JP2001104982A - Apparatus and method for treating organic sewage - Google Patents

Apparatus and method for treating organic sewage

Info

Publication number
JP2001104982A
JP2001104982A JP28984699A JP28984699A JP2001104982A JP 2001104982 A JP2001104982 A JP 2001104982A JP 28984699 A JP28984699 A JP 28984699A JP 28984699 A JP28984699 A JP 28984699A JP 2001104982 A JP2001104982 A JP 2001104982A
Authority
JP
Japan
Prior art keywords
microorganism
biological reaction
immobilized carrier
carrier
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28984699A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakuma
博司 佐久間
Hitomi Suzuki
ひとみ 鈴木
Kyoko Maki
恭子 牧
Kosuke Mori
康輔 森
Yasunari Kojima
康成 小島
Yuichi Fuchu
裕一 府中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP28984699A priority Critical patent/JP2001104982A/en
Publication of JP2001104982A publication Critical patent/JP2001104982A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject apparatus and method enabling more continuous high flux operation and the maintenance control by chemical washing at a lower frequency. SOLUTION: In a biological treatment apparatus of organic sewage, a membrane separation mechanism obtaining treated water by membrane separation and a microorganism immobilized carrier are housed in a biological reaction apparatus and the concentration of MLSS in org. sewage excepting the microorganism immobilized carrier is lowered in the biological reaction apparatus. The housing amount of the microorganism immobilized carrier is preferably set to less than 30% of the volume of the biological reaction apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水、廃水、し
尿、その他有機性汚水を生物学的に処理する有機性汚水
の処理装置及び方法に関し、特に膜分離により改善的処
理水を得る有機性汚水の処理装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic wastewater treatment apparatus and method for biologically treating sewage, wastewater, human waste, and other organic wastewater, and more particularly to an organic wastewater treatment method for obtaining improved treated water by membrane separation. The present invention relates to a wastewater treatment apparatus and method.

【0002】[0002]

【従来の技術】活性汚泥槽中にMF膜やUF膜等の分離
膜を浸漬し、生物処理水を膜分離により得る有機性汚水
の膜分離活性汚泥法処理は、従来より知られている。こ
の場合、主たる問題となるのは、分離膜の閉塞などによ
る性能低下である。分離膜の膜面は常に洗浄されていな
ければならないからである。例えば、図2に示す様に、
生物反応槽(以下「曝気槽」ということもある)1には
散気装置2と共に膜分離装置5を浸漬して設ける。散気
装置2は膜分離装置5の下方に配置されることが通例で
ある。有機性汚水3は散気装置2による酸素供給下で活
性汚泥微生物の活動により吸収分解され浄化される。得
られた処理水は膜分離装置5の分離膜により固液分離さ
れ、系外へと導かれるが、この時同時に散気装置2から
の気泡は搬送流と共に分離膜表面を揺らし、また摩擦し
て分離膜表面を洗浄している。一般にこのような膜分離
活性汚泥法は、MLSS(活性汚泥混合液けん濁物)を
10000mg/リットル前後の高濃度に維持できるた
め、容積負荷を高く取れるという特長がある。従来の考
え方では、大量の有機性汚水3を迅速に処理しようとす
れば、より高濃度の活性汚泥を用いれば良い。しかしな
がら、分離膜は、構造的に多数の小孔をその表面に有し
ている。高濃度の活性汚泥(したがって高濃度のMLS
S)の中に浸漬された分離膜は目詰まりを起こしやす
く、従って、単位面積当たりの通過水量(以下「フラッ
クス」と言うこともある)を高くとることが出来ない。
又、度々分離膜を薬品により洗浄しなければならず、維
持管理における手間やコストがかかり、洗浄や、膜交換
により実運転時間が減るという不都合が生じ易い。
2. Description of the Related Art A membrane separation activated sludge treatment of organic wastewater obtained by immersing a separation membrane such as an MF membrane or a UF membrane in an activated sludge tank to obtain biologically treated water by membrane separation has been known. In this case, a major problem is performance degradation due to blockage of the separation membrane. This is because the surface of the separation membrane must always be washed. For example, as shown in FIG.
In a biological reaction tank (hereinafter sometimes referred to as “aeration tank”) 1, a membrane separation device 5 is immersed together with an aeration device 2. It is customary that the air diffuser 2 is arranged below the membrane separation device 5. The organic wastewater 3 is absorbed and decomposed and purified by the activity of activated sludge microorganisms under the supply of oxygen from the air diffuser 2. The obtained treated water is separated into solid and liquid by the separation membrane of the membrane separation device 5 and is guided to the outside of the system. At the same time, bubbles from the air diffuser 2 shake the separation membrane surface together with the carrier flow and cause friction. To clean the surface of the separation membrane. In general, such a membrane separation activated sludge method has a feature that a volume load can be increased because MLSS (activated sludge mixed liquid suspension) can be maintained at a high concentration of about 10,000 mg / liter. According to the conventional idea, if a large amount of organic wastewater 3 is to be rapidly treated, a higher concentration of activated sludge may be used. However, the separation membrane structurally has many small holes on its surface. High concentration of activated sludge (and therefore high concentration of MLS
The separation membrane immersed in S) is liable to cause clogging, so that it is impossible to increase the amount of passing water per unit area (hereinafter sometimes referred to as “flux”).
In addition, the separation membrane must be frequently washed with chemicals, which requires labor and cost for maintenance and maintenance, and the inconvenience that the actual operation time is shortened by washing and replacing the membrane is likely to occur.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記従来技術
の不都合を解消し、より連続的に高フラックスでの運
転、並びにより低頻度での薬洗での維持管理を可能とす
る汚水の処理方法並びに袋置を提供することを課題とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned disadvantages of the prior art, and enables sewage treatment which enables more continuous operation at a high flux and maintenance and management at a less frequent chemical washing. It is an object to provide a method and a bag holder.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
以下の手段で解決した。 (1) 有機性汚水の生物処理装置において、生物反応
装置に膜分離により処理水を得る膜分離機構と、微生物
固定化担体とを内蔵させ、該生物反応装置中、微生物固
定化担体を除く有機性汚水中のMLSSの濃度を低濃度
とすることを特徴とする有機性汚水の処理装置。 (2) 微生物固定化担体の内蔵量が、該生物反応装置
の容積の30%以下であることを特徴とする請求項1に
記載の有機性汚水の処理装置。 (3) 微生物固定化担体を除くMLSSの該生物反応
装置中の濃度が、2000mg/リットル以下であるこ
とを特徴とする請求項1又は2に記載の有機性汚水の処
理装置。 (4) 有機性汚水の生物処理方法において、生物反応
工程に内蔵させた膜分離工程により処理水を得るととも
に、該生物反応工程には微生物固定化担体を内蔵させ、
微生物固定化担体を除くMLSSの生物反応工程におけ
る濃度を低濃度として運転することを特徴とする有機性
汚水の処理方法。
The present invention has solved the above problems by the following means. (1) In a biological treatment apparatus for organic wastewater, a bioreactor is provided with a built-in membrane separation mechanism for obtaining treated water by membrane separation and a microorganism-immobilized carrier. An organic sewage treatment apparatus characterized by lowering the concentration of MLSS in sewage. (2) The organic wastewater treatment apparatus according to claim 1, wherein the built-in amount of the microorganism-immobilized carrier is 30% or less of the volume of the bioreactor. (3) The organic wastewater treatment device according to claim 1 or 2, wherein the concentration of MLSS in the biological reaction device excluding the microorganism-immobilized carrier is 2000 mg / liter or less. (4) In the biological treatment method for organic wastewater, treated water is obtained by a membrane separation step incorporated in a biological reaction step, and a microorganism-immobilized carrier is incorporated in the biological reaction step;
A method for treating organic sewage, comprising operating the MLSS at a low concentration in a biological reaction step excluding the microorganism-immobilized carrier, at a low concentration.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。本発明の実施の形態の骨子は、高濃度の活性汚泥
を用いるのではなく、微生物固定化担体の投入により、
微生物による汚水中の有機物の吸収分解機能をまかな
い、より低濃度の活性汚泥ひいてはMLSS条件下での
膜分離を可能にすることにある。微生物担持担体として
は、例えば、ポリエチレングリコール性の親水性ゲル
や、ポリウレタン製の立体網目構造を持つ親水性担体な
どが好ましい。これらは担持担体内に多くの微生物を保
持でき、かつ、柔らかで膜に損傷を与えにくい。他に、
プラスチツク担体、活性炭、セラミック担体、やその他
セルロース等の生物難分解性材料の担体など、曝気槽内
で流動するものであれば、分離膜の性状との兼ね合いで
適当なものを用いることができる。中でも、ポリウレタ
ン製の立体綱目構造を持つ親水性担体などは、微生物の
保持能力が優れている。高度に集積された微生物を担持
した担体は、高い生物処理能力を持つと共に、分離膜表
面の細孔よりもはるかに大きな径を有する。その結果、
閉塞の問題が少ないため、分離膜の選定において自由度
が高く、高いフラックスをとることができる。また、膜
の洗浄において、大浮遊物の衝突や摩擦による効果が期
待できる。
Embodiments of the present invention will be described below. The essence of the embodiment of the present invention is to use a microorganism-immobilized carrier instead of using a high concentration of activated sludge.
An object of the present invention is to provide a function of absorbing and decomposing organic substances in wastewater by microorganisms, and to enable membrane separation under a lower concentration of activated sludge and MLSS. As the microorganism-carrying carrier, for example, a polyethylene glycol hydrophilic gel or a hydrophilic carrier having a three-dimensional network structure made of polyurethane is preferable. These can hold many microorganisms in the carrier and are soft and hard to damage the membrane. other,
Any material that flows in the aeration tank, such as a plastic carrier, activated carbon, a ceramic carrier, or a carrier of a biodegradable material such as cellulose, can be used in accordance with the properties of the separation membrane. Above all, a hydrophilic carrier having a three-dimensional network structure made of polyurethane has an excellent ability to retain microorganisms. The carrier carrying the highly accumulated microorganisms has a high biological treatment capacity and a diameter much larger than the pores on the surface of the separation membrane. as a result,
Since there is little problem of clogging, the degree of freedom in selecting a separation membrane is high, and a high flux can be obtained. Further, in the cleaning of the film, an effect due to collision or friction of large suspended matter can be expected.

【0006】担体の形状は、特に定めないが、粒径が小
さい方が担持表面積比が大きいので保持できる微生物量
は大きくなることから好ましいが、流動性や取扱の容易
さを勘案して決定すれば良い。粒状担体であれば、5m
m以下、好ましくは3mm以下の担体径が望ましい。立
体綱目構造体であれば、内部構造表面にも微生物を保持
できるので、10mm角程度のさいころ状のものが好ま
しく用いられる。曝気槽内の担体量は、容量として、曝
気槽などの反応容器の容量の30%以下、好ましくは2
0%以下とすることが良い。約30%を超えると容器内
での流動状態が悪化する可能性がある。上記の担持担体
の外、勿論、本発明では包括固定化担体を用いることを
さまたげない。一方、活性汚泥についてはその濃度を下
げることが可能になり、ろ過閉塞の可能性はますます低
下する。本発明では流入汚水中のSS分を含め、MLS
Sを2000mg/リットル以下好ましくは1000m
g/リットル以下としての運転が望ましい。これは、従
来法の1/10程度である。このレベルでも担体上の微
生物により生物処理工程全体としての処理能力は高水準
に保たれており、有機物分解能力の低下は殆ど見られな
い。
[0006] The shape of the carrier is not particularly limited, but it is preferable that the particle size is small because the ratio of the supported surface area is large and the amount of microorganisms that can be retained is large, but it is determined in consideration of fluidity and ease of handling. Good. 5m for granular carrier
m or less, preferably 3 mm or less. In the case of a three-dimensional net structure, a dice having a size of about 10 mm square is preferably used because microorganisms can be retained on the surface of the internal structure. The amount of the carrier in the aeration tank is not more than 30%, preferably 2%, of the capacity of the reaction vessel such as the aeration tank.
It is better to be 0% or less. If it exceeds about 30%, the flow state in the container may be deteriorated. In addition to the above-mentioned carrier, the present invention does not obviate the use of the entrapping immobilization carrier. On the other hand, activated sludge can be reduced in concentration, and the possibility of filter clogging is further reduced. In the present invention, MLS including SS content in incoming sewage
S is less than 2000 mg / liter, preferably 1000 m
Operation at g / liter or less is desirable. This is about 1/10 of the conventional method. Even at this level, the processing ability of the entire biological treatment step is maintained at a high level by the microorganisms on the carrier, and there is almost no decrease in the ability to decompose organic substances.

【0007】図1に本発明実施の1形態を示す。反応槽
1中に散気手段2を有する好気性処理の例である。微生
物固定化担体6を投入しておくことで、膜分離装置5が
良好に作用する。なお、本発明は好気性処理だけでなく
無酸素処理や、嫌気性処理においても有効である。その
場合、担体の流動は、窒素曝気等の酸素を含まないガス
による撹拌や、ポンプ、パドル、スクリュウ等の機械的
撹拌手段などによれば良い。勿論、嫌気好気の区別なく
この他に、磁気など既知の撹拌手段の何れを用いても構
わない。なお、本発明においても、生物処理であるので
余剰汚泥が発生するが、これらは別途設けられる固液分
離手段、例えば沈殿槽で分離し処理する。図3乃至5に
このような事例を示した。図3は生物反応槽1と別に沈
殿槽8をもちいている。生物反応槽1には担体分離スク
リーン9を設けて沈殿槽8には微生物固定化担体6が流
入しないようになっている。沈殿槽8から生物反応槽1
には沈殿槽8の上澄み水10が戻るようになっている。
沈殿槽8底部からは余剰汚泥11が分離される。図4は
沈殿槽8を生物反応槽1と一体型にしている。構成次第
で、生物反応槽1内に混在する担体の流出をバースクリ
ーンや多孔壁等で防止するようにすれば良い。沈殿槽8
に代えて膜分難による濃縮分離層等を設けることもでき
る。十分な滞留時間が得られれば、図5は、初期沈殿池
12を設けた例である。初期沈殿池12に上澄み液の一
部を返送液13として返送して余剰汚泥分離に利用して
も良い。初期沈殿池12からは、汚水中のSSと余剰汚
泥11が分離排除される。生物処理水は、膜分離工程で
既にろ過されているので、余剰汚泥の処理に当たる沈殿
槽の水面積負荷などの負荷は小さくて済む。
FIG. 1 shows an embodiment of the present invention. This is an example of an aerobic treatment having an air diffuser 2 in a reaction tank 1. The introduction of the microorganism-immobilized carrier 6 allows the membrane separation device 5 to work well. The present invention is effective not only in aerobic treatment but also in anoxic treatment and anaerobic treatment. In this case, the flow of the carrier may be agitated by a gas containing no oxygen such as nitrogen aeration or a mechanical agitation means such as a pump, a paddle, and a screw. Of course, any other known stirring means such as magnets may be used without distinction between anaerobic and aerobic. In the present invention as well, surplus sludge is generated due to biological treatment. These sludges are separated and processed by a separately provided solid-liquid separating means, for example, a sedimentation tank. 3 to 5 show such cases. FIG. 3 uses a sedimentation tank 8 separately from the biological reaction tank 1. A carrier separation screen 9 is provided in the biological reaction tank 1 so that the microorganism-immobilized carrier 6 does not flow into the sedimentation tank 8. Biological reaction tank 1 from sedimentation tank 8
The supernatant water 10 of the sedimentation tank 8 returns.
Excess sludge 11 is separated from the bottom of the settling tank 8. FIG. 4 shows the sedimentation tank 8 integrated with the biological reaction tank 1. Depending on the configuration, the outflow of the carrier mixed in the biological reaction tank 1 may be prevented by a bar screen, a porous wall, or the like. Settling tank 8
Instead, a concentration separation layer or the like due to membrane separation can be provided. FIG. 5 shows an example in which an initial settling basin 12 is provided if a sufficient residence time is obtained. A part of the supernatant liquid may be returned to the initial settling basin 12 as the return liquid 13 and used for separating excess sludge. From the initial sedimentation basin 12, SS in the wastewater and excess sludge 11 are separated and eliminated. Since the biologically treated water has already been filtered in the membrane separation step, a load such as a water area load on the settling tank for treating excess sludge can be reduced.

【0008】[0008]

【実施例】【Example】

〔実施例1〕 <Run1 Flux=0.6m/日> Run1を行った。図1に示す装置を用い、立体網目構
造のポリウレタン製親水性担体を微生物固定化担体とし
て使用し、有機性汚水の浄化実験を行った。装置の仕様
を表1に示す。
Example 1 <Run1 Flux = 0.6 m / day> Run1 was performed. Using the apparatus shown in FIG. 1, a purification experiment of organic wastewater was performed using a polyurethane hydrophilic carrier having a three-dimensional network structure as a microorganism-immobilizing carrier. Table 1 shows the specifications of the device.

【0009】[0009]

【表1】 [Table 1]

【0010】処理条件を表2に示す。なお、表2に示す
ように、MLSSは1000mg/Lとし、膜Flux
値は0.6m/日とした。
Table 2 shows the processing conditions. As shown in Table 2, the MLSS was 1000 mg / L,
The value was 0.6 m / day.

【0011】[0011]

【表2】 [Table 2]

【0012】分離膜が濾過した濾過水の内、原水の流入
水量と同じ分量の水は系外に排出し、残りは生物反応槽
1に戻した。約7ケ月間、継続的に有機性汚水の浄化処
理を行ったが、膜の差圧は0.5mとほぼ一定であっ
た。差圧の上昇変化は見られなかった。また、分離膜を
取出して観察した所、汚泥の付着はほとんどなかった。 〔比較例1〕 <Run1> 担体を使用しなかった外は実施例1と同様とし、表2に
示す処理条件で有機性汚水の浄化実験を行った。なお、
MLSSは10000mg/Lとし、膜Flux値は実
施例1と同じ0.6m/日とした。約7ケ月で膜の差圧
は水頭圧で3mまで上昇した。分離膜を取出し薬品洗浄
を行った。
[0012] Of the filtered water filtered by the separation membrane, the same amount of water as the inflow of raw water was discharged out of the system, and the rest was returned to the biological reaction tank 1. The organic wastewater purification treatment was continuously performed for about 7 months, but the differential pressure of the membrane was almost constant at 0.5 m. No increase in differential pressure was observed. Further, when the separation membrane was taken out and observed, almost no sludge was attached. [Comparative Example 1] <Run 1> An organic wastewater purification experiment was performed under the treatment conditions shown in Table 2, except that the carrier was not used. In addition,
The MLSS was 10,000 mg / L, and the membrane flux value was 0.6 m / day as in Example 1. In about 7 months, the pressure difference of the membrane increased to 3 m in terms of the head pressure. The separation membrane was taken out and washed with a chemical.

【0013】〔実施例2〕 <Run2 Flux=
0.9m/日> Run1にひき続いてRun2を行った。実施例1と同
様、立体網目構造のポリウレタン製親水性担体を微生物
固定化担体として使用した。処理条件は表2に示す通り
であった。MLSSは1000mg/Lとし、膜Flu
x値は0.9m/日とした。約5ケ月の間継続的に運転
したが、差圧の上昇変化はほとんどなかった。 〔比較例2〕 <Run2> 担体を使用しなかった外は実施例2と同様とし、表2に
示す処理条件で有機性汚水の浄化実験を行った。なお、
MLSSは10000mg/Lとし、膜Flux値は実
施例2にならって0.9m/日とした。約2ケ月で差圧
が上昇した。その結果、再度薬品洗浄を行った。
Embodiment 2 <Run2 Flux =
0.9 m / day> Run 1 was followed by Run 2. As in Example 1, a polyurethane hydrophilic carrier having a three-dimensional network structure was used as a microorganism-immobilized carrier. The processing conditions were as shown in Table 2. The MLSS was 1000 mg / L, and the membrane Flu
The x value was 0.9 m / day. The operation was continued for about 5 months, but there was almost no increase in the differential pressure. [Comparative Example 2] <Run 2> An organic wastewater purification experiment was performed under the treatment conditions shown in Table 2, except that the carrier was not used. In addition,
The MLSS was 10,000 mg / L, and the membrane flux value was 0.9 m / day according to Example 2. The differential pressure increased in about two months. As a result, chemical cleaning was performed again.

【0014】[0014]

【発明の効果】本発明は、上記のような構成でなるか
ら、大量の有機性汚水を従来以上に、より迅速に処理で
きる有機性汚水の処理方法を提供することができる。微
生物固定化担体を使用しているため、大量の汚泥は微生
物固定化担体に担持され、浄化処理能力が低下すること
なく、分離膜も目詰まりを起こすことが極めて少なく、
効率的な処理が可能となる。処理水は膜分離装置で濾過
され、吸引されるため沈殿槽の水面積負荷は沈殿槽の汚
泥引き抜き分だけとなり、沈殿槽は小さくて足りること
になるからである。即ち処理水は膜分離装置で濾過さ
れ、吸引されるため、本発明では、小粒径の微生物固定
化担体を利用するため、微生物固定化担体の比表面積に
実質的に高い値を取ることができる。その結果、微生物
固定化担体に保待される微生物量を多くすることがで
き、従来の膜分離活性汚泥法とほぼ同等の容積負荷が可
能となる。生物反応槽内のMLSS濃度を低く維持して
いるため分離膜の汚染が少ない。それに加え、微生物固
定化担体による膜面の洗浄効果がにより、有機物による
目詰まり汚染が防止され、Flux値を高く取れる。本
来であれば、薬品による洗浄を行うべきところ、その頻
度が少なくなる。微生物固定化担体は、流動しながら膜
分離装置の分離膜と適度に接触する。これにより、微生
物固定化担体の表面に付着した生物膜が適度な厚みに維
持され、安定した有機物の分解処理が進行する。
According to the present invention having the above-described structure, it is possible to provide a method for treating organic wastewater which can treat a large amount of organic wastewater more quickly than before. Because a microorganism-immobilized carrier is used, a large amount of sludge is supported by the microorganism-immobilized carrier, and the purification membrane has very little clogging without lowering the purification processing ability.
Efficient processing becomes possible. This is because the treated water is filtered by the membrane separation device and sucked, so that the water area load of the sedimentation tank is only the amount of sludge drawn out of the sedimentation tank, and the sedimentation tank is small and sufficient. That is, since the treated water is filtered by the membrane separation device and sucked, in the present invention, in order to utilize the microorganism-immobilized carrier having a small particle diameter, the specific surface area of the microorganism-immobilized carrier may have a substantially high value. it can. As a result, the amount of microorganisms stored in the microorganism-immobilized carrier can be increased, and a volume load substantially equal to that of the conventional membrane separation activated sludge method can be achieved. Since the MLSS concentration in the biological reaction tank is kept low, there is little contamination of the separation membrane. In addition, due to the effect of washing the membrane surface by the microorganism-immobilized carrier, clogging and contamination with organic substances can be prevented, and a high Flux value can be obtained. Normally, cleaning with a chemical should be performed, but the frequency is reduced. The microorganism-immobilized carrier comes into appropriate contact with the separation membrane of the membrane separation device while flowing. Thereby, the biofilm adhered to the surface of the microorganism-immobilized carrier is maintained at an appropriate thickness, and a stable organic substance decomposition treatment proceeds.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を表す概念図である。FIG. 1 is a conceptual diagram illustrating an embodiment of the present invention.

【図2】従来の処理方法の例を表す概念図である。FIG. 2 is a conceptual diagram illustrating an example of a conventional processing method.

【図3】生物反応槽と別に沈殿槽をもちいている例であ
る。
FIG. 3 is an example in which a sedimentation tank is used separately from a biological reaction tank.

【図4】沈殿槽を生物反応槽と一体型にしている例であ
る。
FIG. 4 is an example in which a sedimentation tank is integrated with a biological reaction tank.

【図5】初期沈殿池を設けた例である。FIG. 5 is an example in which an initial settling tank is provided.

【符号の説明】[Explanation of symbols]

1 生物反応槽 2 散気装置 3 有機性汚水 5 膜分離装置 6 微生物固定化担体 7 担体分離装置 8 沈殿槽 9 担体分離スクリーン 10 上澄み水 11 余剰汚泥 12 初期沈殿池 13 返送液 DESCRIPTION OF SYMBOLS 1 Biological reaction tank 2 Aerator 3 Organic sewage 5 Membrane separation apparatus 6 Microorganism immobilization support 7 Carrier separation apparatus 8 Sedimentation tank 9 Carrier separation screen 10 Supernatant water 11 Excess sludge 12 Initial settling basin 13 Return liquid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧 恭子 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 森 康輔 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 小島 康成 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 府中 裕一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D003 AA14 AB02 BA02 CA02 CA03 DA08 EA14 EA16 EA21 EA24 EA25 EA30 FA02 4D006 GA06 GA07 HA41 KA44 KB22 KB25 KC16 MA03 MC22 PA02 PB08 PC64 4D028 BB02 BC03 BC17 BC18 BD16 BD17 BE04 CA00 CA05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kyoko Maki 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside the Ebara Corporation (72) Inventor Kosuke Mori 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside Ebara Works (72) Inventor Yasunari Kojima 11-1, Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Works (72) Inventor Yuichi Fuchu 11-1, Haneda Asahi-cho, Ota-ku, Tokyo Inside Ebara Works F Terms (Reference) 4D003 AA14 AB02 BA02 CA02 CA03 DA08 EA14 EA16 EA21 EA24 EA25 EA30 FA02 4D006 GA06 GA07 HA41 KA44 KB22 KB25 KC16 MA03 MC22 PA02 PB08 PC64 4D028 BB02 BC03 BC17 BC18 BD16 BD17 BE04 CA00 CA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機性汚水の生物処理装置において、生
物反応装置に膜分離により処理水を得る膜分離機構と、
微生物固定化担体とを内蔵させ、該生物反応装置中、微
生物固定化担体を除く有機性汚水中のMLSSの濃度を
低濃度とすることを特徴とする有機性汚水の処理装置。
1. A biological treatment apparatus for an organic wastewater, comprising: a membrane separation mechanism for obtaining treated water by membrane separation in a biological reactor;
An apparatus for treating organic sewage, comprising a microorganism-immobilized carrier therein, wherein the concentration of MLSS in the organic sewage excluding the microorganism-immobilized carrier is reduced in the biological reaction apparatus.
【請求項2】 微生物固定化担体の内蔵量が、該生物反
応装置の容積の30%以下であることを特徴とする請求
項1に記載の有機性汚水の処理装置。
2. The organic wastewater treatment apparatus according to claim 1, wherein the amount of the microorganism-immobilized carrier contained therein is 30% or less of the volume of the biological reaction apparatus.
【請求項3】 微生物固定化担体を除くMLSSの該生
物反応装置中の濃度が、2000mg/リットル以下で
あることを特徴とする請求項1又は2に記載の有機性汚
水の処理装置。
3. The organic wastewater treatment apparatus according to claim 1, wherein the concentration of the MLSS excluding the microorganism-immobilized carrier in the biological reaction device is 2000 mg / liter or less.
【請求項4】 有機性汚水の生物処理方法において、生
物反応工程に内蔵させた膜分離工程により処理水を得る
とともに、該生物反応工程には微生物固定化担体を内蔵
させ、微生物固定化担体を除くMLSSの生物反応工程
における濃度を低濃度として運転することを特徴とする
有機性汚水の処理方法。
4. A biological treatment method for an organic wastewater, wherein treated water is obtained by a membrane separation step incorporated in a biological reaction step, and a microorganism-immobilized carrier is incorporated in the biological reaction step. A method for treating organic sewage, comprising operating the MLSS at a low concentration in a biological reaction process excluding MLSS.
JP28984699A 1999-10-12 1999-10-12 Apparatus and method for treating organic sewage Pending JP2001104982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28984699A JP2001104982A (en) 1999-10-12 1999-10-12 Apparatus and method for treating organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28984699A JP2001104982A (en) 1999-10-12 1999-10-12 Apparatus and method for treating organic sewage

Publications (1)

Publication Number Publication Date
JP2001104982A true JP2001104982A (en) 2001-04-17

Family

ID=17748532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28984699A Pending JP2001104982A (en) 1999-10-12 1999-10-12 Apparatus and method for treating organic sewage

Country Status (1)

Country Link
JP (1) JP2001104982A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207657A (en) * 2009-03-06 2010-09-24 Hitachi Plant Technologies Ltd Wastewater treatment apparatus and wastewater treatment method
JP2011147868A (en) * 2010-01-20 2011-08-04 Hitachi Plant Technologies Ltd Waste water treatment system and method
WO2019165389A1 (en) * 2018-02-23 2019-08-29 Hampton Roads Sanitation District Apparatus and method for biofilm management in water systems
JPWO2021014630A1 (en) * 2019-07-25 2021-01-28
US11999641B2 (en) 2021-03-12 2024-06-04 Hampton Roads Sanitation District Method and apparatus for multi-deselection in wastewater treatment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207657A (en) * 2009-03-06 2010-09-24 Hitachi Plant Technologies Ltd Wastewater treatment apparatus and wastewater treatment method
JP2011147868A (en) * 2010-01-20 2011-08-04 Hitachi Plant Technologies Ltd Waste water treatment system and method
WO2019165389A1 (en) * 2018-02-23 2019-08-29 Hampton Roads Sanitation District Apparatus and method for biofilm management in water systems
CN112771007A (en) * 2018-02-23 2021-05-07 汉普顿道路卫生局 Apparatus and method for biofilm management in water systems
JPWO2021014630A1 (en) * 2019-07-25 2021-01-28
JP7406265B2 (en) 2019-07-25 2023-12-27 エンバイロ・ビジョン株式会社 wastewater treatment equipment
US11999641B2 (en) 2021-03-12 2024-06-04 Hampton Roads Sanitation District Method and apparatus for multi-deselection in wastewater treatment

Similar Documents

Publication Publication Date Title
JP4508694B2 (en) Water treatment method and apparatus
TWI233429B (en) Method and apparatus for treating waste water
KR101036622B1 (en) Apparatus for Treatment of Ship Wastewater
JP2006082024A (en) Biological treatment apparatus
JP2001104982A (en) Apparatus and method for treating organic sewage
JP2003053378A (en) Method and device for treating water by using separation membrane
JP2001062488A (en) Treatment of nitrogen-containing waste water and its device
JPH09308883A (en) Apparatus for biological treatment of water
JP2002307088A (en) Wastewater treatment apparatus
JP3136902B2 (en) Wastewater treatment method
JPS6377595A (en) Activated sludge treating device
JPH09225487A (en) Biological treating device
JP2001179282A (en) Immersion membrane treatment apparatus
JP2015160202A (en) Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water
JP3963667B2 (en) Sewage treatment apparatus and operation method thereof
KR20040020325A (en) A method for treating the graywater by membrane
JPH11104698A (en) Drainage treatment method
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
JP2002346591A (en) Sewage treatment apparatus and operation method therefor
JP2002096090A (en) Septic tank
JPH0647399A (en) Water purifying treatment method
KR100191865B1 (en) Biological and aerobic disposal apparatus and its method of wastewater with closed-type
JPH11104697A (en) Method and apparatus for treating laundry drainage
JP3179725B2 (en) Treatment method for water containing organic matter
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051012