JP2001077473A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP2001077473A
JP2001077473A JP24804499A JP24804499A JP2001077473A JP 2001077473 A JP2001077473 A JP 2001077473A JP 24804499 A JP24804499 A JP 24804499A JP 24804499 A JP24804499 A JP 24804499A JP 2001077473 A JP2001077473 A JP 2001077473A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
quantum well
gan
well active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24804499A
Other languages
Japanese (ja)
Other versions
JP4700154B2 (en
Inventor
Isamu Akasaki
勇 赤崎
Hiroshi Amano
浩 天野
Satoshi Kamiyama
智 上山
Motoaki Iwatani
素顕 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP24804499A priority Critical patent/JP4700154B2/en
Publication of JP2001077473A publication Critical patent/JP2001077473A/en
Application granted granted Critical
Publication of JP4700154B2 publication Critical patent/JP4700154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the aspect ratio of a semiconductor laser in a low threshold current by a method where a striped aperture is formed, in such a way as to make a substrate, an n-type layer and a current constricting layer consisting of a high-meting point metal layer penetrate and a quantum well active layer is formed on the striped aperture. SOLUTION: An AlN buffer layer 2 and an n-type GaN layer 3 are grown on a sapphire substrate 1 in a first crystal growth by an organometallic vapor growth method, and thereafter a current-constricting layer 4 consisting of a tungsten layer is deposited on the layer 3. After that, A striped aperture 5 is formed in such a way as to make the layer 4 penetrate. Then a first clad layer 6, a first light guide layer 7, a multi-quantum well active layer 8, a cap layer 9, a second light guide layer 10, a second clad layer 11 and a contact layer 12 are grown in the order in a second crystal growth. Lastly, a p-type electrode 13 is formed on the striped aperture 5, and an n-type electrode 14 is formed on the surface of the layer 3 etched, until one part of the layer 3 is exposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光情報処理分野な
どへの応用が期待されているGaN系半導体レーザに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GaN semiconductor laser expected to be applied to the field of optical information processing and the like.

【0002】[0002]

【従来の技術】近年、デジタルビデオディスク等の大容
量光ディスク装置が実用化され、今後さらに大容量化が
進められようとしている。光ディスク装置の大容量化の
ためにはよく知られるように読み取りや書き込みの光源
となる半導体レーザの短波長化が最も有効な手段の一つ
である。したがって、現在市販されているデジタルビデ
オディスク用の半導体レーザは、AlGaInP系材料
による波長650nmであるが、将来開発が予定されて
いる高密度デジタルビデオディスク用では400nm帯
のGaN系半導体レーザが不可欠と考えられている。
2. Description of the Related Art In recent years, large-capacity optical disk devices such as digital video disks have been put into practical use, and the capacity is going to be further increased in the future. As is well known, shortening the wavelength of a semiconductor laser serving as a light source for reading and writing is one of the most effective means for increasing the capacity of an optical disk device. Therefore, a semiconductor laser for a digital video disk currently on the market has a wavelength of 650 nm made of an AlGaInP-based material. It is considered.

【0003】光ディスク用に用いる半導体レーザは、長
寿命、低しきい値電流動作は当然として、他に安定な単
一横モード動作、低非点隔差、低雑音、低アスペクト比
等が求められるが、現状ではこれら全ての特性を満たす
400nm帯半導体レーザは実現されていない。
Semiconductor lasers used for optical disks are required to have long life and low threshold current operation, as well as stable single transverse mode operation, low astigmatic difference, low noise and low aspect ratio. At present, a 400 nm band semiconductor laser satisfying all these characteristics has not been realized.

【0004】従来、単一横モード型GaN系半導体レー
ザとして、図3に示す素子の断面構造をもつものが提案
されている。サファイア基板101 上に第1の結晶成長に
よりGaNバッファ層102 、n−GaN層103 、p−G
aN電流狭窄層104 が成長され、一旦、成長装置から取
り出した後ストライプ状の開口部105 が、例えばCl 2
ガスによる反応性イオンエッチングにより形成されてい
る。前記ストライプ状の開口部105 は、少なくともp−
GaN電流狭窄層104 を完全に貫通していなければなら
ない。
Conventionally, a single transverse mode type GaN-based semiconductor laser
The one with the cross-sectional structure of the element shown in Fig. 3 is proposed as
Have been. First crystal growth on sapphire substrate 101
GaN buffer layer 102, n-GaN layer 103, p-G
The aN current confinement layer 104 is grown, and once removed from the growth apparatus.
After the opening, the stripe-shaped opening 105 Two
Formed by reactive ion etching with gas
You. The striped openings 105 are at least p-
Must completely penetrate GaN current confinement layer 104
Absent.

【0005】次に、再び、結晶成長装置に導入し、第2
の結晶成長によりn−AlGaN第1クラッド層106 、
n−GaN第1光ガイド層107 、Ga1-x Inx N/G
1- y Iny N(0<y<x<1)から成る多重量子井
戸活性層108 、p−AlGaNキャップ層109 、p−G
aN第2光ガイド層110 、p−AlGaN第2クラッド
層111 、p−GaNコンタクト層112 が成長される。
Next, the wafer is again introduced into the crystal growing apparatus, and the second
N-AlGaN first cladding layer 106,
n-GaN first optical guide layer 107, Ga 1-x In x N / G
a 1- y In y N (0 <y <x <1) multi-quantum well active layer 108 made of, p-AlGaN cap layer 109, p-G
An aN second light guide layer 110, a p-AlGaN second cladding layer 111, and a p-GaN contact layer 112 are grown.

【0006】最後に、ストライプ状の開口105 の直上
に、例えばNi/Auから成るp電極113 、また、一部
をn−GaN層103 が露出するまでエッチングした表面
に、例えばTi/Alから成るn電極114 が形成され、
図3に断面構造を示す単一横モード型GaN系半導体レ
ーザが作製される。
Finally, a p-electrode 113 made of, for example, Ni / Au is formed directly above the stripe-shaped opening 105, and a p-electrode 113 made of, for example, Ti / Al is formed on a part of the surface etched until the n-GaN layer 103 is exposed. An n-electrode 114 is formed,
A single transverse mode GaN-based semiconductor laser whose sectional structure is shown in FIG. 3 is manufactured.

【0007】この素子において、n電極114 を接地し、
p電極113 に電圧を印加すると、多重量子井戸活性層10
8 に向かってp電極113 側からホールが、また、n電極
114側から電子が注入され、前記多重量子井戸活性層108
内で光学利得を生じ、レーザ発振を起こす。なお、こ
のレーザ駆動時のバイアスはp−GaN電流狭窄層104
とn−AlGaN第1クラッド層106 との接合について
は、逆バイアスとなるためp−GaN電流狭窄層104 が
存在しないストライプ状の開口部105 のみに電流が集中
する。
In this device, the n-electrode 114 is grounded,
When a voltage is applied to the p-electrode 113, the multiple quantum well active layer 10
A hole is formed from the p-electrode 113 side toward
Electrons are injected from the 114 side, and the multiple quantum well active layer 108
An optical gain is generated in the device, causing laser oscillation. The bias at the time of driving the laser is applied to the p-GaN current confinement layer 104.
When the junction between the n-AlGaN first cladding layer 106 and the n-AlGaN first cladding layer 106 is reverse-biased, current concentrates only on the stripe-shaped opening 105 where the p-GaN current confinement layer 104 does not exist.

【0008】一方、ストライプ状の開口部105 上に形成
された多重量子井戸活性層108 は、図3に示すように屈
曲した形状を有するために成長層に水平な方向に屈折率
差が生じ、レーザ光もまた安定してストライプ状の開口
部105 の直上の多重量子井戸活性層108 内に閉じこめら
れる。このため、注入キャリアと光の分布がほぼ一致
し、低しきい値電流密度での発振が可能となる。また、
前述のように成長層に水平な方向に屈折率差を有する屈
折率導波構造なので、光学モードは安定し、また非点隔
差も極めて小さい高性能の半導体レーザが実現できると
いうものである。
On the other hand, since the multiple quantum well active layer 108 formed on the stripe-shaped opening 105 has a bent shape as shown in FIG. 3, a difference in refractive index occurs in the growth layer in the horizontal direction. The laser beam is also stably confined in the multiple quantum well active layer 108 immediately above the stripe-shaped opening 105. For this reason, the distribution of the injected carriers and the light substantially match, and oscillation at a low threshold current density becomes possible. Also,
As described above, since the refractive index waveguide structure has a refractive index difference in the direction parallel to the growth layer, the optical mode is stable, and a high-performance semiconductor laser with a very small astigmatic difference can be realized.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前記単
一横モード型GaN系半導体レーザを実際に作製する場
合において極めて回避困難な問題点が存在する。図3に
おいて、p−GaN電流狭窄層104 が用いられている
が、GaNは比較的屈折率の大きい材料である。即ちn
−AlGaN第1クラッド層106 よりも屈折率は大き
い。多重量子井戸活性層108 が屈曲しているため、図4
の成長層に水平な方向における屈折率分布に示すよう
に、n−AlGaN第1クラッド層106 との間の屈折率
差により光が閉じ込められる。しかし、n−AlGaN
第1クラッド層106 のさらに外側にn−AlGaN第1
クラッド層106 よりも屈折率の大きいp−GaN電流狭
窄層104 が存在すると、光がp−GaN電流狭窄層104
へ多量に漏れ、多重量子井戸活性層108 への光閉じ込め
が著しく低下する。特に、ストライプ幅が3μm以下の
狭ストライプ構造ではそれが顕著となる。
However, there is a problem which is extremely difficult to avoid when actually manufacturing the single transverse mode GaN-based semiconductor laser. In FIG. 3, a p-GaN current confinement layer 104 is used, but GaN is a material having a relatively large refractive index. That is, n
The refractive index is higher than that of the first AlGaN cladding layer 106; Since the multiple quantum well active layer 108 is bent, FIG.
As shown in the refractive index distribution in the direction horizontal to the growth layer, the light is confined by the difference in the refractive index from the n-AlGaN first cladding layer 106. However, n-AlGaN
Further outside the first cladding layer 106, n-AlGaN first
When the p-GaN current confinement layer 104 having a higher refractive index than the cladding layer 106 is present, light is emitted from the p-GaN current confinement layer 104.
And the light confinement in the multiple quantum well active layer 108 is significantly reduced. This is particularly noticeable in a narrow stripe structure with a stripe width of 3 μm or less.

【0010】多重量子井戸活性層108 への光閉じ込めが
低下すると、しきい値電流やビーム広がり角のアスペク
ト比の増大等、光ディスク用光源としての応用上好まし
くない特性となる。
When light confinement in the multiple quantum well active layer 108 is reduced, characteristics unfavorable for application as a light source for an optical disk, such as an increase in the threshold current and the aspect ratio of the beam divergence angle, are obtained.

【0011】[0011]

【課題を解決するための手段】本発明は、以上述べた従
来の単一横モード型GaN系半導体レーザの問題点に鑑
みてなされたもので、安定な単一横モード動作、低アス
ペクト比、低しきい値電流等、高性能の単一横モード型
GaN系半導体レーザを提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the conventional single transverse mode GaN-based semiconductor laser, and has a stable single transverse mode operation, a low aspect ratio, An object of the present invention is to provide a high performance single transverse mode GaN-based semiconductor laser such as a low threshold current.

【0012】本発明では、電流狭窄層に光吸収の強い
W、Ta、Mo等の高融点金属、あるいは低屈折率のS
iO2 、SiN、Al2 3 等の誘電体を用い、水平方
向に屈曲した活性層への光閉じ込めを高めるものであ
り、その結果、低しきい値電流でアスペクト比の小さ
い、安定した屈折率導波による単一横モード型GaN系
半導体レーザを実現できる。
In the present invention, a high melting point metal such as W, Ta, or Mo having a high light absorption, or a low refractive index S is added to the current confinement layer.
A dielectric material such as iO 2 , SiN, or Al 2 O 3 is used to enhance light confinement in an active layer bent in the horizontal direction. As a result, stable refraction with a low threshold current and a small aspect ratio is achieved. It is possible to realize a single transverse mode GaN-based semiconductor laser using index guided wave.

【0013】すなわち、本発明は、基板と、n型層と、
高融点金属から成る電流狭窄層と、該電流狭窄層を貫通
するストライプ状開口部と、該ストライプ状開口部上に
形成された量子井戸活性層とを備えた半導体レーザであ
る。
That is, the present invention provides a substrate, an n-type layer,
A semiconductor laser comprising a current confinement layer made of a high melting point metal, a stripe-shaped opening penetrating the current confinement layer, and a quantum well active layer formed on the stripe-shaped opening.

【0014】該高融点金属は、結晶成長炉を汚染しない
金属、例えばW、Ta、Moのいずれか1種であること
が好ましい。
The refractory metal is preferably a metal that does not contaminate the crystal growth furnace, for example, any one of W, Ta, and Mo.

【0015】また、本発明は、基板と、n型層と、誘電
体から成る電流狭窄層と、該電流狭窄層を貫通するスト
ライプ状開口部と、該ストライプ状開口部上に形成され
た量子井戸活性層とを備えた半導体レーザである。
Further, according to the present invention, a substrate, an n-type layer, a current confinement layer made of a dielectric, a stripe-shaped opening penetrating the current confinement layer, and a quantum aperture formed on the stripe-shaped opening are provided. A semiconductor laser including a well active layer.

【0016】該誘電体は、低屈折率で結晶の成長温度に
対して安定な誘電体であるSiO2、SiN、Al2
3 のいずれか1種であることが好ましい。
The dielectric material is SiO 2 , SiN, Al 2 O which is a dielectric material having a low refractive index and being stable with respect to the crystal growth temperature.
Preferably, any one of the three types is used.

【0017】また、本発明は、ストライプ状開口部上に
沿って屈曲した量子井戸活性層を備えた上記の半導体レ
ーザである。
Further, the present invention is the above-described semiconductor laser having a quantum well active layer bent along the stripe-shaped opening.

【0018】[0018]

【実施例】以下、本発明の実施例について図面を用いて
詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】実施例1 図1は、実施例1を示す単一モード型GaN量子井戸半
導体レーザの素子断面図である。有機金属気相成長法に
より(0001)サファイア基板1 上に第1の結晶成長により
AlNバッファ層2 、n−GaN層3を成長させ、一
旦、成長装置から取り出した後タングステンからなる電
流狭窄層4 を真空蒸着により膜厚1μm程度堆積する。
その後幅2μmのストライプ状の開口部5 を、例えばイ
オンミリングにより形成する。前記ストライプ状の開口
部5 は少なくともタングステンからなる電流狭窄層4 は
完全に貫通していなければならない。
Embodiment 1 FIG. 1 is a sectional view of a device of a single mode GaN quantum well semiconductor laser showing Embodiment 1. An AlN buffer layer 2 and an n-GaN layer 3 are grown by a first crystal growth on a (0001) sapphire substrate 1 by a metal organic chemical vapor deposition method. Is deposited to a thickness of about 1 μm by vacuum evaporation.
Thereafter, a stripe-shaped opening 5 having a width of 2 μm is formed by, for example, ion milling. The stripe-shaped opening 5 must completely penetrate at least the current confinement layer 4 made of tungsten.

【0020】次に、再び、結晶成長装置に導入し、第2
の結晶成長によりn−Al0.07Ga 0.93N第1クラッド
層6 、n−GaN第1光ガイド層7 、Ga1-x Inx
/Ga1-y Iny N(0<y<x<1)から成る多重量
子井戸活性層8 、p−Al0. 08Ga0.92Nキャップ層9
、p−GaN第2光ガイド層10、p−Al0.07Ga0.
93N第2クラッド層11、p−GaNコンタクト層12を成
長させる。
Next, it is again introduced into the crystal growth apparatus, and the second
N-Al0.07Ga 0.93N first cladding
Layer 6, n-GaN first light guide layer 7, Ga1-xInxN
/ Ga1-yInyMultiweight consisting of N (0 <y <x <1)
Subwell active layer 8, p-Al0. 08Ga0.92N cap layer 9
 , P-GaN second light guide layer 10, p-Al0.07Ga0.
93An N second cladding layer 11 and a p-GaN contact layer 12 are formed.
Lengthen.

【0021】最後に、ストライプ状の開口5 直上に、例
えばNi/Auから成るp電極13、また、一部をn−G
aN層3 が露出するまでエッチングした表面に、例えば
Ti/Alから成るn電極14を形成する。
Finally, a p-electrode 13 made of, for example, Ni / Au, and a part of the n-G
An n-electrode 14 made of, for example, Ti / Al is formed on the surface etched until the aN layer 3 is exposed.

【0022】多重量子井戸活性層8 は、例えば厚さ3n
mのGa0.9 In0.1 N量子井戸層と9nmのGa0.97
In0.03Nバリア層とから構成されている。また、タン
グステンからなる電流狭窄層4 上に積層されたn−Al
0.07Ga0.93N第1クラッド層6 以降の結晶層は、多結
晶化しており高抵抗となっている。したがって、電流は
ストライプ状の開口部5 直上の多重量子井戸活性層8 に
選択的に注入される。
The multiple quantum well active layer 8 has a thickness of, for example, 3n.
m Ga 0.9 In 0.1 N quantum well layer and 9 nm Ga 0.97
And an In 0.03 N barrier layer. Also, n-Al laminated on the current confinement layer 4 made of tungsten
The crystal layers subsequent to the 0.07 Ga 0.93 N first cladding layer 6 are polycrystalline and have high resistance. Therefore, a current is selectively injected into the multiple quantum well active layer 8 immediately above the stripe-shaped opening 5.

【0023】多重量子井戸活性層8 内で発生した光は、
垂直方向で見るとn−GaN第1光ガイド層7 、多重量
子井戸活性層8 、p−Al0.08Ga0.92Nキャップ層9
、およびp−GaN第2光ガイド層10の4層内に特に
強く閉じ込められるが、段差によって成長層に水平な方
向にも屈折率差が生じている。多重量子井戸活性層8 に
おける屈曲部17の幅は約1.5μmとなり、これを実効
的なストライプ幅とする屈折率導波構造となっている。
The light generated in the multiple quantum well active layer 8 is
When viewed in the vertical direction, the n-GaN first light guide layer 7, the multiple quantum well active layer 8, the p-Al 0.08 Ga 0.92 N cap layer 9
And the p-GaN second light guide layer 10 are particularly strongly confined in the four layers, but the difference in refractive index also occurs in the direction horizontal to the growth layer due to the step. The width of the bent portion 17 in the multiple quantum well active layer 8 is about 1.5 μm, and the refractive index waveguide structure has an effective stripe width.

【0024】本実施例の場合、狭ストライプ構造を用い
ているので水平方向の光はタングステンからなる電流狭
窄層4 へも広がるが、多重量子井戸活性層8 内で発生し
た光を強く吸収するため損失導波作用が生じ、多重量子
井戸活性層8 への光閉じ込め効果が一層強く現れ、90
%以上の光閉じ込め係数が得られる。したがって、低し
きい値電流で安定な単一横モード、低アスペクト比等、
光ディスク用光源に適した高性能が実現できる。さら
に、多重量子井戸活性層8 は屈曲部17がなく平坦な場合
でもタングステンから電流狭窄層4 によって屈折率差が
生じていれば同様の効果が得られる。
In the case of this embodiment, since the narrow stripe structure is used, the light in the horizontal direction spreads to the current confinement layer 4 made of tungsten. Loss waveguide action occurs, and the effect of confining light to the multiple quantum well active layer 8 appears more strongly.
% Is obtained. Therefore, stable single transverse mode with low threshold current, low aspect ratio, etc.
High performance suitable for an optical disk light source can be realized. Further, even when the multiple quantum well active layer 8 has no bent portion 17 and is flat, the same effect can be obtained as long as the refractive index difference is caused by the current confinement layer 4 from tungsten.

【0025】実施例2 図2は、実施例2を示す単一モード型GaN系量子井戸
半導体レーザの素子断面図であり、実施例1におけるW
電流狭窄層をSiO2 電流狭窄層とした。SiO2 電流
狭窄層24が真空蒸着により膜厚1μm程度堆積されてい
る。その後、幅2μmのストライプ状の開口部25が、例
えばCF4 を用いたドライエッチングにより形成されて
いる。前記ストライプ状の開口部25は、少なくともSi
2 電流狭窄層24は完全に貫通していなければならな
い。
Embodiment 2 FIG. 2 is a cross-sectional view of a device of a single mode GaN-based quantum well semiconductor laser showing Embodiment 2;
The current confinement layer was an SiO 2 current confinement layer. An SiO 2 current confinement layer 24 is deposited to a thickness of about 1 μm by vacuum evaporation. Thereafter, a stripe-shaped opening 25 having a width of 2 μm is formed by dry etching using, for example, CF 4 . The opening 25 in the form of a stripe has at least Si
The O 2 current confinement layer 24 must be completely penetrated.

【0026】SiO2 電流狭窄層24は絶縁体なので、電
流はストライプ状の開口部25直上の多重量子井戸活性層
28に選択的に注入される。多重量子井戸活性層28内で発
生した光は、垂直方向で見るとn−GaN第1光ガイド
層27、多重量子井戸活性層28、p−Al0.08Ga0.92
キャップ層29、およびp−GaN第2光ガイド層30の4
層内に特に強く閉じ込められるが、段差によって成長層
に水平な方向にも屈折率差が生じている。多重量子井戸
活性層28における屈曲部37の幅は約1.5μmとなり、
これが実効的なストライプ幅とする屈折率導波構造とな
っている。
Since the SiO 2 current confinement layer 24 is an insulator, the current is applied to the multiple quantum well active layer immediately above the stripe-shaped opening 25.
28 is selectively injected. The light generated in the multiple quantum well active layer 28 is, when viewed in the vertical direction, the n-GaN first optical guide layer 27, the multiple quantum well active layer 28, and the p-Al 0.08 Ga 0.92 N
The cap layer 29 and the p-GaN second light guide layer 30 4
Although the layer is particularly strongly confined in the layer, the difference in refractive index also occurs in the direction horizontal to the growth layer due to the step. The width of the bent portion 37 in the multiple quantum well active layer 28 is about 1.5 μm,
This is a refractive index waveguide structure having an effective stripe width.

【0027】本実施例の場合、狭ストライプ構造を用い
てるので水平方向の光はSiO2 電流狭窄層24へも広が
るが、SiO2 電流狭窄層24は低屈折率材料であるた
め、多重量子井戸層28への光閉じ込め効果が一層強く現
れる。その結果90%以上の光閉じ込め係数が得られ
る。
In the case of this embodiment, the narrow since the stripe structure is used light in the horizontal direction is also spread to the SiO 2 current blocking layer 24, since the SiO 2 current confinement layer 24 is a low refractive index material, a multiple quantum well The light confinement effect in the layer 28 appears more strongly. As a result, a light confinement coefficient of 90% or more is obtained.

【0028】多重量子井戸活性層28は屈曲部37がなく平
坦な場合でもSiO2 電流狭窄層24によって屈折率差が
生じていれば同様の効果が得られる。
Even when the multiple quantum well active layer 28 is flat without the bent portion 37, the same effect can be obtained if the refractive index difference is generated by the SiO 2 current confinement layer 24.

【0029】[0029]

【発明の効果】本発明により、低しきい値電流密度を有
し、単一横モード、低アスペクト比等、光ディスク用光
源に適した高性能な短波長半導体レーザが実現できる。
According to the present invention, a high-performance short-wavelength semiconductor laser having a low threshold current density and a single transverse mode, a low aspect ratio, etc., suitable for a light source for an optical disk can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に示すGaN系単一横モード半導体レ
ーザの素子断面図である。
FIG. 1 is an element cross-sectional view of a GaN-based single transverse mode semiconductor laser shown in Example 1.

【図2】実施例2に示すGaN系単一横モード半導体レ
ーザの素子断面図である。
FIG. 2 is a sectional view of a GaN-based single transverse mode semiconductor laser according to a second embodiment;

【図3】従来例のGaN系単一横モード半導体レーザの
素子断面図である。
FIG. 3 is a sectional view of a conventional GaN-based single transverse mode semiconductor laser.

【図4】図3に示す従来例の成長層に水平な方向におけ
る屈折率分布を示す図である。
4 is a diagram showing a refractive index distribution in a direction horizontal to a growth layer of the conventional example shown in FIG.

【符号の説明】[Explanation of symbols]

1,21 (0001) サファイア基板 2,22 AlNバッファ層 3,23 n−GaN層 4,24 W,SiO2 電流狭窄層 5,25 ストライプ状の開口部 6,26 n−Al0.07Ga0.93N第1クラッド層 7,27 n−GaN第1光ガイド層 8,28 Ga1-x Inx N/Ga1-y Iny N多重
量子井戸活性層 9,29 p−AlGaNキャップ層 10,30 p−GaN第2光ガイド層 11,31 p−Al0.07Ga0.93N第2クラッド層 12,32 p−GaNコンタクト層 13,33 p電極 14,34 n電極 17,37 活性層の屈曲部
1,21 (0001) sapphire substrate 2,22 AlN buffer layer 3,23 n-GaN layer 4,24 W, SiO 2 current confinement layer 5,25 striped opening 6,26 n-Al 0.07 Ga 0.93 N first cladding layer 7, 27 n-GaN first optical guiding layer 8,28 Ga 1-x In x n / Ga 1-y In y n multi quantum well active layer 9, 29 p-AlGaN cap layer 10, 30 p- GaN second light guide layer 11,31 p-Al 0.07 Ga 0.93 N second cladding layer 12,32 p-GaN contact layer 13,33 p electrode 14,34 n electrode 17,37 bent portion of active layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩谷 素顕 愛知県中島郡祖父江町大字大牧702 Fターム(参考) 5F073 AA20 AA45 AA51 AA55 CA07 CB05 CB07 DA05 DA26 EA23 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Motoaki Iwatani 702 F, Omaki, Omaki, Sobue-cho, Nakajima-gun, Aichi Prefecture 5F073 AA20 AA45 AA51 AA55 CA07 CB05 CB07 DA05 DA26 EA23

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板と、n型層と、高融点金属から成る
電流狭窄層と、該電流狭窄層を貫通するストライプ状開
口部と、該ストライプ状開口部上に形成された量子井戸
活性層とを備えた半導体レーザ。
1. A substrate, an n-type layer, a current confinement layer made of a refractory metal, a stripe-shaped opening penetrating the current confinement layer, and a quantum well active layer formed on the stripe-shaped opening. A semiconductor laser comprising:
【請求項2】 該高融点金属がW、Ta、Moのいずれ
か1種であることを特徴とする請求項1記載の半導体レ
ーザ。
2. The semiconductor laser according to claim 1, wherein said refractory metal is one of W, Ta, and Mo.
【請求項3】 基板と、n型層と、誘電体から成る電流
狭窄層と、該電流狭窄層を貫通するストライプ状開口部
と、該ストライプ状開口部上に形成された量子井戸活性
層とを備えた半導体レーザ。
3. A substrate, an n-type layer, a current confinement layer made of a dielectric, a stripe-shaped opening penetrating the current confinement layer, and a quantum well active layer formed on the stripe-shaped opening. Semiconductor laser comprising:
【請求項4】 誘電体がSiO2 、SiN、Al2 3
のいずれか1種であることを特徴とする請求項1記載の
半導体レーザ。
4. The dielectric material is SiO 2 , SiN, Al 2 O 3
2. The semiconductor laser according to claim 1, wherein the semiconductor laser is any one of the following.
【請求項5】 ストライプ状開口部上に沿って屈曲した
量子井戸活性層を備えたことを特徴とする請求項1乃至
4記載の半導体レーザ。
5. The semiconductor laser according to claim 1, further comprising a quantum well active layer bent along the stripe-shaped opening.
JP24804499A 1999-09-01 1999-09-01 Semiconductor laser Expired - Lifetime JP4700154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24804499A JP4700154B2 (en) 1999-09-01 1999-09-01 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24804499A JP4700154B2 (en) 1999-09-01 1999-09-01 Semiconductor laser

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010277392A Division JP2011055009A (en) 2010-12-13 2010-12-13 Semiconductor laser

Publications (2)

Publication Number Publication Date
JP2001077473A true JP2001077473A (en) 2001-03-23
JP4700154B2 JP4700154B2 (en) 2011-06-15

Family

ID=17172369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24804499A Expired - Lifetime JP4700154B2 (en) 1999-09-01 1999-09-01 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP4700154B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291930A (en) * 2000-04-06 2001-10-19 Mitsubishi Chemicals Corp Semiconductor optical device
JP2003008145A (en) * 2001-06-27 2003-01-10 Sony Corp Semiconductor laser and its manufacturing method
JP2005223148A (en) * 2004-02-05 2005-08-18 Sharp Corp Nitride-based semiconductor laser element, and optical data processor including the same
CN1293685C (en) * 2003-03-26 2007-01-03 夏普株式会社 Semiconductor laser device and method of producing the same, and optical disc unit
US7508001B2 (en) 2004-06-21 2009-03-24 Panasonic Corporation Semiconductor laser device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130489A (en) * 1981-02-05 1982-08-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
JPH06188408A (en) * 1992-12-18 1994-07-08 Agency Of Ind Science & Technol Method of finely processing of semiconductor
JPH1093192A (en) * 1996-07-26 1998-04-10 Toshiba Corp Gallium nitride compound semiconductor laser and manufacture thereof
JPH10321956A (en) * 1997-05-15 1998-12-04 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH11150296A (en) * 1997-11-19 1999-06-02 Toshiba Corp Nitride semiconductor element and its manufacture
JPH11233886A (en) * 1998-02-12 1999-08-27 Ricoh Co Ltd Semiconductor laser device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130489A (en) * 1981-02-05 1982-08-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
JPH06188408A (en) * 1992-12-18 1994-07-08 Agency Of Ind Science & Technol Method of finely processing of semiconductor
JPH1093192A (en) * 1996-07-26 1998-04-10 Toshiba Corp Gallium nitride compound semiconductor laser and manufacture thereof
JPH10321956A (en) * 1997-05-15 1998-12-04 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH11150296A (en) * 1997-11-19 1999-06-02 Toshiba Corp Nitride semiconductor element and its manufacture
JPH11233886A (en) * 1998-02-12 1999-08-27 Ricoh Co Ltd Semiconductor laser device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291930A (en) * 2000-04-06 2001-10-19 Mitsubishi Chemicals Corp Semiconductor optical device
JP2003008145A (en) * 2001-06-27 2003-01-10 Sony Corp Semiconductor laser and its manufacturing method
CN1293685C (en) * 2003-03-26 2007-01-03 夏普株式会社 Semiconductor laser device and method of producing the same, and optical disc unit
JP2005223148A (en) * 2004-02-05 2005-08-18 Sharp Corp Nitride-based semiconductor laser element, and optical data processor including the same
US7508001B2 (en) 2004-06-21 2009-03-24 Panasonic Corporation Semiconductor laser device and manufacturing method thereof

Also Published As

Publication number Publication date
JP4700154B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US7756177B2 (en) Semiconductor light-emitting device
JPH10270792A (en) Compound semiconductor laser
JP2009033009A (en) Semiconductor laser device and method of manufacturing the same
KR100539289B1 (en) Semiconductor light-emitting device and the method for producing thereof
JP2004152841A (en) Nitride semiconductor laser device
KR101254817B1 (en) Semiconductor laser diode
JP4040192B2 (en) Manufacturing method of semiconductor light emitting device
JP2005303272A (en) Semiconductor laser device and method of fabricating the same
JP2006228892A (en) Semiconductor light emitting element and its manufacturing method
JP4952184B2 (en) Nitride semiconductor laser device and manufacturing method thereof
US7167489B2 (en) GaN-based semiconductor laser device
JP2000058981A (en) Gallium nitride based semiconductor light emitting element and fabrication thereof
JPH09266352A (en) Semiconductor light emitting element
US7542498B2 (en) Semiconductor laser diode
JP4700154B2 (en) Semiconductor laser
JP3655066B2 (en) Gallium nitride compound semiconductor laser and manufacturing method thereof
JP4111696B2 (en) Nitride semiconductor laser device
KR20060038057A (en) Semiconductor laser device and method for manufacturing the same
JP2004273752A (en) Method for manufacturing semiconductor light emitting element
JP2011055009A (en) Semiconductor laser
JP2001358407A (en) Semiconductor laser device
JP4712460B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2005175450A (en) Compound semiconductor device, manufacturing method therefor, and optical disk apparatus equipped with this compound semiconductor device
JP2010153430A (en) Semiconductor laser, method of manufacturing semiconductor laser, optical disk device, and optical pickup
JP4497606B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070508

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

R150 Certificate of patent or registration of utility model

Ref document number: 4700154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term