catalyst (boronation treatment), so that even untreated heat-treated products with undeveloped crystals can be used. . 2000 ° C. or higher, preferably 2300
It is not impossible to use carbon fibers that have been graphitized at a temperature of ℃ or higher.However, it is not necessary to graphitize in advance from the viewpoint of energy savings. It is preferable to act on the catalyst simultaneously with the conversion.

【0021】また、炭素中のホウ素の含有量が最も多く
かつドープしやすい温度は2000〜2300℃との報
告もあり、これより高い温度で処理されて結晶化した材
料では触媒効果が小さい。原料の微細な炭素繊維とし
て、取扱容易のためあらかじめ解砕、粉砕したものを用
いることができるが、解砕、粉砕はホウ素またはホウ素
化合物との混合ができる程度で十分である。すなわち、
ホウ素化処理した後でも最終的には解砕、粉砕、分級等
のフィラー化処理を行うので、ホウ素化処理の前にフィ
ラーとしての適正な長さにする必要はない。気相成長法
で一般的に得られる太さ(径)0.01〜5μm程度、
長さ0.5〜400μm程度の炭素繊維をそのまま用い
ることができる。これらはフロック状になっていてもよ
い。また原料繊維は熱処理したものでもよいが、熱処理
温度は1500℃以下とすることが好ましい。
Further, there is a report that the temperature at which the content of boron in carbon is the largest and the doping is easy is 2000 to 2300 ° C., and a material crystallized by treatment at a higher temperature has a small catalytic effect. Fine carbon fibers as raw materials that have been crushed and pulverized in advance for easy handling can be used, but the crushing and pulverization are sufficient as long as they can be mixed with boron or a boron compound. That is,
Even after the boration treatment, a filler treatment such as crushing, pulverization, and classification is finally performed, so that it is not necessary to make the filler as a proper length before the boration treatment. Thickness (diameter) generally obtained by a vapor growth method is about 0.01 to 5 μm,
Carbon fibers having a length of about 0.5 to 400 μm can be used as they are. These may be flocked. The raw fiber may be a heat-treated fiber, but the heat treatment temperature is preferably 1500 ° C. or lower.

【0022】ホウ素をドーピングするために用いるホウ
素源としては、ホウ素化処理は2000℃以上の温度で
行われるので、少なくとも2000℃に達する前に分解
等によっても蒸発しない物質、例えば、元素状ホウ素、
2 3 、ホウ素、B4 C,BN、その他のホウ素化合
物を使用することが好ましい。炭素にホウ素をドーピン
グできる量は一般的には3質量%以下である。ホウ素含
有量0.1〜3質量%で効果的に高結晶化、即ち、高導
電性が達成される。好ましくは0.2〜3質量%のホウ
素を含む。しかし、ホウ素は熱処理における繊維の結晶
化の際に存在すればよく、高結晶化した後さらに高温で
処理する等によりホウ素が揮散し、含有量が0.1質量
%を下回らない範囲で添加量よりも濃度が低くなっても
構わない。
As a boron source used for doping boron, a substance which does not evaporate by decomposition or the like before reaching at least 2000 ° C., for example, elemental boron,
B 2 O 3, boron, B 4 C, BN, it is preferred to use other boron compounds. The amount of carbon that can be doped with boron is generally 3% by mass or less. When the boron content is 0.1 to 3% by mass, high crystallization is effectively achieved, that is, high conductivity is achieved. Preferably, it contains 0.2 to 3% by mass of boron. However, boron only needs to be present at the time of crystallization of the fiber in the heat treatment, and after high crystallization, the boron is volatilized by, for example, treatment at a higher temperature, so that the content is not more than 0.1% by mass. The concentration may be lower than that.

【0023】したがって、配合時のホウ素またはホウ素
化合物の添加量は反応率を考慮して炭素量に対してホウ
素原子換算で10質量%以下で十分である。ホウ素の使
用量が多いと処理コストが高くなるだけでなく、熱処理
の段階で溶融焼結しやすく、固まったり繊維表面を被覆
して電気抵抗を上昇させるなど、フィラー特性が失われ
ることがある。
Therefore, the addition amount of boron or boron compound at the time of compounding is sufficient to be not more than 10% by mass in terms of boron atom with respect to the carbon amount in consideration of the reaction rate. If the amount of boron used is large, not only the processing cost is increased, but also the filler properties are lost, such as easy melting and sintering at the heat treatment stage and increase in electrical resistance by hardening or coating the fiber surface.

【0024】ホウ素の導入反応を効率よく行うには、炭
素繊維とホウ素またはホウ素化合物とをよく混合しでき
るだけ均一に接触させる必要がある。微細な炭素繊維は
三次元の立体構造を持ち、フロック状を形成しやすいだ
けでなく、嵩密度がきわめて小さく空隙率が非常に大き
い。しかも添加するホウ素量は10質量%以下、好まし
くは5質量%以下と少ないので、単に両者を混合しただ
けでは均一に接触させることは難しい。そこで、ホウ素
またはホウ素化合物の粒子はできるだけ粒径の小さいも
のを使用して炭素繊維とホウ素化合物をできるだけ均一
に接触させる必要がある。また、粒子が大きいと部分的
に高濃度領域が発生することになり、固結化の原因にな
りかねない。具体的には、粒度は平均粒径で100μm
以下、好ましくは50μm以下、より好ましくは20μ
m以下である。
In order to efficiently carry out the boron introduction reaction, it is necessary to mix the carbon fiber and boron or boron compound well and to make the contact as uniform as possible. Fine carbon fibers have a three-dimensional three-dimensional structure and are not only easily formed in a floc shape, but also have a very small bulk density and a very large porosity. Moreover, since the amount of boron to be added is as small as 10% by mass or less, preferably 5% by mass or less, it is difficult to make uniform contact only by mixing both. Therefore, it is necessary that the carbon fiber and the boron compound be brought into contact as uniformly as possible by using particles of boron or boron compound having the smallest possible particle size. In addition, when the particles are large, a high concentration region is partially generated, which may cause solidification. Specifically, the particle size is 100 μm in average particle size.
Or less, preferably 50 μm or less, more preferably 20 μm
m or less.

【0025】炭素繊維とホウ素またはホウ素化合物とを
均一に混合しそのまま熱処理することもできるが、気相
法による微細な炭素繊維は嵩密度が非常に小さいため、
好ましくは高密度化し、かつその状態をできるだけ維持
(固定化)して熱処理する。その好ましい方法として、
両者を混合した後、混合物に圧力を加えて圧縮し高密度
化して固定化する方法が挙げられる。
Although carbon fibers and boron or a boron compound can be uniformly mixed and heat-treated as it is, fine carbon fibers obtained by a gas phase method have a very low bulk density.
Preferably, the heat treatment is performed while the density is increased and the state is maintained (fixed) as much as possible. As a preferred method,
After mixing both, there is a method of applying pressure to the mixture, compressing the mixture, densifying the mixture, and fixing the mixture.

【0026】炭素繊維とホウ素またはホウ素化合物との
混合は、均一性が保持できればいずれの方法でもよい。
混合機としては市販の混合機のいずれでもよいが、微細
な炭素繊維はフロック状になりやすいので、これを解砕
するためにチョッパー付きのヘンシェルミキサータイプ
のものであればより好ましい。使用する原料炭素繊維は
先に述べたように製造されたままのものでも、その15
00℃以下の温度での処理品でもよい。ただし、経済的
には製造されたままのものが好ましい。
Mixing of the carbon fiber with boron or a boron compound may be performed by any method as long as uniformity can be maintained.
As the mixer, any of commercially available mixers may be used. However, since fine carbon fibers tend to form flocs, it is more preferable to use a Henschel mixer type with a chopper to break the fine fibers. The raw carbon fiber to be used may be as manufactured as described above,
A processed product at a temperature of 00 ° C. or less may be used. However, it is preferable to use it as it is manufactured economically.

【0027】炭素繊維とホウ素またはホウ素化合物との
混合物を高密度化し、両者が分離しないように固定化す
る方法としては、成形法、造粒法、あるいは混合物をる
つぼに入れて一定の形状に圧縮して詰め込む方法等、い
ずれの方法でもよい。また成形法の場合、成形体の形状
は円柱状、板状、直方体等、いずれの形状でもよい。こ
のようにしてホウ素またはホウ素化合物を添加し、嵩密
度を高めた炭素繊維は次に熱処理する。
As a method of densifying a mixture of carbon fiber and boron or a boron compound and fixing the mixture so that the two are not separated, a molding method, a granulation method, or a method in which the mixture is put into a crucible and compressed into a predetermined shape. Any method may be used, such as a method of stuffing. In the case of the molding method, the shape of the molded body may be any shape such as a columnar shape, a plate shape, and a rectangular parallelepiped. The carbon fiber to which the boron or the boron compound has been added to increase the bulk density is then heat-treated.

【0028】ホウ素を炭素の結晶内に導入するために必
要な処理温度は一般的に2000℃以上、好ましくは2
300℃以上である。処理温度が2000℃に満たない
とホウ素と炭素との反応性が悪く、ホウ素の導入が難し
い。ホウ素の導入を一層促進し、かつ炭素の結晶性を向
上させ、特にd002 を3.385Å以下にするには23
00℃以上に保つことが好ましい。熱処理温度の上限は
特にないが、装置等の制約から3200℃程度である。
The processing temperature required to introduce boron into the carbon crystal is generally above 2000 ° C., preferably 2 ° C.
300 ° C. or higher. If the treatment temperature is lower than 2000 ° C., the reactivity between boron and carbon is poor, and it is difficult to introduce boron. In order to further promote the introduction of boron and improve the crystallinity of carbon, in particular, to reduce d 002 to 3.385 ° or less, 23
It is preferable to keep the temperature at 00 ° C or higher. There is no particular upper limit for the heat treatment temperature, but it is about 3200 ° C. due to limitations of the apparatus and the like.

【0029】使用する熱処理炉は2000℃以上、好ま
しくは2300℃以上の目標とする温度が保持できる炉
であればよく、通常のアチソン炉、抵抗炉、高周波炉等
の何れの装置でもよい。また、場合によっては、粉体ま
たは成形体に直接通電して加熱する方法も使用できる。
熱処理の雰囲気は、非酸化性の雰囲気、好ましくはアル
ゴン等の希ガス雰囲気である。熱処理の時間は、生産性
の面からはできるだけ短いほうが好ましい。特に長時間
加熱していると、焼結が進行するので収率も悪化する。
したがって、成形体等の中心部の温度が目標温度に達し
た後、1時間以下の保持時間で十分である。
The heat treatment furnace to be used may be any furnace capable of maintaining a target temperature of 2000 ° C. or higher, preferably 2300 ° C. or higher, and may be any of ordinary devices such as an Acheson furnace, a resistance furnace, and a high frequency furnace. In some cases, a method in which the powder or the molded body is directly energized and heated may be used.
The atmosphere for the heat treatment is a non-oxidizing atmosphere, preferably a rare gas atmosphere such as argon. The heat treatment time is preferably as short as possible from the viewpoint of productivity. In particular, when heating is performed for a long time, the sintering proceeds, so that the yield also decreases.
Therefore, a holding time of one hour or less is sufficient after the temperature of the central part of the molded body or the like reaches the target temperature.

【0030】圧縮成形等で高密度化した炭素繊維は熱処
理すると一部が焼結し、ブロック状になるので、フィラ
ーとして適する形態とするために、成形体を解砕するこ
とが望ましい。そのため、このブロックを解砕、粉砕、
分級してフィラーとして適するように処理すると同時
に、非繊維物を分離する。その際に粉砕しすぎるとフィ
ラー性能が低下し、また粉砕が不十分だと塗料主剤との
混合がうまくいかず、添加効果が出ないおそれがある。
The carbon fiber densified by compression molding or the like partially sinters and becomes block-shaped when heat-treated, so that it is desirable to crush the molded body to obtain a form suitable as a filler. Therefore, this block is crushed, crushed,
At the same time, the non-fibrous material is separated while being classified and treated to be suitable as a filler. At that time, if the pulverization is too much, the filler performance is deteriorated. If the pulverization is insufficient, the mixing with the paint base agent does not work well, and the addition effect may not be obtained.

【0031】フィラーとして望ましい形態にするために
は、熱処理後のブロック状物をまず2mm以下の大きさに
解砕し、さらに粉砕機で粉砕する。解砕機としては通常
使用されるアイスクラッシャーやロートプレックス等の
装置が使用できる。粉砕機としては衝撃式粉砕機のパル
ベライザーや自由粉砕機、またミクロジェット等の粉砕
機が使用できる。非繊維物を分離する分級は気流式分級
機等で行うことができる。粉砕分級条件は粉砕機の種類
や操作条件によって異なるが、フィラー特性を発揮させ
るためには、繊維の長さが5〜400μmにするのが好
ましい。アスペクト比は好ましくは10以上、さらに好
ましくは50以上である。
In order to obtain a desirable form as a filler, the block-like material after the heat treatment is first crushed into a size of 2 mm or less, and further crushed by a crusher. As the crusher, a commonly used device such as an ice crusher or a rotoplex can be used. As a pulverizer, a pulverizer or a free pulverizer of an impact type pulverizer, or a pulverizer such as a micro jet can be used. Classification for separating non-fibrous materials can be performed by an airflow classifier or the like. The conditions for pulverization and classification vary depending on the type and operation conditions of the pulverizer. However, in order to exhibit filler characteristics, the fiber length is preferably 5 to 400 μm. The aspect ratio is preferably 10 or more, more preferably 50 or more.

【0032】また、粉砕分級後の嵩密度は、0.001
〜0.2g/cm3 、好ましくは0.005〜0.15g
/cm3 、さらに好ましくは0.01〜0.1g/cm3
ある。嵩密度が0.2g/cm3 以上になると、径によっ
ては繊維の長さが5μm以下のように短くなりフィラー
効果が低下する。また、0.001g/cm3 より小さい
と径によっては400μmを超えるような長いものとな
り、フィラーとしての詰まりが悪くなる。嵩密度とは、
容器に繊維を充填し振動させ、体積がほぼ一定に達した
ときの体積と質量から求めたタッピング嵩密度である。
The bulk density after pulverization and classification is 0.001.
0.2 g / cm 3 , preferably 0.005 to 0.15 g
/ Cm 3 , more preferably 0.01 to 0.1 g / cm 3 . When the bulk density is 0.2 g / cm 3 or more, the length of the fiber becomes as short as 5 μm or less depending on the diameter, and the filler effect is reduced. On the other hand, if the diameter is less than 0.001 g / cm 3 , the diameter becomes longer than 400 μm depending on the diameter, and clogging as a filler becomes worse. What is bulk density?
This is the tapping bulk density determined from the volume and mass when the container is filled with fibers and vibrated to reach a substantially constant volume.

【0033】上記のような方法で製造した繊維中にホウ
素を含有する微細な炭素繊維は、嵩密度0.8g/cm3
のときの粉体抵抗が、0.01Ω・cm以下になることが
できる。一方、これと同形状で繊維中にホウ素を含まな
い気相成長法による微細な炭素繊維は、嵩密度0.8g
/cm3 のときの粉体抵抗が0.01〜0.03Ω・cm程
度である。これは、黒鉛化時にホウ素を触媒として添加
すると結晶性が向上し、その結果、導電性が向上したこ
とによる。このように、従来より導電性がほぼ1桁向上
した微細な炭素繊維を用いることにより、電気抵抗が低
く、静電気防止や電磁波シールド等の目的に好適に使用
される本発明の導電性塗料を提供することができる。
The fine carbon fiber containing boron in the fiber produced by the above method has a bulk density of 0.8 g / cm 3.
, The powder resistance can be 0.01 Ω · cm or less. On the other hand, fine carbon fibers of the same shape and produced by a vapor growth method containing no boron in the fibers have a bulk density of 0.8 g.
/ Cm 3 , the powder resistance is about 0.01 to 0.03 Ω · cm. This is because when boron is added as a catalyst during graphitization, crystallinity is improved, and as a result, conductivity is improved. As described above, the conductive paint of the present invention, which has a low electric resistance and is preferably used for purposes such as prevention of static electricity and electromagnetic wave shielding, is provided by using fine carbon fibers whose conductivity is improved by almost one digit compared to the related art. can do.

【0034】(樹脂)本発明の導電性塗料に用いること
ができる熱可塑性樹脂または熱硬化性樹脂を例示する
と、熱可塑性樹脂としては、ポリアミド樹脂、ポリウレ
タン樹脂、塩化ビニル樹脂、エチレン−酢酸ビニル共重
合体、アクリル樹脂、セルロース樹脂、ブチラール樹脂
など、熱硬化性樹脂としては、フェノール樹脂、エポキ
シ樹脂、尿素樹脂、メラミン樹脂、キシレン樹脂、フラ
ン樹脂、不飽和ポリエステル樹脂、ケイ素樹脂などが挙
げられ、またこれらの前駆体も使用できる。
(Resin) As a thermoplastic resin or a thermosetting resin which can be used for the conductive paint of the present invention, examples of the thermoplastic resin include polyamide resin, polyurethane resin, vinyl chloride resin and ethylene-vinyl acetate. Polymers, acrylic resins, cellulose resins, butyral resins, and the like, as thermosetting resins, phenolic resins, epoxy resins, urea resins, melamine resins, xylene resins, furan resins, unsaturated polyester resins, silicon resins, and the like, These precursors can also be used.

【0035】これら樹脂に対して、必要であれば、公知
の硬化剤や硬化助剤、硬化用触媒や活性剤を使用するこ
とができる。例えば、エポキシ樹脂に対し、硬化剤とし
てアミン系やメルカプタン系化合物、あるいは酸無水物
などが使用できる。上記の樹脂はエマルジョンまたはラ
テックスとして用いることもできるが、溶媒に溶かし
て、溶液として使用するのが好ましい。
For these resins, if necessary, known curing agents and curing assistants, curing catalysts and activators can be used. For example, an amine or mercaptan compound or an acid anhydride can be used as a curing agent for an epoxy resin. The above resin can be used as an emulsion or a latex, but it is preferable to dissolve it in a solvent and use it as a solution.

【0036】溶媒は、前記樹脂を溶解または分散するも
のであれば特に制限はない。例えば、トルエン、キシレ
ンなどの炭化水素、ジクロロエタン、トリクロロエタン
などのハロゲン化炭化水素、イソプロピルアルコール、
ブタノールなどのアルコール類、メチルエチルケトン、
メチルイソブチルケトンなどのケトン類、酢酸エチル、
プロピル酸エチルなどのエステル類、エチレングリコー
ルのメチルエーテル、ジエチレングリコールのジメチル
エーテルなどのエーテル類、水などが使用できる。
The solvent is not particularly limited as long as it dissolves or disperses the resin. For example, toluene, hydrocarbons such as xylene, dichloroethane, halogenated hydrocarbons such as trichloroethane, isopropyl alcohol,
Alcohols such as butanol, methyl ethyl ketone,
Ketones such as methyl isobutyl ketone, ethyl acetate,
Esters such as ethyl propylate, ethers such as methyl ether of ethylene glycol and dimethyl ether of diethylene glycol, and water can be used.

【0037】(導電性塗料の組成)本発明において熱可
塑性樹脂あるいは熱硬化性樹脂に対する微細な炭素繊維
の含有量は、内割りで、30〜0.2質量%、好ましく
は10〜0.5質量%である。樹脂に対して炭素繊維が
30質量%を超えると流動性が低下し、均一な塗布が困
難になる、塗膜強度、基質の接着性が低下するなどの問
題が起こる。また、0.2質量%に達しないと炭素繊維
による効果が乏しく、塗料に用いたときの導電性が十分
でない。
(Composition of conductive paint) In the present invention, the content of fine carbon fibers in the thermoplastic resin or thermosetting resin is 30 to 0.2% by mass, preferably 10 to 0.5% by mass. % By mass. If the carbon fiber content exceeds 30% by mass with respect to the resin, problems such as a decrease in fluidity, difficulty in uniform coating, a decrease in coating film strength, and a decrease in substrate adhesion will occur. On the other hand, when the content does not reach 0.2% by mass, the effect of the carbon fiber is poor, and the conductivity when used in a paint is not sufficient.

【0038】溶媒の量は特に限定されず、塗料の種類、
保存性、塗工性、乾燥性などを考慮して決めればよい。
本発明の導電性塗料には、必要に応じて塗料特性を向上
させるための添加剤を使用することができる。例えば、
フィラーである炭素繊維の分散性を上げるための分散
剤、他の繊維状物や無機物、金属などの粉体や薄片物、
印刷適性を上げるためのレベリング剤、熱や酸化、光に
対する安定剤、カップリング剤、増粘剤、顔料、可塑
剤、架橋剤、充填剤などを混ぜることができる。
The amount of the solvent is not particularly limited.
It may be determined in consideration of the storage property, coating property, drying property and the like.
In the conductive paint of the present invention, an additive for improving paint properties can be used as necessary. For example,
Dispersant for increasing the dispersibility of carbon fiber as a filler, other fibrous substances and inorganic substances, powders and flakes such as metals,
Leveling agents for improving printability, stabilizers against heat, oxidation, and light, coupling agents, thickeners, pigments, plasticizers, crosslinking agents, fillers, and the like can be mixed.

【0039】また、さらに導電性を向上させるために
は、他の導電性粉体と混合して使用することもできる。
他の導電性粉体としては、アセチレンブラック、ケッチ
ェンブラック等のカーボンブラック、グラファイト粉、
各種炭素繊維、金、銀、ニッケル、アルミニウム等の粉
末または繊維、金属コートガラス繊維、などが挙げられ
る。
In order to further improve the conductivity, it can be used by mixing with another conductive powder.
Other conductive powders include acetylene black, carbon black such as Ketjen black, graphite powder,
Various carbon fibers, powders or fibers of gold, silver, nickel, aluminum, and the like, metal-coated glass fibers, and the like are included.

【0040】(塗料の製造)本発明の導電性塗料は、通
常、前記樹脂の溶液と微細な炭素繊維を混合することに
よって製造することができる。混合装置としては、3本
ロール、ボールミルなどの通常の装置を用いることがで
きる。また本発明の導電性塗料は、刷毛塗り、ローラー
コート、スプレーなどの通常の方法で塗布することがで
きる。
(Production of Paint) The conductive paint of the present invention can be usually produced by mixing a solution of the resin with fine carbon fibers. As the mixing device, a normal device such as a three-roll mill or a ball mill can be used. The conductive paint of the present invention can be applied by a usual method such as brushing, roller coating, spraying and the like.

【0041】このようにして製造された本発明の導電性
塗料は、塗工し乾燥後、0.01Ω・cm以下の抵抗値を
有することができる。
The conductive paint of the present invention thus produced can have a resistance value of 0.01 Ω · cm or less after being applied and dried.

【0042】[0042]

【発明の効果】本発明の導電性塗料は、高い導電性を有
する微細な炭素繊維が多くの接触点で接触しながら樹脂
中に均一に分散しているので、極めて導電性の高い塗料
である。また、炭素繊維の補強効果により塗膜強度に優
れ、金属フィラーのように長期間の使用で酸化、腐食等
による導電性の低下することもない。したがって、コン
クリート、金属、木材、プラスチックなど、各種基材に
塗布し、静電気防止や電磁波シールドの目的に好適に使
用できる。
The conductive paint of the present invention is a paint having extremely high conductivity because fine carbon fibers having high conductivity are uniformly dispersed in the resin while contacting at many contact points. . Further, the strength of the coating film is excellent due to the reinforcing effect of the carbon fiber, and there is no decrease in conductivity due to oxidation, corrosion, and the like over a long period of use, unlike a metal filler. Therefore, it can be applied to various base materials such as concrete, metal, wood, and plastic, and can be suitably used for the purpose of preventing static electricity and shielding electromagnetic waves.

【0043】[0043]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1〜4、および比較例1〜2)出発原料である
微細な炭素繊維は、遷移金属を含有する有機金属化合物
の存在のもとにベンゼンを熱分解する公知の方法(例え
ば特開平7−150419号公報)で得た炭素繊維をさ
らに1200℃で熱処理して得た。得られた炭素繊維は
フロック状に集合していたがこれを解砕し、嵩密度を
0.02g/cm3 、繊維の長さを10〜100μmとし
た。繊維径は大部分が0.5μm以下(電子顕微鏡写真
で観察した平均的な繊維径は0.2μm)であった。こ
の炭素繊維のX線回折による炭素の面間隔d002 は3.
407Åで、結晶のc軸方向の厚さLcは56Åであっ
た。
The present invention will be described below in detail with reference to examples. (Examples 1 to 4 and Comparative Examples 1 and 2) Fine carbon fibers as a starting material are prepared by a known method of thermally decomposing benzene in the presence of an organometallic compound containing a transition metal (for example, 7-150419) was further heat-treated at 1200 ° C. The obtained carbon fibers were flocculated, but were crushed to give a bulk density of 0.02 g / cm 3 and a fiber length of 10 to 100 μm. The fiber diameter was mostly 0.5 μm or less (average fiber diameter observed by electron micrograph was 0.2 μm). The plane distance d 002 of carbon of the carbon fiber by X-ray diffraction was 3.
At 407 °, the thickness Lc of the crystal in the c-axis direction was 56 °.

【0044】この繊維2.88kgに平均粒径15μmの
4 C粉末を120g添加し、ヘンシェルミキサーで十
分に混合した。この混合物を容量50リットルの円筒状
の黒鉛ルツボに詰め込み圧縮して、嵩密度を0.075
g/cm3 とした。黒鉛製の加圧板で圧縮したまま蓋を
し、アチソン炉に入れて加熱処理した。このときの温度
は2900℃、2900℃になってからの加熱時間は6
0分間であった。
To 2.88 kg of the fiber, 120 g of B 4 C powder having an average particle size of 15 μm was added, and thoroughly mixed with a Henschel mixer. The mixture was packed in a cylindrical graphite crucible having a capacity of 50 liters and compressed to a bulk density of 0.075.
g / cm 3 . While being compressed with a graphite pressing plate, the lid was closed, and the plate was placed in an Acheson furnace and heat-treated. At this time, the heating time after reaching 2900 ° C. and 2900 ° C. is 6
0 minutes.

【0045】加熱処理後冷却し、ルツボから炭素繊維を
取り出し、バンタムミルで粉砕し、その後、非繊維状物
を気流分級機で分離した。得られた繊維の径は2900
℃熱処理前と変わらず大部分が0.5μm以下、長さは
5〜30μm、嵩密度は0.04g/cm3 であった。ま
た、この繊維のホウ素含有量は1.03質量%、d002
は3.380Å、Lcは290Åであった。また、嵩密
度0.8g/cm3 のときの粉体抵抗は0.003Ω・cm
であった。
After the heat treatment, the mixture was cooled, the carbon fiber was taken out of the crucible, pulverized by a bantam mill, and then the non-fibrous material was separated by a gas classifier. The diameter of the obtained fiber is 2900
As in the case before the heat treatment at ° C., the majority was 0.5 μm or less, the length was 5 to 30 μm, and the bulk density was 0.04 g / cm 3 . The fiber had a boron content of 1.03% by mass and d 002
Was 3.380 ° and Lc was 290 °. The powder resistance at a bulk density of 0.8 g / cm 3 is 0.003 Ω · cm.
Met.

【0046】次にこの微細な炭素繊維を用いて以下のよ
うに導電性塗料を作製した。フェノール樹脂の20質量
%メチルエチルケトン溶液に、表1に示す質量比で前記
微細な炭素繊維を3本ロールで混合して、各導電性塗料
を得た。これをガラス板上に塗布し、溶剤を乾燥後、ガ
ラスから塗膜をはがして、体積固有抵抗および引張強度
を測定した。その結果を表1に示す。 (比較例3〜4)実施例で示した出発原料である微細な
炭素繊維3.0kgを容量50リットルの円筒状の黒鉛ル
ツボに詰め込み圧縮して、嵩密度を0.075g/cm3
とした。黒鉛製の加圧板で圧縮したまま蓋をし、アチソ
ン炉に入れて加熱処理した。このときの温度は2900
℃、2900℃になってからの加熱時間は60分間であ
った。加熱処理後冷却し、ルツボから炭素繊維を取り出
し、バンタムミルで粉砕し、その後、非繊維状物を気流
分級機で分離した。
Next, a conductive paint was prepared using the fine carbon fibers as follows. The fine carbon fibers were mixed with a 20% by mass solution of phenol resin in methyl ethyl ketone at a mass ratio shown in Table 1 using three rolls to obtain each conductive paint. This was applied on a glass plate, and after the solvent was dried, the coating film was peeled off from the glass, and the volume resistivity and tensile strength were measured. Table 1 shows the results. (Comparative Examples 3 and 4) 3.0 kg of the fine carbon fibers as the starting material shown in the examples were packed in a cylindrical graphite crucible having a capacity of 50 liters and compressed to obtain a bulk density of 0.075 g / cm 3.
And While being compressed with a graphite pressing plate, the lid was closed, and the plate was placed in an Acheson furnace and heat-treated. The temperature at this time is 2900
The heating time after reaching 2900 ° C. was 60 minutes. After the heat treatment, the mixture was cooled, the carbon fiber was taken out of the crucible, pulverized by a bantam mill, and then the non-fibrous material was separated by a gas classifier.

【0047】得られた繊維の径は2900℃熱処理前と
変わらず大部分が0.5μm以下、長さは5〜30μ
m、嵩密度は0.04g/cm3 であった。また、この繊
維のd 002 は3.388Å、Lcは280Åであった。
また、嵩密度0.8g/cm3 のときの粉体抵抗は0.0
13Ω・cmであった。この微細な炭素繊維を用いて実施
例と同様の方法で表1に示す質量比で塗料を作製し、体
積固有抵抗および引張強度を測定した。その結果を表1
に示す。 (比較例5)微細な炭素繊維の代わりにアセチレンブラ
ックを使用したほかは実施例と同様の方法で塗料を作製
し、体積固有抵抗および引張強度を測定した。その結果
を表1に示す。
The diameter of the obtained fiber was 2900 ° C. before heat treatment.
Mainly 0.5μm or less, length is 5-30μ
m, bulk density is 0.04 g / cmThreeMet. Also, this fiber
D 002Was 3.388 ° and Lc was 280 °.
In addition, bulk density 0.8 g / cmThreePowder resistance is 0.0
It was 13 Ω · cm. Conducted using this fine carbon fiber
In the same manner as in the examples, paints were prepared at the mass ratios shown in Table 1,
The product specific resistance and tensile strength were measured. Table 1 shows the results.
Shown in (Comparative Example 5) Acetylene bra instead of fine carbon fiber
A paint is prepared in the same manner as in the example except that a paint is used.
Then, the volume resistivity and the tensile strength were measured. as a result
Are shown in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】表1から明らかなように、実施例1〜4の
導電性塗料は、優れた導電性を示し、塗料の強度低下も
見られなかった。また、実施例3と比較例3、実施例4
と比較例4を比べて明らかなように、微細な炭素繊維の
添加量が同じ場合、本発明の導電性塗料の抵抗値は従来
のものの1/2以下とすることができる。
As is clear from Table 1, the conductive paints of Examples 1 to 4 exhibited excellent conductivity, and no decrease in the strength of the paint was observed. In addition, Example 3, Comparative Example 3, and Example 4
As is clear from the comparison between Comparative Example 4 and Comparative Example 4, when the addition amount of the fine carbon fibers is the same, the resistance value of the conductive paint of the present invention can be reduced to 以下 or less of the conventional one.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J038 BA021 CB051 CD021 CE071 CG001 DA031 DA131 DA141 DB001 DC011 DD181 DG001 DH001 DL001 HA026 KA12 KA19 NA03 NA11 NA19 NA20 PB09 PC02 PC04 PC06 PC08 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J038 BA021 CB051 CD021 CE071 CG001 DA031 DA131 DA141 DB001 DC011 DD181 DG001 DH001 DL001 HA026 KA12 KA19 NA03 NA11 NA19 NA20 PB09 PC02 PC04 PC06 PC08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂または熱硬化性樹脂70〜
99.8質量部と、直径が0.01〜5μm、アスペク
ト比が10以上で、繊維中にホウ素を0.1〜3質量%
含有する微細な炭素繊維30〜0.2質量部を含有して
なることを特徴とする導電性塗料。
1. A thermoplastic or thermosetting resin 70 to
99.8 parts by mass, a diameter of 0.01 to 5 μm, an aspect ratio of 10 or more, and 0.1 to 3% by mass of boron in the fiber
A conductive paint comprising 30 to 0.2 parts by mass of fine carbon fibers contained therein.
【請求項2】 前記微細な炭素繊維の、X線回折法で求
めた炭素の面間隔d 002 が3.385Å以下で、結晶の
c軸方向の厚さLcが400Å以下である請求項1記載
の導電性塗料。
2. The fine carbon fiber is determined by X-ray diffraction.
Plane spacing d of carbon 002Is less than 3.385 °,
The thickness Lc in the c-axis direction is 400 ° or less.
Conductive paint.
【請求項3】 前記微細な炭素繊維の粉体抵抗が、嵩密
度0.8g/cm3 のとき0.01Ω・cm以下である請求
項1または2記載の導電性塗料。
3. The conductive paint according to claim 1, wherein the powder resistance of the fine carbon fibers is 0.01 Ω · cm or less when the bulk density is 0.8 g / cm 3 .
【請求項4】 得られる乾燥塗料の抵抗値が0.05Ω
・cm以下であることを特徴とする請求項1ないし3のい
ずれかに記載の導電性塗料。
4. The obtained dry paint has a resistance value of 0.05Ω.
The conductive paint according to any one of claims 1 to 3, wherein the conductive paint is not more than cm.
JP2000017834A 2000-01-21 2000-01-21 Conductive paint Expired - Fee Related JP3606782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000017834A JP3606782B2 (en) 2000-01-21 2000-01-21 Conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017834A JP3606782B2 (en) 2000-01-21 2000-01-21 Conductive paint

Publications (2)

Publication Number Publication Date
JP2001200211A true JP2001200211A (en) 2001-07-24
JP3606782B2 JP3606782B2 (en) 2005-01-05

Family

ID=18544772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017834A Expired - Fee Related JP3606782B2 (en) 2000-01-21 2000-01-21 Conductive paint

Country Status (1)

Country Link
JP (1) JP3606782B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162052A (en) * 2002-10-22 2004-06-10 Osaka Gas Co Ltd Electromagnetic wave-absorbing coating material composition, electromagnetic wave-absorbing housing and electromagnetic wave-absorbing film or sheet
JP2004221071A (en) * 2002-12-26 2004-08-05 Showa Denko Kk Carbonaceous material for conductive composition and its usage
JP2004339485A (en) * 2003-04-24 2004-12-02 Showa Denko Kk Carbon fiber-containing resin dispersion, and resin composite material
JP2005133149A (en) * 2003-10-30 2005-05-26 Nippon Steel Corp Surface treated metallic material having excellent conductivity
US7390593B2 (en) 2001-11-07 2008-06-24 Showa Denko K.K. Fine carbon fiber, method for producing the same and use thereof
US7585434B2 (en) 2002-12-26 2009-09-08 Showa Denko K.K. Carbonaceous material for forming electrically conductive material and use thereof
JP2009269959A (en) * 2008-05-01 2009-11-19 Sunrise Company Ltd Fine carbon fiber-containing ink for suppressing static electricity
JP2010242091A (en) * 2003-04-24 2010-10-28 Showa Denko Kk Carbon fiber-containing resin dispersion and resin composite material
US8084121B2 (en) 2003-05-09 2011-12-27 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
KR101099830B1 (en) * 2009-06-03 2011-12-27 장관식 Antistatic composition for inside addition and products comprising thereof
JP2017048333A (en) * 2015-09-03 2017-03-09 大阪ガスケミカル株式会社 Antistatic coating material and coated floor using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390593B2 (en) 2001-11-07 2008-06-24 Showa Denko K.K. Fine carbon fiber, method for producing the same and use thereof
JP2004162052A (en) * 2002-10-22 2004-06-10 Osaka Gas Co Ltd Electromagnetic wave-absorbing coating material composition, electromagnetic wave-absorbing housing and electromagnetic wave-absorbing film or sheet
JP2004221071A (en) * 2002-12-26 2004-08-05 Showa Denko Kk Carbonaceous material for conductive composition and its usage
US7585434B2 (en) 2002-12-26 2009-09-08 Showa Denko K.K. Carbonaceous material for forming electrically conductive material and use thereof
JP2004339485A (en) * 2003-04-24 2004-12-02 Showa Denko Kk Carbon fiber-containing resin dispersion, and resin composite material
JP2010242091A (en) * 2003-04-24 2010-10-28 Showa Denko Kk Carbon fiber-containing resin dispersion and resin composite material
US8084121B2 (en) 2003-05-09 2011-12-27 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
US8372511B2 (en) 2003-05-09 2013-02-12 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
JP2005133149A (en) * 2003-10-30 2005-05-26 Nippon Steel Corp Surface treated metallic material having excellent conductivity
JP2009269959A (en) * 2008-05-01 2009-11-19 Sunrise Company Ltd Fine carbon fiber-containing ink for suppressing static electricity
KR101099830B1 (en) * 2009-06-03 2011-12-27 장관식 Antistatic composition for inside addition and products comprising thereof
JP2017048333A (en) * 2015-09-03 2017-03-09 大阪ガスケミカル株式会社 Antistatic coating material and coated floor using the same

Also Published As

Publication number Publication date
JP3606782B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
JP3502490B2 (en) Carbon fiber material and method for producing the same
JP3461805B2 (en) Carbon fiber, method for producing the same, and battery electrode
JP4362276B2 (en) Fine carbon fiber, its production method and its use
US7390593B2 (en) Fine carbon fiber, method for producing the same and use thereof
US7585434B2 (en) Carbonaceous material for forming electrically conductive material and use thereof
JP4342929B2 (en) Carbonaceous material for conductive composition and use thereof
US9221686B2 (en) Carbon material and method for producing same
US7150911B2 (en) Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
US5409775A (en) Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof
JP2002266170A (en) Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
WO2006100877A1 (en) Carbon fiber conjugate and composite material using the same
WO2010090343A1 (en) Fluid dispersion of graphitized carbon fragments and method of manufacturing the same
WO2006100809A1 (en) Composite material
JP2004003097A (en) Carbon fiber, process for producing the same and electrode for electric batteries
JP3606782B2 (en) Conductive paint
JP2004143652A (en) Finely graphitized carbon fiber, method for producing the same and use for the same
KR100795876B1 (en) Electrically conducting polymer and production method and use thereof
JP2001200096A (en) Electroconductive thermoplastic resin composition
JP4920135B2 (en) Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof
JP3881332B2 (en) Carbon fiber material and composite material thereof
JP2005162555A (en) Spherical aluminum nitride and its manufacturing method
KR20130094365A (en) Highly conductive carbon nanotube having bundle moieties with ultra-low bulk density and highly conductive polymer nano-composite using the same
JP2003020527A (en) Carbon fiber, method for producing the same and use thereof
JP2007138039A (en) Recycled composite material
JP2007119647A (en) Composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees