JP2000340232A - Carbon material for electrode and nonaqueous secondary battery using the same - Google Patents
Carbon material for electrode and nonaqueous secondary battery using the sameInfo
- Publication number
- JP2000340232A JP2000340232A JP11327768A JP32776899A JP2000340232A JP 2000340232 A JP2000340232 A JP 2000340232A JP 11327768 A JP11327768 A JP 11327768A JP 32776899 A JP32776899 A JP 32776899A JP 2000340232 A JP2000340232 A JP 2000340232A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- carbon material
- particles
- graphite
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電極用炭素材料および
それを用いた非水系二次電池に関する。更に詳しくは、
高容量で、良好な急速充放電性を有する非水系二次電池
を構成しうる電極用炭素材料、好ましくは負極用炭素材
料に関する。The present invention relates to a carbon material for an electrode and a non-aqueous secondary battery using the same. More specifically,
The present invention relates to a carbon material for an electrode, preferably a carbon material for a negative electrode, which can constitute a nonaqueous secondary battery having high capacity and good rapid charge / discharge properties.
【0002】[0002]
【従来の技術】近年、電子機器の小型化に伴い高容量の
二次電池が必要となってきている。特にニッケル・カド
ミウム電池、ニッケル・水素電池に比べてエネルギー密
度の高い、リチウム二次電池が注目されてきている。そ
の負極材料として、はじめリチウム金属を用いることが
試みられたが、充放電を繰り返すうちに樹脂状(デンド
ライト状)にリチウムが析出し、セパレーターを貫通し
て正極まで達し、両極を短絡してしまう危険性があるこ
とが判明した。そのため、金属電極に代わってデンドラ
イトの発生を防止できる炭素系の材料が着目されてきて
いる。2. Description of the Related Art In recent years, secondary batteries of high capacity have been required as electronic devices have become smaller. In particular, lithium secondary batteries, which have a higher energy density than nickel-cadmium batteries and nickel-metal hydride batteries, have attracted attention. Attempts were initially made to use lithium metal as the negative electrode material, but during repeated charging and discharging, lithium was precipitated in a resinous (dendrite) form, penetrated through the separator, reached the positive electrode, and short-circuited both electrodes. Turns out to be dangerous. Therefore, attention has been paid to a carbon-based material that can prevent the generation of dendrite in place of the metal electrode.
【0003】炭素系材料を使用した非水電解液二次電池
としては、結晶化度の低い難黒鉛性炭素材料を負極材料
に採用した電池が、まず上市された。続いて結晶化度の
高い黒鉛類を用いた電池が上市され、現在に至ってい
る。黒鉛の電気容量は、372mAh/gと理論上最大
であり、電解液の選択を適切に行えば、高い充放電容量
の電池を得ることができる。さらに特開平4−1716
77号公報に示されるような、複層構造を有する炭素質
物を用いることも検討されている。これは、結晶性が高
い黒鉛の長所(高容量かつ不可逆容量が小さい)と短所
(プロピレンカーボネート系電解液を分解する)および
結晶化度の低い炭素質物の長所(電解液との安定性に優
れる)と短所(不可逆容量が大きい)を組み合わせ、互
いの長所を生かしつつ、短所を補うという考えに基づく
ものである。As a non-aqueous electrolyte secondary battery using a carbon-based material, a battery using a non-graphitizable carbon material having low crystallinity as a negative electrode material has been put on the market. Subsequently, batteries using graphites having a high degree of crystallinity were put on the market, and have reached the present. The electrical capacity of graphite is 372 mAh / g, which is theoretically the maximum, and a battery having a high charge / discharge capacity can be obtained by appropriately selecting an electrolytic solution. Further, Japanese Unexamined Patent Publication No.
The use of a carbonaceous material having a multilayer structure as disclosed in JP-A-77-77 is also being studied. This is because of the advantages of graphite with high crystallinity (high capacity and small irreversible capacity) and disadvantages (decomposes propylene carbonate-based electrolyte) and the advantage of low crystallinity carbonaceous material (excellent stability with electrolyte). ) And disadvantages (large irreversible capacity) are combined to take advantage of each other's advantages and compensate for the disadvantages.
【0004】黒鉛類(黒鉛及び黒鉛を含む複層炭素質
物)は、難黒鉛性炭素材料に比べて結晶性が高く、真密
度が高い。従って、これら黒鉛類の炭素材料を用いて負
極を構成すれば、高い電極充填性が得られ、電池の体積
エネルギー密度を高めることができる。黒鉛系粉末で負
極を構成する場合、粉末とバインダーを混合し、分散媒
を加えたスラリーを作成し、これを集電体である金属箔
に塗布し、その後、分散媒を乾燥する方法が一般的に用
いられている。この際、粉末の集電体への圧着と電極の
極板厚みの均一化、極板容量の向上を目的として、更に
圧縮成形を行う工程を設けるのが一般的である。この圧
縮工程により、負極の極板密度は向上し、電池の体積あ
たりのエネルギー密度は更に向上する。[0004] Graphites (graphite and multilayer carbonaceous materials containing graphite) have higher crystallinity and higher true density than non-graphitizable carbon materials. Therefore, when a negative electrode is formed using these graphite carbon materials, high electrode filling properties can be obtained, and the volume energy density of the battery can be increased. When a negative electrode is composed of a graphite-based powder, a method of mixing a powder and a binder, preparing a slurry containing a dispersion medium, applying this to a metal foil as a current collector, and then drying the dispersion medium is generally used. It is used regularly. At this time, it is general to provide a step of further performing compression molding for the purpose of pressing the powder to the current collector, making the electrode plate thickness uniform, and improving the electrode plate capacity. By this compression step, the electrode density of the negative electrode is improved, and the energy density per volume of the battery is further improved.
【0005】しかしながら、高結晶性であり、工業的に
も入手可能な一般的な黒鉛材料は、その粒子形状が鱗片
状、鱗状、板状である。この粒子形状が鱗片状、鱗状、
板状であるのは、炭素結晶網面が一方向に積層成長する
ことで黒鉛結晶性黒鉛となることに由来していると考え
られる。これらの黒鉛材料を非水電解液二次電池の負極
に用いた場合、その結晶性の高さゆえ不可逆容量が少な
く大きな放電容量を示すが、粒子形状が鱗片状、鱗状、
板状であることでリチウムイオンの出入りできる結晶エ
ッジ面の存在量が少なく、リチウムイオンの出入りに関
与しないベーサル面の存在量が多いため、高電流密度で
の急速充放電においては容量の低下が見られる。また、
黒鉛質粒子を上記極板製造工程を経て、極板化すると、
極板密度は圧縮度に応じて上昇するが、一方で粒子間隙
が十分に確保されないため、リチウムイオンの移動が妨
げられ、電池としての急速充放電性が低下してしまうと
いう問題がある。[0005] However, general graphite materials that are highly crystalline and commercially available have a particle shape of flakes, scales, and plates. This particle shape is scaly, scaly,
The plate shape is considered to be derived from the fact that the carbon crystal network plane grows in one direction to form graphite crystalline graphite. When these graphite materials are used for a negative electrode of a non-aqueous electrolyte secondary battery, the irreversible capacity is small due to the high crystallinity, and a large discharge capacity is exhibited.
The plate-like shape has a small amount of crystal edge planes through which lithium ions can enter and exit, and a large amount of basal planes that do not participate in lithium ion entry and exit.As a result, the capacity decreases during rapid charge and discharge at high current density. Can be seen. Also,
When the graphite particles are made into an electrode through the above-mentioned electrode manufacturing process,
Although the electrode plate density increases according to the degree of compression, on the other hand, since the particle gap is not sufficiently ensured, there is a problem that the movement of lithium ions is hindered and the rapid charge / discharge performance of the battery is reduced.
【0006】更に、板状の黒鉛質粒子を、電極として成
形した場合、スラリーの塗布工程、極板の圧縮工程の影
響により、粉体の板面は、高い確率で電極極板面と平行
に配列される。従って、個々の粉体粒子を構成している
黒鉛結晶子のエッジ面は、比較的高い確率で、電極面と
垂直な位置関係に成形される。この様な極板状態で充放
電を行うと、正負極間を移動し、黒鉛に挿入・脱離され
るリチウムイオンは、一旦粉体表面を回り込む必要があ
り、電解液中でのイオンの移動効率という点で著しく不
利であるという問題もあった。更に、成形後の電極に残
された空隙は、粒子が板状の形状をしているため、電極
外部に対し、閉ざされてしまうという問題もあった。す
なわち、電極外部との電解液の自由な流通が妨げられる
ため、リチウムイオンの移動が妨げられるという問題が
あった。Further, when the plate-like graphite particles are formed as electrodes, the plate surface of the powder has a high probability of being parallel to the electrode plate surface due to the effects of the slurry application step and the electrode plate compression step. Are arranged. Therefore, the edge surfaces of the graphite crystallites constituting the individual powder particles are formed with a relatively high probability in a positional relationship perpendicular to the electrode surfaces. When charging / discharging is performed in such an electrode plate state, lithium ions that move between the positive and negative electrodes and are inserted and desorbed into graphite need to once go around the powder surface, and the ion transfer efficiency in the electrolyte solution There was also a problem that it was extremely disadvantageous in that respect. Further, there is a problem that the voids left in the electrode after molding are closed to the outside of the electrode because the particles have a plate-like shape. That is, since free flow of the electrolyte solution outside the electrode is hindered, there is a problem that movement of lithium ions is hindered.
【0007】一方、リチウムイオンの出入りする結晶エ
ッジ面の比率が高く、また極板内でのリチウムイオンの
移動に必要な空隙を確保できる球状の形態をした負極材
料として、メソカーボンマイクロビーズの黒鉛化物が提
案され、既に商品化されている。エッジ面の比率が高け
ればリチウムイオンが粒子に出入りできる面積が増え、
また形態が球状であれば、上述の極板圧縮工程を経て
も、個々の粉体粒子には、選択的な配列がおきず、エッ
ジ面の等方向性が維持され、電極板中でのイオンの移動
速度は良好に維持される。更に電極内部に残存した空隙
は、その粒子形状に由来して、電極外部とつながった状
態であるため、リチウムイオンの移動は比較的自由であ
り、急速充放電にも対応可能な電極構造となる。しかし
ながら、メソカーボンマイクロビーズは、黒鉛としての
結晶構造レベルが低いために、電気容量の限界が300
mAh/gと低く、鱗片状、鱗状、板状な黒鉛に劣るこ
とが既に広く知られている。On the other hand, graphite of mesocarbon microbeads is used as a negative electrode material having a high ratio of crystal edge planes into and out of which lithium ions enter and having a spherical shape capable of securing voids necessary for lithium ion movement in the electrode plate. Has been proposed and already commercialized. If the ratio of the edge surface is high, the area where lithium ions can enter and exit the particles increases,
In addition, if the form is spherical, even after the above-described electrode plate compression step, the individual powder particles do not have a selective arrangement, the isotropic orientation of the edge surface is maintained, and the ion Is maintained at a good speed. Furthermore, since the voids remaining inside the electrode are connected to the outside of the electrode due to their particle shape, the movement of lithium ions is relatively free, and the electrode structure is capable of responding to rapid charging and discharging. . However, since the mesocarbon microbeads have a low crystal structure level as graphite, the electric capacity limit is 300.
It is already widely known that it is as low as mAh / g and is inferior to scaly, scaly or plate-like graphite.
【0008】これらの問題に着目し、非水電解液二次電
池に使用される黒鉛の形状を規定した発明も行われてい
る。例えば、特開平8−180873号公報には、鱗片
状な粒子と比較的鱗片状でない粒子の比率等を規定した
発明が開示されている。その一方で、特開平8−836
10号公報には、これとは逆により鱗片状な粒子が好ま
しいことが記載されている。In view of these problems, inventions have been made in which the shape of graphite used in non-aqueous electrolyte secondary batteries is specified. For example, Japanese Patent Application Laid-Open No. 8-180873 discloses an invention in which the ratio of flaky particles to relatively non-flaky particles is specified. On the other hand, JP-A-8-836
No. 10 describes that, on the contrary, scaly particles are preferable.
【0009】[0009]
【発明が解決しようとする課題】実用電池には、高い電
気容量と優れた急速充放電性を兼ね備えた電極が求めら
れている。しかしながら、このような要求を十分に満た
す電極はいまだ提供されるに至っていない。このため、
特に鱗片状、鱗状、板状の黒鉛質材料の急速充放電性を
改善することが強く望まれている。そこで、本発明はこ
のような従来からの要求に応え、従来技術の問題点を解
決することを課題とした。すなわち、材料の電極充填性
が高く、高エネルギー密度であり、且つ急速充放電性に
優れた電極用炭素材料を提供することを解決すべき課題
とした。There is a need for an electrode having both high electric capacity and excellent rapid charge / discharge properties for a practical battery. However, an electrode that sufficiently satisfies such requirements has not yet been provided. For this reason,
In particular, it is strongly desired to improve the rapid charge / discharge properties of flaky, scaly, and plate-like graphitic materials. Therefore, the present invention has been made to solve the problems of the conventional technology in response to such a conventional demand. That is, an object of the present invention is to provide a carbon material for an electrode having a high electrode filling property, a high energy density, and an excellent rapid charge / discharge property.
【0010】[0010]
【課題を解決するための手段】上述の課題を解決するた
めに、本発明者らが鋭意検討を重ねた結果、電極の性能
を改善するためには、黒鉛粒子内部が高結晶であること
で高放電容量を維持し、板状をしている黒鉛粒子の厚み
方向が比較的厚いこと、また粒子表面に近い部分特にベ
ーサル面が荒れている(ベーサル面にクラックや折り曲
がりを有し結晶のエッジ部が露出した粒子)ことにより
エッジ部の存在比率の高くなっている黒鉛粒子を用いる
ことで、リチウムイオンの出入りできる部分の量を増加
させ、さらには黒鉛粒子形状がより球状に近く充填性が
高い炭素材料を用いることで粒子のより等方的な配置す
なわちエッジ部分の等方的な配置を高めることで、高容
量急速充放電性、サイクル特性の優れた電極が得られる
との知見を得るに至った。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, in order to improve the performance of the electrode, the inside of the graphite particles must be highly crystalline. Maintain a high discharge capacity, the thickness direction of the plate-like graphite particles is relatively thick, and the part close to the particle surface, especially the basal surface is rough (the cracks and bends on the basal surface cause The use of graphite particles, which have a high percentage of edges due to the presence of particles with exposed edges, increases the amount of lithium ions that can enter and exit, and the shape of the graphite particles is more nearly spherical, making it more compact. By using a carbon material with a high carbon content, the isotropic arrangement of the particles, that is, the isotropic arrangement of the edge portion is enhanced, so that it is possible to obtain an electrode having high capacity rapid charge / discharge characteristics and excellent cycle characteristics. To get Was Tsu.
【0011】本発明の電極用炭素材料は、このような知
見に基づいて完成されたものであって、第一に広角X線
回折法による(002)面の面間隔(d002)が0.
337nm未満、結晶子サイズ(Lc)が90nm以
上、アルゴンイオンレーザーラマンスペクトルにおける
1580cm-1のピーク強度に対する1360cm-1の
ピーク強度比であるR値が0.20以上、かつタップ密
度が0.75g/cm3以上であることを特徴とするも
のであり、第二に本発明は、電極用炭素材料として、上
記特性を有する炭素材料を有機化合物と混合した後、該
有機化合物を炭素化することで得られる、複層構造炭素
材料を用いることを特徴とするものであり、第三にリチ
ウムを吸蔵および放出することが可能な炭素質材料を含
む負極、正極、および溶質と有機系溶媒とからなる非水
系電解液を有する非水系電解液二次電池において、前記
炭素質材料の少なくとも一部が上記特性を有する炭素質
材料または複層構造炭素質材料であることを特徴とする
非水系二次電池である。The carbon material for an electrode according to the present invention has been completed on the basis of such findings, and firstly, the (002) plane spacing (d002) is 0.1 mm by wide-angle X-ray diffraction.
Less than 337 nm, the crystallite size (Lc) is more than 90 nm, R value is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum is 0.20 or more and a tap density of 0.75g / Cm 3 or more, and secondly, the present invention provides a method of mixing a carbon material having the above characteristics with an organic compound as a carbon material for an electrode, and then carbonizing the organic compound. Third, a negative electrode containing a carbonaceous material capable of occluding and releasing lithium, a positive electrode, and a solute and an organic solvent. In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, at least a part of the carbonaceous material has a carbonaceous material or a multilayer structure having the above characteristics. A nonaqueous secondary battery, which is a quality material.
【0012】[0012]
【発明の実施の形態】以下において、本発明の電極用炭
素材料、電極用複層構造炭素材料及び二次電池について
詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a carbon material for an electrode, a multi-layered carbon material for an electrode and a secondary battery of the present invention will be described in detail.
【0013】電極用炭素材料 本発明の電極用炭素材料は、広角X線回折法による(0
02)面の面間隔(d002)および結晶子サイズ(L
c)、かつアルゴンイオンレーザーラマンスペクトルに
おける1580cm-1のピーク強度に対する1360c
m-1のピーク強度比であるR値、及びタップ密度が所定
の範囲にあることを特徴としている。すなわち本発明の
電極用炭素材料は、広角X線回折法による(002)面
の面間隔(d002)が0.337nm未満であり、結
晶子サイズ(Lc)が90nm以上である。また、本発
明の電極用炭素材料は、アルゴンイオンレーザーラマン
スペクトルにおける1580cm-1のピーク強度に対す
る1360cm-1のピーク強度比であるR値が0.20
以上、好ましくは0.23以上、特に好ましくは0.2
5以上のものを特に選択して用いることができる。R値
の上限は0.9以下であればよく、好ましくは0.7以
下、特に0.5以下が好ましい。さらに、本発明の電極
用炭素材料は、タップ密度が0.75g/cm3以上で
あることを特徴とし、好ましくは0.80g/cm3以
上であり、また上限は好ましくは1.40g/cm3以
下、より好ましくは1.20g/cm3である。 Carbon Material for Electrode The carbon material for electrode of the present invention is obtained by a wide-angle X-ray diffraction method.
02) plane spacing (d002) and crystallite size (L
c) and 1360 c for a peak intensity of 1580 cm −1 in the argon ion laser Raman spectrum
The R value, which is the peak intensity ratio of m- 1 , and the tap density are within predetermined ranges. That is, the carbon material for an electrode of the present invention has a (002) plane spacing (d002) of less than 0.337 nm and a crystallite size (Lc) of 90 nm or more, as determined by the wide-angle X-ray diffraction method. The electrode carbon material for the invention, R value is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum is 0.20
Or more, preferably 0.23 or more, particularly preferably 0.2
Five or more can be selected and used. The upper limit of the R value may be 0.9 or less, preferably 0.7 or less, and particularly preferably 0.5 or less. Further, the carbon material for an electrode of the present invention is characterized in that the tap density is 0.75 g / cm 3 or more, preferably 0.80 g / cm 3 or more, and the upper limit is preferably 1.40 g / cm 3. 3 or less, more preferably 1.20 g / cm 3 .
【0014】広角X線回折法による(002)面の面間
隔(d002)および結晶子サイズ(Lc)は、炭素材
料バルクの結晶性を表す値であり、(002)面の面間
隔(d002)の値が小さいほど、また、結晶子サイズ
(Lc)が大きいほど結晶性の高い炭素材料であること
を示す。また、本発明における、アルゴンイオンレーザ
ーラマンスペクトルにおける1580cm-1のピーク強
度に対する1360cm-1のピーク強度比であるR値は
炭素粒子の表面近傍(粒子表面から100Å位まで)の
結晶性を表す指標であり、R値が大きいほど結晶性が低
い、あるいは結晶状態が乱れていることを示す。The plane spacing (d002) of the (002) plane and the crystallite size (Lc) determined by the wide-angle X-ray diffraction method are values representing the crystallinity of the bulk carbon material, and the plane spacing (d002) of the (002) plane. Is smaller, and the larger the crystallite size (Lc), the higher the crystallinity of the carbon material. Further, the index in the present invention, R value is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum representing the crystallinity in the vicinity of the surface of the carbon particles (from the particle surface to 100Å position) The larger the R value, the lower the crystallinity or the more disordered the crystal state.
【0015】すなわち本発明において、広角X線回折法
による(002)面の面間隔(d002)が0.337
nm未満、結晶子サイズ(Lc)が90nm以上であ
り、かつアルゴンイオンレーザーラマンスペクトルにお
ける1580cm-1のピーク強度に対する1360cm
-1のピーク強度比であるR値が0.20以上である電極
用炭素材料は、炭素粒子の結晶性は高いが、粒子の表面
近傍部は荒れて歪みが多い状態すなわちエッジ部の存在
量が高くなっていることを示している。さらに、タップ
密度が0.75g/cm3以上である電極用炭素材料と
は、電極の充填率が高く粒子形状が丸みを持っているこ
とを示している。That is, in the present invention, the plane spacing (d002) of the (002) plane by the wide-angle X-ray diffraction method is 0.337.
nm, crystallite size (Lc) is 90 nm or more, and 1360 cm with respect to a peak intensity of 1580 cm -1 in an argon ion laser Raman spectrum.
The carbon material for an electrode having an R value of 0.20 or more, which is a peak intensity ratio of −1 , has a high crystallinity of carbon particles, but the vicinity of the surface of the particles is rough and has a large amount of distortion, that is, the abundance of edge portions. Is higher. Further, a carbon material for an electrode having a tap density of 0.75 g / cm 3 or more indicates that the filling rate of the electrode is high and the particle shape is round.
【0016】本明細書において「タップ密度」とは、1
000回タップした後の嵩密度を意味しており、以下の
式で表される。In this specification, "tap density" is 1
It means the bulk density after tapping 000 times and is represented by the following equation.
【数1】タップ密度=充填粉体の質量/粉体の充填体積## EQU1 ## Tap density = mass of powder filling / packing volume of powder
【0017】粉体粒子の充填構造は、粒子の大きさ、形
状、粒子間相互作用力の程度等によって左右されるが、
本明細書では充填構造を定量的に議論する指標としてタ
ップ密度を使用している。タップ充填挙動を表す式とし
ては、様々な式が提案されている。その一例として、次
式:The filling structure of the powder particles depends on the size and shape of the particles, the degree of interaction between the particles, and the like.
In this specification, the tap density is used as an index for quantitatively discussing the filling structure. Various expressions have been proposed as expressions representing tap filling behavior. As an example, the following equation:
【数2】ρ−ρn=A・exp(−k・n) を挙げることができる。ここで、ρは充填の終局におけ
るかさ密度、ρnはn回充填時のかさ密度、k及びAは
定数である。本明細書でいう「タップ密度」は、20c
m3セルへの1000回タップ充填時のかさ密度(ρ
1000)を終局のかさ密度ρと見なしたものである。Ρ−ρ n = A · exp (−k · n) Here, ρ is the bulk density at the end of filling, ρ n is the bulk density at the time of filling n times, and k and A are constants. "Tap density" as used herein is 20 c
The bulk density of the 1000 taps filling of the m 3 cell (ρ
1000 ) as the final bulk density ρ.
【0018】本発明の電極用炭素材料は、これらの条件
を満たすものである限り、その他の物性は特に制限され
ない。但し、その他の物性の好ましい範囲は以下のとお
りである。本発明の電極用炭素材料は、平均粒径が2〜
50μmの範囲内が好適であり、4〜35μmの範囲内
であるのが好ましく、5〜27μmの範囲内であること
がより好ましく、7〜19μmの範囲であるのがさらに
好ましい。なお、本明細書において「〜」で記載される
範囲は、「〜」の前後に記載される数値を含む範囲を示
す。Other physical properties of the carbon material for an electrode of the present invention are not particularly limited as long as these conditions are satisfied. However, preferable ranges of other physical properties are as follows. The carbon material for an electrode of the present invention has an average particle size of 2 to 2.
It is preferably in the range of 50 μm, more preferably in the range of 4-35 μm, more preferably in the range of 5-27 μm, and even more preferably in the range of 7-19 μm. In addition, in this specification, the range described by "-" shows the range including the numerical value described before and after "-".
【0019】本発明の電極用炭素材料は、BET比表面
積が18m2/g未満、更には15m2/g以下、特には
13m2/g以下であることが好ましい。また、アルゴ
ンイオンレーザーラマンスペクトルにおける1580c
m-1のピークの半値幅が20cm-1以上であることが好
ましく、上限は27cm-1以下であることが好ましく、
21〜26cm-1を特に選択して用いることができる。
さらに、本発明の電極用炭素材料は真密度が2.21g
/cm3以上であることが好ましく、2.22g/cm3
以上であることがより好ましく、特に2.24g/cm
3以上であることが好ましい。The electrode carbon material of the present invention, the BET specific surface area is less than 18m 2 / g, still more 15 m 2 / g or less, and particularly preferably not more than 13m 2 / g. In addition, 1580c in the argon ion laser Raman spectrum
The half-value width of the peak at m -1 is preferably 20 cm -1 or more, and the upper limit is preferably 27 cm -1 or less,
21 to 26 cm -1 can be particularly selected and used.
Further, the carbon material for an electrode of the present invention has a true density of 2.21 g.
/ Cm 3 or more, preferably 2.22 g / cm 3
More preferably, it is particularly 2.24 g / cm.
It is preferably 3 or more.
【0020】本発明の電極用炭素材料は、液中に分散さ
せた数千個の粒子をCCDカメラを用いて1個ずつ撮影
し、その平均的な形状パラメータを算出することが可能
なフロー式粒子像解析計において、全粒子を対象とした
平均円形度(粒子面積相当円の周囲長を分子とし、撮像
された粒子投影像の周囲長を分母とした比率で、粒子像
が真円に近いほど1となり、粒子像が細長いあるいはデ
コボコしているほど小さい値になる)が0.940以上
となるものが好ましい。また、本発明の電極用炭素材料
は、アルゴンレーザーラマンスペクトルにおける136
0cm-1の付近のピーク面積(1260〜1460cm
-1の積分値)に対する1580cm-1の付近のピーク面
積(1480〜1680cm-1の積分値)の面積比であ
るG値が、好ましくは3.0未満、より好ましくは2.
5未満であり、下限は特に制限はないが1.0以上であ
ることが好ましい。The carbon material for an electrode according to the present invention is a flow type capable of photographing thousands of particles dispersed in a liquid one by one using a CCD camera and calculating an average shape parameter thereof. In a particle image analyzer, the average circularity for all particles (the ratio of the perimeter of the circle corresponding to the particle area as the numerator and the perimeter of the imaged particle projection image as the denominator, the particle image is close to a perfect circle (The smaller the particle image becomes, the smaller the particle image becomes elongated or irregularly shaped) becomes 0.940 or more. Further, the carbon material for an electrode of the present invention has an 136 nm in the argon laser Raman spectrum.
The peak area near 0 cm -1 (1260-1460 cm
G value is the area ratio of the peak area in the vicinity of 1580 cm -1 (integrated value of 1480~1680Cm -1) to the integral value) of -1, preferably less than 3.0, more preferably 2.
It is less than 5, and the lower limit is not particularly limited, but is preferably 1.0 or more.
【0021】本発明の電極用炭素材料には、天然に産出
する炭素材料を用いても、人工的に製造された炭素材料
を用いてもよい。また、本発明の電極用炭素材料の製造
方法も特に制限されない。したがって、例えば篩い分け
や風力分級などの分別手段を用いて上記特性を有する電
極用炭素材料を選別して取得することもできる。最も好
ましい製造方法は、天然に産出する炭素材料や人工的に
製造された炭素材料に対して、力学的なエネルギー処理
を加えて改質して電極用炭素材料を製造する方法であ
る。そこで、以下においてこの力学的エネルギー処理に
ついて説明する。As the carbon material for an electrode of the present invention, a naturally occurring carbon material or an artificially produced carbon material may be used. Further, the method for producing the carbon material for an electrode of the present invention is not particularly limited. Therefore, it is also possible to select and obtain a carbon material for an electrode having the above characteristics by using a separation means such as sieving or air classification. The most preferable production method is a method for producing a carbon material for an electrode by modifying a naturally produced carbon material or an artificially produced carbon material by applying a mechanical energy treatment. Therefore, the mechanical energy processing will be described below.
【0022】力学的エネルギー処理を加える対象となる
原料の炭素材料は、天然または人造の黒鉛質粉末や、黒
鉛前駆体である炭素質粉末である。これらの黒鉛質粉末
や炭素質粉末は、面間隔(d002)が0.340nm
未満、結晶子サイズ(Lc)が30nm以上、真密度が
2.25g/cm3以上であるものが好ましい。中でも
面間隔(d002)が0.338nm未満であるものが
より好ましく、0.337nm未満であるものがさらに
好ましい。また、結晶子サイズ(Lc)は90nm以上
であるものがより好ましく、100nm以上であるもの
がさらに好ましい。平均粒径は10μm以上であるもの
が好ましく、15μm以上であるものがより好ましく、
20μm以上であるものがさらに好ましく、25μm以
上であるものがさらにより好ましい。平均粒径の上限に
ついては、1mm以下であるものが好ましく、500μ
m以下であるものがより好ましく、250μm以下であ
るものがさらに好ましく、200μm以下であるものが
さらにより好ましい。The carbon material as a raw material to be subjected to the mechanical energy treatment is a natural or artificial graphite powder or a carbon powder which is a graphite precursor. These graphite powders and carbonaceous powders have a plane spacing (d002) of 0.340 nm.
And a crystallite size (Lc) of 30 nm or more and a true density of 2.25 g / cm 3 or more are preferable. Among them, those having a plane spacing (d002) of less than 0.338 nm are more preferable, and those having a plane spacing (d002) of less than 0.337 nm are still more preferable. Further, the crystallite size (Lc) is more preferably 90 nm or more, and further preferably 100 nm or more. The average particle size is preferably at least 10 μm, more preferably at least 15 μm,
Those having a size of 20 μm or more are still more preferable, and those having a size of 25 μm or more are still more preferable. The upper limit of the average particle size is preferably 1 mm or less,
m or less, more preferably 250 μm or less, and even more preferably 200 μm or less.
【0023】黒鉛質粉末や炭素質粉末は、結晶性が高い
ものであっても低いものであっても原料として使用する
ことができる。結晶性が低い原料は面配向性が比較的低
くて構造に乱れがあるため、力学的エネルギー処理を行
うことによって粉砕面が比較的等方的で丸みを帯びた処
理物を得やすい。また、力学的エネルギー処理を行った
後に、さらに熱処理を行えば結晶性を高めることができ
る。The graphite powder and the carbon powder can be used as raw materials regardless of whether they have high or low crystallinity. Raw materials having low crystallinity have relatively low plane orientation and are disordered in the structure. Therefore, it is easy to obtain a processed material having a relatively isotropic and rounded crushed surface by performing mechanical energy treatment. Further, the crystallinity can be increased by further performing a heat treatment after the mechanical energy treatment.
【0024】力学的エネルギー処理を加える対象となる
炭素材料の中で、炭素六角網面構造が発達した高結晶性
炭素材料として、六角網面を面配向的に大きく成長させ
た高配向黒鉛と、高配向の黒鉛粒子を等方向に集合させ
た等方性高密度黒鉛を挙げることができる。高配向黒鉛
としては、スリランカあるいはマダカスカル産の天然黒
鉛や、溶融した鉄から過飽和の炭素として析出させたい
わゆるキッシュグラファイト、一部の高黒鉛化度の人造
黒鉛を好適なものとして例示することができる。Among the carbon materials to be subjected to the mechanical energy treatment, highly-oriented graphite in which hexagonal mesh planes are largely grown in a plane orientation as highly crystalline carbon materials having a developed carbon hexagonal mesh plane structure; Examples include isotropic high-density graphite in which highly oriented graphite particles are aggregated in the same direction. As highly oriented graphite, natural graphite from Sri Lanka or Madagascar, so-called quiche graphite precipitated as supersaturated carbon from molten iron, and artificial graphite with a high degree of graphitization can be exemplified as suitable ones. .
【0025】天然黒鉛は、その性状によって、鱗片状黒
鉛(Flake Glaphite)、鱗状黒鉛(Crystalline(Vein) G
laphite)、土壌黒鉛(Amorphousu Glaphite)に分類され
る(「粉粒体プロセス技術集成」((株)産業技術セン
ター、昭和49年発行)の黒鉛の項、および「HANDBOOK
OF CARBON,GRAPHITE,DIAMOND AND FULLERENES」(Noye
s Publications発行)参照)。黒鉛化度は、鱗状黒鉛が
100%で最も高く、これに次いで鱗片状黒鉛が99.
9%で高いが、土壌黒鉛は28%と低い。天然黒鉛であ
る鱗片状黒鉛は、マダガスカル、中国、ブラジル、ウク
ライナ、カナダ等に産し、鱗状黒鉛は、主にスリランカ
に産する。土壌黒鉛は、朝鮮半島、中国、メキシコ等を
主な産地としている。これらの天然黒鉛の中で、土壌黒
鉛は一般に粒径が小さいうえ、純度が低い。これに対し
て、鱗片状黒鉛や鱗状黒鉛は、黒鉛化度や不純物量が低
い等の長所があるため、本発明において好ましく使用す
ることができる。Natural graphite is classified into flaky graphite (Flake Glaphite) and scaly graphite (Crystalline (Vein) G) depending on its properties.
laphite) and soil graphite (Amorphousu Glaphite) (graphites in the “Granular Process Technology Integration” (published in 1973 by the Industrial Technology Center) and “HANDBOOK”.
OF CARBON, GRAPHITE, DIAMOND AND FULLERENES "(Noye
s Publications)). The degree of graphitization is highest for scaly graphite at 100%, followed by scaly graphite at 99%.
Although 9% is high, soil graphite is low at 28%. Flake graphite, a natural graphite, is produced in Madagascar, China, Brazil, Ukraine, Canada, etc., and flaky graphite is mainly produced in Sri Lanka. Soil graphite is mainly produced in the Korean Peninsula, China, Mexico, etc. Among these natural graphites, soil graphite generally has a small particle size and low purity. On the other hand, flaky graphite and flaky graphite have advantages such as a low degree of graphitization and a low amount of impurities, and therefore can be preferably used in the present invention.
【0026】人造黒鉛は、非酸化性雰囲気下において石
油コークスまたは石炭ピッチコークスを1500〜30
00℃、あるいはそれ以上の温度で加熱することによっ
て製造することができる。本発明では、力学的エネルギ
ー処理および熱処理を行った後に高配向かつ高電気化学
容量を示すものであれば、いずれの人造黒鉛も原料とし
て使用することができる。Artificial graphite is prepared by mixing petroleum coke or coal pitch coke in a non-oxidizing atmosphere at 1500 to 30%.
It can be produced by heating at a temperature of 00 ° C. or higher. In the present invention, any artificial graphite can be used as a raw material as long as it exhibits high orientation and high electrochemical capacity after mechanical energy treatment and heat treatment.
【0027】これらの炭素材料に対する力学的エネルギ
ー処理は、処理前後の平均粒径比が1以下になるように
行う。「処理前後の平均粒径比」とは、処理後の平均粒
径を処理前の平均粒径で除した値である。ここでいう平
均粒径はレーザー式粒径分布測定機で測定した体積基準
の粒径分布である。レーザー式粒径分布測定機で測定す
ると、形状に異方性のある粒子でも等方的に平均化して
実質的に球として換算した粒子径分布が得られる。The mechanical energy treatment of these carbon materials is performed so that the average particle size ratio before and after the treatment becomes 1 or less. The “average particle size ratio before and after treatment” is a value obtained by dividing the average particle size after treatment by the average particle size before treatment. The average particle size here is a volume-based particle size distribution measured by a laser-type particle size distribution analyzer. When measured with a laser-type particle size distribution analyzer, particles having anisotropic shape can be averaged isotropically to obtain a particle size distribution substantially converted into a sphere.
【0028】本発明の電極用炭素材料を製造するために
行う力学的エネルギー処理では、処理前後の平均粒径比
が1以下になるようにする。これに対して、造粒すると
平均粒径比は1以上になり、かつタップ密度も上昇して
しまう。造粒した粉粒体は、最終的に成形する過程で処
理前の状態に戻ることが十分に予想されるため、好まし
くない。In the mechanical energy treatment for producing the carbon material for an electrode according to the present invention, the average particle size ratio before and after the treatment is set to 1 or less. On the other hand, when granulated, the average particle diameter ratio becomes 1 or more, and the tap density also increases. The granulated powder is not preferable because it is fully expected that the powder will return to the state before the treatment in the final molding process.
【0029】力学的エネルギー処理は、粉末粒子の処理
前後の平均粒径比が1以下となるように粒子サイズを減
ずると同時に、粒子形状を制御するものである。粉砕、
分級、混合、造粒、表面改質、反応などの粒子設計に活
用できる工学的単位操作の中では、力学的エネルギー処
理は粉砕処理に属する。In the mechanical energy treatment, the particle size is reduced so that the average particle size ratio before and after the treatment of the powder particles becomes 1 or less, and at the same time, the particle shape is controlled. Grinding,
Among the engineering unit operations that can be used for particle design such as classification, mixing, granulation, surface modification, and reaction, mechanical energy processing belongs to pulverization processing.
【0030】粉砕とは、物質に力を加えて、その大きさ
を減少させ、物質の粒径や粒度分布、充填性を調節する
ことを指す。粉砕処理は、物質へ加える力の種類、処理
形態により分類される。物質に加える力は、たたき割る
力(衝撃力)、押しつぶす力(圧縮力)、すりつぶす力
(摩砕力)、削りとる力(剪断力)の4つに大別され
る。一方、処理形態は、粒子内部に亀裂を発生させ、伝
播させていく体積粉砕と、粒子表面を削り取っていく表
面粉砕の二つに大別される。体積粉砕は、衝撃力、圧縮
力、剪断力により進行し、表面粉砕は、摩砕力、剪断力
により進行する。粉砕は、これらの物質に加える力の種
類と処理形態を様々に組合わせた処理である。その組み
合わせは、処理目的に応じて適宜決定することができ
る。Pulverization refers to applying a force to a substance to reduce its size and adjust the particle size, particle size distribution, and filling properties of the substance. The pulverization treatment is classified according to the type of force applied to the substance and the treatment form. The force applied to a substance is roughly divided into four types: a breaking force (impact force), a crushing force (compression force), a crushing force (grinding force), and a shaving force (shearing force). On the other hand, the treatment mode is roughly classified into two types: volume pulverization in which cracks are generated and propagated inside the particles, and surface pulverization in which the particle surface is scraped off. Volume pulverization proceeds by impact force, compression force, and shear force, and surface pulverization proceeds by attrition force and shear force. Grinding is a process in which the types of forces applied to these substances and the processing modes are variously combined. The combination can be appropriately determined according to the processing purpose.
【0031】粉砕は、爆破など化学的な反応や体積膨張
を用いて行う場合もあるが、粉砕機などの機械装置を用
いて行うのが一般的である。本発明の電極用炭素材料の
製造に用いられる粉砕処理は、体積粉砕の有無に関わら
ず、最終的に表面処理の占める割合が高くなるような処
理であるのが好ましい。それは、粒子の表面粉砕が黒鉛
質粒子または炭素質粒子の角を取って、粒子形状に丸み
を導入するために重要だからである。具体的には、ある
程度体積粉砕が進んでから表面処理を行ってもよいし、
体積粉砕をほとん進めずに表面処理のみを行ってもよい
し、さらには、体積粉砕と表面処理を同時に行ってもよ
い。最終的に表面粉砕が進み、粒子の表面から角がとれ
るような粉砕処理を行うのが好ましい。The pulverization may be performed by using a chemical reaction such as blasting or volume expansion, but is generally performed by using a mechanical device such as a pulverizer. The pulverization treatment used in the production of the carbon material for an electrode of the present invention is preferably such that the ratio of the surface treatment finally increases irrespective of the presence or absence of volume pulverization. This is because surface crushing of the particles is important to bevel the graphite or carbonaceous particles and introduce roundness into the particle shape. Specifically, surface treatment may be performed after volume pulverization proceeds to some extent,
Only the surface treatment may be performed without substantially proceeding the volume pulverization, or the volume pulverization and the surface treatment may be performed simultaneously. Finally, it is preferable to perform a pulverization treatment so that the surface pulverization progresses and the corners are removed from the surface of the particles.
【0032】力学的エネルギー処理を行う装置は、上記
の好ましい処理を行うことが可能なものの中から選択す
る。本発明者らが検討したところ、衝撃力を主体に粒子
の相互作用も含めた圧縮、摩擦、せん断力等の機械的作
用を繰り返し粒子に与える装置が有効であることが明ら
かになった。具体的には、ケーシング内部に多数のブレ
ードを設置したローターを有していて、そのローターが
高速回転することによって、内部に導入された炭素材料
に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与
え、体積粉砕を進行させながら表面処理を行う装置が好
ましい。また、炭素材料を循環または対流させることに
よって機械的作用を繰り返して与える機構を有するもの
であるのがより好ましい。The apparatus for performing the mechanical energy processing is selected from those capable of performing the above-described preferable processing. Examinations by the present inventors have revealed that a device that repeatedly applies mechanical effects such as compression, friction, and shear force to particles, mainly by impact force, including particle interaction, is effective. Specifically, the casing has a rotor with a large number of blades installed inside, and the rotor rotates at a high speed, so that the carbon material introduced into the casing can be subjected to mechanical compression, friction, shear, etc. It is preferable to use a device that performs a surface treatment while imparting an effective action and performing volume pulverization. Further, it is more preferable to have a mechanism for repeatedly giving a mechanical action by circulating or convection the carbon material.
【0033】このような好ましい装置の一例として、
(株)奈良機械製作所製のハイブリダイゼーションシス
テムを挙げることができる。この装置を用いて処理する
場合は、回転するローターの周速度を30〜100m/
秒にするのが好ましく、40〜100m/秒にするのが
より好ましく、50〜100m/秒にするのがさらに好
ましい。また、処理は、単に炭素材料を通過させるだけ
でも可能であるが、30秒以上装置内を循環または滞留
させて処理するのが好ましく、1分以上装置内を循環ま
たは滞留させて処理するのがより好ましい。As an example of such a preferred device,
A hybridization system manufactured by Nara Machinery Co., Ltd. can be mentioned. When processing is performed using this apparatus, the peripheral speed of the rotating rotor is set to 30 to 100 m /
It is preferably set to seconds, more preferably from 40 to 100 m / sec, and even more preferably from 50 to 100 m / sec. In addition, the treatment can be carried out by simply passing the carbon material. However, the treatment is preferably carried out by circulating or staying in the apparatus for 30 seconds or more, and is preferably carried out by circulating or staying in the apparatus for 1 minute or more. More preferred.
【0034】原料とする炭素質粉末の真密度が2.25
未満で結晶性がそれほど高くない場合には、力学的エネ
ルギー処理を行った後に、さらに結晶性を高める熱処理
を行うことが好ましい。熱処理は2000℃以上で行う
のが好ましく、2500℃以上で行うのがより好まし
く、2800℃以上で行うのがさらに好ましい。このよ
うな力学的エネルギー処理を行うことによって、黒鉛質
粒子または炭素質粒子は、全体的には高結晶性を維持し
たまま、粒子の表面近傍のみが粗くなり歪みおよびエッ
ジ面の露出した粒子となる。このことでリチウムイオン
の出入りできる面が増加することとなり高電流密度にお
いても高い容量を持つことになる。The true density of the carbonaceous powder used as the raw material is 2.25.
When the crystallinity is not so high and the crystallinity is not so high, it is preferable to perform a heat treatment for further increasing the crystallinity after performing the mechanical energy treatment. The heat treatment is preferably performed at 2000 ° C. or higher, more preferably at 2500 ° C. or higher, and still more preferably at 2800 ° C. or higher. By performing such a mechanical energy treatment, the graphitic particles or the carbonaceous particles become coarse only in the vicinity of the surface of the particles while maintaining high crystallinity as a whole, and are distorted and particles having exposed edge surfaces. Become. This increases the surface through which lithium ions can enter and exit, and has a high capacity even at a high current density.
【0035】粒子の結晶性および粒子表面の粗さ、すな
わち結晶のエッジ面存在量の指標として、広角X線回折
法による(002)面の面間隔(d002)、結晶子サ
イズ(Lc)、およびアルゴンイオンレーザーラマンス
ペクトルにおける1580cm-1のピーク強度に対する
1360cm-1のピーク強度比であるR値を用いること
ができる。一般に炭素材料は(002)面の面間隔(d
002)の値が小さく、結晶子サイズ(Lc)が大きい
ものほど、R値は小さい。すなわち黒鉛質粒子または炭
素質粒子全体がほぼ同様な結晶状態となっている。これ
に対し、本発明の電極用炭素材料は(002)面の面間
隔(d002)の値が小さく、結晶子サイズ(Lc)が
大きいが、R値は大きい値を取っている。すなわち炭素
材料バルクの結晶性は高いが、炭素粒子の表面近傍(粒
子表面から100Å位まで)の結晶性は乱れており、エ
ッジ面の露出が多くなっていることを表している。ま
た、この力学的エネルギー処理は粒子に丸みを導入し、
これらの粒子の充填性を向上させることができる。As an index of the crystallinity of the particles and the roughness of the particle surface, that is, the abundance of the edge surface of the crystal, the (002) plane spacing (d002), the crystallite size (Lc), it can be used an R value which is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum. Generally, the carbon material has a plane spacing (d) of (002) plane.
The smaller the value of (002) and the larger the crystallite size (Lc), the smaller the R value. That is, the entire graphite or carbonaceous particles are in substantially the same crystalline state. On the other hand, the carbon material for an electrode of the present invention has a small value of the spacing (d002) of the (002) plane and a large crystallite size (Lc), but has a large R value. That is, the crystallinity of the carbon material bulk is high, but the crystallinity in the vicinity of the surface of the carbon particles (up to about 100 ° from the particle surface) is disordered, indicating that the edge surface is exposed more. This mechanical energy treatment also introduces roundness into the particles,
The filling property of these particles can be improved.
【0036】粉体粒子の充填性を高めるためには、粒子
と粒子の間にできる空隙に入り込むことができる、より
小さな粒子を充填すると良いことが知られている。この
ため、炭素質あるいは黒鉛質粒子に対し、粉砕等の処理
を行い、粒径を小さくすれば充填性が高まることが考え
られるが、このような方法で粒径を小さくしても、一般
的に充填性は却って低下してしまう。この原因としては
粉砕することにより粒子形状がより不定形になってしま
うためであると考えられる。It is known that in order to enhance the filling property of powder particles, it is better to fill smaller particles that can enter the voids formed between the particles. For this reason, it is conceivable that the carbonaceous or graphitic particles may be subjected to a treatment such as pulverization to reduce the particle size, thereby improving the filling property. On the contrary, the filling property is reduced. It is considered that this is because the particle shape becomes more irregular when crushed.
【0037】一方、粉体粒子群の中の一つ粒子(着目粒
子)に接触している粒子の個数(配位数n)が多いほ
ど、充填層の空隙の占める割合は低下する。すなわち、
充填率に影響を与える因子としては、粒子の大きさの比
率と組成比、すなわち、粒径分布が重要である。ただ
し、この検討は、モデル的な球形粒子群で行われたもの
であり、本発明で取り扱われる処理前の炭素質あるいは
黒鉛質粒子は、鱗片状、鱗状、板状であり、単に一般的
な粉砕、分級等だけで粒径分布を制御して、充填率を高
めようと試みても、それほどの高充填状態を生み出すこ
とはできない。On the other hand, as the number of particles (coordination number n) in contact with one particle (particle of interest) in the powder particle group increases, the proportion of the voids in the packed bed decreases. That is,
As factors affecting the packing ratio, the particle size ratio and the composition ratio, that is, the particle size distribution are important. However, this study was carried out with a model spherical particle group, and the carbonaceous or graphitic particles before treatment handled in the present invention are flaky, scaly, plate-like, Even if an attempt is made to increase the filling rate by controlling the particle size distribution only by pulverization, classification, and the like, it is not possible to produce such a high filling state.
【0038】一般的に、鱗片状、鱗状、板状の炭素質あ
るいは黒鉛質粒子は、粒子径が小さくなるほど充填性が
悪化する傾向にある。これは、粉砕により粒子がより不
定形化する、また、粒子の表面に「ささくれ」や「はが
れかけ」、「折れ曲がり」などの突起状物が生成増加す
る、更には粒子表面に、より微細な不定形粒子がある程
度の強度で付着される等の原因で、隣接粒子との間の抵
抗が大きくなり充填性を悪化させるためと考えられる。
これらの不定形性が減少し、粒子形状が球形に近づけば
粒子径が小さくなっても充填性の減少は少なくなり、理
論的には大粒径炭素粉でも小粒径炭素分でも同程度のタ
ップ密度を示すことになるはずである。In general, flaky, scaly, and plate-like carbonaceous or graphitic particles tend to have poorer filling properties as the particle size decreases. This is because the particles become more irregular due to the pulverization, and the surface of the particles is increased in the form of protrusions such as "scratch" and "peeling off" and "bends". It is considered that the resistance between adjacent particles is increased due to the irregular particles being attached with a certain strength or the like, thereby deteriorating the filling property.
These irregularities are reduced, and if the particle shape approaches a spherical shape, the decrease in the packing property is reduced even if the particle size is reduced, and theoretically, the same degree of carbon particles in both large particle size carbon powder and small particle size carbon It should indicate tap density.
【0039】本発明者らの検討では、真密度がほぼ等し
く、平均粒径もほぼ等しい炭素質あるいは黒鉛質粒子で
は、形状が球状であるほど、タップ密度が高い値を示す
ことが確認されている。すなわち、粒子の形状に丸みを
帯びさせ、球状に近づけることが重要である。粒子形状
が球状に近づけば、粉体の充填性も、同時に大きく向上
する。本発明では、以上の理由により、球形化度の指標
に粉体のタップ密度を採用している。処理後の粉粒体の
充填性が処理前に比べ上昇している場合は、用いた処理
方法により、粒子が球状化した結果と考えることができ
る。また、本発明の方法において粒径を大きく低下させ
ながら処理を行った場合に得られる炭素材料のタップ密
度が、一般的粉砕で得られる同程度の粒径の炭素材料の
タップ密度に比べ高い値であれば、球状化した結果と考
えることができる。Investigations by the present inventors have confirmed that, for carbonaceous or graphitic particles having substantially the same true density and substantially the same average particle size, the more spherical the shape, the higher the tap density. I have. That is, it is important that the shape of the particles be rounded and approximate to a spherical shape. If the particle shape approaches a spherical shape, the filling property of the powder is also greatly improved. In the present invention, for the above reason, the tap density of the powder is used as an index of the degree of spheroidization. When the filling property of the granular material after the treatment is higher than that before the treatment, it can be considered that the particles are spheroidized by the treatment method used. Further, in the method of the present invention, the tap density of the carbon material obtained when the treatment is performed while greatly reducing the particle size is higher than the tap density of the carbon material having the same particle size obtained by general pulverization. If so, it can be considered as a result of spheroidization.
【0040】本発明においては、力学的エネルギー処理
を行った後、分級を行って微粉及び/又は粗分を取り除
いた炭素質あるいは黒鉛質粒子も使用することができ
る。分級は、公知の手法を用いることができる。上述の
処理を行うことによって、アルゴンイオンレーザーラマ
ンスペクトルにおける1580cm-1のピーク強度に対
する1360cm-1のピーク強度比であるR値が0.0
1〜0.25で、広角X線回折法による(002)面の
面間隔(d002)が0.337nm未満、結晶子サイ
ズ(Lc)が90nm以上である原料黒鉛質粉末を、力
学的エネルギー処理を行うことにより、アルゴンイオン
レーザーラマンスペクトルにおける1580cm-1のピ
ーク強度に対する1360cm-1のピーク強度比である
R値が処理前の黒鉛粉末のR値の1.5倍以上、好まし
くは2倍以上、上限は特に限定されないが、通常10倍
以下、好ましくは7倍以下が採用でき広角X線回折法に
よる(002)面の面間隔(d002)が0.337n
m未満、結晶子サイズ(Lc)が90nm以上であり、
かつタップ密度が0.75g/cm3以上の処理された
黒鉛粉末である電極用炭素材料が提供できる。In the present invention, it is also possible to use carbonaceous or graphitic particles which have been subjected to mechanical energy treatment and then classified to remove fine powder and / or coarse components. A known method can be used for classification. By performing the above process, R value is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum is 0.0
A raw graphite powder having a (002) plane spacing (d002) of less than 0.337 nm and a crystallite size (Lc) of 90 nm or more by wide-angle X-ray diffraction at 1 to 0.25 is subjected to mechanical energy treatment. the by performing an argon ion laser R value is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the Raman spectrum is more than 1.5 times the R value of the graphite powder before treatment, preferably at least 2-fold The upper limit is not particularly limited, but usually 10 times or less, preferably 7 times or less can be employed, and the (002) plane spacing (d002) by the wide-angle X-ray diffraction method is 0.337 n.
m, the crystallite size (Lc) is 90 nm or more,
Further, a carbon material for an electrode, which is a treated graphite powder having a tap density of 0.75 g / cm 3 or more, can be provided.
【0041】電極用複層構造炭素材料 本発明の電極用複層構造炭素材料は、焼成工程により炭
素化される有機化合物と前記特性を有する本発明の電極
用炭素材料とを混合した後に、該有機化合物を焼成炭素
化することによって調製することができる。電極用炭素
材料と混合する有機化合物は、焼成することによって炭
素化するものであればとくにその種類は制限されない。
したがって、液相で炭素化を進行させる有機化合物であ
っても、固相で炭素化を進行させる有機化合物であって
もよい。また、電極用炭素材料と混合する有機化合物
は、単一の有機化合物であっても、複数種の有機化合物
の混合物であってもよい。The multi-layered carbon material for an electrode of the present invention is obtained by mixing an organic compound to be carbonized in a firing step with the carbon material for an electrode of the present invention having the above-mentioned properties. It can be prepared by carbonizing an organic compound. The type of the organic compound mixed with the electrode carbon material is not particularly limited as long as it can be carbonized by firing.
Therefore, an organic compound that progresses carbonization in a liquid phase or an organic compound that progresses carbonization in a solid phase may be used. The organic compound to be mixed with the electrode carbon material may be a single organic compound or a mixture of a plurality of types of organic compounds.
【0042】液相で炭素化を進行させる有機化合物とし
て、軟ピッチから硬ピッチまでのコールタールピッチ、
石炭液化油等の石炭系重質油、アスファルテン等の直流
系重質油、原油、ナフサなどの熱分解時に副生するナフ
サタール等分解系重質油等の石油系重質油、分解系重質
油を熱処理することで得られる、エチレンタールピッ
チ、FCCデカントオイル、アシュランドピッチなど熱
処理ピッチ等を用いることができる。さらにポリ塩化ビ
ニル、ポリビニルアセテート、ポリビニルブチラール、
ポリビニルアルコール等のビニル系高分子と3−メチル
フェノールホルムアルデヒド樹脂、3,5−ジメチルフ
ェノールホルムアルデヒド樹脂等の置換フェノール樹
脂、アセナフチレン、デカシクレン、アントラセンなど
の芳香族炭化水素、フェナジンやアクリジンなどの窒素
環化合物、チオフェンなどのイオウ環化合物などの物質
をあげることができる。As an organic compound which promotes carbonization in a liquid phase, coal tar pitch from soft pitch to hard pitch,
Coal-based heavy oil such as coal liquefied oil, DC-based heavy oil such as asphaltenes, petroleum-based heavy oil such as naphthatar-derived cracked heavy oil, etc., which is by-produced during thermal cracking of crude oil and naphtha, cracked heavy Heat-treated pitches such as ethylene tar pitch, FCC decant oil, and ashland pitch obtained by heat-treating the oil can be used. Furthermore, polyvinyl chloride, polyvinyl acetate, polyvinyl butyral,
Vinyl-based polymers such as polyvinyl alcohol and substituted phenol resins such as 3-methylphenol formaldehyde resin and 3,5-dimethylphenol formaldehyde resin, aromatic hydrocarbons such as acenaphthylene, decacyclene and anthracene, and nitrogen ring compounds such as phenazine and acridine And substances such as sulfur ring compounds such as thiophene.
【0043】また、固相で炭素化を進行させる有機化合
物としては、セルロースなどの天然高分子、ポリ塩化ビ
ニリデンやポリアクリロニトリルなどの鎖状ビニル樹
脂、ポリフェニレン等の芳香族系ポリマー、フルフリル
アルコール樹脂、フェノール−ホルムアルデヒド樹脂、
イミド樹脂等熱硬化性樹脂やフルフリルアルコールのよ
うな熱硬化性樹脂原料などを挙げることができる。ま
た、これらの有機化合物を必要に応じて、適宜溶媒を選
択して溶解希釈することにより、粉末粒子の表面に付着
させて使用することができる。これらの有機化合物と電
極用炭素材料から本発明の電極用複層構造炭素材料を製
造する方法として、以下の工程からなる典型的な製造方
法を例示することができる。Examples of the organic compound that promotes carbonization in the solid phase include natural polymers such as cellulose, chain vinyl resins such as polyvinylidene chloride and polyacrylonitrile, aromatic polymers such as polyphenylene, and furfuryl alcohol resin. , Phenol-formaldehyde resin,
Examples thereof include thermosetting resins such as imide resins and thermosetting resin raw materials such as furfuryl alcohol. In addition, these organic compounds can be used by adhering to the surface of the powder particles by appropriately dissolving and diluting a solvent as necessary, if necessary. As a method for producing the multilayered carbon material for an electrode of the present invention from these organic compounds and the carbon material for an electrode, a typical production method comprising the following steps can be exemplified.
【0044】(第1工程)電極用炭素材料と有機化合物
を、必要に応じて溶媒とともに種々の市販の混合機や混
練機等を用いて混合し、混合物を得る工程。 (第2工程)(必要に応じて実施する工程) 前記混合物をそのままあるいは必要により撹拌しながら
加熱し、溶媒を除去した中間物質を得る工程。 (第3工程)前記混合物又は中間物質を、窒素ガス、炭
酸ガス、アルゴンガス等の不活性ガス雰囲気下、あるい
は非酸化性雰囲気下で500〜3000℃に加熱し、炭
素化物質を得る工程。 (第4工程)(必要に応じて実施する工程) 前記炭素化物質を粉砕、解砕、分級処理など粉体加工す
る工程。(First step) A step of mixing a carbon material for an electrode and an organic compound together with a solvent, if necessary, using various commercially available mixers, kneaders and the like to obtain a mixture. (Second step) (Step to be carried out as necessary) A step of heating the mixture as it is or while stirring as necessary to obtain an intermediate substance from which the solvent has been removed. (Third step) a step of heating the mixture or the intermediate substance to 500 to 3000 ° C. in an inert gas atmosphere such as nitrogen gas, carbon dioxide gas, argon gas or the like or a non-oxidizing atmosphere to obtain a carbonized substance. (Fourth step) (Steps to be performed as necessary) Steps of powder processing such as pulverization, crushing, and classification of the carbonized material.
【0045】第一工程の混合に際しては、溶媒を使用し
てもよいし、使用しなくてもよい。溶媒を使用する場合
は、その種類および量は特に制限されないが、上記使用
する有機化合物を溶解するか又は粘度を低下する様な溶
媒が好ましい。混合時の温度も特に制限されないが、例
えば室温から300℃以下、好ましくは室温から200
℃以下、より好ましくは室温から100℃以下が用いら
れる。第一工程において、有機化合物と電極用炭素材料
を混合することによって、電極用炭素材料の粉末粒子の
表面に有機化合物を付着させることができる。第2工程
の加熱温度は、通常300℃以上、好ましくは400℃
以上、更に好ましくは500℃以上であり、上限は特に
限定されないが3000℃以下、好ましくは2800℃
以下、さらに好ましくは、2500℃以下、特に好まし
くは1500℃以下である。第2工程は省略することも
可能であるが、通常は第2工程を行って中間物質を得た
後に、第3工程を行う。In the mixing in the first step, a solvent may or may not be used. When a solvent is used, the type and amount thereof are not particularly limited, but a solvent that dissolves the organic compound used or reduces the viscosity is preferable. The temperature at the time of mixing is also not particularly limited, but is, for example, from room temperature to 300 ° C. or lower, preferably from room temperature to 200 ° C.
C. or lower, more preferably room temperature to 100 C. or lower. In the first step, by mixing the organic compound and the electrode carbon material, the organic compound can be attached to the surfaces of the powder particles of the electrode carbon material. The heating temperature in the second step is usually 300 ° C. or higher, preferably 400 ° C.
The above is more preferably 500 ° C. or higher, and the upper limit is not particularly limited, but 3000 ° C. or lower, preferably 2800 ° C.
The temperature is more preferably 2500 ° C. or lower, particularly preferably 1500 ° C. or lower. Although the second step can be omitted, the third step is usually performed after the second step is performed to obtain an intermediate substance.
【0046】第3工程の加熱処理では、熱履歴温度条件
が重要である。その下限温度は有機化合物の種類や熱履
歴によって若干異なるが、通常は500℃以上、好まし
くは700℃以上、更に好ましくは900℃以上であ
る。上限温度は通常3000℃以下、好ましくは280
0℃以下、更に好ましくは2500℃以下、特に好まし
くは1500℃以下である。昇温速度、冷却速度、熱処
理時間などは目的に応じて任意に設定することができ
る。また、比較的低温領域で熱処理した後、所定の温度
に昇温することもできる。第4工程は、必要に応じて粉
砕、解砕、分球処理等を施して粉体加工する工程である
が、省略することも可能である。また、第4工程は、第
3工程の前に行うこともできるし、第3工程の前後両方
で行うこともできる。これらの工程に用いる反応機は回
分式でも連続式でもよい。また、一基でも複数基でもよ
い。In the heat treatment of the third step, the heat history temperature condition is important. The lower limit temperature is slightly different depending on the kind of organic compound and heat history, but is usually 500 ° C. or higher, preferably 700 ° C. or higher, more preferably 900 ° C. or higher. The upper limit temperature is usually 3000 ° C. or lower, preferably 280 ° C.
The temperature is 0 ° C. or lower, more preferably 2500 ° C. or lower, particularly preferably 1500 ° C. or lower. The heating rate, cooling rate, heat treatment time, and the like can be arbitrarily set according to the purpose. After the heat treatment in a relatively low temperature range, the temperature can be raised to a predetermined temperature. The fourth step is a step in which powder processing is performed by performing pulverization, crushing, spheroidization and the like as necessary, but can be omitted. Further, the fourth step can be performed before the third step, or both before and after the third step. The reactor used in these steps may be a batch type or a continuous type. In addition, one group or a plurality of groups may be used.
【0047】本発明の電極用複層構造炭素材料における
有機化合物由来の炭素質物の割合(以下「被覆率」とい
う)は通常0.1〜50重量%、好ましくは0.5〜2
5重量%、より好ましくは1〜15重量%、さらに好ま
しくは2〜10重量%となるように調整する。また、本
発明の電極用複層構造炭素材料は、体積基準平均粒径が
2〜70μm、好ましくは4〜40μm、より好ましく
は5〜35μm、さらに好ましくは7〜30μmであ
る。BET法を用いて測定した比表面積は例えば0.1
〜10m 2/g、好ましくは1〜10m2/g、更に好ま
しくは1〜7m2/g、特に好ましくは1〜4m2/gで
ある。さらに、本発明の電極用複層構造炭素材料は、C
uKα線を線源としたX線広角回折の回折図において、
核となる炭素質あるいは黒鉛質粒子の結晶化度を上回ら
ないことが好ましい。In the multilayer carbon material for an electrode of the present invention,
The ratio of carbonaceous matter derived from organic compounds (hereinafter referred to as “coverage”)
Is usually 0.1 to 50% by weight, preferably 0.5 to 2% by weight.
5% by weight, more preferably 1 to 15% by weight, even more preferably
Or 2 to 10% by weight. Also book
The multilayered carbon material for an electrode of the present invention has a volume-based average particle size.
2 to 70 μm, preferably 4 to 40 μm, more preferably
Is 5 to 35 μm, more preferably 7 to 30 μm.
You. The specific surface area measured using the BET method is, for example, 0.1
-10m Two/ G, preferably 1 to 10 mTwo/ G, more preferred
Or 1-7mTwo/ G, particularly preferably 1-4 mTwo/ G
is there. Further, the multilayered carbon material for an electrode of the present invention has C
In the diffractogram of X-ray wide angle diffraction using uKα ray as a source,
Exceeds the crystallinity of nucleated carbonaceous or graphitic particles
Preferably not.
【0048】本発明の電極用複層構造炭素材料は、波長
5145cm-1のアルゴンイオンレーザー光を用いたラ
マンスペクトル分析において、1580〜1620cm
-1の範囲に現れるピークPA(ピーク強度IA)に対す
る1350〜1370cm-1の範囲に現れるピークPB
(ピーク強度IB)の比「IB/IA」であらわされる
R値が、好ましくは0.1〜0.7、さらに好ましくは
0.20〜0.7、特に好ましくは0.25〜0.6で
ある。また、タップ密度は0.70〜1.40g/cm
3、好ましくは0.75〜1.40g/cm3、さらに好
ましくは0.85〜1.40g/cm3の範囲に制御す
ることが望ましい。複層構造化によって、電極用炭素材
料のタップ密度がさらに向上することもあり、かつ、そ
の形状がさらに丸みを導入する効果が現れることもあ
る。本発明の電極用炭素材料は粒子表面が荒れており、
本発明の電極用複層構造炭素材料に用いた場合、被覆し
た炭素質物との結着性が高まる効果も期待できる。The multi-layered carbon material for an electrode of the present invention was analyzed by Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145 cm −1 , at 1580 to 1620 cm 2.
-1 peak PB in the range of 1350-1370 cm -1 with respect to peak PA (peak intensity IA) appearing in the range of -1
The R value represented by the ratio “IB / IA” of (peak intensity IB) is preferably 0.1 to 0.7, more preferably 0.20 to 0.7, and particularly preferably 0.25 to 0.6. It is. The tap density is 0.70 to 1.40 g / cm.
3 , preferably 0.75 to 1.40 g / cm 3 , more preferably 0.85 to 1.40 g / cm 3 . With the multilayer structure, the tap density of the electrode carbon material may be further improved, and the shape may have an effect of further introducing roundness. The carbon material for an electrode of the present invention has a rough particle surface,
When used for the multi-layer structure carbon material for an electrode of the present invention, an effect of increasing the binding property with the coated carbonaceous material can be expected.
【0049】電極 本発明の電極用炭素材料または電極用複層構造炭素材料
を用いて、電極を製造することができる。特に本発明の
電極用複層構造炭素材料は、電極の製造に非常に好まし
く用いることができる。その製造方法は特に制限され
ず、一般に用いられている方法にしたがって製造するこ
とができる。典型的な方法として、電極用炭素材料また
は電極用複層構造炭素材料に結着剤や溶媒等を加えてス
ラリー状にし、得られたスラリーを銅箔等の金属製の集
電体の基板に塗布して乾燥する方法を挙げることができ
る。また、電極用炭素材料または電極用複層構造炭素材
料を塗布乾燥したものをロールプレス、圧縮成型器等に
より圧密化することによって極板の充填密度を向上さ
せ、単位体積当たりの電極量を増加させることができ
る。さらに電極用炭素材料または電極用複層構造炭素材
料を圧縮成形等の方法で電極の形状に成形することもで
きる。Electrode An electrode can be manufactured using the carbon material for an electrode or the multilayered carbon material for an electrode of the present invention. In particular, the multi-layered carbon material for an electrode of the present invention can be very preferably used for manufacturing an electrode. The production method is not particularly limited, and it can be produced according to a generally used method. As a typical method, a binder or a solvent is added to a carbon material for an electrode or a multilayer structure carbon material for an electrode to form a slurry, and the obtained slurry is applied to a metal current collector substrate such as a copper foil. A method of applying and drying can be given. In addition, by applying and drying the carbon material for electrode or multi-layer structure carbon material for electrode by roll press, compression molding machine, etc., the packing density of the electrode plate is improved and the amount of electrode per unit volume is increased. Can be done. Further, the carbon material for an electrode or the multilayered carbon material for an electrode can be formed into an electrode shape by a method such as compression molding.
【0050】電極製造に使用することができる結着剤と
しては、溶媒に対して安定な、ポリエチレン、ポリプロ
ピレン、ポリエチレンテレフタレート、芳香族ポリアミ
ド、セルロース等の樹脂系高分子、スチレン・ブタジエ
ンゴム、イソプレンゴム、ブタジエンゴム、エチレン・
プロピレンゴム等のゴム状高分子、スチレン・ブタジエ
ン・スチレンブロック共重合体、その水素添加物、,ス
チレン・エチレン・ブタジエン・スチレン共重合体,ス
チレン・イソプレン・スチレンブロック共重合体、その
水素添加物等の熱可塑性エラストマー状高分子、シンジ
オタクチック1,2−ポリブタジエン、エチレン・酢酸
ビニル共重合体、プロピレン・α−オレフィン(炭素数
2〜12)共重合体等の軟質樹脂状高分子、ポリフッ化
ビニリデン、フッ化ビニリデン・ヘキサクロロプロピレ
ン共重合体、ポリテトラフルオロエチレン、ポリテトラ
フルオロエチレン・エチレン共重合体等のフッ素系高分
子が挙げられ、さらにはリチウムイオンのイオン伝導性
を有する高分子組成物も挙げられる。Examples of the binder that can be used in the production of the electrode include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, and cellulose, styrene-butadiene rubber, and isoprene rubber that are stable to solvents. , Butadiene rubber, ethylene
Rubbery polymers such as propylene rubber, styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, hydrogenated products thereof Soft resinous polymers such as thermoplastic elastomeric polymers such as syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (2 to 12 carbon atoms) copolymer, and polyolefin. Fluorinated polymers such as vinylidene fluoride, vinylidene fluoride / hexachloropropylene copolymer, polytetrafluoroethylene, polytetrafluoroethylene / ethylene copolymer, and a polymer composition having lithium ion ionic conductivity Things are also mentioned.
【0051】イオン伝導性を有する高分子としては、ポ
リエチレンオキシド、ポリプロピレンオキシド等のポリ
エーテル系高分子化合物、ポリエーテル化合物の架橋体
高分子、ポリエピクロルヒドリン、ポリフォスファゼ
ン、ポリシロキサン、ポリビニルピロリドン、ポリビニ
リデンカーボネート、ポリアクリロニトリル等の高分子
化合物に、リチウム塩、またはリチウムを主体とするア
ルカリ金属塩を複合させた系、あるいはこれに炭酸プロ
ピレン、炭酸エチレン、γ−ブチロラクトン等の高い誘
電率を有する有機化合物と直鎖状カーボネート等低粘度
の有機化合物を配合した系を用いることができる。この
様な、イオン伝導性高分子組成物の室温におけるイオン
導電率は、好ましくは10-5s/cm以上、より好まし
くは10-3s/cm以上である。Examples of the polymer having ion conductivity include polyether polymer compounds such as polyethylene oxide and polypropylene oxide, crosslinked polymers of polyether compounds, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, and polyvinylidene. Carbonates, polyacrylonitrile and other high molecular compounds, lithium salts, or a composite system of lithium-based alkali metal salts, or organic compounds having a high dielectric constant such as propylene carbonate, ethylene carbonate, γ-butyrolactone And a low viscosity organic compound such as a linear carbonate. The ionic conductivity of such an ion-conductive polymer composition at room temperature is preferably 10 -5 s / cm or more, more preferably 10 -3 s / cm or more.
【0052】電極用炭素材料または電極用複層構造炭素
材料と結着剤との混合形式として、各種の形態をとるこ
とができる。例えば、両者の粒子が混合した形態、繊維
状の結着剤が炭素質物の粒子に絡み合う形で混合した形
態、または結着剤の層が炭素質物の粒子表面に付着した
形態などを挙げることができる。両者の混合割合は、電
極用炭素材料または電極用複層構造炭素材料に対して結
着材を0.1〜30重量%にするのが好ましく、0.5
〜10重量%にするのがより好ましい。30重量%以上
の結着材を添加すると電極の内部抵抗が大きくなり、逆
に0.1重量%以下では集電体と電極用炭素材料または
電極用複層構造炭素材料の結着性が劣る傾向にある。Various forms can be adopted as a mixed form of the electrode carbon material or the multilayer carbon material for the electrode and the binder. For example, a form in which both particles are mixed, a form in which a fibrous binder is entangled with the carbonaceous material particles, or a form in which a layer of the binder is attached to the surface of the carbonaceous material particles, and the like. it can. The mixing ratio of the two is preferably set to 0.1 to 30% by weight of the binder with respect to the electrode carbon material or the multi-layer structure carbon material for the electrode.
More preferably, the content is 10 to 10% by weight. When the binder is added in an amount of 30% by weight or more, the internal resistance of the electrode increases. On the other hand, in the case of 0.1% by weight or less, the binding property between the current collector and the carbon material for the electrode or the multilayer structure carbon material for the electrode is poor. There is a tendency.
【0053】本発明の電極用炭素材料または電極用複層
構造炭素材料からなる電極は、ロールプレスや圧縮成形
等を行うことによって圧密された電極上の活物質層の密
度(以下電極密度と呼ぶ)を0.5〜1.7g/c
m3、好ましくは0.7〜1.6g/cm3、さらに好ま
しくは0.7〜1.55g/cm3とすることにより高
効率放電や低温特性を損なうことなく電池の単位体積当
たりの容量を最大引き出すことができるようになる。こ
のとき、本発明の電極用炭素材料または電極用複層構造
炭素材料炭素材料は、粒子内部の結晶性が高いことで充
放電容量が高く、粒子の表面が荒れた状態すなわち粒子
の表面からエッジ部が露出している、あるいはエッジ部
の存在量が増えるような粒子形状(板状粒子の面と直角
方向に粉砕され粒子中の厚み方向が相対的厚くなった、
すなわちエッジ部の割合がふえた粒子形状)であること
で、電極用炭素材料または電極用複層構造炭素材料炭素
材料粒子へのリチウムイオンのドープまたは脱ドープさ
れる面積が増加する。また、タップ密度が高いこと、す
なわち炭素材料が球形に近いことで、電極中の空隙が閉
ざされることが少なく、従ってリチウムイオンの拡散が
よりスムースに行われることが考えられる。The electrode made of the carbon material for an electrode or the multi-layered carbon material for an electrode of the present invention has a density of an active material layer on the electrode which has been compacted by roll pressing or compression molding (hereinafter referred to as electrode density). ) From 0.5 to 1.7 g / c
m 3 , preferably 0.7 to 1.6 g / cm 3 , and more preferably 0.7 to 1.55 g / cm 3 , the capacity per unit volume of the battery without impairing high-efficiency discharge and low-temperature characteristics. Can be extracted to the maximum. At this time, the carbon material for an electrode or the multilayered carbon material for an electrode of the present invention has a high charge / discharge capacity due to the high crystallinity inside the particles, and the surface of the particles is rough, that is, from the surface of the particles to the edge. Part is exposed, or the particle shape such that the abundance of the edge part increases (pulverized in the direction perpendicular to the plane of the plate-like particle and the thickness direction in the particle becomes relatively thick,
That is, the area of the carbon material for the electrode or the carbon material particles for the multilayer structure carbon material for the electrode is increased by doping or undoping lithium ions into the carbon material particle for the electrode or the carbon material particle for the electrode. In addition, since the tap density is high, that is, the carbon material is nearly spherical, the voids in the electrode are less likely to be closed, so that diffusion of lithium ions can be performed more smoothly.
【0054】二次電池 本発明の電極用炭素材料および電極用複層構造炭素材料
は、電池の電極として有用である。特にリチウム二次電
池などの非水系二次電池の負極材料として極めて有用で
ある。例えば、上記の方法にしたがって作製した負極と
通常使用されるリチウムイオン電池用の金属カルコゲナ
イド系正極及びカーボネート系溶媒を主体とする有機電
解液を組み合わせて構成した非水系二次電池は、容量が
大きく、初期サイクルに認められる不可逆容量が小さ
く、急速充放電容量が高く、またサイクル特性が優れ、
高温下での放置における電池の保存性および信頼性も高
く、高効率放電特性および低温における放電特性に極め
て優れたものである。このような非水系二次電池を構成
する正極、電解液等の電池構成上必要な部材の選択につ
いては特に制限されない。以下において、非水系二次電
池を構成する部材の材料等を例示するが、使用し得る材
料はこれらの具体例に限定されるものではない。 Secondary Battery The carbon material for an electrode and the multilayered carbon material for an electrode of the present invention are useful as an electrode of a battery. In particular, it is extremely useful as a negative electrode material for non-aqueous secondary batteries such as lithium secondary batteries. For example, a non-aqueous secondary battery configured by combining an organic electrolyte mainly composed of a metal chalcogenide-based positive electrode and a carbonate-based solvent for a lithium ion battery and a negative electrode manufactured according to the above method has a large capacity. , The irreversible capacity observed in the initial cycle is small, the rapid charge and discharge capacity is high, and the cycle characteristics are excellent,
The battery has high storage stability and high reliability when left at high temperatures, and is extremely excellent in high-efficiency discharge characteristics and low-temperature discharge characteristics. There is no particular limitation on the selection of members necessary for the battery configuration, such as the positive electrode and the electrolyte, which constitute such a non-aqueous secondary battery. In the following, the materials and the like of the members constituting the non-aqueous secondary battery are exemplified, but the materials that can be used are not limited to these specific examples.
【0055】本発明の非水系二次電池を構成する正極に
は、例えば、リチウムコバルト酸化物、リチウムニッケ
ル酸化物、リチウムマンガン酸化物等のリチウム遷移金
属複合酸化物材料;二酸化マンガン等の遷移金属酸化物
材料;フッ化黒鉛等の炭素質材料などのリチウムを吸蔵
・放出可能な材料を使用することができる。具体的に
は、LiFeO2、LiCoO2、LiNiO2、LiM
n2O4およびこれらの非定比化合物、MnO2、Ti
S2、FeS2、Nb3S4、Mo3S4、CoS2、V
2O5、P2O5、CrO3、V3O3、TeO2、GeO2等
を用いることができる。正極の製造方法は特に制限され
ず、上記の電極の製造方法と同様の方法により製造する
ことができる。The positive electrode constituting the non-aqueous secondary battery of the present invention includes, for example, a lithium transition metal composite oxide material such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide; Oxide materials; materials that can occlude and release lithium, such as carbonaceous materials such as fluorinated graphite, can be used. Specifically, LiFeO 2 , LiCoO 2 , LiNiO 2 , LiM
n 2 O 4 and their non-stoichiometric compounds, MnO 2 , Ti
S 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V
2 O 5 , P 2 O 5 , CrO 3 , V 3 O 3 , TeO 2 , GeO 2 and the like can be used. The method for manufacturing the positive electrode is not particularly limited, and the positive electrode can be manufactured by the same method as the above-described method for manufacturing the electrode.
【0056】本発明で用いる正極集電体には、電解液中
での陽極酸化によって表面に不動態皮膜を形成する弁金
属またはその合金を用いるのが好ましい。弁金属として
は、IIIa、IVa、Va族(3B、4B、5B族)に属する
金属およびこれらの合金を例示することができる。具体
的には、Al、Ti、Zr、Hf、Nb、Taおよびこ
れらの金属を含む合金などを例示することができ、A
l、Ti、Taおよびこれらの金属を含む合金を好まし
く使用することができる。特にAlおよびその合金は軽
量であるためエネルギー密度が高くて望ましい。For the positive electrode current collector used in the present invention, it is preferable to use a valve metal or an alloy thereof which forms a passive film on the surface by anodic oxidation in an electrolytic solution. Examples of the valve metal include metals belonging to groups IIIa, IVa, and Va (groups 3B, 4B, and 5B) and alloys thereof. Specifically, Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified.
l, Ti, Ta and alloys containing these metals can be preferably used. In particular, Al and its alloys are desirable because of their light weight and high energy density.
【0057】本発明の非水系二次電池に使用する電解液
としては、非水系溶媒に溶質(電解質)を溶解したもの
を用いることができる。溶質としては、アルカリ金属塩
や4級アンモニウム塩などを用いることができる。具体
的には、LiClO4、LiPF6、LiBF4、LiC
F3SO3、LiN(CF3SO2)2、LiN(CF3CF
2SO2)2、LiN(CF3SO2)(C4F9SO2)、L
iC(CF3SO2)3からなる群から選択される1以上
の化合物を用いるのが好ましい。As the electrolytic solution used in the non-aqueous secondary battery of the present invention, a solution obtained by dissolving a solute (electrolyte) in a non-aqueous solvent can be used. As the solute, an alkali metal salt, a quaternary ammonium salt, or the like can be used. Specifically, LiClO 4 , LiPF 6 , LiBF 4 , LiC
F 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF
2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), L
It is preferable to use one or more compounds selected from the group consisting of iC (CF 3 SO 2 ) 3 .
【0058】非水系溶媒としては、エチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ビニレンカーボネート等の環状カーボネート、γ−ブチ
ロラクトンなどの環状エステル化合物;1,2−ジメト
キシエタン等の鎖状エーテル;クラウンエーテル、2−
メチルテトラヒドロフラン、1,2−ジメチルテトラヒ
ドロフラン、1,3−ジオキソラン、テトラヒドロフラ
ン等の環状エーテル;ジエチルカーボネート、エチルメ
チルカーボネート、ジメチルカーボネート等の鎖状カー
ボネートなどを用いることができる。溶質および溶媒は
それぞれ1種類を選択して使用してもよいし、2種以上
を混合して使用してもよい。これらの中でも非水系溶媒
が、環状カーボネートと鎖状カーボネートを含有するも
のが好ましい。As the non-aqueous solvent, ethylene carbonate, propylene carbonate, butylene carbonate,
Cyclic carbonates such as vinylene carbonate, cyclic ester compounds such as γ-butyrolactone; chain ethers such as 1,2-dimethoxyethane; crown ethers;
Cyclic ethers such as methyltetrahydrofuran, 1,2-dimethyltetrahydrofuran, 1,3-dioxolan, and tetrahydrofuran; and linear carbonates such as diethyl carbonate, ethylmethyl carbonate, and dimethyl carbonate can be used. One solute and one solvent may be selected and used, respectively, or two or more may be used as a mixture. Among these, those in which the non-aqueous solvent contains a cyclic carbonate and a chain carbonate are preferred.
【0059】本発明の非水系二次電池に使用するセパレ
ーターの材質や形状は特に制限されない。セパレーター
は正極と負極が物理的に接触しないように分離するもの
であり、イオン透過性が高く、電気抵抗が低いものであ
るのが好ましい。セパレータは電解液に対して安定で保
液性が優れた材料の中から選択するのが好ましい。具体
的には、ポリエチレン、ポリプロピレン等のポリオレフ
ィンを原料とする多孔性シートまたは不織布を用いて、
上記電解液を含浸させることができる。The material and shape of the separator used in the non-aqueous secondary battery of the present invention are not particularly limited. The separator separates the positive electrode and the negative electrode so that they do not come into physical contact with each other, and preferably has high ion permeability and low electric resistance. Preferably, the separator is selected from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties. Specifically, using a porous sheet or nonwoven fabric made of a polyolefin such as polyethylene or polypropylene as a raw material,
The above electrolyte can be impregnated.
【0060】非水系電解液、負極および正極を少なくと
も有する本発明の非水系電解液二次電池を製造する方法
は、特に限定されず通常採用されている方法の中から適
宜選択することができる。本発明の非水系電解液二次電
池には、非水系電解液、負極、正極の他に、必要に応じ
て、外缶、セパレータ、ガスケット、封口板、セルケー
スなどを用いることもできる。その製法は、例えば外缶
上に負極を乗せ、その上に電解液とセパレータを設け、
さらに負極と対向するように正極を乗せて、ガスケッ
ト、封口板と共にかしめて電池にすることができる。電
池の形状は特に制限されず、シート電極およびセパレー
タをスパイラル状にしたシリンダータイプ、ペレット電
極およびセパレータを組み合わせたインサイドアウト構
造のシリンダータイプ、ペレット電極およびセパレータ
を積層したコインタイプ等にすることができる。The method for producing the non-aqueous electrolyte secondary battery of the present invention having at least a non-aqueous electrolyte, a negative electrode and a positive electrode is not particularly limited, and can be appropriately selected from commonly employed methods. For the non-aqueous electrolyte secondary battery of the present invention, an outer can, a separator, a gasket, a sealing plate, a cell case, and the like can be used, if necessary, in addition to the non-aqueous electrolyte, the negative electrode, and the positive electrode. The manufacturing method is, for example, placing the negative electrode on the outer can, providing an electrolytic solution and a separator thereon,
Furthermore, the positive electrode is placed so as to face the negative electrode, and the battery can be caulked together with the gasket and the sealing plate. The shape of the battery is not particularly limited, and may be a cylinder type in which a sheet electrode and a separator are spirally formed, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked, and the like. .
【0061】[0061]
【実施例】以下に具体例を挙げて本発明をさらに具体的
に説明する。以下の具体例に示す材料、使用量、割合、
操作等は、本発明の趣旨から逸脱しない限り適宜変更す
ることができる。従って、本発明の範囲は、以下に示す
具体例に制限されるものではない。The present invention will be described more specifically with reference to specific examples. The materials, amounts, proportions,
The operation and the like can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples described below.
【0062】(実施例1)表1に記載される所定量の黒
鉛原料を表1に記載される処理条件で処理することによ
って18種類の電極用炭素材料を調製した。原料として
用いた黒鉛原料の種類は表3に記載されるとおりであ
る。調製した18種類の電極用炭素材料の物性を後述す
る測定方法により測定した結果を表1に示す。Example 1 18 kinds of carbon materials for electrodes were prepared by treating a predetermined amount of graphite raw material shown in Table 1 under the processing conditions shown in Table 1. The types of graphite raw materials used as raw materials are as shown in Table 3. Table 1 shows the results of measuring the physical properties of the 18 prepared carbon materials for electrodes by the measuring method described later.
【0063】[0063]
【表1】 [Table 1]
【0064】(実施例2)表2に記載される炭素材料3
kgと石油系タール1kgを、(株)マツボー社製のM
20型レーディゲミキサー(内容積20リットル)に投
入し、混練を行った。続いて、窒素雰囲気下にて700
℃まで昇温して脱タール処理した後に、1300℃まで
昇温して熱処理を行った。得られた熱処理物をピンミル
にて解砕し、粗粒子を除く目的で分級処理を行い、最終
的に13種類の電極用複層構造炭素材料を調製した。調
製した13種類の電極用複層構造炭素材料の物性を後述
する測定方法により測定した結果を表2に示す。(Example 2) Carbon material 3 described in Table 2
kg and 1 kg of petroleum-based tar are transferred from Matsubo M Co., Ltd.
The mixture was charged into a 20-type Reigeger mixer (internal volume: 20 liters) and kneaded. Then, 700 under nitrogen atmosphere
After the temperature was raised to 0 ° C. to remove the tar, a heat treatment was performed by increasing the temperature to 1300 ° C. The obtained heat-treated product was pulverized with a pin mill, and subjected to a classification treatment for the purpose of removing coarse particles. Finally, 13 types of multilayered carbon materials for electrodes were prepared. Table 2 shows the results obtained by measuring the physical properties of the 13 prepared multilayer structure carbon materials for electrodes by the measurement method described below.
【0065】[0065]
【表2】 [Table 2]
【0066】実施例1および2で用いた黒鉛材料の詳細
を以下の表3に示す。The details of the graphite materials used in Examples 1 and 2 are shown in Table 3 below.
【0067】[0067]
【表3】 [Table 3]
【0068】実施例1および2で調製した炭素材料の物
性測定方法を以下に示す。 (1)X線回折 電極用炭素材料に約15%のX線標準高純度シリコン粉
末を加えて混合し、得られた混合物を試料セルに詰め、
グラファイトモノクロメーターで単色化したCuKα線
を線源として反射式ディフラクトメーター法によって広
角X線回折曲線を測定し、学振法を用いて面間隔(d0
02)および結晶子サイズ(Lc)を求めた。 (2)ラマン分析 日本分光社製NR−1800を用いてラマンスペクトル
分析を行った。分析は、波長514.5nmのアルゴン
イオンレーザー光を用い、レーザーパワーを30mWに
設定し、露光時間を75秒に設定して行った。レーザー
パワーは、光源部において30mW、測定試料部におい
ては光源試料部間光路でのレーザー光減衰により18m
Wであった。測定セルへの試料充填は、電極用炭素材料
を自然落下させることで行い、測定はセル内のサンプル
表面にレーザー光を照射しながらセルをレーザー光と垂
直な面内で回転させながら行った。得られたラマンスペ
クトルの1580cm-1付近のピークPAの強度IA、
1360cm-1付近のピークPBの強度IBを測定し、
その強度比(R=IB/IA)と1580cm-1の付近
のピークの半値幅を測定した。また、1580cm-1の
付近のピークPAの面積(1480〜1680cm-1の
積分値)をYA、1360cm-1の付近のピークPBの
面積(1260〜1460cm-1の積分値)をYBと
し、その面積比の値G=YA/YBを測定した。The methods for measuring the physical properties of the carbon materials prepared in Examples 1 and 2 are described below. (1) X-ray diffraction X-ray standard high-purity silicon powder of about 15% is added to and mixed with the carbon material for an electrode, and the obtained mixture is packed in a sample cell.
A wide angle X-ray diffraction curve was measured by a reflection type diffractometer method using a CuKα ray monochromatized by a graphite monochromator as a radiation source, and the plane spacing (d0) was determined by the Gakushin method.
02) and crystallite size (Lc). (2) Raman analysis Raman spectrum analysis was performed using NR-1800 manufactured by JASCO Corporation. The analysis was performed by using argon ion laser light having a wavelength of 514.5 nm, setting the laser power to 30 mW, and setting the exposure time to 75 seconds. The laser power is 30 mW in the light source section, and 18 m in the measurement sample section due to laser light attenuation in the optical path between the light source and sample sections.
W. The sample was filled into the measurement cell by allowing the electrode carbon material to fall naturally, and the measurement was performed while irradiating the sample surface inside the cell with laser light and rotating the cell in a plane perpendicular to the laser light. The intensity IA of the peak PA near 1580 cm -1 of the obtained Raman spectrum,
Measure the intensity IB of the peak PB near 1360 cm -1 ,
The intensity ratio (R = IB / IA) and the half width of the peak near 1580 cm -1 were measured. Further, the area of the peak PA around the 1580 cm -1 (integrated value of 1480~1680cm -1) YA, (integral value of 1260~1460cm -1) area of the peak PB around the 1360 cm -1 to the YB, its The value of the area ratio G = YA / YB was measured.
【0069】(3)タップ密度 粉体密度測定器((株)セイシン企業社製タップデンサ
ーKYT−3000)を用い、電極用炭素材料が透過す
る篩として目開き300μmの篩を使用し、20cm3
のタップセルに粉体を落下させてセルを満杯に充填した
後、ストローク長10mmのタップを1000回行っ
て、その時のタップ密度を測定した。 (4)真密度 0.1%界面活性剤水溶液を使用し、ピクノメーターに
よる液相置換法によって測定した。 (5)BET比表面積 大倉理研社製AMS−8000を用い、予備乾燥のため
に350℃に加熱し、15分間窒素ガスを流した後、窒
素ガス吸着によるBET1点法によって測定した。 (6)平均粒径 界面活性剤であるポリオキシエチレン(20)ソルビタ
ンモノラウレートの2体積%水溶液(約1ml)を電極
用炭素材料に混合し、イオン交換水を分散媒としてレー
ザー回折式粒度分布計(堀場製作所社製LA−700)
にて体積基準の平均粒径(メジアン径)を測定した。[0069] (3) using the tap density powder density measuring instrument (Inc. Seishin Enterprise Co., Ltd. Tap Denser KYT-3000), using a mesh opening 300μm sieve as sieve electrode carbon material passes, 20 cm 3
After the powder was dropped into the tap cell of No. 1 to completely fill the cell, tapping with a stroke length of 10 mm was performed 1,000 times, and the tap density at that time was measured. (4) True density Using a 0.1% aqueous surfactant solution, the true density was measured by a liquid phase replacement method using a pycnometer. (5) BET specific surface area AMS-8000 manufactured by Okura Riken Co., Ltd. was heated to 350 ° C. for predrying, nitrogen gas was flowed for 15 minutes, and then measured by the BET one-point method by nitrogen gas adsorption. (6) Average particle size A 2% by volume aqueous solution (about 1 ml) of polyoxyethylene (20) sorbitan monolaurate as a surfactant is mixed with a carbon material for an electrode, and a laser diffraction particle size is obtained by using ion exchange water as a dispersion medium. Distribution meter (LA-700 manufactured by Horiba, Ltd.)
The average particle size (median diameter) on a volume basis was measured at.
【0070】(7)平均円形度 フロー式粒子像分析装置(東亜医用電子社製FPIA−
2000)を使用し、円相当径による粒径分布の測定お
よび円形度の算出を行った。分散媒としてイオン交換水
を使用し、界面活性剤としてポリオキシエチレン(2
0)ソルビタンモノラウレートを使用した。円相当径と
は、撮像した粒子像と同じ投影面積を持つ円(相当円)
の直径であり、円形度とは、相当円の周囲長を分子と
し、撮像された粒子投影像の周囲長を分母とした比率で
ある。測定した全粒子の円形度を平均し、平均円形度と
した。(7) Average circularity Flow type particle image analyzer (FPIA- manufactured by Toa Medical Electronics Co., Ltd.)
2000) was used to measure the particle size distribution based on the circle equivalent diameter and calculate the circularity. Ion-exchanged water is used as a dispersion medium, and polyoxyethylene (2
0) Sorbitan monolaurate was used. The circle equivalent diameter is a circle (equivalent circle) having the same projected area as the captured particle image
And the degree of circularity is a ratio of the perimeter of the equivalent circle as a numerator and the perimeter of the captured particle projection image as a denominator. The circularity of all the measured particles was averaged to obtain an average circularity.
【0071】(8)複層構造炭素材料の被覆率 複層構造炭素材料の被覆率は次式より求めた。(8) Coverage of Multi-layered Carbon Material The coverage of the multi-layered carbon material was determined by the following equation.
【数3】被覆率(重量%)=100−(K×D)/(N
×(K+T))×100 上式において、Kは炭素材料の重量(kg)、Tは石油
系タールの重量(kg)、Dは混練物の脱タール処理
(第2工程)前の重量(kg)、Nは熱処理(第3工
程)後の熱処理物の回収量(kg)を表す。## EQU3 ## Coverage (% by weight) = 100− (K × D) / (N
× (K + T)) × 100 In the above formula, K is the weight of the carbon material (kg), T is the weight of the petroleum tar (kg), and D is the weight (kg) of the kneaded material before the detar treatment (second step). ) And N represent the recovered amount (kg) of the heat-treated product after the heat treatment (third step).
【0072】(実施例3)調製した炭素材料を用いて半
電地を作成して、充放電性を試験した。 (1)半電池の作成 炭素材料5gに、ポリフッ化ビニリデン(PVdF)の
ジメチルアセトアミド溶液を固形分換算で10重量%加
えたものを撹拌し、スラリーを得た。このスラリーをド
クターブレード法で銅箔上に塗布し、80℃で予備乾燥
を行った。さらに電極密度が1.4g/cm3または
1.5g/cm3となるようにロールプレス機により圧
密化させたのち、直径12.5mmの円盤状に打ち抜
き、110℃で減圧乾燥をして電極とした。しかる後
に、電解液を含浸させたセパレーターを中心に電極とリ
チウム金属電極とを対向させたコインセルを作成し、充
放電試験を行った。電解液としては、エチレンカーボネ
ートとジエチルカーボネートを重量比2:8の比率で混
合した溶媒に過塩素酸リチウムを1.5モル/リットル
の割合で溶解させたものを使用した。Example 3 A semi-electric field was prepared using the prepared carbon material, and the charge and discharge properties were tested. (1) Preparation of Half Battery A 5% carbon material was added with a solution of polyvinylidene fluoride (PVdF) in dimethylacetamide at 10% by weight in terms of solid content, and the mixture was stirred to obtain a slurry. This slurry was applied on a copper foil by a doctor blade method, and pre-dried at 80 ° C. Further, after being compacted by a roll press machine so that the electrode density becomes 1.4 g / cm 3 or 1.5 g / cm 3 , it is punched into a disc having a diameter of 12.5 mm, and dried under reduced pressure at 110 ° C. And Thereafter, a coin cell in which an electrode and a lithium metal electrode were opposed to each other centering on a separator impregnated with an electrolytic solution was prepared, and a charge / discharge test was performed. As the electrolytic solution, a solution prepared by dissolving lithium perchlorate at a ratio of 1.5 mol / l in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a weight ratio of 2: 8 was used.
【0073】(2)不可逆容量の測定 電流密度0.16mA/cm2で0Vまで充電(電極へ
のリチウムイオンドープ)を行い、次いで電流密度0.
33mA/cm2で1.5Vまで放電(電極からのリチ
ウムイオン脱ドープ)させたときの一回目の充電容量か
ら一回目の放電容量を引いた値を不可逆容量とした。 (3)放電容量及び放電レート特性(急速放電特性)の
測定 電流密度0.16mA/cm2での0Vまでの充電およ
び電流密度0.33mA/cm2での1.5Vまでの放
電を3回繰り返し、その際の3回目の放電容量を「放電
容量」とした。次に、充電を電流密度0.16mA/c
m2で0Vまで行い、放電をそれぞれ電流密度2.8m
A/cm2、5.0mA/cm2で1.5Vまで行い、得
られた容量をそれぞれの電流密度2.8mA/cm2及
び5.0mA/cm2における放電容量とし、急速放電
特性の指標とした。これらの試験結果をまとめて以下の
表4に示す。(2) Measurement of irreversible capacity The battery was charged to 0 V at a current density of 0.16 mA / cm 2 (lithium ion doping of the electrode), and then the current density was increased to 0.
The value obtained by subtracting the first discharge capacity from the first charge capacity when discharging to 1.5 V at 33 mA / cm 2 (lithium ion undoping from the electrode) was defined as the irreversible capacity. (3) discharge capacity and discharge rate property (quick discharging characteristics) of the measured current density 0.16 mA / cm charging to 0V at 2 and current density 0.33 mA / cm 2 3 times the discharge to 1.5V at Repeatedly, the third discharge capacity at that time was defined as “discharge capacity”. Next, charging was performed at a current density of 0.16 mA / c.
It performed in m 2 to 0V, discharging each current density 2.8m
A / cm 2, carried out at 5.0 mA / cm 2 until 1.5V, and the discharge capacity obtained capacity at each current density 2.8 mA / cm 2 and 5.0 mA / cm 2, an indication of rapid discharge characteristics And The results of these tests are summarized in Table 4 below.
【0074】[0074]
【表4】 [Table 4]
【0075】(実施例4)実施例1で調製した電極用炭
素材料No.11を使用し、(株)セイシン企業社製風
力分級機「MC−100」を使用して、微粉25重量
%、粗粉22重量%をそれぞれ除去する条件で分級し
て、分級後の平均粒径=20.8μm、d002=0.
336nm、BET比表面積=5.3m2/g、タップ
密度=0.82g/cm3、Lc>100nm、真密度
=2.26g/cm3、ラマンR値=0.25、ラマン
1580半値幅=22.0cm-1の物性を有する電極用
炭素材料を得た。次いで、この電極用炭素材料を使用し
た以外は、実施例2と同様に実験を行って、以下の物性
を有する電極用複層構造炭素材料を得た。ラマンR値=
0.37、ラマン1580半値幅=29.5cm-1、タ
ップ密度=0.99g/cm3、BET比表面積=2.
3m2/g、平均粒径=24.6μm、被覆率=4.9
重量%。上記で得られた複層構造炭素材料を使用した以
外は、実施例3と同様にして半電池を作成して、充放電
性を試験した。その結果、電極密度=1.5g/c
m3、初回不可逆容量=17mAh/g、0.33A/
cm3放電容量=352mAh/g、2.8mA/cm3
急速放電容量=351mAh/g、5.0mA/cm3
急速放電容量=334mAh/g、と良好な特性を示し
た。Example 4 The electrode carbon material No. 1 prepared in Example 1 was used. 11 using an air classifier “MC-100” manufactured by Seishin Enterprise Co., Ltd. under the conditions of removing 25% by weight of fine powder and 22% by weight of coarse powder, respectively. Diameter = 20.8 μm, d002 = 0.
336 nm, BET specific surface area = 5.3 m 2 / g, tap density = 0.82 g / cm 3 , Lc> 100 nm, true density = 2.26 g / cm 3 , Raman R value = 0.25, Raman 1580 half width = An electrode carbon material having physical properties of 22.0 cm -1 was obtained. Next, an experiment was carried out in the same manner as in Example 2 except that this carbon material for an electrode was used, to obtain a multilayer carbon material for an electrode having the following physical properties. Raman R value =
0.37, Raman 1580 half width = 29.5 cm −1 , tap density = 0.99 g / cm 3 , BET specific surface area = 2.
3 m 2 / g, average particle size = 24.6 μm, coverage = 4.9
weight%. A half-cell was prepared in the same manner as in Example 3 except that the multilayer carbon material obtained above was used, and the charge / discharge property was tested. As a result, the electrode density = 1.5 g / c
m 3 , first irreversible capacity = 17 mAh / g, 0.33 A /
cm 3 discharge capacity = 352 mAh / g, 2.8 mA / cm 3
Rapid discharge capacity = 351 mAh / g, 5.0 mA / cm 3
The rapid discharge capacity was 334 mAh / g, indicating good characteristics.
【0076】[0076]
【発明の効果】本発明の電極用炭素材料、または、電極
用複層構造炭素材料を用いた電池は、容量(0.33m
A/cm3放電容量)が大きく、初期サイクルに認めら
れる不可逆容量が小さく、サイクルの容量維持率が優れ
ているという特徴を有する。さらに特に急速充放電性、
(5.0mA/cm3急速放電容量)が大きく改良され
る。また、高温下で放置したときの電池の保存性および
信頼性が高く、低温における放電特性も優れている。し
たがって、本発明の電極用炭素材料および複層構造炭素
材料は、リチウム電池をはじめとする電池の製造に有効
に利用することができる。The battery using the carbon material for an electrode or the multilayered carbon material for an electrode of the present invention has a capacity (0.33 m).
A / cm 3 discharge capacity), the irreversible capacity observed in the initial cycle is small, and the cycle capacity retention rate is excellent. More particularly rapid charge and discharge,
(5.0 mA / cm 3 rapid discharge capacity) is greatly improved. Further, the battery has high storage stability and reliability when left at high temperatures, and has excellent discharge characteristics at low temperatures. Therefore, the carbon material for an electrode and the multi-layer structure carbon material of the present invention can be effectively used for manufacturing batteries such as lithium batteries.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 CA00 CA05 CA06 CA07 CB02 CB08 CB09 CC01 5H003 AA02 AA03 BA01 BB01 BB02 BB12 BC05 BD00 BD02 BD03 BD05 5H029 AJ02 AJ03 AJ04 AK03 AK05 AK06 AL06 AL07 AM01 AM02 AM03 AM04 AM05 AM06 AM07 BJ02 BJ03 BJ14 CJ02 DJ16 DJ17 HJ02 HJ05 HJ07 HJ08 HJ13 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G046 CA00 CA05 CA06 CA07 CB02 CB08 CB09 CC01 5H003 AA02 AA03 BA01 BB01 BB02 BB12 BC05 BD00 BD02 BD03 BD05 5H029 AJ02 AJ03 AJ04 AK03 AK05 AK06 AL06 AL07 AM01 AM02 AM03 AM07 BJ03 BJ14 CJ02 DJ16 DJ17 HJ02 HJ05 HJ07 HJ08 HJ13
Claims (9)
間隔(d002)が0.337nm未満、結晶子サイズ
(Lc)が90nm以上、アルゴンイオンレーザーラマ
ンスペクトルにおける1580cm-1のピーク強度に対
する1360cm -1のピーク強度比であるR値が0.2
0以上、かつタップ密度が0.75g/cm3以上であ
ることを特徴とする電極用炭素材料。1. A (002) plane obtained by a wide-angle X-ray diffraction method
Spacing (d002) less than 0.337 nm, crystallite size
(Lc) 90 nm or more, argon ion laser llama
1580 cm in the spectrum-1Of peak intensity
1360cm -1R value which is the peak intensity ratio of 0.2
0 or more and tap density 0.75 g / cmThreeIs over
A carbon material for an electrode, characterized in that:
ことを特徴とする請求項1記載の電極用炭素材料。2. The carbon material for an electrode according to claim 1, wherein the true density is 2.21 g / cm 3 or more.
ることを特徴とする請求項1または2記載の電極用炭素
材料。3. The carbon material for an electrode according to claim 1, wherein the BET specific surface area is less than 18 m 2 / g.
徴とする請求項1〜3のいずれかに記載の電極用炭素材
料。4. The carbon material for an electrode according to claim 1, wherein the average particle size is 2 to 50 μm.
ルにおける1580cm -1のピークの半値幅が20cm
-1以上であることを特徴とする請求項1〜4のいずれか
に記載の電極用炭素材料。5. Argon ion laser Raman spectrum
1580cm -1The half width of the peak is 20 cm
-1The method according to any one of claims 1 to 4, wherein
The carbon material for an electrode according to 1.
料を有機化合物と混合した後、該有機化合物を炭素化す
ることによって製造される電極用複層構造炭素材料。6. A multi-layer carbon material for an electrode produced by mixing the carbon material according to claim 1 with an organic compound and then carbonizing the organic compound.
能な炭素質材料を含む負極、正極、および溶質と非水系
溶媒とからなる非水系電解液を有する非水系電解液二次
電池において、前記炭素質材料の少なくとも一部が請求
項1〜6のいずれかに記載の炭素質材料であることを特
徴とする非水系二次電池。7. A non-aqueous electrolyte secondary battery comprising a negative electrode, a positive electrode, and a non-aqueous electrolyte comprising a solute and a non-aqueous solvent, comprising a carbonaceous material capable of inserting and extracting lithium. A non-aqueous secondary battery, wherein at least a part of the carbonaceous material is the carbonaceous material according to claim 1.
LiBF4、LiCF3SO3、LiN(CF3SO2)2、
LiN(CF3CF2SO2)2、LiN(CF3SO2)
(C4F9SO2)、LiC(CF3SO2)3からなる群か
ら選択される1以上の化合物である請求項7に記載の非
水系二次電池。8. The method according to claim 1, wherein the solute is LiClO 4 , LiPF 6 ,
LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 ,
LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 )
(C 4 F 9 SO 2) , a non-aqueous secondary battery according to claim 7 which is 1 or more compounds selected from the group consisting of LiC (CF 3 SO 2) 3 .
ーボネートを含有することを特徴とする請求項7または
8に記載の非水系二次電池。9. The non-aqueous secondary battery according to claim 7, wherein the non-aqueous solvent contains a cyclic carbonate and a chain carbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32776899A JP3534391B2 (en) | 1998-11-27 | 1999-11-18 | Carbon material for electrode and non-aqueous secondary battery using the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33679698 | 1998-11-27 | ||
JP11-80904 | 1999-03-25 | ||
JP8090499 | 1999-03-25 | ||
JP10-336796 | 1999-03-25 | ||
JP32776899A JP3534391B2 (en) | 1998-11-27 | 1999-11-18 | Carbon material for electrode and non-aqueous secondary battery using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000340232A true JP2000340232A (en) | 2000-12-08 |
JP3534391B2 JP3534391B2 (en) | 2004-06-07 |
JP2000340232A5 JP2000340232A5 (en) | 2004-09-24 |
Family
ID=27303422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32776899A Expired - Lifetime JP3534391B2 (en) | 1998-11-27 | 1999-11-18 | Carbon material for electrode and non-aqueous secondary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3534391B2 (en) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001332263A (en) * | 2000-03-16 | 2001-11-30 | Sony Corp | Secondary battery and manufacturing method for negative electrode material of carbon |
WO2002056408A1 (en) * | 2001-01-04 | 2002-07-18 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic liquids and lithium secondary battery employing the same |
JP2003077534A (en) * | 2001-08-31 | 2003-03-14 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP2003077535A (en) * | 2001-08-31 | 2003-03-14 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP2003132889A (en) * | 2001-08-10 | 2003-05-09 | Kawasaki Steel Corp | Anode material for lithium ion secondary battery and its manufacturing method |
JP2003173778A (en) * | 2001-09-26 | 2003-06-20 | Kawasaki Steel Corp | Complex graphite material and its manufacturing method, as well as anode material for lithium ion secondary battery and lithium ion secondary battery |
JP2004134244A (en) * | 2002-10-10 | 2004-04-30 | Jfe Chemical Corp | Graphite particle, lithium ion secondary battery, negative electrode material for it, and negative electrode |
JP2004210634A (en) * | 2002-12-19 | 2004-07-29 | Jfe Chemical Corp | COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY |
JPWO2003012899A1 (en) * | 2001-07-31 | 2004-11-25 | 三井造船株式会社 | Method for producing positive electrode material for secondary battery and secondary battery |
JP2005093414A (en) * | 2003-03-10 | 2005-04-07 | Sanyo Electric Co Ltd | Lithium cell |
JP2005259570A (en) * | 2004-03-12 | 2005-09-22 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolytic solution primary battery |
JP2005302725A (en) * | 2004-04-12 | 2005-10-27 | Samsung Sdi Co Ltd | Negative electrode active material for lithium secondary battery, negative electrode including the same and lithium secondary battery |
JP2006044969A (en) * | 2004-08-02 | 2006-02-16 | Sumitomo Metal Ind Ltd | Carbon powder and manufacturing method thereof |
US7198871B2 (en) | 2002-08-21 | 2007-04-03 | Sanyo Electric, Co., Ltd. | Non-aqueous electrolyte secondary battery |
KR100704096B1 (en) * | 2002-12-19 | 2007-04-06 | 제이에프이 케미칼 가부시키가이샤 | Composite graphite particles and production method therefor, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this |
US7217475B2 (en) | 2002-10-10 | 2007-05-15 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
WO2007072858A1 (en) * | 2005-12-21 | 2007-06-28 | Showa Denko K. K. | Composite graphite particles and lithium rechargeable battery using the same |
JP2007220496A (en) * | 2006-02-17 | 2007-08-30 | Hitachi Vehicle Energy Ltd | Lithium secondary battery containing carboxylic acid anhydrous organic compound in electrolyte |
WO2007105780A1 (en) * | 2006-03-10 | 2007-09-20 | Power Systems Co., Ltd. | Positive electrode for electric double layer capacitors, and electric double layer capacitors |
JP2008016456A (en) * | 2004-01-05 | 2008-01-24 | Showa Denko Kk | Negative electrode material for lithium battery and lithium battery |
JP2008147153A (en) * | 2006-12-12 | 2008-06-26 | Samsung Sdi Co Ltd | Lithium secondary battery |
JP2009110968A (en) * | 2008-12-19 | 2009-05-21 | Jfe Chemical Corp | Graphite particle, lithium ion secondary battery, negative electrode material therefor, and negative electrode |
JP2009110972A (en) * | 2001-08-10 | 2009-05-21 | Jfe Chemical Corp | Negative electrode material for lithium ion secondary battery and its manufacturing method |
WO2009099029A1 (en) | 2008-02-04 | 2009-08-13 | Mitsubishi Chemical Corporation | Carbonaceous material having multilayer structure, process for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material |
KR100924650B1 (en) | 2007-02-08 | 2009-11-03 | 주식회사 엘지화학 | Lithium Secondary Battery of Improved High-Temperature Cycle Life Characteristics |
JP2010522968A (en) * | 2008-04-11 | 2010-07-08 | エル エス エムトロン リミテッド | Negative electrode active material for secondary battery, electrode for secondary battery including the same, and secondary battery |
WO2011016222A1 (en) * | 2009-08-05 | 2011-02-10 | パナソニック株式会社 | Non-aqueous electrolyte secondary cell |
JP2011173770A (en) * | 2010-02-25 | 2011-09-08 | Hitachi Chem Co Ltd | Graphite particle, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery |
JP2012004142A (en) * | 2002-06-05 | 2012-01-05 | Mitsubishi Chemicals Corp | Manufacturing method of carbon material for electrode |
JP2012049106A (en) * | 2010-05-12 | 2012-03-08 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte secondary battery |
US20120064403A1 (en) * | 2009-03-27 | 2012-03-15 | Mitsubishi Chemical Corporation | Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
WO2012035916A1 (en) * | 2010-09-17 | 2012-03-22 | Jx日鉱日石エネルギー株式会社 | Raw material charcoal composition for negative electrode material of lithium ion secondary battery |
JP2012084519A (en) * | 2010-09-16 | 2012-04-26 | Mitsubishi Chemicals Corp | Negative electrode material for nonaqueous electrolyte secondary battery and negative electrode using the same, and nonaqueous electrolyte secondary battery |
JP2012094505A (en) * | 2010-09-29 | 2012-05-17 | Mitsubishi Chemicals Corp | Carbon material for negative electrode of nonaqueous electrolyte secondary battery, method for producing same, negative electrode for nonaqueous secondary battery using same, and nonaqueous electrolyte secondary battery |
EP2560229A2 (en) | 2005-10-20 | 2013-02-20 | Mitsubishi Chemical Corporation | Lithium secondary batteries and nonaqueous electrolyte for use in the same |
US8388922B2 (en) | 2004-01-05 | 2013-03-05 | Showa Denko K.K. | Negative electrode material for lithium battery, and lithium battery |
WO2013051678A1 (en) * | 2011-10-06 | 2013-04-11 | 昭和電工株式会社 | Graphite material, method for producing same, carbon material for battery electrodes, and battery |
KR20130105806A (en) * | 2010-08-31 | 2013-09-26 | 가부시키가이샤 아데카 | Nonaqueous electrolyte secondary battery |
KR20140010406A (en) | 2011-03-30 | 2014-01-24 | 미쓰비시 가가꾸 가부시키가이샤 | Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery |
US8637177B2 (en) | 2009-03-18 | 2014-01-28 | Hitachi Maxell, Ltd. | Electrochemical device |
JP2014099419A (en) * | 2000-03-16 | 2014-05-29 | Sony Corp | Negative electrode and secondary battery |
JP2014231444A (en) * | 2013-05-28 | 2014-12-11 | Jsr株式会社 | Carbon material |
JP2014241302A (en) * | 2009-03-27 | 2014-12-25 | 三菱化学株式会社 | Negative electrode material for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery arranged by use thereof |
WO2015080203A1 (en) | 2013-11-27 | 2015-06-04 | 三菱化学株式会社 | Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery |
EP2709195A4 (en) * | 2011-05-13 | 2015-06-24 | Mitsubishi Chem Corp | Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery |
US9196922B2 (en) | 2007-02-08 | 2015-11-24 | Lg Chem, Ltd. | Lithium secondary battery of improved high-temperature cycle life characteristics |
KR20170030580A (en) | 2014-07-07 | 2017-03-17 | 미쓰비시 가가꾸 가부시키가이샤 | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
JP2019053873A (en) * | 2017-09-14 | 2019-04-04 | トヨタ自動車株式会社 | Lithium ion secondary battery, graphite for negative electrode of lithium ion secondary battery, and manufacturing method of graphite |
US11217783B2 (en) | 2017-12-22 | 2022-01-04 | Samsung Sdi Co., Ltd. | Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode |
WO2023037841A1 (en) | 2021-09-10 | 2023-03-16 | 三菱ケミカル株式会社 | Carbon material, method for producing carbon material, method for producing spherical carbon material, method for producing composite carbon material, and method for producing secondary battery |
KR20230156759A (en) | 2021-04-13 | 2023-11-14 | 미쯔비시 케미컬 주식회사 | Covered carbon materials, negative electrodes and secondary batteries |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4738553B2 (en) | 2009-10-22 | 2011-08-03 | 昭和電工株式会社 | Graphite material, carbon material for battery electrode, and battery |
JP5724199B2 (en) * | 2010-03-29 | 2015-05-27 | 三菱化学株式会社 | Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
JP5724825B2 (en) | 2010-10-29 | 2015-05-27 | 三菱化学株式会社 | Multi-layer structure carbon material for nonaqueous electrolyte secondary battery negative electrode, negative electrode for nonaqueous secondary battery, and lithium ion secondary battery |
WO2012133611A1 (en) * | 2011-03-29 | 2012-10-04 | 三菱化学株式会社 | Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery |
WO2012144618A1 (en) | 2011-04-21 | 2012-10-26 | 昭和電工株式会社 | Graphite/carbon mixed material, carbon material for battery electrodes, and battery |
EP2667436B1 (en) | 2011-04-21 | 2018-04-11 | Showa Denko K.K. | Graphite material, carbon material for battery electrodes, and batteries |
TWI430945B (en) | 2011-10-21 | 2014-03-21 | 昭和電工股份有限公司 | Graphite materials, battery electrodes with carbon materials and batteries |
KR101380730B1 (en) | 2011-10-21 | 2014-04-02 | 쇼와 덴코 가부시키가이샤 | Method for producing electrode material for lithium ion batteries |
KR101380259B1 (en) | 2011-10-21 | 2014-04-01 | 쇼와 덴코 가부시키가이샤 | Method for producing electrode material for lithium ion batteries |
CN104039697B (en) | 2012-06-29 | 2018-11-06 | 昭和电工株式会社 | carbon material, carbon material for battery electrode and battery |
WO2014058040A1 (en) | 2012-10-12 | 2014-04-17 | 昭和電工株式会社 | Carbon material, carbon material for battery electrode, and battery |
JP6535467B2 (en) | 2013-02-04 | 2019-06-26 | 昭和電工株式会社 | Graphite powder for lithium ion secondary battery negative electrode active material |
KR102228103B1 (en) * | 2013-03-26 | 2021-03-15 | 미쯔비시 케미컬 주식회사 | Carbonaceous material and nonaqueous secondary cell in which same is used |
KR101883678B1 (en) | 2013-07-29 | 2018-07-31 | 쇼와 덴코 가부시키가이샤 | Carbon material, cell electrode material, and cell |
KR101994801B1 (en) | 2015-02-09 | 2019-07-01 | 쇼와 덴코 가부시키가이샤 | Carbon material, production method thereof and use thereof |
US10388984B2 (en) | 2015-05-11 | 2019-08-20 | Showa Denko K.K | Method for producing graphite powder for negative electrode materials for lithium ion secondary batteries |
WO2022210745A1 (en) | 2021-03-30 | 2022-10-06 | 三菱ケミカル株式会社 | Coated carbon material, negative electrode and secondary battery |
-
1999
- 1999-11-18 JP JP32776899A patent/JP3534391B2/en not_active Expired - Lifetime
Cited By (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001332263A (en) * | 2000-03-16 | 2001-11-30 | Sony Corp | Secondary battery and manufacturing method for negative electrode material of carbon |
JP2014099419A (en) * | 2000-03-16 | 2014-05-29 | Sony Corp | Negative electrode and secondary battery |
WO2002056408A1 (en) * | 2001-01-04 | 2002-07-18 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic liquids and lithium secondary battery employing the same |
US7815888B2 (en) | 2001-07-31 | 2010-10-19 | Mitsui Engineering & Shipbuilding Co., Ltd. | Method of producing secondary battery cathode material, and secondary battery |
JPWO2003012899A1 (en) * | 2001-07-31 | 2004-11-25 | 三井造船株式会社 | Method for producing positive electrode material for secondary battery and secondary battery |
JP2003132889A (en) * | 2001-08-10 | 2003-05-09 | Kawasaki Steel Corp | Anode material for lithium ion secondary battery and its manufacturing method |
JP2010161081A (en) * | 2001-08-10 | 2010-07-22 | Jfe Chemical Corp | Anode material for lithium ion secondary battery and method for manufacturing the same |
JP2009110972A (en) * | 2001-08-10 | 2009-05-21 | Jfe Chemical Corp | Negative electrode material for lithium ion secondary battery and its manufacturing method |
JP2012227151A (en) * | 2001-08-10 | 2012-11-15 | Jfe Chemical Corp | Negative electrode material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode lithium ion secondary battery, and lithium ion secondary battery |
JP4672955B2 (en) * | 2001-08-10 | 2011-04-20 | Jfeケミカル株式会社 | Negative electrode material for lithium ion secondary battery and method for producing the same |
JP2003077535A (en) * | 2001-08-31 | 2003-03-14 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP2003077534A (en) * | 2001-08-31 | 2003-03-14 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP2003173778A (en) * | 2001-09-26 | 2003-06-20 | Kawasaki Steel Corp | Complex graphite material and its manufacturing method, as well as anode material for lithium ion secondary battery and lithium ion secondary battery |
JP4666876B2 (en) * | 2001-09-26 | 2011-04-06 | Jfeケミカル株式会社 | Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery |
JP2012004142A (en) * | 2002-06-05 | 2012-01-05 | Mitsubishi Chemicals Corp | Manufacturing method of carbon material for electrode |
US7198871B2 (en) | 2002-08-21 | 2007-04-03 | Sanyo Electric, Co., Ltd. | Non-aqueous electrolyte secondary battery |
JP2004134244A (en) * | 2002-10-10 | 2004-04-30 | Jfe Chemical Corp | Graphite particle, lithium ion secondary battery, negative electrode material for it, and negative electrode |
US7217475B2 (en) | 2002-10-10 | 2007-05-15 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
JP4672958B2 (en) * | 2002-10-10 | 2011-04-20 | Jfeケミカル株式会社 | Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode |
KR100704096B1 (en) * | 2002-12-19 | 2007-04-06 | 제이에프이 케미칼 가부시키가이샤 | Composite graphite particles and production method therefor, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this |
JP2004210634A (en) * | 2002-12-19 | 2004-07-29 | Jfe Chemical Corp | COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY |
JP2005093414A (en) * | 2003-03-10 | 2005-04-07 | Sanyo Electric Co Ltd | Lithium cell |
JP2008016456A (en) * | 2004-01-05 | 2008-01-24 | Showa Denko Kk | Negative electrode material for lithium battery and lithium battery |
US8388922B2 (en) | 2004-01-05 | 2013-03-05 | Showa Denko K.K. | Negative electrode material for lithium battery, and lithium battery |
JP2005259570A (en) * | 2004-03-12 | 2005-09-22 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolytic solution primary battery |
JP2005302725A (en) * | 2004-04-12 | 2005-10-27 | Samsung Sdi Co Ltd | Negative electrode active material for lithium secondary battery, negative electrode including the same and lithium secondary battery |
JP4693470B2 (en) * | 2004-04-12 | 2011-06-01 | 三星エスディアイ株式会社 | Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery |
US7781103B2 (en) | 2004-04-12 | 2010-08-24 | Samsung Sdi Co., Ltd. | Negative active material for lithium secondary battery and negative electrode and lithium secondary battery comprising same |
US8440352B2 (en) | 2004-04-12 | 2013-05-14 | Samsung Sdi Co., Ltd. | Negative active material for lithium secondary battery and negative electrode and lithium secondary battery comprising same |
US8110168B2 (en) | 2004-04-12 | 2012-02-07 | Samsung Sdi Co., Ltd. | Negative active material for lithium secondary battery and negative electrode and lithium secondary battery comprising same |
JP4604599B2 (en) * | 2004-08-02 | 2011-01-05 | 中央電気工業株式会社 | Carbon powder and manufacturing method thereof |
JP2006044969A (en) * | 2004-08-02 | 2006-02-16 | Sumitomo Metal Ind Ltd | Carbon powder and manufacturing method thereof |
EP2560229A2 (en) | 2005-10-20 | 2013-02-20 | Mitsubishi Chemical Corporation | Lithium secondary batteries and nonaqueous electrolyte for use in the same |
EP3557684A2 (en) | 2005-10-20 | 2019-10-23 | Mitsubishi Chemical Corporation | Lithium secondary batteries and nonaqueous electrolyte for use in the same |
EP3840101A1 (en) | 2005-10-20 | 2021-06-23 | Mitsubishi Chemical Corporation | Lithium secondary batteries and nonaqueous electrolyte for use in the same |
EP3217463A1 (en) | 2005-10-20 | 2017-09-13 | Mitsubishi Chemical Corporation | Lithium secondary batteries and nonaqueous electrolyte for use in the same |
WO2007072858A1 (en) * | 2005-12-21 | 2007-06-28 | Showa Denko K. K. | Composite graphite particles and lithium rechargeable battery using the same |
US8999580B2 (en) | 2005-12-21 | 2015-04-07 | Show A Denko K.K. | Composite graphite particles and lithium rechargeable battery using the same |
JP5225690B2 (en) * | 2005-12-21 | 2013-07-03 | 昭和電工株式会社 | Composite graphite particles and lithium secondary battery using the same |
JP2007220496A (en) * | 2006-02-17 | 2007-08-30 | Hitachi Vehicle Energy Ltd | Lithium secondary battery containing carboxylic acid anhydrous organic compound in electrolyte |
WO2007105780A1 (en) * | 2006-03-10 | 2007-09-20 | Power Systems Co., Ltd. | Positive electrode for electric double layer capacitors, and electric double layer capacitors |
US9088036B2 (en) | 2006-12-12 | 2015-07-21 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
JP2008147153A (en) * | 2006-12-12 | 2008-06-26 | Samsung Sdi Co Ltd | Lithium secondary battery |
US7923157B2 (en) | 2007-02-08 | 2011-04-12 | Lg Chem, Ltd. | Lithium secondary battery of improved high-temperature cycle life characteristics |
US9196922B2 (en) | 2007-02-08 | 2015-11-24 | Lg Chem, Ltd. | Lithium secondary battery of improved high-temperature cycle life characteristics |
KR100924650B1 (en) | 2007-02-08 | 2009-11-03 | 주식회사 엘지화학 | Lithium Secondary Battery of Improved High-Temperature Cycle Life Characteristics |
WO2009099029A1 (en) | 2008-02-04 | 2009-08-13 | Mitsubishi Chemical Corporation | Carbonaceous material having multilayer structure, process for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material |
JP2009209035A (en) * | 2008-02-04 | 2009-09-17 | Mitsubishi Chemicals Corp | Carbonaceous material having multilayer structure, method for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material |
EP3866230A1 (en) | 2008-02-04 | 2021-08-18 | Mitsubishi Chemical Corporation | Multi-layer structured carbonaceous material, process for producing the same, and nonaqueous secondary battery adopting the same |
KR101538191B1 (en) * | 2008-02-04 | 2015-07-20 | 미쓰비시 가가꾸 가부시키가이샤 | Carbonaceous material having multilayer structure, process for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material |
JP2010522968A (en) * | 2008-04-11 | 2010-07-08 | エル エス エムトロン リミテッド | Negative electrode active material for secondary battery, electrode for secondary battery including the same, and secondary battery |
JP2009110968A (en) * | 2008-12-19 | 2009-05-21 | Jfe Chemical Corp | Graphite particle, lithium ion secondary battery, negative electrode material therefor, and negative electrode |
US8637177B2 (en) | 2009-03-18 | 2014-01-28 | Hitachi Maxell, Ltd. | Electrochemical device |
US8974969B2 (en) * | 2009-03-27 | 2015-03-10 | Mitsubishi Chemical Corporation | Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
US20120064403A1 (en) * | 2009-03-27 | 2012-03-15 | Mitsubishi Chemical Corporation | Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
JP2014241302A (en) * | 2009-03-27 | 2014-12-25 | 三菱化学株式会社 | Negative electrode material for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery arranged by use thereof |
WO2011016222A1 (en) * | 2009-08-05 | 2011-02-10 | パナソニック株式会社 | Non-aqueous electrolyte secondary cell |
JP2011173770A (en) * | 2010-02-25 | 2011-09-08 | Hitachi Chem Co Ltd | Graphite particle, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery |
JP2012049106A (en) * | 2010-05-12 | 2012-03-08 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte secondary battery |
KR101874490B1 (en) * | 2010-08-31 | 2018-08-02 | 가부시키가이샤 아데카 | Nonaqueous electrolyte secondary battery |
KR20130105806A (en) * | 2010-08-31 | 2013-09-26 | 가부시키가이샤 아데카 | Nonaqueous electrolyte secondary battery |
JP2012084519A (en) * | 2010-09-16 | 2012-04-26 | Mitsubishi Chemicals Corp | Negative electrode material for nonaqueous electrolyte secondary battery and negative electrode using the same, and nonaqueous electrolyte secondary battery |
JP6030958B2 (en) * | 2010-09-17 | 2016-11-24 | Jxエネルギー株式会社 | Method for producing petroleum raw coke for negative electrode carbon material of lithium ion secondary battery and method for producing the same carbon material |
JPWO2012035916A1 (en) * | 2010-09-17 | 2014-02-03 | Jx日鉱日石エネルギー株式会社 | Raw material carbon composition for negative electrode material of lithium ion secondary battery |
WO2012035916A1 (en) * | 2010-09-17 | 2012-03-22 | Jx日鉱日石エネルギー株式会社 | Raw material charcoal composition for negative electrode material of lithium ion secondary battery |
KR101863386B1 (en) | 2010-09-29 | 2018-05-31 | 미쯔비시 케미컬 주식회사 | Carbon material for negative electrode of nonaqueous electrolyte secondary battery, method for producing same, negative electrode of nonaqueous secondary battery using same, and nonaqueous electrolyte secondary battery |
JP2012094505A (en) * | 2010-09-29 | 2012-05-17 | Mitsubishi Chemicals Corp | Carbon material for negative electrode of nonaqueous electrolyte secondary battery, method for producing same, negative electrode for nonaqueous secondary battery using same, and nonaqueous electrolyte secondary battery |
KR20140010406A (en) | 2011-03-30 | 2014-01-24 | 미쓰비시 가가꾸 가부시키가이샤 | Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery |
EP2709195A4 (en) * | 2011-05-13 | 2015-06-24 | Mitsubishi Chem Corp | Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery |
US8920765B2 (en) | 2011-10-06 | 2014-12-30 | Showa Denko K.K. | Graphite material, method for producing same, carbon material for battery electrodes, and battery |
CN103328378A (en) * | 2011-10-06 | 2013-09-25 | 昭和电工株式会社 | Graphite material, method for producing same, carbon material for battery electrodes, and battery |
JP5228141B1 (en) * | 2011-10-06 | 2013-07-03 | 昭和電工株式会社 | Graphite material, manufacturing method thereof, carbon material for battery electrode, and battery |
JP2013138025A (en) * | 2011-10-06 | 2013-07-11 | Showa Denko Kk | Graphite material, carbon material for battery electrode, and battery |
WO2013051678A1 (en) * | 2011-10-06 | 2013-04-11 | 昭和電工株式会社 | Graphite material, method for producing same, carbon material for battery electrodes, and battery |
JP2014231444A (en) * | 2013-05-28 | 2014-12-11 | Jsr株式会社 | Carbon material |
WO2015080203A1 (en) | 2013-11-27 | 2015-06-04 | 三菱化学株式会社 | Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery |
KR20220078728A (en) | 2014-07-07 | 2022-06-10 | 미쯔비시 케미컬 주식회사 | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
KR20230134615A (en) | 2014-07-07 | 2023-09-21 | 미쯔비시 케미컬 주식회사 | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
EP3731316A1 (en) | 2014-07-07 | 2020-10-28 | Mitsubishi Chemical Corporation | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
US11936044B2 (en) | 2014-07-07 | 2024-03-19 | Mitsubishi Chemical Corporation | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
KR20230134614A (en) | 2014-07-07 | 2023-09-21 | 미쯔비시 케미컬 주식회사 | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
KR20220026610A (en) | 2014-07-07 | 2022-03-04 | 미쯔비시 케미컬 주식회사 | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
KR20220076546A (en) | 2014-07-07 | 2022-06-08 | 미쯔비시 케미컬 주식회사 | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
KR20220077161A (en) | 2014-07-07 | 2022-06-08 | 미쯔비시 케미컬 주식회사 | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
KR20170030580A (en) | 2014-07-07 | 2017-03-17 | 미쓰비시 가가꾸 가부시키가이샤 | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
KR20220079703A (en) | 2014-07-07 | 2022-06-13 | 미쯔비시 케미컬 주식회사 | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
JP7140480B2 (en) | 2017-09-14 | 2022-09-21 | トヨタ自動車株式会社 | Lithium ion secondary battery, graphite material for negative electrode of the battery, and method for producing the same |
US10950860B2 (en) | 2017-09-14 | 2021-03-16 | Toyota Jidosha Kabushiki Kaisha | Graphite material for negative electrode of lithium ion secondary cell and method for producing the same |
JP2019053873A (en) * | 2017-09-14 | 2019-04-04 | トヨタ自動車株式会社 | Lithium ion secondary battery, graphite for negative electrode of lithium ion secondary battery, and manufacturing method of graphite |
US11217783B2 (en) | 2017-12-22 | 2022-01-04 | Samsung Sdi Co., Ltd. | Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode |
KR20230156759A (en) | 2021-04-13 | 2023-11-14 | 미쯔비시 케미컬 주식회사 | Covered carbon materials, negative electrodes and secondary batteries |
WO2023037841A1 (en) | 2021-09-10 | 2023-03-16 | 三菱ケミカル株式会社 | Carbon material, method for producing carbon material, method for producing spherical carbon material, method for producing composite carbon material, and method for producing secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP3534391B2 (en) | 2004-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3534391B2 (en) | Carbon material for electrode and non-aqueous secondary battery using the same | |
EP1005097B1 (en) | Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material | |
JP5943052B2 (en) | Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5476411B2 (en) | Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery | |
JP5268018B2 (en) | Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery | |
JP3193342B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6535467B2 (en) | Graphite powder for lithium ion secondary battery negative electrode active material | |
JP5407196B2 (en) | Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery | |
KR101538191B1 (en) | Carbonaceous material having multilayer structure, process for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material | |
JP3916012B2 (en) | Non-aqueous secondary battery electrode | |
KR20170103003A (en) | Carbon material and nonaqueous secondary battery using carbon material | |
JP5064728B2 (en) | Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery | |
JP6864250B2 (en) | Carbon material and non-aqueous secondary battery | |
WO2007086603A1 (en) | Negative electrode material for lithium ion secondary battery and process for producing the same | |
JP5772939B2 (en) | Carbon material for electrodes | |
WO2012133611A1 (en) | Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery | |
JP3945928B2 (en) | Method for producing carbon material for negative electrode of lithium ion secondary battery | |
JPH10284080A (en) | Lithium ion secondary battery | |
JP2012216520A (en) | Method for producing composite graphite particle for nonaqueous secondary battery and composite graphite particle produced by the method, negative electrode and nonaqueous secondary battery | |
JP4199813B2 (en) | Carbonaceous or graphite particles | |
JP7009049B2 (en) | Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it | |
JP4973247B2 (en) | Carbon material for electrodes | |
JP2013229343A (en) | Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery | |
JP7077721B2 (en) | Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries | |
JP5668661B2 (en) | Carbon material for electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040308 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3534391 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090319 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090319 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100319 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110319 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |