JP2001009477A - NOx GAS SUPPRESSING METHOD USING HYDROGEN PEROXIDE - Google Patents
NOx GAS SUPPRESSING METHOD USING HYDROGEN PEROXIDEInfo
- Publication number
- JP2001009477A JP2001009477A JP2000118941A JP2000118941A JP2001009477A JP 2001009477 A JP2001009477 A JP 2001009477A JP 2000118941 A JP2000118941 A JP 2000118941A JP 2000118941 A JP2000118941 A JP 2000118941A JP 2001009477 A JP2001009477 A JP 2001009477A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- oxidation
- reduction potential
- maximum allowable
- allowable value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、過酸化水素を添加
することによって、硝酸含有液中で金属を処理する際に
発生するNOxガスを抑制する方法に関する。The present invention relates to a method for suppressing NOx gas generated when a metal is treated in a nitric acid-containing liquid by adding hydrogen peroxide.
【0002】[0002]
【従来の技術】工業分野において硝酸は広く使われてい
るが、その中で硝酸含有液を用いて金属を処理する場合
には、しばしば環境および人体に対して悪影響を及ぼす
NOxガスが発生する。例えば、硝酸と弗酸との混酸に
よるステンレス鋼の酸洗処理の場合、処理液中ではステ
ンレス鋼の溶解とともに溶液中に亜硝酸が生じる。亜硝
酸は溶液中で種々の反応を経てNOやNO2となり、N
Oxガスとして系外へ放出される。ここでNOxガスの処
理にスクラバー等を用いる場合、排ガス処理装置の設備
コストがかかり、定期的なメンテナンスも必要となる。2. Description of the Related Art Nitric acid is widely used in the industrial field, and when a metal is treated with a nitric acid-containing solution, NOx gas which often has an adverse effect on the environment and the human body is generated. For example, in the case of pickling treatment of stainless steel with a mixed acid of nitric acid and hydrofluoric acid, nitrous acid is generated in the solution together with dissolution of the stainless steel in the treatment solution. Nitric acid undergoes various reactions in a solution to become NO or NO 2 ,
It is released outside the system as Ox gas. Here, when a scrubber or the like is used for the treatment of NOx gas, equipment costs for an exhaust gas treatment device are required, and periodic maintenance is also required.
【0003】これに対して、硝酸含有液に過酸化水素を
添加して、NOxガスを抑制する方法があるが(米国特
許第3,945,865号)、過酸化水素の添加量を適
切に制御することが問題となる。過剰な添加は、金属イ
オンの存在する硝酸、弗酸液中では、自ら分解するだけ
であり、過酸化水素を無駄に消費させることになるから
である。特開昭55−134694号公報では、亜硝酸
含有液の酸化還元電位に基づいて、過酸化水素の添加を
制御する方法が開示されているが、制御方法が複雑であ
る。On the other hand, there is a method of suppressing NOx gas by adding hydrogen peroxide to a nitric acid-containing liquid (US Pat. No. 3,945,865). However, the amount of hydrogen peroxide added is appropriately controlled. Control is a problem. This is because excessive addition only decomposes itself in a nitric acid or hydrofluoric acid solution in which metal ions are present, and wastefully consumes hydrogen peroxide. Japanese Patent Application Laid-Open No. 55-134694 discloses a method for controlling the addition of hydrogen peroxide based on the oxidation-reduction potential of a nitrite-containing solution, but the control method is complicated.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、従来
技術における上記したような課題を解決し、硝酸含有液
のNOxガスの発生を効果的に抑制させる方法を提供す
ることにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a method for effectively suppressing the generation of NOx gas in a nitric acid-containing liquid.
【0005】[0005]
【課題を解決するための手段】本発明者らは、過酸化水
素の添加量の調整について鋭意研究を重ねた結果、硝酸
含有液を定電位電解した場合、電解電流値と液中の亜硝
酸イオン濃度および発生するNOxガス量との間に一定
の関係があり、酸化還元電位に基づく方法と併用するこ
とにより、過酸化水素の過剰な添加をすることなく効果
的にNOxガスの発生が抑制できることを見いだし、本
発明に到達した。The present inventors have conducted intensive studies on the adjustment of the amount of added hydrogen peroxide. As a result, when a nitric acid-containing solution was subjected to constant potential electrolysis, the electrolytic current value and the amount of nitrous acid in the solution were measured. There is a certain relationship between the ion concentration and the amount of NOx gas generated. By using this method together with the method based on the oxidation-reduction potential, the generation of NOx gas can be effectively suppressed without excessive addition of hydrogen peroxide. They found what they could do and arrived at the present invention.
【0006】すなわち、本発明は、過酸化水素の添加に
よって硝酸含有液からのNOxガスの放出を抑制する方
法において、硝酸含有液の酸化還元電位と電解電流に基
づいて、過酸化水素の添加量を制御することを特徴とす
るNOxガスの抑制方法に関するものである。That is, the present invention relates to a method for suppressing the release of NOx gas from a nitric acid-containing liquid by adding hydrogen peroxide, wherein the amount of hydrogen peroxide added is determined based on the oxidation-reduction potential of the nitric acid-containing liquid and the electrolytic current. And controlling a NOx gas.
【0007】[0007]
【発明の実施の形態】本発明は、ステンレス鋼の酸洗処
理に用いられる硝酸と弗酸との混酸、および銅、真鍮等
の表面処理に用いられる硝酸含有液に好適に用いられ
る。さらに、炭素鋼、低合金鋼、アルミニウム等の酸洗
処理液にも用いられる。例えば、ステンレス鋼の酸洗
は、バッチまたは連続で処理され、硝酸含有液の温度や
金属溶解量も変化するため、NOx発生量も変化してい
く。従って、必要な過酸化水素の添加量も時間によって
変化することになる。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is suitably used for a mixed acid of nitric acid and hydrofluoric acid used for pickling stainless steel and a nitric acid-containing liquid used for surface treatment of copper, brass and the like. Further, it is also used as a pickling treatment liquid for carbon steel, low alloy steel, aluminum and the like. For example, pickling of stainless steel is performed batchwise or continuously, and the temperature of the nitric acid-containing solution and the amount of dissolved metal also change, so that the amount of generated NOx also changes. Therefore, the required amount of added hydrogen peroxide also changes with time.
【0008】本発明の酸化還元電位を測定する測定電極
としては、硝酸含有液に不活性な材料からなる電極であ
れば特に限定されない。例えば硝酸含有液が弗酸を含む
ものであるならば白金電極を用い、比較電極としては樹
脂製のダブルジャンクション型の銀/塩化銀電極が好ま
しい。The measuring electrode for measuring the oxidation-reduction potential of the present invention is not particularly limited as long as the electrode is made of a material inert to the nitric acid-containing solution. For example, if the nitric acid-containing liquid contains hydrofluoric acid, a platinum electrode is preferably used, and a double-junction silver / silver chloride electrode made of resin is preferably used as the comparative electrode.
【0009】第1図は硝酸、弗酸液でステンレス鋼(S
US430)を溶解しながら過酸化水素を断続的に添加
した場合の酸化還元電位の変化を示すグラフである。電
位の高い状態(の領域)では亜硝酸イオンが存在し、
電位の低い状態(の領域)では過酸化水素が存在す
る。酸化還元電位の絶対値は、電極の種類、溶液の温
度、溶液中の酸および金属濃度等によって変化するが、
亜硝酸イオンが存在する状態と過剰の過酸化水素が存在
する状態とでは約200mVの電位の差が見られる。従
って、過剰の過酸化水素が存在するか否かを検知するこ
とができる。本発明では、酸化還元電位の設定値は、過
剰の過酸化水素が存在しない約700mVが好ましい。FIG. 1 shows a solution of nitric acid and hydrofluoric acid in stainless steel (S
FIG. 10 is a graph showing changes in oxidation-reduction potential when hydrogen peroxide is intermittently added while dissolving US430). Nitrite ions are present in the high potential state (region),
Hydrogen peroxide is present in (the region of) a low potential. The absolute value of the oxidation-reduction potential varies depending on the type of electrode, the temperature of the solution, the acid and metal concentrations in the solution, etc.
A potential difference of about 200 mV is observed between the state where nitrite ions are present and the state where excess hydrogen peroxide is present. Therefore, it is possible to detect whether or not excess hydrogen peroxide exists. In the present invention, the set value of the oxidation-reduction potential is preferably about 700 mV where there is no excess hydrogen peroxide.
【0010】本発明の定電位電解は、陰極の電位を一定
に保ちながら電解する方法であり、具体的には作用極、
対極、参照電極を具備した3電極式電位制御装置(いわ
ゆるポテンシオスタット)による。作用極および対極の
材質は安定で溶解しないものであり、電解液が硝酸、弗
酸であるため白金が好ましい。参照電極は特に限定しな
いが、取り扱いやすさと弗酸液中でガラスが溶解してし
まうことから樹脂製の銀/塩化銀電極で、かつ電解液の
汚染を起こさないダブルジャンクション型が好ましい。
また、2極式電位制御装置を用いても3極式電位制御装
置と同様の相関が得られる。[0010] The constant potential electrolysis of the present invention is a method of performing electrolysis while keeping the potential of a cathode constant.
By a three-electrode potential control device (so-called potentiostat) having a counter electrode and a reference electrode. The material of the working electrode and the counter electrode is stable and does not dissolve, and platinum is preferable because the electrolytic solution is nitric acid or hydrofluoric acid. The reference electrode is not particularly limited, but is preferably a resin-made silver / silver chloride electrode and a double junction type which does not cause contamination of the electrolytic solution because the glass is dissolved in a hydrofluoric acid solution because of ease of handling.
Also, the same correlation as that of the three-electrode potential controller can be obtained by using the two-pole potential controller.
【0011】電極の表面積については特に制限はない
が、求める電流の大きさに応じて決められる。得られた
電流値に応じて亜硝酸イオンと反応させるための過酸化
水素を自動供給するためには、制御に必要な電解電流値
が取り出せる大きさの電極表面が必要となる。電極間距
離および電解温度は、安定した電解電流値を検出するた
めに一定であることが好ましい。The surface area of the electrode is not particularly limited, but is determined according to the magnitude of the required current. In order to automatically supply hydrogen peroxide for reacting with nitrite ions according to the obtained current value, an electrode surface large enough to take out an electrolytic current value necessary for control is required. The distance between the electrodes and the electrolysis temperature are preferably constant in order to detect a stable electrolysis current value.
【0012】第2図は、3極式電位制御装置を用いた場
合の電解電流値と、亜硝酸イオン濃度の測定値および硝
酸、弗酸液上面でのNOxガス濃度との関係を示すグラ
フである。亜硝酸イオンはイオンクロマトグラフで測定
し、NOxガス濃度はガス検知管で測定した。この硝
酸、弗酸液は一般にステンレス鋼を酸洗する際に用いら
れる液であり、測定条件は以下のとおりである。 被測定酸洗液:硝酸10重量%、弗酸4重量%、 電解温度:40℃(スターラー攪拌状態)、 電解電位:1.1V 作用極および対極:白金線(表面積4.7cm2 )、 参照電極:銅/塩化銀(ダブルジャンクション型)、 極間距離:4cm、 液量:500ml。FIG. 2 is a graph showing the relationship between the electrolytic current value, the measured value of the nitrite ion concentration, and the NOx gas concentration on the upper surface of the nitric acid and hydrofluoric acid solutions when a three-electrode potential controller is used. is there. Nitrite ion was measured with an ion chromatograph, and NOx gas concentration was measured with a gas detector tube. The nitric acid and hydrofluoric acid solutions are generally used when pickling stainless steel, and the measurement conditions are as follows. Pickling solution to be measured: nitric acid 10% by weight, hydrofluoric acid 4% by weight, electrolysis temperature: 40 ° C. (stirred with stirring), electrolysis potential: 1.1 V, working electrode and counter electrode: platinum wire (surface area: 4.7 cm 2 ), see Electrode: copper / silver chloride (double junction type), distance between electrodes: 4 cm, liquid volume: 500 ml.
【0013】第2図より、亜硝酸イオン濃度1およびN
Oxガス濃度2と電解電流値との間に比例関係があるこ
とが示される。そして、この比例関係を利用すれば電解
電流値からNOxガス発生を抑えるために添加する過酸
化水素量を制御することができる。本発明では、電解電
流の設定値は、上限とするNOxガス濃度によって適宜
選択される。例えば、NOxガス濃度を20ppm以下
にする場合は、第2図より電流値が20mA以上の場合
に過酸化水素を添加すればよい。この電解電流値の設定
に応じてNOxガス発生量をある基準以下に保つことが
できる。FIG. 2 shows that nitrite ion concentration 1 and N
It is shown that there is a proportional relationship between the Ox gas concentration 2 and the electrolytic current value. Using this proportional relationship, the amount of hydrogen peroxide added to suppress NOx gas generation can be controlled based on the electrolytic current value. In the present invention, the set value of the electrolytic current is appropriately selected according to the upper limit of the NOx gas concentration. For example, when the NOx gas concentration is set to 20 ppm or less, hydrogen peroxide may be added when the current value is 20 mA or more according to FIG. According to the setting of the electrolytic current value, the NOx gas generation amount can be kept below a certain reference.
【0014】しかし、第3図に示されるように過酸化水
素の添加を続けていくと、亜硝酸イオン濃度3がなくな
り、過剰の過酸化水素が存在してくると、逆に過酸化水
素の量に比例して電解電流値4が増えていく。従って、
検出された電解電流値が亜硝酸イオンによるものか、過
酸化水素によるものかを判断する必要がある。However, as shown in FIG. 3, when the addition of hydrogen peroxide is continued, the nitrite ion concentration 3 disappears, and when excess hydrogen peroxide is present, the hydrogen peroxide The electrolytic current value 4 increases in proportion to the amount. Therefore,
It is necessary to determine whether the detected electrolytic current value is due to nitrite ions or hydrogen peroxide.
【0015】本発明では、第1図および第2図に示され
る性質を併用することによって、亜硝酸イオンが極力存
在し得ないレベルで過酸化水素を過剰に添加することな
く、過酸化水素の添加を制御できる。すなわち、定電位
電解電流および酸化還元電位がそれぞれの最大許容値を
超えた場合に過酸化水素を添加することにより、NOx
ガス発生を一定量以下に抑制し、且つ過剰な過酸化水素
の添加を防ぐことができる。なお、過酸化水素添加の制
御方法は、簡便なオンオフ制御を用いることができる。In the present invention, by using the properties shown in FIGS. 1 and 2 together, the amount of hydrogen peroxide can be reduced without excessively adding hydrogen peroxide to a level at which nitrite ions cannot exist as much as possible. The addition can be controlled. That is, when the constant potential electrolytic current and the oxidation-reduction potential exceed their respective maximum allowable values, NOx is added by adding hydrogen peroxide.
Gas generation can be suppressed to a certain amount or less, and addition of excessive hydrogen peroxide can be prevented. Note that a simple on / off control can be used as a control method of hydrogen peroxide addition.
【0016】具体的には、例えば電解電流をポテンシオ
スタットにより検知し、前記酸化還元電位を酸化還元電
位器により測定し、検知した電解電流と前記電解電流の
最大許容値との比較及び酸化還元電位の測定値と前記酸
化還元電位の最大許容値との比較から得られた制御信号
により過酸化水素の添加開始及び添加停止を決定するこ
とによって制御する。Specifically, for example, the electrolytic current is detected by a potentiostat, the oxidation-reduction potential is measured by an oxidation-reduction potential meter, and the detected electrolytic current is compared with the maximum allowable value of the electrolytic current, and the oxidation-reduction potential is measured. The control is performed by determining the start and stop of the addition of hydrogen peroxide by a control signal obtained from a comparison between the measured value of the potential and the maximum allowable value of the oxidation-reduction potential.
【0017】さらに本発明では、硝酸含有液中に過酸化
水素を一定濃度に保持する制御も行うことができる。す
なわち、酸化還元電位が一定値以上または定電位電解電
流が一定値以下の場合に過酸化水素を添加することによ
り、過剰の過酸化水素が一定量存在し、且つ亜硝酸イオ
ンがほとんど存在しない状態をつくることができる。第
1図に示されるように酸化還元電位が一定値以上の状態
は亜硝酸イオンが存在し過酸化水素が存在しない状態で
あるから過酸化水素を添加する。亜硝酸イオンが存在せ
ず過酸化水素が存在する状態となると酸化還元電位は一
定値以下となるが、第3図に示されるように電解電流値
は過酸化水素量に比例して増加していくから、所望の過
酸化水素量に応じた定電位電解電流値になるまで過酸化
水素を添加することによって、硝酸含有液中の過酸化水
素は一定濃度に保持される。Further, according to the present invention, control for maintaining hydrogen peroxide at a constant concentration in the nitric acid-containing liquid can be performed. That is, by adding hydrogen peroxide when the oxidation-reduction potential is equal to or more than a certain value or the constant-potential electrolysis current is equal to or less than a certain value, a state in which a certain amount of excess hydrogen peroxide is present and almost no nitrite ion is present. Can be made. As shown in FIG. 1, when the oxidation-reduction potential is higher than a certain value, nitrite ions are present and hydrogen peroxide is not present, so that hydrogen peroxide is added. When there is no nitrite ion and hydrogen peroxide is present, the oxidation-reduction potential falls below a certain value, but as shown in FIG. 3, the electrolytic current value increases in proportion to the hydrogen peroxide amount. Therefore, the hydrogen peroxide in the nitric acid-containing liquid is maintained at a constant concentration by adding the hydrogen peroxide until a constant potential electrolytic current value corresponding to a desired amount of the hydrogen peroxide is reached.
【0018】酸化還元電位が最大許容値を超えた場合、
または、電解電流が最大許容値より低い場合に過酸化水
素を添加し、前記酸化還元電位が最大許容値以下かつ電
解電流が最大許容値以上の場合に過酸化水素の添加を停
止する。ここで、前記電解電流の最大許容値は、過酸化
水素濃度−電解電流曲線から一定の過酸化水素濃度にな
るように決められ、酸化還元電位の最大許容値は過剰の
過酸化水素が存在する電位とする。When the oxidation-reduction potential exceeds the maximum allowable value,
Alternatively, when the electrolysis current is lower than the maximum allowable value, hydrogen peroxide is added, and when the oxidation-reduction potential is equal to or lower than the maximum allowable value and the electrolysis current is equal to or higher than the maximum allowable value, the addition of hydrogen peroxide is stopped. Here, the maximum allowable value of the electrolytic current is determined from the hydrogen peroxide concentration-electrolytic current curve so as to have a constant hydrogen peroxide concentration, and the maximum allowable value of the oxidation-reduction potential is an excess of hydrogen peroxide. Potential.
【0019】具体的には、電解電流をポテンシオスタッ
トにより検知し、前記酸化還元電位を酸化還元電位測定
器により測定し、検知した電解電流と前記電解電流の最
大許容値との比較及び測定酸化還元電位と前記酸化還元
電位の最大許容値との比較から得られた制御信号により
前記過酸化水素の添加開始及び添加停止を決定すること
によって制御する。Specifically, the electrolysis current is detected by a potentiostat, the oxidation-reduction potential is measured by an oxidation-reduction potential measuring device, and the detected electrolysis current is compared with the maximum allowable value of the electrolysis current, and the oxidation is measured. The control is performed by determining the start and stop of the addition of the hydrogen peroxide by a control signal obtained by comparing the reduction potential with the maximum allowable value of the oxidation-reduction potential.
【0020】[0020]
【実施例】以下に本発明を実施例によって詳細に説明す
るが、本発明は実施例によって制限されるものでない。EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the examples.
【0021】実施例1 第4図に示す3極式電位制御装置を用いて、硝酸(10
重量%)、弗酸(4重量%)からなる酸洗液(1L、4
0℃)でSUS430(3×5cm角板)を浸漬処理し
溶解した。酸化還元電位が700mVを越え、かつ、電
解電位1.1Vで電解電流値が10mAを越えると過酸
化水素が添加されるように制御した。第6図に過酸化水
素の添加による酸化還元電位14と電解電流値15の挙
動を示す。この場合、酸洗液の液面上部のNOxガス濃
度は常に約10ppm以下であった。Example 1 Using a three-electrode potential control device shown in FIG.
%) And hydrofluoric acid (4% by weight).
At 0 ° C.), SUS430 (3 × 5 cm square plate) was immersed and dissolved. When the oxidation-reduction potential exceeded 700 mV, and the electrolytic current value exceeded 10 mA at an electrolytic potential of 1.1 V, control was performed so that hydrogen peroxide was added. FIG. 6 shows the behavior of the oxidation-reduction potential 14 and the electrolytic current value 15 due to the addition of hydrogen peroxide. In this case, the concentration of NOx gas above the liquid level of the pickling solution was always about 10 ppm or less.
【0022】実施例2 第5図に示す2極式電位制御装置を用いて、硝酸(10
重量%)、弗酸(4重量%)からなる酸洗液(500m
l、50℃)でSUS430(3×5cm角板)を浸漬
処理し溶解した。酸化還元電位が750mVを越え、か
つ、電解電位を0.5Vとして電解電流値が10mAを
越えると過酸化水素が添加されるように制御した。第7
図に過酸化水素の添加による酸化還元電位16と電解電
流値17の挙動を示す。この場合、酸洗液の液面上部の
NOxガス濃度は常に約40ppm以下であった。Example 2 Nitric acid (10%) was prepared using a bipolar potential controller shown in FIG.
Wt%) and a pickling solution (500 m
SUS430 (3 × 5 cm square plate) was immersed and dissolved at 1, 50 ° C.). When the oxidation-reduction potential exceeded 750 mV and the electrolysis potential was 0.5 V, and the electrolysis current value exceeded 10 mA, control was performed so that hydrogen peroxide was added. Seventh
The figure shows the behavior of the oxidation-reduction potential 16 and the electrolytic current value 17 due to the addition of hydrogen peroxide. In this case, the concentration of the NOx gas above the liquid level of the pickling liquid was always about 40 ppm or less.
【0023】実施例3 第5図に示す2極式電位制御装置を用いて、硝酸(10
重量%)液(500ml、50℃)で鋼材SPCC(4
×6cm角板)を浸漬処理し溶解した。酸化還元電位が
720mVを越え、かつ、電解電位を0.7Vとして電
解電流値が10mAを越えると過酸化水素が添加される
ように制御した。第8図に過酸化水素の添加による酸化
還元電位18と電解電流値19の挙動を示す。この場
合、酸洗液の液面上部のNOxガス濃度は常に10pp
m以下であった。Example 3 Using a bipolar potential control device shown in FIG.
Wt%) liquid (500 ml, 50 ° C) with steel SPCC (4
× 6 cm square plate) was immersed and dissolved. When the oxidation-reduction potential exceeded 720 mV, and the electrolysis potential was 0.7 V, and the electrolysis current value exceeded 10 mA, control was performed so that hydrogen peroxide was added. FIG. 8 shows the behavior of the oxidation-reduction potential 18 and the electrolytic current value 19 due to the addition of hydrogen peroxide. In this case, the concentration of NOx gas above the liquid level of the pickling solution is always 10 pp.
m or less.
【0024】実施例4 第5図に示す2極式電位制御装置を用いて、硝酸(10
重量%)、弗酸(4重量%)からなる酸洗液(500m
l、40℃)でSUS430(3×5cm角板)を浸漬
処理し溶解した。酸化還元電位が700mVを越えた場
合、または、電解電位を0.5Vとして電解電流値が5
mA以下の場合に過酸化水素が添加されるように制御し
た。この場合、酸洗液の液面上部のNOxガス濃度はゼ
ロであった(酸化窒素検知管により未検出)。この時の酸
洗液中の過酸化水素濃度は約0.05重量%に保持され
ていた。Example 4 Nitric acid (10%) was prepared using the bipolar potential control device shown in FIG.
Wt%) and a pickling solution (500 m
SUS430 (3 × 5 cm square plate) was immersed and dissolved at 1, 40 ° C.). When the oxidation-reduction potential exceeds 700 mV, or when the electrolytic potential is 0.5 V and the electrolytic current value is 5
Control was performed so that hydrogen peroxide was added in the case of mA or less. In this case, the concentration of NOx gas above the liquid level of the pickling solution was zero (not detected by the nitric oxide detector tube). At this time, the concentration of hydrogen peroxide in the pickling solution was maintained at about 0.05% by weight.
【0025】比較例1 過酸化水素を添加することなく、硝酸(10重量%)、
弗酸(4重量%)からなる酸洗液(1L、40℃)でS
US430(3×5cm角板)を浸漬処理し溶解した。
この場合、酸洗液の液面上部のNOxガス濃度はステン
レス鋼の処理毎に増加し、最大1000ppmに達し
た。Comparative Example 1 Nitric acid (10% by weight) without adding hydrogen peroxide
Pickling solution (1 L, 40 ° C) consisting of hydrofluoric acid (4% by weight)
US430 (3 × 5 cm square plate) was immersed and dissolved.
In this case, the concentration of NOx gas above the liquid level of the pickling solution increased every time the stainless steel was treated, and reached a maximum of 1000 ppm.
【0026】[0026]
【発明の効果】本発明によれば、NOxガス量に応じた
必要最小限の過酸化水素添加量を制御することが可能と
なる。According to the present invention, it is possible to control the required minimum amount of hydrogen peroxide addition in accordance with the amount of NOx gas.
【図1】過酸化水素添加と酸化還元電位の挙動。FIG. 1 shows the behavior of hydrogen peroxide addition and oxidation-reduction potential.
【図2】電解電流値と亜硝酸イオン濃度およびNOxガ
ス濃度の挙動。FIG. 2 shows the behavior of the electrolytic current value, the nitrite ion concentration and the NOx gas concentration.
【図3】過酸化水素添加量と亜硝酸イオン濃度および電
解電流値の挙動。FIG. 3 shows the behavior of the amount of added hydrogen peroxide, the concentration of nitrite ion, and the electrolytic current value.
【図4】3電極式電圧制御を用いた装置の概略図。FIG. 4 is a schematic diagram of an apparatus using three-electrode voltage control.
【図5】2電極式電圧制御を用いた装置の概略図。FIG. 5 is a schematic diagram of an apparatus using two-electrode voltage control.
【図6】実施例1の電流電解値と酸化還元電位の挙動。FIG. 6 shows a behavior of a current electrolysis value and an oxidation-reduction potential in Example 1.
【図7】実施例2の電流電解値と酸化還元電位の挙動。FIG. 7 shows a behavior of a current electrolysis value and an oxidation-reduction potential in Example 2.
【図8】実施例3の電流電解値と酸化還元電位の挙動。FIG. 8 shows a behavior of a current electrolysis value and an oxidation-reduction potential in Example 3.
5:酸洗い浴 6:硝酸含有液 7:過酸化水素供給ポンプ 8:白金電極 9:参照電極 10:3電極式電圧制御装置(ポテンシオスタット) 11:酸化還元電位測定器 12:供給ポンプ駆動制御信号 13:2電極式電圧制御装置 5: Pickling bath 6: Nitric acid-containing liquid 7: Hydrogen peroxide supply pump 8: Platinum electrode 9: Reference electrode 10: Three-electrode voltage controller (potentiostat) 11: Oxidation-reduction potential measuring instrument 12: Supply pump drive Control signal 13: Two-electrode voltage controller
Claims (8)
らのNOxガスの放出を抑制する方法において、硝酸含
有液の酸化還元電位と電解電流に基づいて、過酸化水素
の添加量を制御することを特徴とするNOxガスの抑制
方法。1. A method for suppressing the release of NOx gas from a nitric acid-containing liquid by adding hydrogen peroxide, wherein the amount of hydrogen peroxide added is controlled based on an oxidation-reduction potential of the nitric acid-containing liquid and an electrolytic current. A method for suppressing NOx gas.
の最大許容値を超えた場合に過酸化水素を添加する請求
項1記載の方法。2. The method according to claim 1, wherein hydrogen peroxide is added when the oxidation-reduction potential and the electrolysis current exceed their respective maximum allowable values.
−電解電流曲線からNOxガス発生量が一定の許容量以
下になるように決められ、前記酸化還元電位の最大許容
値は過剰の過酸化水素が存在しない電位にすることを特
徴とする請求項2記載の方法。3. The maximum allowable value of the electrolytic current is determined from a NOx concentration-electrolytic current curve so that the NOx gas generation amount is equal to or less than a predetermined allowable amount, and the maximum allowable value of the oxidation-reduction potential is excessive peroxidation. 3. The method according to claim 2, wherein the potential is a hydrogen-free potential.
り検知し、前記酸化還元電位を酸化還元電位器により測
定し、検知した電解電流と前記電解電流の最大許容値と
の比較及び酸化還元電位の測定値と前記酸化還元電位の
最大許容値との比較から得られた制御信号により前記過
酸化水素の添加開始及び添加停止を決定することを特徴
とする請求項2または3記載の方法。4. The electrolysis current is detected by a potentiostat, the oxidation-reduction potential is measured by an oxidation-reduction potential meter, the detected electrolysis current is compared with the maximum allowable value of the electrolysis current, and the oxidation-reduction potential is measured. The method according to claim 2 or 3, wherein the start and stop of the addition of the hydrogen peroxide are determined by a control signal obtained from a comparison between the value and a maximum allowable value of the oxidation-reduction potential.
合、または、電解電流が最大許容値より低い場合に過酸
化水素を添加し、前記酸化還元電位が最大許容値以下か
つ電解電流が最大許容値以上の場合に過酸化水素の添加
を停止する請求項1記載の方法。5. When the oxidation-reduction potential exceeds the maximum allowable value, or when the electrolytic current is lower than the maximum allowable value, hydrogen peroxide is added, and the oxidation-reduction potential is equal to or less than the maximum allowable value and the electrolytic current is maximum. 2. The method according to claim 1, wherein the addition of hydrogen peroxide is stopped when the value exceeds an allowable value.
素濃度−電解電流曲線から一定の過酸化水素濃度になる
ように決められ、酸化還元電位の最大許容値は過剰の過
酸化水素が存在する電位にすることを特徴とする請求項
5記載の方法。6. The maximum allowable value of the electrolytic current is determined from a hydrogen peroxide concentration-electrolytic current curve so as to have a constant hydrogen peroxide concentration, and the maximum allowable value of the oxidation-reduction potential is determined by the amount of excess hydrogen peroxide. 6. The method according to claim 5, wherein the potential is present.
り検知し、前記酸化還元電位を酸化還元電位測定器によ
り測定し、検知した電解電流と前記電解電流の最大許容
値との比較及び測定酸化還元電位と前記酸化還元電位の
最大許容値との比較から得られた制御信号により前記過
酸化水素の添加開始及び添加停止を決定することを特徴
とする請求項5または6記載の方法。7. The electrolysis current is detected by a potentiostat, the oxidation-reduction potential is measured by an oxidation-reduction potential measuring device, and the detected electrolysis current is compared with the maximum allowable value of the electrolysis current, and the measured oxidation-reduction potential is measured. 7. The method according to claim 5, wherein the start and stop of the addition of the hydrogen peroxide are determined by a control signal obtained from a comparison between the hydrogen peroxide and the maximum allowable value of the oxidation-reduction potential.
徴とする請求項1〜7のいずれかに記載の方法。8. The method according to claim 1, wherein the nitric acid-containing liquid contains hydrofluoric acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000118941A JP2001009477A (en) | 1999-04-23 | 2000-04-20 | NOx GAS SUPPRESSING METHOD USING HYDROGEN PEROXIDE |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11583499 | 1999-04-23 | ||
JP11-115834 | 1999-04-23 | ||
JP2000118941A JP2001009477A (en) | 1999-04-23 | 2000-04-20 | NOx GAS SUPPRESSING METHOD USING HYDROGEN PEROXIDE |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001009477A true JP2001009477A (en) | 2001-01-16 |
Family
ID=26454264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000118941A Pending JP2001009477A (en) | 1999-04-23 | 2000-04-20 | NOx GAS SUPPRESSING METHOD USING HYDROGEN PEROXIDE |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001009477A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008523982A (en) * | 2004-12-21 | 2008-07-10 | シ−メンス ウォーター テクノロジーズ ホールディング コープ | Water treatment control system and use method thereof |
-
2000
- 2000-04-20 JP JP2000118941A patent/JP2001009477A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008523982A (en) * | 2004-12-21 | 2008-07-10 | シ−メンス ウォーター テクノロジーズ ホールディング コープ | Water treatment control system and use method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020086621A1 (en) | Systems and methods for detecting and measuring oxidizing compounds in test fluids | |
CN1997890A (en) | Free chlorine sensor | |
Landolt et al. | On the mechanism of anodic chlorate formation in concentrated NaCl solutions | |
Pagitsas et al. | Distinction between general and pitting corrosion based on the nonlinear dynamical response of passive iron surfaces perturbed chemically by halides | |
JP2001009477A (en) | NOx GAS SUPPRESSING METHOD USING HYDROGEN PEROXIDE | |
JP4573514B2 (en) | Constant potential electrolytic gas measurement method | |
Dinnappa et al. | Haloacetic acids as corrosion inhibitors for brass in nitric acid | |
JP3901382B2 (en) | NOx gas suppression method using hydrogen peroxide | |
JP2011007508A (en) | Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same | |
US6475373B1 (en) | Method of controlling NOx gas emission by hydrogen peroxide | |
JP2001250804A (en) | Method of controlling nitrite ion with hydrogen peroxide | |
JP2005060761A (en) | Hypohalite generating device and method | |
JP4431203B2 (en) | Ferric chloride etchant management system | |
JP4217077B2 (en) | Stabilization method of diaphragm type electrode | |
JP4227784B2 (en) | Method for suppressing NOx gas generation from nitric acid-containing pickling solution | |
JPS6236554A (en) | Electrochemical type acid gas detector | |
JP2020085868A (en) | Method and device for detecting concentration of pernitric acid and generator of pernitric acid for sterilization | |
JPS55152180A (en) | Method for regeneration of copper chloride etching solution | |
WO1999032690A1 (en) | Pickling process with at least two steps | |
Tamamushi et al. | Effect of methylviologen on the hydrogen evolution at mercury electrodes in aqueous buffer solutions | |
JP2004344144A (en) | Fish and shellfish-rearing water-purifying device | |
JP2002228634A (en) | Method of detecting divalent iron | |
JPH0811835B2 (en) | Etching method | |
JP3009299U (en) | Ion water generator | |
JP3069951B2 (en) | Concentration control method of hydrogen peroxide solution containing ferric ion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090415 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090805 |