JP2001057409A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JP2001057409A JP2001057409A JP23068099A JP23068099A JP2001057409A JP 2001057409 A JP2001057409 A JP 2001057409A JP 23068099 A JP23068099 A JP 23068099A JP 23068099 A JP23068099 A JP 23068099A JP 2001057409 A JP2001057409 A JP 2001057409A
- Authority
- JP
- Japan
- Prior art keywords
- insulating substrate
- semiconductor device
- electric field
- metal layer
- side conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電力用の半導体装
置に係り、特にモジュール構造による高電圧仕様の半導
体に好適な半導体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power semiconductor device, and more particularly to a semiconductor device suitable for a high voltage semiconductor having a module structure.
【0002】[0002]
【従来の技術】近年、電動機制御用や無停電電源装置の
電力出力部などとして、例えばIGBT(絶縁ゲート・
バイポーラ・トランジスタ)などの半導体スイッチング
素子を用いたインバータ装置が広く用いられるようにな
っているが、このインバータ装置には、例えば6個など
複数個のスイッチング用半導体素子が必要である。2. Description of the Related Art In recent years, for example, IGBTs (insulated gates)
An inverter device using a semiconductor switching element such as a bipolar transistor has been widely used, but this inverter device requires a plurality of switching semiconductor elements such as six.
【0003】そこで、従来から、所定の強度を備え放熱
板としても機能する金属製の板をベース基板として用
い、例えばインバータ主回路用の複数組の半導体素子
(スイッチング素子とフライホィールダイオード)をモジ
ュール化した半導体装置が使用されている。Therefore, conventionally, a metal plate having a predetermined strength and also functioning as a heat sink is used as a base substrate, for example, a plurality of sets of semiconductor elements for an inverter main circuit.
(Switching element and flywheel diode) are used as semiconductor devices.
【0004】このモジュール構造の半導体装置の平面配
置は、例えば図9に示すように、アルミニウム合金や、
その他の所定の合金などの金属を用いたベース基板1を
用い、その一方の面にアルミナ磁器などのセラミック材
料の絶縁基板2を複数枚配置し、この上に、例えばイン
バータ装置の場合なら、複数個のIGBT素子Sとダイ
オード素子Dなどの半導体素子5を設け、これにより、
各回路部分での必要な電気絶縁が保たれ、モジュール化
が得られるようにしたものである。The planar arrangement of the semiconductor device having the module structure is, for example, as shown in FIG.
A base substrate 1 made of a metal such as another predetermined alloy is used, and a plurality of insulating substrates 2 made of a ceramic material such as alumina porcelain are arranged on one surface thereof. The semiconductor elements 5 such as the IGBT element S and the diode element D are provided.
Necessary electrical insulation is maintained in each circuit portion, and modularization is obtained.
【0005】図10は、従来の半導体装置の一例を示す
断面図である。図示のように、絶縁基板2は、ベース基
板1の一方の面に接合されており、その他方の面(図で
は上側の面)には、導体パターンとなる所定の導電性を
備えた銅などの金属の箔又は膜からなる回路側導体3が
形成されており、その上側の面の所定の部分に半導体素
子5が設けられている。FIG. 10 is a sectional view showing an example of a conventional semiconductor device. As shown in the figure, the insulating substrate 2 is joined to one surface of the base substrate 1 and the other surface (the upper surface in the figure) is made of copper or the like having a predetermined conductivity as a conductor pattern. A circuit-side conductor 3 made of a metal foil or film is formed, and a semiconductor element 5 is provided on a predetermined portion of an upper surface thereof.
【0006】このとき、回路側導体3と絶縁基板2の間
には、回路側導体3とは別に金属層4が設けてあり、回
路側導体3は、この金属層4を間に介在させた状態で絶
縁基板2面に形成されるようになっている。なお、この
金属層4としては、例えばニッケル合金などの所定の金
属が用いられているが、比較的低溶融温度の軟ろう材を
用いて接合する場合もある。At this time, a metal layer 4 is provided between the circuit-side conductor 3 and the insulating substrate 2 separately from the circuit-side conductor 3, and the circuit-side conductor 3 has the metal layer 4 interposed therebetween. In this state, it is formed on the surface of the insulating substrate 2. Although a predetermined metal such as a nickel alloy is used as the metal layer 4, the metal layer 4 may be joined by using a soft brazing material having a relatively low melting temperature.
【0007】そして、この後、ベース基板1の各半導体
素子5を含む面を覆うようにして、図示していない筐体
や蓋体をベース基板1に固着し、このベース基板1を底
板部材として容器を形成し、場合によっては内部に接着
性樹脂や絶縁性樹脂を封止して、半導体装置を完成させ
るようになっている。Then, a casing or a cover (not shown) is fixed to the base substrate 1 so as to cover the surface of the base substrate 1 including the semiconductor elements 5, and the base substrate 1 is used as a bottom plate member. A semiconductor device is completed by forming a container and sealing an adhesive resin or an insulating resin inside in some cases.
【0008】ところで、小型化は、ほとんどの装置で常
に大きな課題であり、ここで対象としている半導体装置
とて例外ではなく、しかも、近年は、小型化と共に、電
力用の半導体装置として、その高電圧化も強く要請され
るにようになっている。[0008] By the way, miniaturization is always a major issue in most devices, and is not an exception for the semiconductor device targeted here, and in recent years, along with miniaturization, the semiconductor device for power use has become a major issue. There is also a strong demand for voltage.
【0009】ここで、このような半導体装置では、一般
的にいって、半導体素子自体の小型化と共に、絶縁基板
や回路側導体相互間の沿面距離を、絶縁設計から求めた
最小絶縁距離にまで縮小することにより、小型化を図る
のが通例であり、使用電圧が低い範囲にとどまっている
間は、この程度の絶縁距離の縮小により絶縁基板の絶縁
性能を確保することができる。Here, in such a semiconductor device, generally, along with the miniaturization of the semiconductor element itself, the creepage distance between the insulating substrate and the circuit-side conductor is reduced to the minimum insulating distance obtained from the insulation design. It is customary to reduce the size by reducing the size, and while the operating voltage remains in a low range, the insulation performance of the insulating substrate can be secured by reducing the insulation distance to this extent.
【0010】しかして、要求される使用電圧が、例えば
2kV以上にも高くなると、絶縁基板の面(沿面)にも2
kV以上の高電圧が印加されるようになり、従って、小
型化のため絶縁基板の沿面距離を縮小した場合には、使
用電圧に対して絶縁距離が不足し、絶縁基板の沿面の耐
電圧性能が低下して、要求に答えられなくなってしま
う。[0010] However, when the required operating voltage is higher than, for example, 2 kV, the surface (creeping surface) of the insulating substrate is also reduced to 2 kV.
When a high voltage of kV or more is applied, and the creepage distance of the insulating substrate is reduced for miniaturization, the insulation distance is insufficient for the voltage used, and the withstand voltage performance of the creepage of the insulating substrate is reduced. Will be reduced and will not be able to respond to requests.
【0011】そこで、このようなモジュール構造の半導
体装置の高電圧化のためには、絶縁基板の耐電圧性能を
向上させる必要があり、このため、例えば特開平5ー1
66963号公報では、絶縁基板に凹部状の肉薄部を形
成し、熱放散性を高める構造について提案している。Therefore, in order to increase the voltage of a semiconductor device having such a module structure, it is necessary to improve the withstand voltage performance of the insulating substrate.
Japanese Patent Publication No. 66963 proposes a structure in which a thin portion having a concave shape is formed on an insulating substrate to enhance heat dissipation.
【0012】また、特開平9ー135057号公報で
は、コレクタ電極の端部を緩やかな曲面に加工し、コレ
クタ電極と絶縁基板の接合面で端部が突出することな
く、内側に入り込むようにし、電界を抑制するようにし
た構造について開示している。In Japanese Patent Application Laid-Open No. 9-135057, the end of the collector electrode is processed into a gentle curved surface so that the end enters the inside without protruding at the joint surface between the collector electrode and the insulating substrate. A structure that suppresses an electric field is disclosed.
【0013】[0013]
【発明が解決しようとする課題】上記従来技術は、絶縁
基板と回路側導体の間に設けられている金属層による電
界集中について配慮がされておらず、耐電圧性能の向上
に問題があった。絶縁基板を用いてモジュール化した半
導体装置では、上記したように、高電圧化に伴い、動作
中、回路側導体や金属部材が高電位になるが、ここで、
小型化のため絶縁基板の沿面絶縁距離を縮小したとする
と、導体端部や金属部材が近接する絶縁基板の上面では
電界強度が大きくなり、この部分に電界が集中する。In the above prior art, no consideration is given to electric field concentration due to a metal layer provided between the insulating substrate and the circuit-side conductor, and there is a problem in improving the withstand voltage performance. . In a semiconductor device modularized using an insulating substrate, as described above, the circuit-side conductors and metal members become high in potential during operation due to the increase in voltage.
If the creeping insulation distance of the insulating substrate is reduced for miniaturization, the electric field strength increases on the upper surface of the insulating substrate where the conductor end and the metal member are close to each other, and the electric field concentrates on this portion.
【0014】特に、絶縁基板と回路側導体の間に配設さ
れている金属層は、例えば数μm〜100μm程度と極
めて薄く、且つ、この金属層の端部は、絶縁基板の沿面
に対して鋭角になるので、この端部には電界が強く集中
する。In particular, the metal layer disposed between the insulating substrate and the circuit-side conductor is extremely thin, for example, on the order of several μm to 100 μm, and the end of this metal layer is formed with respect to the surface of the insulating substrate. Because of the acute angle, the electric field is strongly concentrated at this end.
【0015】電界集中が極端になると部分放電が起こ
り、絶縁破壊につながるので、絶縁基板の沿面絶縁性能
(沿面絶縁耐電圧)を低下させることになり、従って、従
来技術では、半導体装置の高電圧化を図る点に問題が生
じてしまうのである。If the electric field concentration becomes extreme, a partial discharge will occur, leading to dielectric breakdown.
(Creepage insulation withstand voltage) is reduced. Therefore, in the related art, a problem arises in increasing the voltage of the semiconductor device.
【0016】本発明の目的は、絶縁基板の沿面耐電圧性
能が充分に向上でき、高電圧化と小型化が容易に得られ
るようにした半導体装置を提供することにある。An object of the present invention is to provide a semiconductor device capable of sufficiently improving the creepage withstand voltage performance of an insulating substrate and easily achieving a high voltage and a small size.
【0017】[0017]
【課題を解決するための手段】上記目的は、金属層を挟
んで絶縁基板の一方の面に配設した回路側導体を備え、
該回路側導体の他方の面に半導体素子を配設した半導体
装置において、前記絶縁基板の一方の面に、周辺の端部
が曲面に形成されている凹部を設け、この凹部の中に前
記金属層を介して前記回路側導体が配設されるようにし
て達成される。The above object is achieved by providing a circuit-side conductor provided on one surface of an insulating substrate with a metal layer interposed therebetween.
In a semiconductor device having a semiconductor element disposed on the other surface of the circuit-side conductor, a concave portion whose peripheral end is formed in a curved surface is provided on one surface of the insulating substrate, and the metal is provided in the concave portion. This is achieved in that the circuit-side conductor is provided via a layer.
【0018】ここで、本件発明者らは、従来技術による
半導体装置における電界の状態を数値解析した結果、絶
縁基板と回路側導体の間に配設されている金属層の端部
の近傍が最も高電界になることを見い出した。Here, the present inventors have conducted a numerical analysis of the state of the electric field in the semiconductor device according to the prior art, and as a result, it has been found that the vicinity of the end of the metal layer disposed between the insulating substrate and the circuit-side conductor is most significant. It was found that the electric field became high.
【0019】この電界集中の様子を図11により説明す
ると、この図11は、図10に示した従来技術による半
導体装置の要部を拡大し、そこに現われる電位分布を数
値解析により求め、等電位線として示した図で、この図
から明らかなように、絶縁基板2の表面において、等電
位線イは金属層4の端部側に大きく屈折するように曲げ
られ、且つ、この曲り部分で等電位線イの間隔が狭くな
っていて、図示のA部で電界集中が生じている様子が示
されており、このA部での電界が、他の部分の電界に比
して極めて高い強度になっていることが判った。FIG. 11 illustrates the state of the electric field concentration. FIG. 11 is an enlarged view of a main part of the semiconductor device according to the prior art shown in FIG. As is clear from this figure, on the surface of the insulating substrate 2, the equipotential line A is bent so as to be largely refracted toward the end of the metal layer 4. The interval between the potential lines A is narrowed, and it is shown that electric field concentration occurs at the portion A shown in the figure. The electric field at the portion A has an extremely high intensity compared to the electric fields at other portions. It turned out to be.
【0020】そこで、本件発明者らは、金属層の端部の
形状がどのように電位分布に影響するのかを数値解析し
た結果、金属層の端部の形状を、絶縁基板と回路側導体
の境界部分で所定の曲率半径を有する曲面にすることに
より、大幅に電界集中が緩和できることを見い出し、こ
の知見に基づき、絶縁基板の面に凹部を形成し、この凹
部の中に金属層を設けることにより、該金属層の端部に
曲面が形成され、これにより上記目的が達成されること
に想到したものである。The inventors of the present invention have numerically analyzed how the shape of the end of the metal layer affects the potential distribution, and have found that the shape of the end of the metal layer can be changed between the insulating substrate and the circuit-side conductor. By forming a curved surface having a predetermined radius of curvature at the boundary portion, it has been found that electric field concentration can be greatly reduced, and based on this finding, forming a recess on the surface of the insulating substrate and providing a metal layer in the recess. As a result, a curved surface is formed at the end of the metal layer, thereby achieving the above object.
【0021】この結果、最も電界が集中しやすい金属層
端部で、大幅に電界集中を緩和することができ、絶縁基
板の沿面耐電圧を向上することができる。また、この結
果、金属層の広がりが絶縁基板の凹部内に限定されるの
で、ろう材である金属層のはみ出しが抑えられ、絶縁基
板上で沿面絶縁距離が短縮されてしまう虞れがなくなる
ので、沿面耐電圧性能を向上させることができる。As a result, the concentration of the electric field can be greatly reduced at the end of the metal layer where the electric field is most likely to be concentrated, and the withstand voltage of the insulating substrate can be improved. In addition, as a result, since the spread of the metal layer is limited to the concave portion of the insulating substrate, the protrusion of the metal layer, which is the brazing material, is suppressed, and there is no fear that the creeping insulation distance is reduced on the insulating substrate. In addition, the surface withstand voltage performance can be improved.
【0022】[0022]
【発明の実施の形態】以下、本発明による半導体装置に
ついて、図示の実施の形態により詳細に説明する。図1
は本発明の一実施形態による電力用の半導体装置の断面
図で、この実施形態は、絶縁基板2と金属層4の構成が
異なるだけで、他の構成は、図10に示した従来技術に
よる半導体装置と同じであり、全体の構成も、図9に示
した従来技術による半導体装置と同じである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a semiconductor device according to the present invention will be described in detail with reference to the illustrated embodiments. FIG.
1 is a cross-sectional view of a power semiconductor device according to an embodiment of the present invention. This embodiment is different from the prior art shown in FIG. 10 only in the configuration of the insulating substrate 2 and the metal layer 4 being different. The configuration is the same as that of the semiconductor device, and the entire configuration is also the same as the semiconductor device according to the related art shown in FIG.
【0023】従って、この図1において、アルミニウム
合金やその他の合金などの金属を用いたベース基板1の
一方の面に絶縁基板2が配設され、この絶縁基板2の上
面に回路側導体3が形成され、これらの間に金属層4が
存在している点は、従来技術と同じであり、さらに、複
数個の半導体素子5の端子や外部端子と接続される外部
導体の端子などは、予め回路設定された複数個の回路側
導体3の配線部を介してワイヤ及びろう付け等により電
気的に接続されている点も同様である。Therefore, in FIG. 1, an insulating substrate 2 is provided on one surface of a base substrate 1 using a metal such as an aluminum alloy or another alloy, and a circuit-side conductor 3 is provided on the upper surface of the insulating substrate 2. It is the same as the prior art in that it is formed and the metal layer 4 is present between them. Further, the terminals of the plurality of semiconductor elements 5 and the terminals of the external conductors connected to the external terminals are previously formed. The same applies to the case where the wires are electrically connected by wires, brazing, or the like via the wiring portions of the plurality of circuit-side conductors 3 set in the circuit.
【0024】ここで、この図1の実施形態が従来技術と
大きく異なる点は、絶縁基板2の回路側導体3が形成さ
れている方の面に、回路側導体3の平面形状、つまり図
1では上側から見たときの形状に対応して、略同じ形状
で僅かに大きさが広い凹部20が予め形成してあり、こ
の凹部20の中に金属層4が収まるようにして、回路側
導体3が絶縁基板2上に形成されている点にある。Here, the embodiment of FIG. 1 is significantly different from the prior art in that the surface of the insulating substrate 2 on which the circuit-side conductor 3 is formed has a plane shape of the circuit-side conductor 3, that is, FIG. In the figure, a recess 20 having a slightly larger size and substantially the same shape is formed in advance corresponding to the shape when viewed from above, and the metal layer 4 is accommodated in the recess 20 so that the circuit-side conductor is formed. 3 is formed on the insulating substrate 2.
【0025】そして、この凹部20の周辺で、絶縁基板
2内に埋め込まれている方の端部、つまり底の方の端部
は、図示のように、所定の曲率半径Rの曲面として形成
してあり、且つ、その平面形状にコーナー部分(角部)を
有する場合には、そのコーナー部分でも、平面形状が曲
面になるように形成してある。In the vicinity of the recess 20, the end buried in the insulating substrate 2, that is, the bottom end, is formed as a curved surface having a predetermined radius of curvature R as shown in the figure. When the planar shape has a corner portion (corner portion), the corner portion is also formed such that the planar shape is a curved surface.
【0026】この結果、金属層4を絶縁基板2の凹部2
0に形成させることにより、金属層4の下側(図1にお
いて)の端部は、凹部20の端部に形成してある曲面に
より、同じく曲面に形成されることになる。As a result, the metal layer 4 is placed on the concave portion 2 of the insulating substrate 2.
By setting it to 0, the lower end (in FIG. 1) of the metal layer 4 is similarly formed by the curved surface formed at the end of the recess 20.
【0027】従って、この実施形態によれば、金属層4
の端部が曲面に線状に形成しているので、金属層4の近
傍で最も電界が集中しやすい部分である角部がなくな
り、この結果、電圧印加時、金属層4の端部での電界集
中を大きく緩和させることができ、この電界集中の緩和
により、部分放電開始電圧を高めることができ、絶縁基
板2の沿面耐電圧性能を容易に向上させることができ
る。Therefore, according to this embodiment, the metal layer 4
Is formed linearly on a curved surface, so that there is no corner near the metal layer 4 where the electric field is most likely to concentrate. As a result, when a voltage is applied, The electric field concentration can be greatly reduced, and the partial electric discharge starting voltage can be increased by the relaxation of the electric field concentration, so that the surface withstand voltage performance of the insulating substrate 2 can be easily improved.
【0028】ところで、金属層4としては、通常はニッ
ケル(Ni)やチタン(Ti)の合金が用いられ、蒸着や鍍
金などの方法により絶縁基板2の面に形成させた後、回
路側導体3が形成されるが、比較的低溶融温度の接合部
材、例えば軟ろう材を用いる場合もあり、このときは、
回路側導体3は、溶融温度に保ったろう材を介して絶縁
基板2にろう付け接合される。The metal layer 4 is usually made of an alloy of nickel (Ni) or titanium (Ti), and is formed on the surface of the insulating substrate 2 by a method such as vapor deposition or plating. Is formed, but a joining member having a relatively low melting temperature, for example, a soft brazing material may be used.
The circuit-side conductor 3 is brazed to the insulating substrate 2 via a brazing material maintained at a melting temperature.
【0029】この場合、溶融したろう材からなる金属層
4は、絶縁基板2の凹部20内で凝固形成される。従っ
て、この場合、ろう付け後、最終的には、金属層4は凹
部20内全体に広がって、凹部20の周辺部の所定の曲
率半径を有する曲線部に残存させることができ、これに
より、金属層4の端部から容易に、しかも確実に角部を
なくすことができる。In this case, the metal layer 4 made of the molten brazing material is solidified in the recess 20 of the insulating substrate 2. Therefore, in this case, after brazing, the metal layer 4 eventually spreads over the entire concave portion 20 and can be left in a curved portion having a predetermined radius of curvature around the concave portion 20. The corners can be easily and reliably eliminated from the end of the metal layer 4.
【0030】次に、上記実施形態による電界緩和につい
て、図2、図3により説明すると、これらの図は、図1
に示した本発明による半導体装置の要部を拡大し、そこ
に現る電位分布を数値解析により求め、等電位線として
示した図で、まず図2は、凹部20の曲率半径がR1 と
比較的小さく、つまり凹部20の深さが比較的浅く、図
10に示した従来のろう材の厚さと同程度の場合の例
で、次に図3は、凹部20の曲率半径がR2 と比較的大
きく、つまり凹部20の深さが比較的大で、図10に示
した従来のろう材の厚さの5倍程度ある場合の例であ
る。Next, the electric field relaxation according to the above embodiment will be described with reference to FIGS. 2 and 3. FIG.
Enlarged main portion of a semiconductor device according to the present invention shown in, there calculated by numerical analysis Genru potential distribution, in view illustrating the equipotential line, first 2, the radius of curvature of the concave portion 20 is as R 1 relatively small, that is, relatively shallow depth of the recess 20, in the example of the case of the same degree as the thickness of the conventional brazing material shown in FIG. 10, then 3, the radius of curvature of the concave portion 20 and the R 2 This is an example in which the recess 20 is relatively large, that is, the depth of the recess 20 is relatively large, and is about five times the thickness of the conventional brazing material shown in FIG.
【0031】まず図2の場合、図から明らかなように、
絶縁基板2の上面で、金属層4の端部の近傍のB部にお
いて、絶縁基板2の表面に対して等電位線イがほぼ垂直
になった電位分布を呈し、従来技術の場合の図11に比
して等電位線イの間隔が広くなり、電界が大きく緩和さ
れていることが判る。First, in the case of FIG. 2, as is apparent from the figure,
In the portion B near the end of the metal layer 4 on the upper surface of the insulating substrate 2, a potential distribution in which the equipotential lines A are substantially perpendicular to the surface of the insulating substrate 2 is exhibited, and FIG. It can be seen that the interval between the equipotential lines A is wider than that of FIG.
【0032】また、図3の場合は、図から明らかなよう
に、絶縁基板2の上面で、金属層4の端部の近傍のC部
において、等電位線イは、図2の場合に比して、絶縁基
板2の表面に対して更に垂直に近くなり、金属層4の端
部の大きな曲率半径の曲面に合わせた電位分布となり、
この結果、更に等電位線イの間隔は広くなり、より一層
の電界緩和が得られていることが判る。In the case of FIG. 3, as is apparent from the figure, the equipotential line A at the portion C on the upper surface of the insulating substrate 2 near the end of the metal layer 4 is smaller than that of FIG. Then, the potential becomes closer to the surface of the insulating substrate 2 and becomes a potential distribution in accordance with a curved surface having a large radius of curvature at the end of the metal layer 4.
As a result, it is understood that the interval between the equipotential lines A is further increased, and the electric field is further alleviated.
【0033】次に、図4は、絶縁基板2の上面に現れる
最大電界の値が、金属層4の端部の曲率半径にどのよう
に依存するかを、曲率半径と相対電界値の関係で示した
特性図で、図の◇印で示した点は、図11に示した従来
技術におけるA部での電界値で、極めて大きな電界にな
っていることが判る。Next, FIG. 4 shows how the value of the maximum electric field appearing on the upper surface of the insulating substrate 2 depends on the radius of curvature at the end of the metal layer 4 in the relationship between the radius of curvature and the relative electric field value. In the characteristic diagram shown, the points indicated by the triangles in the figure are the electric field values at the portion A in the prior art shown in FIG.
【0034】図4において、図2のB部の電界は、従来
技術の場合のA部に比して約75%に低減されており、
さらにまた、図3のC部での電界は、同じく従来技術の
A部に比して、実に半分以下の約37%に低減されてい
る。従って、本発明の実施形態によれば、電界を大幅に
緩和することができ、この結果、有効な電界緩和が可能
で、絶縁基板2の沿面耐電圧性能を容易に向上させるこ
とができる。In FIG. 4, the electric field in the portion B in FIG. 2 is reduced to about 75% as compared with the portion A in the prior art.
Furthermore, the electric field at the part C in FIG. 3 is reduced to about 37%, which is actually less than half that of the part A of the prior art. Therefore, according to the embodiment of the present invention, the electric field can be greatly reduced, and as a result, the effective electric field can be alleviated, and the creepage withstand voltage performance of the insulating substrate 2 can be easily improved.
【0035】ところで、図4において、△印は、図3の
D部、すなわち絶縁基板2の凹部20の周辺部(金属層
4の端部)において、ベース基板1側にある端部での電
界を示したもので、この特性から、曲率半径が0.18
mmまでは、絶縁基板2の表面での電界よりも小さく、
好ましい電界値を示している。In FIG. 4, the symbol Δ indicates the electric field at the end on the side of the base substrate 1 in the portion D of FIG. 3, that is, in the periphery of the recess 20 of the insulating substrate 2 (end of the metal layer 4). From this characteristic, the radius of curvature is 0.18.
mm, smaller than the electric field on the surface of the insulating substrate 2,
Preferred electric field values are shown.
【0036】しかしながら、この曲率半径が0.19m
mを越えると、絶縁基板2の表面の電界よりも大きくな
って、電界的に限界に達していることが判り、従って、
絶縁基板2の凹部20の周辺部(金属層4の端部)での曲
率半径としては、0.01mmから0.18mmの範囲
が好ましいといえる。However, this radius of curvature is 0.19 m.
When the distance exceeds m, the electric field becomes larger than the electric field on the surface of the insulating substrate 2 and the electric field reaches the limit.
It can be said that the radius of curvature at the periphery of the recess 20 (the end of the metal layer 4) of the insulating substrate 2 is preferably in the range of 0.01 mm to 0.18 mm.
【0037】以上、この図4から明らかなように、曲率
半径Rが大きくなるに従って最大電界が小さくなってお
り、従って、上記実施形態により、絶縁基板2の凹部2
0の周辺部に曲率半径を有する曲面部を設けることによ
り、顕著に電界が緩和されていることが判り、この電界
緩和により、絶縁基板2の沿面絶縁性能の向上が図れる
ので、絶縁基板2を大形化することなく、高耐圧化が可
能になる。すなわち本発明の実施形態によれば、絶縁基
板2の小型化が図れることになる。As can be seen from FIG. 4, the maximum electric field decreases as the radius of curvature R increases.
It is understood that the electric field is remarkably reduced by providing a curved surface portion having a radius of curvature in the periphery of 0, and the creepage of the insulating substrate 2 can be improved by the relaxation of the electric field. High breakdown voltage can be achieved without increasing the size. That is, according to the embodiment of the present invention, the size of the insulating substrate 2 can be reduced.
【0038】ところで、このような半導体装置では、回
路側導体は、ろう材により絶縁基板の表面に接合される
が、このとき、従来技術では、絶縁基板の表面はほぼ平
滑な平面であり、対する回路側導体もほぼ平滑な平面で
形成されているため、ろう付け後に、回路側導体の端部
からろう材がはみ出した状態になりやすい。By the way, in such a semiconductor device, the circuit-side conductor is joined to the surface of the insulating substrate by the brazing material. At this time, in the related art, the surface of the insulating substrate is a substantially smooth flat surface. Since the circuit-side conductor is also formed with a substantially smooth plane, the brazing material tends to protrude from the end of the circuit-side conductor after brazing.
【0039】しかして、本発明の実施形態では、ろう材
は絶縁基板2の凹部20内に形成されるので、ろう材の
はみ出し範囲を凹部20により限定することができ、こ
の結果、絶縁距離は常に設計通りに保たれる。従って、
本発明の実施形態によれば、絶縁基板沿面の実質的な絶
縁距離が常に正しく維持できるので、余裕を見て絶縁基
板を大形化する必要がなく、充分に小型化を図ることが
できる。However, in the embodiment of the present invention, since the brazing material is formed in the concave portion 20 of the insulating substrate 2, the protruding range of the brazing material can be limited by the concave portion 20, and as a result, the insulation distance is reduced. It is always kept as designed. Therefore,
According to the embodiment of the present invention, the substantial insulation distance along the surface of the insulating substrate can always be maintained correctly, so that it is not necessary to increase the size of the insulating substrate with a margin, and the size of the insulating substrate can be sufficiently reduced.
【0040】次に、本発明の他の実施形態について説明
する。まず、図5は本発明の第2の実施形態で、この実
施形態が、図1の実施形態と異なる点は、絶縁基板2の
凹部20の深さを一様にせず、この凹部20の周辺縁部
で、回路側導体3の端部が位置する部分に、所定の曲率
半径を有する曲面部20Aを設けた点にある。Next, another embodiment of the present invention will be described. First, FIG. 5 shows a second embodiment of the present invention. This embodiment is different from the embodiment of FIG. 1 in that the depth of the concave portion 20 of the insulating substrate 2 is not uniform, and the periphery of the concave portion 20 is not changed. The point is that a curved surface portion 20A having a predetermined radius of curvature is provided at a portion where the end of the circuit-side conductor 3 is located at the edge.
【0041】金属層4は、この曲面部20Aの中も含め
て、凹部20の中を満たすようにして形成され、この結
果、図1の実施形態と同様に、金属層4の端部での電界
集中が緩められる。従って、この図5の実施形態によれ
ば、金属層4の端部での電界集中を有効に緩和できる
上、凹部20による絶縁基板2の平均的な厚さの減少が
少なくて済むので、絶縁基板2の機械強度の低下が抑え
られ、且つ凹部20の容積が小さくできるので、金属層
4に必要な材料を少なくすることができる。The metal layer 4 is formed so as to fill the concave portion 20 including the curved surface portion 20A. As a result, as in the embodiment of FIG. Electric field concentration is relaxed. Therefore, according to the embodiment of FIG. 5, the concentration of the electric field at the end of the metal layer 4 can be effectively reduced, and the average thickness of the insulating substrate 2 due to the recess 20 can be reduced. Since the reduction in mechanical strength of the substrate 2 can be suppressed and the volume of the recess 20 can be reduced, the material required for the metal layer 4 can be reduced.
【0042】次に、図6は本発明の第3の実施形態で、
この実施形態が、図1の実施形態と異なる点は、凹部2
0の深さを大きくし、この凹部20内に回路側導体3が
入り込んで、その上面と絶縁基板2の上面がほぼ同一平
面上に並ぶようにした点にある。Next, FIG. 6 shows a third embodiment of the present invention.
This embodiment differs from the embodiment of FIG.
The point of this is that the depth of 0 is increased, and the circuit-side conductor 3 enters the concave portion 20 so that the upper surface thereof and the upper surface of the insulating substrate 2 are arranged substantially on the same plane.
【0043】この実施形態では、凹部20が深く作られ
ているので、回路側導体3は、凹部20の中に入り込ん
だ状態で絶縁基板2の上に配設されることになり、金属
層4は、凹部20の周辺に立ち上がっている壁面と回路
側導体3の側端面の間にまで入り込んだ形に形成される
ことになるが、このとき、凹部20の周辺の底側の端部
が曲面に形成してある点は、図1の実施形態と同じであ
り、ここでの電界集中が緩和される点も図1の実施形態
と同じである。In this embodiment, since the concave portion 20 is formed deep, the circuit-side conductor 3 is disposed on the insulating substrate 2 in a state where it enters the concave portion 20, and the metal layer 4 is formed. Is formed between the wall surface rising around the concave portion 20 and the side end surface of the circuit-side conductor 3. At this time, the bottom end around the concave portion 20 has a curved surface. 1 is the same as the embodiment of FIG. 1, and the point that the electric field concentration is reduced here is also the same as the embodiment of FIG.
【0044】従って、この図6の実施形態によっても、
図1の実施形態と同様に、電界集中の緩和が有効に得ら
れると共に、金属層4が絶縁基板2に埋め込まれた分、
高さ方向の寸法が小さくなるので、更に半導体装置の小
型化が図れるという利点がある。Therefore, according to the embodiment shown in FIG.
As in the embodiment of FIG. 1, the electric field concentration can be effectively alleviated, and the metal layer 4 is embedded in the insulating substrate 2.
Since the dimension in the height direction is reduced, there is an advantage that the size of the semiconductor device can be further reduced.
【0045】次に、図7も本発明の一実施形態である
が、この図7の実施形態は、図6に示した第3の実施形
態の変形ともいえるもので、図6の実施形態と異なる点
は、凹部20全体に金属層4を形成させることなく、比
較的に薄い金属層4によって端部を曲面に形成した点に
ある。Next, FIG. 7 shows another embodiment of the present invention. The embodiment shown in FIG. 7 is a modification of the third embodiment shown in FIG. The difference is that the metal layer 4 is not formed on the entire concave portion 20, but the end portion is formed in a curved surface by the relatively thin metal layer 4.
【0046】このため、金属層4は、凹部20の中全体
には充填されず、回路側導体3の周囲の空間を残したま
ま、凹部20の底面と周囲の壁面にだけ形成されること
になる。For this reason, the metal layer 4 is not filled in the entire recess 20, but is formed only on the bottom surface and the surrounding wall surface of the recess 20 while leaving the space around the circuit-side conductor 3. Become.
【0047】従って、この図7の実施形態によっても、
図6の実施形態と同様、電界集中の緩和が有効に得られ
ると共に、同じく金属層4が絶縁基板2に埋め込まれた
分、高さ方向の寸法が小さくでき、半導体装置の小型化
が図れることになる。Therefore, according to the embodiment shown in FIG.
As in the embodiment of FIG. 6, the electric field concentration can be effectively alleviated, and the dimension in the height direction can be reduced because the metal layer 4 is also embedded in the insulating substrate 2, so that the semiconductor device can be downsized. become.
【0048】図8は、本発明の実施形態による半導体装
置の高電圧での使用状態における絶縁耐力を確かめるた
め、商用周波の絶縁耐力試験を行い、絶縁耐力特性を測
定した結果で、図示のように、従来技術による半導体装
置の耐電圧を100%としたとき、前記本発明の実施形
態による半導体装置の耐電圧は約130%であった。FIG. 8 shows the results of conducting a commercial frequency dielectric strength test and measuring the dielectric strength characteristics of the semiconductor device according to the embodiment of the present invention in order to confirm the dielectric strength in a high voltage use state. When the withstand voltage of the semiconductor device according to the prior art is 100%, the withstand voltage of the semiconductor device according to the embodiment of the present invention is about 130%.
【0049】このように、本発明の実施形態によれば、
絶縁基板に形成した凹部により、金属膜の端部が曲面に
形成されるようにした結果、半導体装置の耐電圧特性が
著しく向上していることが判るが、これは、本発明の実
施形態では、絶縁基板に形成した凹部により、最も電界
が集中しやすい金属層の端部から角部をなくすことがで
き、この結果、電界集中が大幅に緩和されたことによる
ものである。As described above, according to the embodiment of the present invention,
It can be seen that as a result of forming the end portion of the metal film on a curved surface by the concave portion formed in the insulating substrate, the withstand voltage characteristic of the semiconductor device has been significantly improved. In addition, the concave portion formed in the insulating substrate makes it possible to eliminate a corner from the end of the metal layer where the electric field is most likely to concentrate, and as a result, the electric field concentration is greatly reduced.
【0050】[0050]
【発明の効果】本発明によれば、絶縁基板に凹部を設
け、この部分に配設される金属層の端部が曲面になるよ
うにして、金属層の端部から角部をなくすようにしたの
で、最も電界が集中しやすい部分での電界強度が大幅に
緩和され、絶縁基板の沿面耐電圧性能を大きく向上させ
ることができる。According to the present invention, a concave portion is provided in an insulating substrate, and an end portion of a metal layer provided in this portion is formed into a curved surface so that a corner portion is eliminated from the end portion of the metal layer. Therefore, the electric field intensity in the portion where the electric field is most likely to be concentrated is greatly reduced, and the creepage withstand voltage performance of the insulating substrate can be greatly improved.
【0051】また、金属層が絶縁基板の凹部内に形成さ
れるので、金属部材がはみ出す虞れがなくなり、この結
果、絶縁基板の沿面絶縁距離が有効に活用できることに
なるので、絶縁基板を大きくすることなく、充分に沿面
耐電圧を維持することができる。Further, since the metal layer is formed in the concave portion of the insulating substrate, there is no possibility that the metal member protrudes. As a result, the creepage insulation distance of the insulating substrate can be effectively utilized, so that the insulating substrate can be enlarged. Without this, it is possible to sufficiently maintain the surface withstand voltage.
【0052】従って、本発明によれば、半導体装置の高
耐電圧特性を損なわずに充分に小型化を図ることがで
き、小型で高耐電圧の半導体装置を容易に提供すること
ができる。Therefore, according to the present invention, it is possible to sufficiently reduce the size of the semiconductor device without deteriorating the high withstand voltage characteristics thereof, and it is possible to easily provide a small and high withstand voltage semiconductor device.
【図1】本発明による半導体装置の第1の実施形態を示
す断面図である。FIG. 1 is a cross-sectional view showing a first embodiment of a semiconductor device according to the present invention.
【図2】本発明による半導体装置の等電位分布を示す説
明図である。FIG. 2 is an explanatory diagram showing an equipotential distribution of a semiconductor device according to the present invention.
【図3】本発明による半導体装置の等電位分布を示す説
明図である。FIG. 3 is an explanatory diagram showing an equipotential distribution of a semiconductor device according to the present invention.
【図4】本発明による半導体装置の電界緩和効果を示す
特性図である。FIG. 4 is a characteristic diagram showing an electric field relaxation effect of the semiconductor device according to the present invention.
【図5】本発明による半導体装置の第2の実施形態を示
す断面図である。FIG. 5 is a sectional view showing a second embodiment of the semiconductor device according to the present invention.
【図6】本発明による半導体装置の第3の実施形態を示
す断面図である。FIG. 6 is a sectional view showing a third embodiment of the semiconductor device according to the present invention.
【図7】本発明による半導体装置の第4の実施形態を示
す断面図である。FIG. 7 is a sectional view showing a fourth embodiment of the semiconductor device according to the present invention.
【図8】本発明による半導体装置と従来技術による半導
体装置の耐電圧特性を示す特性図である。FIG. 8 is a characteristic diagram showing withstand voltage characteristics of the semiconductor device according to the present invention and the semiconductor device according to the related art.
【図9】電力用の半導体モジュールの一例を示す平面図
である。FIG. 9 is a plan view showing an example of a power semiconductor module.
【図10】従来技術による半導体装置の一例を示す断面
図である。FIG. 10 is a cross-sectional view illustrating an example of a semiconductor device according to the related art.
【図11】従来技術による半導体装置の等電位分布を示
す説明図である。FIG. 11 is an explanatory diagram showing an equipotential distribution of a semiconductor device according to a conventional technique.
1 ベース基板 2 絶縁基板 3 回路側導体 4 金属層 5 半導体素子 20 凹部 20A 曲面部 Reference Signs List 1 base substrate 2 insulating substrate 3 circuit-side conductor 4 metal layer 5 semiconductor element 20 concave portion 20A curved surface portion
Claims (2)
設した回路側導体を備え、該回路側導体の他方の面に半
導体素子を配設した半導体装置において、 前記絶縁基板の一方の面に、周辺の端部が曲面に形成さ
れている凹部を設け、 この凹部の中に前記金属層を介して前記回路側導体が配
設されていることを特徴とする半導体装置。1. A semiconductor device comprising: a circuit-side conductor disposed on one surface of an insulating substrate with a metal layer interposed therebetween; and a semiconductor element disposed on the other surface of the circuit-side conductor. A semiconductor device, wherein a concave portion whose peripheral end is formed as a curved surface is provided on the surface of the semiconductor device, and the circuit-side conductor is provided in the concave portion via the metal layer.
囲であることを特徴とする半導体装置。2. The semiconductor device according to claim 1, wherein a radius of curvature of the curved surface is in a range of 0.01 mm to 0.18 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23068099A JP2001057409A (en) | 1999-08-17 | 1999-08-17 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23068099A JP2001057409A (en) | 1999-08-17 | 1999-08-17 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001057409A true JP2001057409A (en) | 2001-02-27 |
Family
ID=16911636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23068099A Pending JP2001057409A (en) | 1999-08-17 | 1999-08-17 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001057409A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011040054A1 (en) | 2009-09-30 | 2011-04-07 | 株式会社日立製作所 | Insulation circuit board, and power semiconductor device or inverter module using the same |
JP2015015275A (en) * | 2013-07-03 | 2015-01-22 | 三菱電機株式会社 | Ceramic circuit board, ceramic circuit board with heat sink, and manufacturing method of ceramic circuit board |
EP3279935A1 (en) * | 2016-08-02 | 2018-02-07 | ABB Schweiz AG | Power semiconductor module |
CN108538793A (en) * | 2017-03-02 | 2018-09-14 | 三菱电机株式会社 | Semi-conductor power module and power-converting device |
-
1999
- 1999-08-17 JP JP23068099A patent/JP2001057409A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011040054A1 (en) | 2009-09-30 | 2011-04-07 | 株式会社日立製作所 | Insulation circuit board, and power semiconductor device or inverter module using the same |
US8853559B2 (en) | 2009-09-30 | 2014-10-07 | Hitachi, Ltd. | Insulation circuit board, and power semiconductor device or inverter module using the same |
JP2015015275A (en) * | 2013-07-03 | 2015-01-22 | 三菱電機株式会社 | Ceramic circuit board, ceramic circuit board with heat sink, and manufacturing method of ceramic circuit board |
EP3279935A1 (en) * | 2016-08-02 | 2018-02-07 | ABB Schweiz AG | Power semiconductor module |
CN107680944A (en) * | 2016-08-02 | 2018-02-09 | 奥迪股份公司 | Power semiconductor modular |
CN107680944B (en) * | 2016-08-02 | 2023-10-20 | 奥迪股份公司 | Power semiconductor module |
CN108538793A (en) * | 2017-03-02 | 2018-09-14 | 三菱电机株式会社 | Semi-conductor power module and power-converting device |
JP2018147958A (en) * | 2017-03-02 | 2018-09-20 | 三菱電機株式会社 | Semiconductor power module and electric power conversion system |
US10468314B2 (en) | 2017-03-02 | 2019-11-05 | Mitsubishi Electric Corporation | Semiconductor power module and power conversion apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4712303B2 (en) | Semiconductor device having one packaged die | |
US20080105896A1 (en) | Power semiconductor module | |
JPH09102580A (en) | Resin-sealed semiconductor device and fabrication thereof | |
US9754855B2 (en) | Semiconductor module having an embedded metal heat dissipation plate | |
US10959333B2 (en) | Semiconductor device | |
US9466542B2 (en) | Semiconductor device | |
US5063434A (en) | Plastic molded type power semiconductor device | |
US12100631B2 (en) | Semiconductor device | |
JP2913247B2 (en) | Power semiconductor module and inverter device for vehicle | |
JP6272213B2 (en) | Semiconductor device | |
CN107622954B (en) | Power type semiconductor device packaging method and packaging structure | |
EP3796374A1 (en) | Semiconductor device | |
JP2001057409A (en) | Semiconductor device | |
US20230146758A1 (en) | Semiconductor device | |
JP2000091472A (en) | Semiconductor device | |
JP5766347B2 (en) | Semiconductor module and manufacturing method thereof | |
JP7002993B2 (en) | Power semiconductor module | |
JP6769556B2 (en) | Semiconductor devices and semiconductor modules | |
CN111386603A (en) | Method for manufacturing semiconductor device and semiconductor device | |
JP2004014862A (en) | Wiring structure | |
JP2019046839A (en) | Power semiconductor module | |
JP7487411B2 (en) | Electrical contact configuration, power semiconductor module, method for manufacturing electrical contact configuration, and method for manufacturing power semiconductor module | |
JP7428261B2 (en) | semiconductor equipment | |
US20240355713A1 (en) | Semiconductor device | |
US10784176B1 (en) | Semiconductor device and semiconductor device manufacturing method |