JP2001110658A - Non-contact power supply device - Google Patents
Non-contact power supply deviceInfo
- Publication number
- JP2001110658A JP2001110658A JP28227799A JP28227799A JP2001110658A JP 2001110658 A JP2001110658 A JP 2001110658A JP 28227799 A JP28227799 A JP 28227799A JP 28227799 A JP28227799 A JP 28227799A JP 2001110658 A JP2001110658 A JP 2001110658A
- Authority
- JP
- Japan
- Prior art keywords
- core
- cores
- primary
- power supply
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電気機器などに電磁
誘導により非接触で電力を供給する給電装置の改良に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a power supply device for supplying electric power to electric equipment or the like in a non-contact manner by electromagnetic induction.
【0002】[0002]
【従来の技術】従来、例えば、住宅内において家電製品
等の電気機器を使用する場合、その使用電力は壁面など
に設置したコンセントより電気機器に接続した給電コー
ドを利用して給電するようにしていた。2. Description of the Related Art Conventionally, for example, when an electric device such as a home electric appliance is used in a house, the electric power is supplied from an outlet installed on a wall or the like by using a power supply cord connected to the electric device. Was.
【0003】しかし、このように給電コードを利用して
電気機器に電力を供給する場合、前記電気機器の使用範
囲は必然的に給電コードがとどく一定の範囲内に限られ
るとともに、電気機器の周りには常に給電コードがまと
わりつき、電気機器の取り扱いが不便であるばかりか、
室内の美観を損なうことになっていた。[0003] However, when power is supplied to an electric device using a power supply cord as described above, the range of use of the electric device is necessarily limited to a certain range where the power supply cord is limited. The power cord is always attached to, which is not only inconvenient for handling electrical equipment,
It was supposed to spoil the aesthetics of the room.
【0004】また、前記電気機器を屋外で使用したい場
合、前記給電コードを室内から屋外へ引出す必要から、
例えば、窓を開け放した状態にしなければならず、夏季
には室内に虫が進入したり、冬季は屋外の冷気が室内に
流入してくるなど、種々の不便な点があった。また、開
放した窓を極力閉めて虫や外気の進入を防止するように
してもよいが、この場合、前記給電コードが窓とサッシ
ロールとの間に挟まることにより損傷したり断線したり
する危険があった。[0004] Further, when it is desired to use the electric equipment outdoors, it is necessary to draw out the power supply cord from indoors to outdoors.
For example, the windows must be left open, and there are various inconveniences such as insects entering the room in the summer and outdoor cold air flowing into the room in the winter. Further, the opened window may be closed as much as possible to prevent insects or outside air from entering, but in this case, the power supply cord may be damaged or disconnected by being caught between the window and the sash roll. was there.
【0005】そこで、前述した問題を解決するため、電
気機器に電力を供給する給電コードを利用せず、送電コ
イルと受電コイルを間隙を開けて対向させ、電磁誘導に
より非接触で電力を送電する給電装置が考えられた。Therefore, in order to solve the above-mentioned problem, the power transmitting coil and the power receiving coil are opposed to each other with a gap therebetween without using a power supply cord for supplying power to the electric device, and the power is transmitted in a non-contact manner by electromagnetic induction. A power supply was considered.
【0006】この給電装置によれば、例えば、屋外にお
いて電気機器を使用する場合でも、給電コードを引出す
ために窓を開ける必要はなく、窓を閉めた状態で室内側
に、電源に接続した送電コイルとこれを巻回した1次コ
アを配置し、屋外に受電コイルを巻回した2次コアを前
記1次コアと対向して配置することにより、前記受電コ
イルと接続した電気機器に電磁誘導により電力を供給す
ることができる。According to this power supply device, for example, even when an electric device is used outdoors, it is not necessary to open a window in order to draw out a power supply cord. By arranging a coil and a primary core around which the coil is wound, and arranging a secondary core around which the power receiving coil is wound outdoors in opposition to the primary core, electromagnetic induction is provided to the electric device connected to the power receiving coil. Power can be supplied.
【0007】したがって、屋外において電気機器を使用
する場合でも、窓は閉じた状態で良好に電力を供給する
ことができ、窓を開けることにより生じていた問題点、
即ち、虫の進入や外気(冷気)の流入を確実に阻止する
ことができる。Therefore, even when electric equipment is used outdoors, it is possible to supply electric power satisfactorily with the windows closed, and the problems caused by opening the windows are as follows:
That is, the invasion of insects and the inflow of outside air (cool air) can be reliably prevented.
【0008】[0008]
【発明が解決しようとする課題】然るに、前記電磁誘導
を利用した給電装置では、1次コアと2次コア間の間隙
(窓ガラス等の幅寸法)が広くなると、磁気抵抗が増加
することにより受電コイル側で受信する磁束が減少し、
その結果、受電コイルに接続した電気機器を動作させる
のに充分な電力を得ることは非常に困難であった。However, in the power supply device utilizing the electromagnetic induction, when the gap between the primary core and the secondary core (the width of a window glass or the like) increases, the magnetic resistance increases. The magnetic flux received on the receiving coil side decreases,
As a result, it has been very difficult to obtain sufficient power to operate the electric device connected to the receiving coil.
【0009】そこで、本発明は、このような問題点を解
消し、電磁誘導による1次側と2次側間の電力供給率に
優れた非接触給電装置を提供することを目的とする。Accordingly, an object of the present invention is to solve such a problem and to provide a non-contact power supply device excellent in a power supply rate between a primary side and a secondary side by electromagnetic induction.
【0010】[0010]
【問題を解決するための手段】本発明に係る非接触給電
装置は、結合トランスの1次巻線と2次巻線を個々に分
離可能となし、前記2次巻線に共振用のコンデンサを備
え、前記1次巻線と2次巻線をそれぞれ巻回する1次コ
アと2次コアのそれぞれの脚間距離を、1次コアと2次
コア間に存在するギャップ長の2倍以上に設定した。According to the present invention, there is provided a non-contact power supply device in which a primary winding and a secondary winding of a coupling transformer can be individually separated, and a resonance capacitor is provided in the secondary winding. And the distance between the legs of the primary core and the secondary core respectively winding the primary winding and the secondary winding is twice or more the gap length existing between the primary core and the secondary core. Set.
【0011】本発明の非接触給電装置は、結合トランス
の2次巻線に共振用のコンデンサを接続するとともに、
前記1次巻線と2次巻線をそれぞれ巻回する1次コアと
2次コアの各脚間距離を、1次コアと2次コア間に存在
するギャップ長の2倍以上に設定することによって、1
次巻線から2次巻線に電磁誘導によって供給される電力
の供給率を向上させることができる。The contactless power supply device of the present invention connects a resonance capacitor to the secondary winding of the coupling transformer,
The distance between the legs of the primary core and the secondary core that wind the primary winding and the secondary winding, respectively, is set to be at least twice the gap length existing between the primary core and the secondary core. By 1
The supply rate of power supplied from the secondary winding to the secondary winding by electromagnetic induction can be improved.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施の形態を図1
ないし図18により説明する。図1は本発明の非接触給
電装置の概略構成図を示しており、図1において、1
a,1bは結合トランスを構成する1次コアと2次コア
である。2a,2bは前記1次コア1aと2次コア1b
の継鉄部1c,1dに所定巻数巻回した1次コイルおよ
び2次コイルで、それぞれ、電源および負荷(図1にお
いては電球)3に接続した給電コード4,5に接続され
ている。FIG. 1 is a block diagram showing an embodiment of the present invention.
18 will be described. FIG. 1 is a schematic configuration diagram of a contactless power supply device of the present invention.
Reference numerals a and 1b denote a primary core and a secondary core constituting a coupling transformer. 2a and 2b are the primary core 1a and the secondary core 1b
A primary coil and a secondary coil are wound around the yoke portions 1c and 1d by a predetermined number of turns, respectively, and connected to power supply cords 4 and 5 connected to a power source and a load (light bulb in FIG. 1) 3, respectively.
【0013】前記コア1a,1bとコイル2a,2bを
備えた結合トランスは、1次側と2次側をそれぞれ分割
して図示しないカバー体に収容され、1次側と2次側間
(図1に示す隙間6)に例えば、窓ガラス等の障害物を
介在させた状態で使用される。The coupling transformer having the cores 1a and 1b and the coils 2a and 2b is divided into a primary side and a secondary side, respectively, and accommodated in a cover (not shown). 1 is used in a state where an obstacle such as a window glass is interposed in the gap 6) shown in FIG.
【0014】図2は前記非接触給電装置の回路構成を示
しており、図中、7は交流電源、8は整流用のダイオー
ドブリッジ8aおよび平滑コンデンサ8bから構成さ
れ、交流を直流に変換する整流回路である。9は前記整
流回路8の出力を再び交流に変換するインバータであ
り、スイッチング素子や駆動制御回路等が備えられ、結
合トランス10に高周波電力を供給するものである。FIG. 2 shows a circuit configuration of the non-contact power feeding device. In the drawing, reference numeral 7 denotes an AC power supply, 8 denotes a rectifier diode bridge 8a and a smoothing capacitor 8b, and a rectifier for converting AC to DC. Circuit. Reference numeral 9 denotes an inverter for converting the output of the rectifier circuit 8 into AC again. The inverter 9 includes a switching element, a drive control circuit, and the like, and supplies high frequency power to the coupling transformer 10.
【0015】2a,2bは、前記結合トランス10を構
成する1次コア1aおよび2次コア1bに所定巻数巻回
した1次コイルと2次コイルであり、前記2次コイル2
bにはこれと並列に共振用のコンデンサ11が取付けら
れ、前記2次コイル2bとコンデンサ11によって共振
回路を形成している。そして、1次側の発振周波数と2
次側の共振周波数が等しくなるよう両コイル2a,2b
の巻数およびコンデンサ11の容量が設定してある。Reference numerals 2a and 2b denote a primary coil and a secondary coil which are wound around the primary core 1a and the secondary core 1b of the coupling transformer 10 by a predetermined number of turns, respectively.
A resonance capacitor 11 is attached to b in parallel with this, and a resonance circuit is formed by the secondary coil 2b and the capacitor 11. And the oscillation frequency on the primary side and 2
Both coils 2a, 2b are set so that the resonance frequencies on the secondary side become equal.
And the capacity of the capacitor 11 are set.
【0016】3は前記2次コイル2bと直列(コンデン
サ11とは並列)に接続された制御対象である負荷(電
球等)を示し、結合トランス10の2次側に誘起された
高周波電力により前記負荷3は制御(電球であれば点
灯)される。Reference numeral 3 denotes a load (light bulb or the like) to be controlled which is connected in series with the secondary coil 2b (in parallel with the capacitor 11). The load 3 is generated by high frequency power induced on the secondary side of the coupling transformer 10. The load 3 is controlled (lighted for a light bulb).
【0017】つづいて、前記非接触給電装置を用いて2
次側に電力を給電(誘起)する場合について説明する。
図3は前記1次コア1aと2次コア1b間に、例えば、
窓ガラス等の障害物12が存在するときの電力の給電状
況を示す図であり、図2に示す電源7から整流回路8お
よびインバータ9を介して1次コイル2aに電流を供給
すると、前記1次コイル2a中に磁束が発生する。Subsequently, using the contactless power supply device,
A case where power is supplied (induced) to the secondary side will be described.
FIG. 3 shows, for example, between the primary core 1a and the secondary core 1b,
FIG. 3 is a diagram showing a power supply state when an obstacle 12 such as a window glass is present. When a current is supplied from a power supply 7 shown in FIG. 2 to a primary coil 2 a via a rectifier circuit 8 and an inverter 9, Magnetic flux is generated in the next coil 2a.
【0018】前記1次コイル2a中に発生した磁束は障
害物12を貫き、2次コア1b側に鎖交するが、その一
部は1次コア1a側に戻ってしまい、1次側で発生した
磁束が全て2次側に鎖交することは難しい。The magnetic flux generated in the primary coil 2a penetrates the obstacle 12 and interlinks with the secondary core 1b, but a part of the magnetic flux returns to the primary core 1a and is generated on the primary side. It is difficult for all the generated magnetic fluxes to link to the secondary side.
【0019】前記2次コア1bへの磁束鎖交率が少なけ
れば、2次コイル2bに誘起される電流は当然減少する
ため、負荷3にはこれを駆動するのに充分な電力を供給
することはできない。これは、前記障害物12の磁気抵
抗が大きい程、即ち、1次コア1aと2次コア1b間の
ギャップが大きい程、顕著にあらわれる。If the flux linkage to the secondary core 1b is small, the current induced in the secondary coil 2b naturally decreases, so it is necessary to supply sufficient power to the load 3 to drive it. Can not. This becomes more remarkable as the magnetic resistance of the obstacle 12 increases, that is, as the gap between the primary core 1a and the secondary core 1b increases.
【0020】そこで、本発明の非接触給電装置は、図2
に示すように、2次コア1bにこれと並列に共振用のコ
ンデンサ11を取付け、前記2次コイル2bとコンデン
サ11により共振作用を生起させることにより、2次側
のインピーダンスを下げるように構成した。Therefore, the contactless power feeding device of the present invention is shown in FIG.
As shown in FIG. 5, a resonance capacitor 11 is attached to the secondary core 1b in parallel with the secondary core 1b, and a resonance action is generated by the secondary coil 2b and the capacitor 11, thereby lowering the impedance on the secondary side. .
【0021】その結果、2次側には、見かけ上、2次コ
イル2bの巻線抵抗と負荷3の抵抗のみ存在する恰好と
なり、これにより2次側に電流が流れやすくなるため、
前記負荷3を駆動・制御するに充分な電力を2次側に供
給することが可能となる。As a result, on the secondary side, apparently, only the winding resistance of the secondary coil 2b and the resistance of the load 3 are present, so that the current easily flows to the secondary side.
Power sufficient to drive and control the load 3 can be supplied to the secondary side.
【0022】また、前記障害物12による1次コア1a
と2次コア1b間のギャップが一定であれば、両コア1
a,1bのそれぞれの脚1a1 と1a2 ,1b1 ,と1
b2間距離を増加することにより、前記脚間における磁
気抵抗を障害物12の磁気抵抗よりも大きくして、1次
コア1aから2次コア1bへ通過する磁束の鎖交率を増
加させることもできる。The primary core 1a formed by the obstacle 12
If the gap between the and the secondary core 1b is constant, both cores 1
a, 1b, legs 1a 1 and 1a 2 , 1b 1 , and 1
By increasing the b 2 between distances, said to be larger than the magnetic resistance of the obstacle 12 a magnetic resistance in between the legs, to increase the flux of the chain交率passing from the primary core 1a to the secondary core 1b Can also.
【0023】図4は前記両コア1a,1bの脚間距離を
10mm〜50mmに変化させたときの両コア1a,1
b間の磁束鎖交率をグラフにあらわしたものである。な
お、本グラフは両コア1a,1b間に幅10mmのエア
ギャップが存在し、両コア1a,1bの断面積は100
mm2 ,ターン数は1ターン,1次コイル2aに通電す
る電流密度は1.00×104 AT/m2 ,電流面積は
140mm2 とした場合におけるシミュレーション結果
である。FIG. 4 shows both cores 1a, 1b when the distance between the legs of both cores 1a, 1b is changed from 10 mm to 50 mm.
This is a graph in which the flux linkage rate between b is shown. In this graph, an air gap having a width of 10 mm exists between the cores 1a and 1b, and the cross-sectional area of the cores 1a and 1b is 100.
mm 2 , the number of turns is 1, the current density applied to the primary coil 2 a is 1.00 × 10 4 AT / m 2 , and the current area is 140 mm 2 .
【0024】図4に示すように、1次コア1aと2次コ
ア1b間の磁束鎖交率は脚間の増加とともに増大し、2
次コア1bに鎖交する磁束は脚間距離と関係なくほぼ一
定値を維持している。As shown in FIG. 4, the flux linkage between the primary core 1a and the secondary core 1b increases with an increase in the distance between the legs.
The magnetic flux linked to the secondary core 1b maintains a substantially constant value regardless of the distance between the legs.
【0025】例えば、両コア1a,1bの各脚間距離が
10mmであるとき、2次コア1bに1.20E−6
[T]程度の磁束を発生させようとすれば、両コア1
a,1b間の磁束鎖交率は約30%であるため、1次コ
イル2aには1次コア1aに3.75E−6[T]程度
の磁束が発生する電流値で通電を行わなければならな
い。しかし、コア1a,1bの脚間距離を50mmとし
たとき、2次コア1bに前述したと同程度の磁束を発生
させる場合、両コア1a,1b間の磁束鎖交率は約85
%であるため、1次コイル2aには、1次コア1aに
1.40E−6[T]の磁束が発生する電流値で通電す
ればよいことがわかる。For example, when the distance between the legs of both cores 1a and 1b is 10 mm, 1.20E-6 is added to the secondary core 1b.
To generate a magnetic flux of about [T], both cores 1
Since the flux linkage ratio between a and 1b is about 30%, the primary coil 2a must be energized at a current value at which a magnetic flux of about 3.75E-6 [T] is generated in the primary core 1a. No. However, when the distance between the legs of the cores 1a and 1b is set to 50 mm and the same level of magnetic flux is generated in the secondary core 1b as described above, the flux linkage between the cores 1a and 1b is about 85%.
%, The primary coil 2a may be supplied with a current value at which a magnetic flux of 1.40E-6 [T] is generated in the primary core 1a.
【0026】すなわち、前記両コア1a,1bのそれぞ
れの脚間を拡大すれば、1次コア1aに発生する磁束が
少なくても2次側に必要な電力を供給することができる
のである。That is, if the distance between the legs of both cores 1a and 1b is enlarged, necessary power can be supplied to the secondary side even if the magnetic flux generated in primary core 1a is small.
【0027】これにより、1次コイル2aに過大な電流
を通電しなくても、1次コア1aおよび2次コア1b間
の磁束鎖交率は脚間距離を拡大することにより上昇し、
効率よく2次コイル2bに必要な電力を供給することが
できる。しかしながら、コア1a,1bの脚間距離を拡
大するということは、装置自体の大型化を招くことにな
るため、装置に許容される大きさを判断しつつ脚間距離
を最大限に設定すればよい。As a result, even if an excessive current is not applied to the primary coil 2a, the flux linkage between the primary core 1a and the secondary core 1b increases by increasing the distance between the legs,
The required electric power can be efficiently supplied to the secondary coil 2b. However, increasing the distance between the legs of the cores 1a and 1b increases the size of the device itself. Therefore, if the distance between the legs is set to the maximum while judging the allowable size of the device. Good.
【0028】図5ないし図9は両コア1a,1bの断面
積をそれぞれ50mm2 ,150mm2 ,200m
m2 ,300mm2 ,400mm2 に設定したときに、
両コア1a,1bの脚間距離を10mm〜50mmまで
変化させた状態の両コア1a,1b間の磁束鎖交率をあ
らわすグラフである。なお、エアギャップ,両コア1
a,1bのターン数,1次コイル2aに通電する電流密
度および電流面積は図4に示すグラフの場合と同一であ
る。FIGS. 5 to 9 show that the cross-sectional areas of both cores 1a and 1b are 50 mm 2 , 150 mm 2 and 200 m, respectively.
When set to m 2 , 300 mm 2 , 400 mm 2 ,
It is a graph showing the magnetic flux linkage rate between both cores 1a and 1b in the state where the distance between the legs of both cores 1a and 1b was changed from 10 mm to 50 mm. The air gap, both cores 1
The number of turns a and 1b, the current density and the current area applied to the primary coil 2a are the same as those in the case of the graph shown in FIG.
【0029】このグラフからも明らかなように、両コア
1a,1b間の磁束鎖交率は、両コア1a,1bの断面
積の大小に関係なく脚間距離が増すにしたがい増加する
傾向にあることがわかる。As is clear from this graph, the flux linkage between the cores 1a and 1b tends to increase as the leg-to-leg distance increases regardless of the cross-sectional area of the cores 1a and 1b. You can see that.
【0030】前記図4ないし図9のグラフを基にして1
次コア1aと2次コア1bの脚間距離をそれぞれ10m
m,15mm,20mm,25mm,30mm,35m
m,40mm,45mm,50mmに設定したときに、
両コア1a,1bの断面積を50mm2 〜400mm2
まで変化させた場合の両コア1a,1b間における磁束
鎖交率を示したのが図10ないし図18に示すグラフで
ある。Based on the graphs shown in FIGS.
The distance between the legs of the secondary core 1a and the secondary core 1b is 10 m, respectively.
m, 15mm, 20mm, 25mm, 30mm, 35m
m, 40mm, 45mm, 50mm
The cross-sectional area of both cores 1a and 1b is 50 mm 2 to 400 mm 2
FIGS. 10 to 18 show the magnetic flux linkage between the two cores 1a and 1b when the values are changed up to the above.
【0031】図10ないし図18のグラフより、両コア
1a,1bの脚間距離が20mm以上であれば、両コア
1a,1bの断面積に関係なく、両コア1a,1b間の
磁束鎖交率を常に50%以上を維持することができる。
すなわち、1次コア1aと2次コア1b間のギャップ
(この場合は10mm)に対し、2倍以上の脚間距離を
保てば、常に50%以上の磁束鎖交率が維持できるので
ある。From the graphs of FIGS. 10 to 18, when the distance between the legs of both cores 1a and 1b is 20 mm or more, regardless of the cross-sectional area of both cores 1a and 1b, the magnetic flux linkage between both cores 1a and 1b. The rate can always be maintained at 50% or more.
That is, if the distance between the legs is at least twice as large as the gap (in this case, 10 mm) between the primary core 1a and the secondary core 1b, the flux linkage rate of 50% or more can always be maintained.
【0032】このように、両コア1a,1bの脚間を拡
げることによって、コア1a,1b間の磁束鎖交率を向
上させることができる。この結果、2次側に接続した負
荷3に駆動・制御するのに充分な電流を誘導させるため
に、1次コイル2aに大電流を流す必要はなく、インバ
ータ9内のスイッチング素子等が発熱することを確実に
防止し、結果、1次側と2次側間の給電効率を上昇させ
ることができる。As described above, by expanding the distance between the legs of the cores 1a and 1b, the flux linkage between the cores 1a and 1b can be improved. As a result, it is not necessary to supply a large current to the primary coil 2a in order to induce a sufficient current for driving and controlling the load 3 connected to the secondary side, and the switching elements and the like in the inverter 9 generate heat. As a result, the power supply efficiency between the primary side and the secondary side can be increased.
【0033】なお、本実施例では、1次側と2次側間の
磁束鎖交率を得るシミュレーションとして、前述したよ
うな装置の仕様(例えば、両コア1a,1b間に幅10
mmのエアギャップを設け、両コア1a,1bの断面積
は100mm2 ,ターン数は1ターン,1次コイル2a
に通電する電流密度は1.00×104 AT/m2 ,電
流面積は140mm2 等)について説明したが、本発明
は前記仕様に限定するものではなく、状況により様々に
変更可能であることは言うまでもない。In this embodiment, as a simulation for obtaining the magnetic flux linkage between the primary side and the secondary side, the specifications of the apparatus described above (for example, a width of 10 mm between both cores 1a and 1b) are used.
mm air gap, the cross-sectional area of both cores 1a and 1b is 100 mm 2 , the number of turns is 1 turn, and the primary coil 2a
The current density of 1.00 × 10 4 AT / m 2 , the current area of 140 mm 2, etc.) has been described, but the present invention is not limited to the above specifications, and can be variously changed depending on the situation. Needless to say.
【0034】そして、前記数値を変更して構成した装置
では、1次側および2次側に生じる磁束の絶対値は変化
するが、脚間の拡大とともに上昇傾向にある磁束鎖交率
には変化がないことは当然である。In the apparatus constructed by changing the above numerical values, the absolute value of the magnetic flux generated on the primary side and the secondary side changes, but the magnetic flux linkage rate which tends to increase with the expansion between the legs changes. Not surprisingly.
【0035】また、本実施例では、結合トランス10を
構成するコア1a,1bとして、図1に示すようなコ字
型のコアを例にとり説明したが、本発明はこれに限定せ
ず、脚間距離を形成することのできるコア構造であれ
ば、どのような形状のものでもよい。Further, in this embodiment, the cores 1a and 1b constituting the coupling transformer 10 have been described by taking the U-shaped core as shown in FIG. 1 as an example. Any shape may be used as long as the core structure can form the distance.
【0036】以上のように本発明の非接触給電装置は、
両コア1a,1bの脚間距離を両コア1a,1b間のギ
ャップ間距離の2倍以上に設定することにより、磁束鎖
交率を上昇させ、種々の損失を軽減することが可能とな
る。As described above, the contactless power supply device of the present invention
By setting the distance between the legs of the cores 1a and 1b to be at least twice the distance between the gaps between the cores 1a and 1b, the flux linkage rate can be increased and various losses can be reduced.
【0037】また、2次側に所定容量のコンデンサ11
を設けて、2次コイル2bと前記コンデンサ11とで共
振回路を形成することにより、2次側のインピーダンス
を下げ1次側から2次側への送電を効率よく行うことが
できる。A capacitor 11 having a predetermined capacity is provided on the secondary side.
And by forming a resonance circuit with the secondary coil 2b and the capacitor 11, the impedance on the secondary side can be reduced and power transmission from the primary side to the secondary side can be performed efficiently.
【0038】[0038]
【発明の効果】本発明の非接触給電装置は、2次側のコ
イルに共振用のコンデンサを接続して共振回路を形成す
ることにより、容易に2次側のインピーダンスを下げて
電流を流れやすくした。According to the non-contact power feeding device of the present invention, by forming a resonance circuit by connecting a resonance capacitor to the secondary side coil, the impedance of the secondary side can be easily lowered and the current can easily flow. did.
【0039】また、本発明の非接触給電装置は、1次コ
アと2次コアの脚間距離を両コア間のギャップ間距離の
2倍以上に設定することにより、両コア間の磁束鎖交率
は向上し、種々の損失を軽減でき、便利である。Further, the contactless power supply device of the present invention sets the distance between the legs of the primary core and the secondary core to be at least twice the distance between the gaps between the two cores, so that the magnetic flux linkage between the two cores is achieved. The rate is improved and various losses can be reduced, which is convenient.
【図1】本発明の非接触給電装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a contactless power supply device of the present invention.
【図2】本発明の非接触給電装置の回路図である。FIG. 2 is a circuit diagram of the wireless power supply device of the present invention.
【図3】本発明の非接触給電装置における電磁誘導作用
を説明する断面図である。FIG. 3 is a cross-sectional view illustrating an electromagnetic induction operation in the wireless power supply device of the present invention.
【図4】コア断面積を100mm2 の状態でコアの脚間
距離を10mm〜50mmまで変化させたときの両コア
間の磁束鎖交率をあらわすグラフである。FIG. 4 is a graph showing the flux linkage between the two cores when the distance between the legs of the core is changed from 10 mm to 50 mm with the core cross-sectional area being 100 mm 2 .
【図5】コア断面積を50mm2 の状態でコアの脚間距
離を10mm〜50mmまで変化させたときの両コア間
の磁束鎖交率をあらわすグラフである。FIG. 5 is a graph showing the magnetic flux linkage between the two cores when the distance between the legs of the core is changed from 10 mm to 50 mm with the core cross-sectional area being 50 mm 2 .
【図6】コア断面積を150mm2 の状態でコアの脚間
距離を10mm〜50mmまで変化させたときの両コア
間の磁束鎖交率をあらわすグラフである。FIG. 6 is a graph showing the flux linkage between the two cores when the distance between the legs of the core is changed from 10 mm to 50 mm with the core cross-sectional area being 150 mm 2 .
【図7】コア断面積を200mm2 の状態でコアの脚間
距離を10mm〜50mmまで変化させたときの両コア
間の磁束鎖交率をあらわすグラフである。FIG. 7 is a graph showing the flux linkage between the two cores when the distance between the legs of the core is changed from 10 mm to 50 mm with the core cross-sectional area being 200 mm 2 .
【図8】コア断面積を300mm2 の状態でコアの脚間
距離を10mm〜50mmまで変化させたときの両コア
間の磁束鎖交率をあらわすグラフである。FIG. 8 is a graph showing the magnetic flux linkage between the two cores when the distance between the legs of the core is changed from 10 mm to 50 mm with the core cross-sectional area being 300 mm 2 .
【図9】コア断面積を400mm2 の状態でコアの脚間
距離を10mm〜50mmまで変化させたときの両コア
間の磁束鎖交率をあらわすグラフである。FIG. 9 is a graph showing the magnetic flux linkage between the cores when the distance between the legs of the core is changed from 10 mm to 50 mm with the core cross-sectional area being 400 mm 2 .
【図10】コアの脚間距離を10mmにした状態でコア
の断面積を50mm2 〜400mm2 まで変化させたと
きの両コア間の磁束鎖交率をあらわすグラフである。Is a graph showing the flux-交率between both cores when the cross-sectional area of the core was varied from 50mm 2 ~400mm 2 in FIG. 10 while the inter-leg distance core 10 mm.
【図11】コアの脚間距離を15mmにした状態でコア
の断面積を50mm2 〜400mm2 まで変化させたと
きの両コア間の磁束鎖交率をあらわすグラフである。11 is a graph showing the flux-交率between both cores when the cross-sectional area of the core of the inter-leg distance while the 15mm cores were changed to 50mm 2 ~400mm 2.
【図12】コアの脚間距離を20mmにした状態でコア
の断面積を50mm2 〜400mm2 まで変化させたと
きの両コア間の磁束鎖交率をあらわすグラフである。12 is a graph showing the flux-交率between both cores when the cross-sectional area of the core of the inter-leg distance while the 20mm cores were changed to 50mm 2 ~400mm 2.
【図13】コアの脚間距離を25mmにした状態でコア
の断面積を50mm2 〜400mm2 まで変化させたと
きの両コア間の磁束鎖交率をあらわすグラフである。13 is a graph showing the flux-交率between both cores when the cross-sectional area of the core of the inter-leg distance while the 25mm cores were changed to 50mm 2 ~400mm 2.
【図14】コアの脚間距離を30mmにした状態でコア
の断面積を50mm2 〜400mm2 まで変化させたと
きの両コア間の磁束鎖交率をあらわすグラフである。14 is a graph showing the flux-交率between both cores when the cross-sectional area of the core of the inter-leg distance while the 30mm cores were changed to 50mm 2 ~400mm 2.
【図15】コアの脚間距離を35mmにした状態でコア
の断面積を50mm2 〜400mm2 まで変化させたと
きの両コア間の磁束鎖交率をあらわすグラフである。15 is a graph showing the flux-交率between both cores when the cross-sectional area of the core of the inter-leg distance while the 35mm cores were changed to 50mm 2 ~400mm 2.
【図16】コアの脚間距離を40mmにした状態でコア
の断面積を50mm2 〜400mm2 まで変化させたと
きの両コア間の磁束鎖交率をあらわすグラフである。16 is a graph showing the flux-交率between both cores when the cross-sectional area of the core of the inter-leg distance while the 40mm cores were changed to 50mm 2 ~400mm 2.
【図17】コアの脚間距離を45mmにした状態でコア
の断面積を50mm2 〜400mm2 まで変化させたと
きの両コア間の磁束鎖交率をあらわすグラフである。17 is a graph showing the flux-交率between both cores when the cross-sectional area of the core of the inter-leg distance while the 45mm cores were changed to 50mm 2 ~400mm 2.
【図18】コアの脚間距離を50mmにした状態でコア
の断面積を50mm2 〜400mm2 まで変化させたと
きの両コア間の磁束鎖交率をあらわすグラフである。18 is a graph showing the flux-交率between both cores when the cross-sectional area of the core of the inter-leg distance while the 50mm cores were changed to 50mm 2 ~400mm 2.
1a 1次コア 1b 2次コア 2a 1次コイル 2b 2次コイル 3 負荷 6 コア間ギャップ 8 整流回路 9 インバータ 10 結合トランス 11 共振コンデンサ 1a Primary core 1b Secondary core 2a Primary coil 2b Secondary coil 3 Load 6 Core gap 8 Rectifier circuit 9 Inverter 10 Coupling transformer 11 Resonant capacitor
Claims (1)
々に分離可能となし、前記2次巻線には共振用のコンデ
ンサを備えて、非接触により1次巻線から2次巻線へ電
力の供給を行う給電装置に、前記1次巻線と2次巻線を
それぞれ巻回する1次コアと2次コアのそれぞれの脚間
距離を、1次コアと2次コア間に存在するギャップ長の
2倍以上に設定したことを特徴とする非接触給電装置。A primary winding and a secondary winding of a coupling transformer can be individually separated. A capacitor for resonance is provided in the secondary winding, and the secondary winding is separated from the primary winding by a non-contact method. The distance between the legs of the primary core and the secondary core that wind the primary winding and the secondary winding, respectively, is set in the power supply device that supplies power to the windings. A non-contact power supply device characterized in that the gap length is set to be at least twice as long as the gap length.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28227799A JP2001110658A (en) | 1999-10-04 | 1999-10-04 | Non-contact power supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28227799A JP2001110658A (en) | 1999-10-04 | 1999-10-04 | Non-contact power supply device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001110658A true JP2001110658A (en) | 2001-04-20 |
Family
ID=17650350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28227799A Pending JP2001110658A (en) | 1999-10-04 | 1999-10-04 | Non-contact power supply device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001110658A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6430064B1 (en) | 2001-06-29 | 2002-08-06 | Aichi Electric Co. Ltd. | Non-contact power supply device |
JP2009119965A (en) * | 2007-11-13 | 2009-06-04 | Asyst Technologies Japan Inc | Electric power supply system |
US8039936B2 (en) | 2008-06-20 | 2011-10-18 | Mitsubishi Electric Corporation | Semiconductor device |
JP2012023913A (en) * | 2010-07-16 | 2012-02-02 | Shigeo Hamaguchi | Non-contact power feeding device |
WO2014142233A1 (en) * | 2013-03-14 | 2014-09-18 | 矢崎総業株式会社 | Coil unit and non-contact power supply apparatus |
JP2018074900A (en) * | 2016-10-31 | 2018-05-10 | アップル インコーポレイテッド | Wireless charging system with solenoids |
-
1999
- 1999-10-04 JP JP28227799A patent/JP2001110658A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6430064B1 (en) | 2001-06-29 | 2002-08-06 | Aichi Electric Co. Ltd. | Non-contact power supply device |
JP2009119965A (en) * | 2007-11-13 | 2009-06-04 | Asyst Technologies Japan Inc | Electric power supply system |
US8039936B2 (en) | 2008-06-20 | 2011-10-18 | Mitsubishi Electric Corporation | Semiconductor device |
JP2012023913A (en) * | 2010-07-16 | 2012-02-02 | Shigeo Hamaguchi | Non-contact power feeding device |
WO2014142233A1 (en) * | 2013-03-14 | 2014-09-18 | 矢崎総業株式会社 | Coil unit and non-contact power supply apparatus |
JP2014179438A (en) * | 2013-03-14 | 2014-09-25 | Yazaki Corp | Coil unit and noncontact power feeding device |
US9620279B2 (en) | 2013-03-14 | 2017-04-11 | Yazaki Corporation | Coil unit and contactless power supplying apparatus |
JP2018074900A (en) * | 2016-10-31 | 2018-05-10 | アップル インコーポレイテッド | Wireless charging system with solenoids |
US11303155B2 (en) | 2016-10-31 | 2022-04-12 | Apple Inc. | Wireless charging system with solenoids |
US11611239B2 (en) | 2016-10-31 | 2023-03-21 | Apple Inc. | Wireless charging system with solenoids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6504732B2 (en) | Non-contact electrical power transmission system having function of making load voltage constant | |
JP4135299B2 (en) | Non-contact power transmission device | |
JP2002199712A (en) | Power supply by wireless control apparatus, and inductively coupled battery charger, and method for wireless control of them | |
JP2000295796A (en) | Non-contact power supply | |
KR20020029904A (en) | Switching power supply circuit | |
US20170279311A1 (en) | Power Feeding Device and Wireless Power Transmission Device | |
JP6418565B2 (en) | Non-contact power feeding device, linear motor device, and sliding door device | |
EP2797385B1 (en) | Microwave heating device | |
JP2001110658A (en) | Non-contact power supply device | |
KR100572653B1 (en) | Current-resonant switching power supply | |
JP2020048403A (en) | Method for operating wireless power transmitter and wireless power transmitter using the same | |
KR20110008717A (en) | Wireless ac power line | |
CN106158331B (en) | Wireless power method and system and its coupled inductor | |
US20060012319A1 (en) | Electrical actuator having a direct current motor | |
JP2001161065A (en) | Switching power supply and ac adapter using the same | |
JP5016075B2 (en) | Inverter circuit | |
JPH10285836A (en) | Receiving device of electromagnetic induction power supply unit | |
CN214674878U (en) | Power adapter | |
CN108389702A (en) | Transformer, for electric installation and microwave cooking electric appliance | |
CN208369472U (en) | A kind of dual output power adapter | |
WO2019205251A1 (en) | Electronic transformer and microwave cooking appliance | |
JP2000217280A (en) | Power supply device using lc resonance circuit | |
CN211788513U (en) | High-efficient isolation transformer | |
CN215680325U (en) | Frequency conversion heat sink for transformer | |
CN208782309U (en) | A kind of railway communication signals power transformation box |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050304 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050412 |