JP2000336486A - Substrate applied with catalytic nucleus, catalyzing treatment to substrate and electroless plating method - Google Patents

Substrate applied with catalytic nucleus, catalyzing treatment to substrate and electroless plating method

Info

Publication number
JP2000336486A
JP2000336486A JP14965199A JP14965199A JP2000336486A JP 2000336486 A JP2000336486 A JP 2000336486A JP 14965199 A JP14965199 A JP 14965199A JP 14965199 A JP14965199 A JP 14965199A JP 2000336486 A JP2000336486 A JP 2000336486A
Authority
JP
Japan
Prior art keywords
electroless
substrate
electroless plating
plating solution
conductive portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14965199A
Other languages
Japanese (ja)
Inventor
Masanobu Isaki
昌伸 伊崎
Hiroshi Hatase
博 畑瀬
Yoshiji Saijo
義司 西條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C Uyemura and Co Ltd
Osaka City
Panasonic Holdings Corp
Original Assignee
C Uyemura and Co Ltd
Osaka City
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C Uyemura and Co Ltd, Osaka City, Matsushita Electric Industrial Co Ltd filed Critical C Uyemura and Co Ltd
Priority to JP14965199A priority Critical patent/JP2000336486A/en
Priority to US09/580,557 priority patent/US6406750B1/en
Publication of JP2000336486A publication Critical patent/JP2000336486A/en
Priority to US10/120,393 priority patent/US6723679B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1889Multistep pretreatment with use of metal first

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To apply catalytic nuclei applying an electroless plating film in which an initial precipitating layer is dense, high in density and free from defects by adhering metallic catalytic grains composed of silver and palladium on the surface of the nonconductive part to be applied with electroless plating at the nuclear density equal to or above the specified one. SOLUTION: A substrate having a nonconductive part to be applied with electroless plating is subjected to sensitizing treatment with a bivalent tin ion soln., is thereafter subjected to Ag activating treatment and is finally subjected to Pd activating treatment, by which catalytic grains composed of Ag and Pd nuclei having <=1 nm grain size are adsorbed at the nuclear density of >=2000 nuclei/ μm2. Preferably, the average surface roughness of a metallic catalytic grain layer is controlled to <=0.5 nm, and the ratio between silver grains and palladium is controlled to the range from (1:10) to (10:1) by a weight ratio. As the electroless plating soln., each plating soln. of nickel, copper and zinc oxide is used. The substrate is the one in which a Ta, TaN or TiN film has been formed on the surface of a silicon substrate, and, as the plating soln., an electroless copper plating soln. is suitable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリント配線基板
上のCu回路形成、超LSIに用いられるSi上のCu
配線プロセス等の電子部品回路形成や、コンピュータ用
ハードディスクに使われる無電解Ni−Pめっきによる
ハードディスク下地層形成、あるいは液晶ディスプレイ
の透明電極や太陽電池用などの透明半導電体電極の形成
などに有用な触媒核が付与された基体及び基体の触媒化
処理方法並びに無電解めっき方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the formation of a Cu circuit on a printed circuit board,
Useful for circuit formation of electronic parts such as wiring process, formation of hard disk base layer by electroless Ni-P plating used for hard disk for computer, or formation of transparent electrode of liquid crystal display and transparent semiconductive electrode for solar cell etc. The present invention relates to a substrate provided with a catalytic nucleus, a method for catalyzing the substrate, and an electroless plating method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
携帯電話やノート型パソコン等の小サイズ化や高性能化
による電子部品回路の高集積化に伴い、原子レベルで欠
陥のない無電解めっきが必要となってきている。非導電
性基板上に無電解めっき技術を用いて回路を形成させる
方法としては、金属パラジウムを被めっき物に吸着させ
た後、無電解めっきを施す方法が行われている。
2. Description of the Related Art In recent years,
2. Description of the Related Art With the high integration of electronic component circuits due to miniaturization and high performance of mobile phones and notebook computers, electroless plating free of defects at the atomic level has become necessary. As a method of forming a circuit on a non-conductive substrate by using an electroless plating technique, a method of adsorbing metallic palladium to an object to be plated and then performing an electroless plating method is performed.

【0003】しかしながら、従来のPd触媒は、触媒の
粒子サイズが大きく、吸着する触媒の核密度も低いもの
である。この触媒液により得られる無電解めっき皮膜
は、初期析出の核密度が低く、初期析出層に多くの欠陥
を有するものであり、これに代わる初期析出層に欠陥の
ない無電解めっき皮膜が望まれている。
[0003] However, the conventional Pd catalyst has a large particle size of the catalyst and a low core density of the adsorbed catalyst. The electroless plating film obtained by this catalyst solution has a low initial deposition nucleus density and has many defects in the initial deposition layer. An electroless plating film having no defect in the initial deposition layer instead of this is desired. ing.

【0004】本発明は上記要望に応えたもので、初期析
出層が緻密で高密度な欠陥のない無電解めっき皮膜を与
えることができる触媒核が付与された基体、基体の無電
解めっきすべき非導電部にかかる触媒核を付与すること
ができる基体の触媒化処理方法、及びこのように触媒核
が付与された基体に対する無電解めっき方法を提供する
ことを目的とする。
[0004] The present invention meets the above-mentioned demands and provides a substrate provided with a catalyst nucleus capable of providing an electroless plating film having a dense initial deposition layer and a high density without defects, and an electroless plating of the substrate. It is an object of the present invention to provide a method for catalyzing a substrate to which a catalyst nucleus can be applied to a non-conductive portion, and an electroless plating method for the substrate to which the catalyst nucleus has been applied.

【0005】[0005]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは、上記目的を達成するため鋭意検討を重ねた
結果、第1錫イオン(Sn2+)を含有するセンシタイジ
ング溶液を用いてセンシタイジング処理を行った後、銀
イオンを含有する活性化剤とパラジウムイオンを含有す
る活性化剤を併用し、最終的にパラジウムイオンを含有
する活性化剤に浸漬することで、非導電性基体上に微細
な触媒粒子が高密度に吸着することを見出し、この触媒
化処理方法を用いて無電解めっきを施すことで、初期析
出層に欠陥のない無電解めっき皮膜が得られることを知
見した。
Means for Solving the Problems and Embodiments of the Invention The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that a sensitizing solution containing stannous ions (Sn 2+ ). After performing a sensitizing treatment using, by using an activator containing silver ions and an activator containing palladium ions in combination, and finally immersed in an activator containing palladium ions, We find that fine catalyst particles are adsorbed at high density on a non-conductive substrate, and by applying electroless plating using this catalyzing treatment method, an electroless plating film with no defects in the initial deposition layer can be obtained. I found that.

【0006】即ち、触媒の粒子サイズ及び核密度と、無
電解めっき皮膜の初期核密度及び初期析出層との関係を
検討した例は殆どないが、触媒の粒子サイズと核密度が
無電解めっき皮膜の初期析出状態に大きく影響を与える
ことが本間らによって報告されている[J.Elect
rochem.Soc.,144,4123(199
7)]。しかし、従来の方法では、触媒核密度は多くて
も1500核(個)/μm2程度であり、また触媒粒子
径も一般に4nm以上であり、平滑なガラス表面に形成
した触媒層の平均粗さも1nm以上であったものであ
る。ところが、上記のように銀イオンを含有する活性化
剤とパラジウムイオンを含有する活性化剤を用いて触媒
付与処理を行うこと、この場合、特には上記センシタイ
ジング処理と銀イオンを含有する活性化剤による処理と
を複数回繰り返し、次いでパラジウムイオンを含有する
活性化剤による処理を行うことにより、触媒核密度を2
000核(個)/μm2以上とすることができ、触媒粒
子径を2nm以下、特に1nm以下とすることが可能に
なると共に、触媒層の平均粗さを0.5nm以下とする
ことができることを見出したものである。
[0006] That is, although there is hardly any study on the relationship between the particle size and the core density of the catalyst and the initial nucleus density and the initial deposition layer of the electroless plating film, the particle size and the nuclei density of the electroless plating film are not considered. It has been reported by Honma et al. To have a significant effect on the initial precipitation state of [J. Elect
rochem. Soc. , 144, 4123 (199
7)]. However, in the conventional method, the catalyst core density is at most about 1500 nuclei (particles) / μm 2 , the catalyst particle diameter is generally 4 nm or more, and the average roughness of the catalyst layer formed on the smooth glass surface is also low. It was 1 nm or more. However, performing the catalyst imparting treatment using an activator containing silver ions and an activator containing palladium ions as described above, in this case, in particular, the sensitizing treatment and the activity containing silver ions The treatment with the activator is repeated a plurality of times, and then the treatment with the activator containing palladium ions is carried out to reduce the catalyst core density to 2
000 nuclei (particles) / μm 2 or more, the catalyst particle diameter can be made 2 nm or less, particularly 1 nm or less, and the average roughness of the catalyst layer can be made 0.5 nm or less. Is found.

【0007】そして、これにより、Si下地上のバリア
膜であるTa、TaN又はTiN上に〔111〕配向性
を有し、Ta、TaN、TiNへの密着性に優れ、初期
析出層が緻密で欠陥のない無電解Cuめっき膜でシード
層を形成した超LSIチップ基板、プリント配線基板上
に垂直成長性と密着性に優れ、かつ、スルホール内への
均一析出性に優れた無電解Cuめっきを形成したビルド
アッププリント配線基板、結晶化ガラス基板上に密着性
に優れ、初期析出層が緻密かつ高密度である無電解Ni
−Pめっきを形成することで、皮膜表面にノジュールや
ピットの欠陥がなく、平滑性が向上したコンピュータ用
ハードディスク基板、透明基板上に無電解的に酸化亜鉛
皮膜を形成することにより、透明性に優れ、皮膜に黄色
味のない無色透明の液晶ディスプレイの透明電極、太陽
電池用の透明半導電体電極などが得られることを知見
し、本発明をなすに至った。
As a result, it has a [111] orientation on Ta, TaN or TiN which is a barrier film on the Si underlayer, has excellent adhesion to Ta, TaN, and TiN, and has a dense initial deposition layer. Electroless Cu plating with excellent vertical growth and adhesion and excellent uniform deposition in through holes on ultra LSI chip substrates and printed wiring boards with a seed layer formed by defect-free electroless Cu plating film. Electroless Ni with excellent adhesion on the formed build-up printed wiring board and crystallized glass substrate, and a dense and high-density initial deposition layer
-By forming P plating, there is no nodule or pit defect on the surface of the film, and the electroless zinc oxide film is formed electrolessly on the hard disk substrate for computers and the transparent substrate with improved smoothness, and the transparency is improved. The present inventors have found that a transparent electrode of a colorless and transparent liquid crystal display which is excellent and has no yellowish film can be obtained, and a transparent semiconductive electrode for a solar cell can be obtained.

【0008】従って、本発明は、下記の基体、触媒化処
理方法、及び無電解めっき方法を提供する。 請求項1:銀及びパラジウムからなる金属触媒粒子が無
電解めっきすべき非導電部表面に2000核/μm2
上の核密度で付着されてなる基体。 請求項2:付着した金属触媒粒子層の平均表面粗さが
0.5nm以下である請求項1記載の基体。 請求項3:銀粒子とパラジウムとの比率が重量割合で
1:10〜10:1である請求項1又は2記載の基体。 請求項4:無電解めっきすべき非導電部を有する基体を
2価の錫イオンを含有するセンシタイジング溶液でセン
シタイジング処理した後、銀イオンを含有する活性化剤
に浸漬するAg活性化処理を行い、最後にパラジウムイ
オンを含有する活性化剤に浸漬するPd活性化処理を行
うことにより、粒子径1nm以下のAg及びPd核から
なる触媒粒子を上記非導電部に2000核/μm2以上
の核密度で吸着することができることを特徴とする基体
の触媒化処理方法。 請求項5:上記センシタイジング処理とAg活性化処理
とを複数回繰り返す請求項4記載の処理方法。 請求項6:請求項4又は5記載の処理方法により無電解
めっきすべき表面に金属触媒粒子が付着された非導電部
を有する基体を無電解めっき液に浸漬することを特徴と
する無電解めっき方法。 請求項7:無電解めっき液が無電解ニッケルめっき液、
無電解銅めっき液、又は無電解酸化亜鉛めっき液である
請求項6記載の無電解めっき方法。 請求項8:無電解めっきすべき非導電部を有する基体が
シリコン基板表面にTa、TaN又はTiN膜が形成さ
れたものであり、無電解めっき液が無電解銅めっき液で
ある請求項6記載の無電解めっき方法。 請求項9:無電解めっきすべき非導電部を有する基体が
スルホールを有し、該スルホール周壁部が無電解めっき
すべき非導電部であるプリント配線基板であり、無電解
めっき液が無電解銅めっき液である請求項6記載の無電
解めっき方法。 請求項10:無電解めっきすべき非導電部を有する基体
が結晶化ガラス基板であり、無電解めっき液が無電解ニ
ッケルめっき液である請求項6記載の無電解めっき方
法。 請求項11:無電解めっきすべき非導電部を有する基体
が透明基板であり、無電解めっき液が無電解酸化亜鉛め
っき液である請求項6記載の無電解めっき方法。
Accordingly, the present invention provides the following substrate, catalyzing treatment method, and electroless plating method. Claim 1: A substrate comprising metal catalyst particles made of silver and palladium adhered to the surface of a non-conductive portion to be electrolessly plated at a nucleus density of 2000 nuclei / μm 2 or more. In another preferred embodiment, the substrate has an average surface roughness of 0.5 nm or less. In a preferred embodiment, the weight ratio of silver particles to palladium is 1:10 to 10: 1. Claim 4: Ag activation in which a substrate having a non-conductive part to be electrolessly plated is subjected to a sensitizing treatment with a sensitizing solution containing divalent tin ions and then immersed in an activator containing silver ions. By performing a Pd activation treatment by immersing the catalyst particles in a palladium ion-containing activator, the catalyst particles composed of Ag and Pd nuclei having a particle diameter of 1 nm or less are 2,000 nuclei / μm 2. A method for catalytically treating a substrate, characterized in that the substrate can be adsorbed at the above nuclear density. In a preferred embodiment, the sensitizing process and the Ag activation process are repeated a plurality of times. (6) An electroless plating method comprising immersing a substrate having a non-conductive portion having metal catalyst particles adhered to the surface to be electrolessly plated in an electroless plating solution by the processing method according to the above (4) or (5). Method. Claim 7: The electroless plating solution is an electroless nickel plating solution,
The electroless plating method according to claim 6, which is an electroless copper plating solution or an electroless zinc oxide plating solution. In another preferred embodiment, the substrate having a non-conductive portion to be electrolessly plated has a Ta, TaN or TiN film formed on the surface of a silicon substrate, and the electroless plating solution is an electroless copper plating solution. Electroless plating method. In another preferred embodiment, the base having the non-conductive portion to be electrolessly plated has a through hole, and the peripheral wall of the through hole is a non-conductive portion to be electrolessly plated, and the electroless plating solution is electroless copper. The electroless plating method according to claim 6, which is a plating solution. In a preferred embodiment, the substrate having a non-conductive portion to be electrolessly plated is a crystallized glass substrate, and the electroless plating solution is an electroless nickel plating solution. In a preferred embodiment, the substrate having a non-conductive portion to be electrolessly plated is a transparent substrate, and the electroless plating solution is an electroless zinc oxide plating solution.

【0009】以下、本発明につき更に詳しく説明する。
本発明に係る高密度触媒化処理方法は、無電解めっきす
べき非導電部を有する基体を2価の錫イオンを含有する
センシタイジング溶液でセンシタイジング処理した後、
銀イオンを含有する活性化剤に浸漬するAg活性化処理
を行い、最後にパラジウムイオンを含有する活性化剤に
浸漬するPd活性化処理を行って、上記非導電部に銀及
びパラジウム核からなる金属触媒粒子を付着するもので
ある。
Hereinafter, the present invention will be described in more detail.
The high-density catalyzing treatment method according to the present invention comprises, after subjecting a substrate having a non-conductive portion to be subjected to electroless plating to a sensitizing solution containing a divalent tin ion,
An Ag activation process of immersing in an activator containing silver ions is performed, and finally a Pd activation process of immersing in an activator containing palladium ions is performed. This is for attaching metal catalyst particles.

【0010】この場合、上記基体としては、ガラス、プ
ラスチック、セラミックなどの非導電性基材が挙げら
れ、これらの複合体であっても、またこれらの非導電性
基材と金属との複合体であってもよく、表面全面又は表
面の所定箇所が無電解めっきすべき非導電性部分とされ
ているものである。
In this case, examples of the substrate include non-conductive substrates such as glass, plastic, and ceramics, and a composite thereof, or a composite of these non-conductive substrate and metal. The entire surface or a predetermined portion of the surface is a non-conductive portion to be subjected to electroless plating.

【0011】これらの基体を触媒化処理して無電解めっ
き皮膜を形成する場合、以下の処理工程で行うことが好
ましい。なお、各工程間は水洗を行う。 (1)洗 浄:公知の脱脂処理条件で処理することが
できる。 (2)表面調整:公知の表面調整剤を使用して、素材表
面に電荷を付与する。 (3)センシタイジング:公知の錫イオンを含有する溶
液に浸漬してセンシタイジングを行う。 (4)触媒化処理:銀イオンを主として含む活性化剤
で活性化を行う。上記の(3),(4)工程を必要によ
り複数回繰り返してもよい。 (5)触媒化処理:パラジウムイオンを含有する活性
化剤で活性化を行う。上記の(4),(5)工程を必要
により複数回繰り返してもよい。 (6)無電解めっき
In the case where these substrates are catalyzed to form an electroless plating film, it is preferable to carry out the following processing steps. Note that washing is performed between each step. (1) Washing: treatment can be performed under known degreasing treatment conditions. (2) Surface conditioning: Using a known surface conditioning agent, a charge is imparted to the surface of the material. (3) Sensitizing: Sensitizing is performed by immersing in a solution containing a known tin ion. (4) Catalytic treatment: Activation is performed with an activator mainly containing silver ions. The above steps (3) and (4) may be repeated a plurality of times as necessary. (5) Catalytic treatment: Activation is performed with an activator containing palladium ions. The above steps (4) and (5) may be repeated a plurality of times as necessary. (6) Electroless plating

【0012】この場合、上記表面調整剤としては、主成
分としてカチオン界面活性剤あるいはカチオン性高分子
化合物を1〜50g/L含有する水溶液を使用すること
ができ、10〜60℃で1〜10分間浸漬処理すること
ができる。
In this case, as the surface conditioning agent, an aqueous solution containing 1 to 50 g / L of a cationic surfactant or a cationic polymer compound as a main component can be used. It can be immersed for minutes.

【0013】また、上記センシタイジング処理に用いる
センシタイジング溶液としては、SnCl2、SnSO4
等の2価の錫塩を塩酸、硫酸等の酸溶液に溶解した、2
価の錫イオンを1〜50g/L含有し、pHが1〜3で
ある溶液を使用し、10〜60℃で10秒〜5分、好ま
しくは30秒〜2分間浸漬処理することが好適である。
The sensitizing solution used in the sensitizing treatment includes SnCl 2 , SnSO 4
Is dissolved in an acid solution such as hydrochloric acid or sulfuric acid.
It is suitable to use a solution containing 1 to 50 g / L of tin ions having a valence of 1 to 3 and a pH of 1 to 3 and immersing at 10 to 60 ° C. for 10 seconds to 5 minutes, preferably 30 seconds to 2 minutes. is there.

【0014】本発明において、上記工程(4)で用いる
銀イオンを含有する活性化剤としては、銀イオン0.0
001〜0.5モル/L、特に0.001〜0.1モル
/Lであるものが好ましい。
In the present invention, the activator containing a silver ion used in the above step (4) may be silver ion 0.0
It is preferably from 001 to 0.5 mol / L, particularly preferably from 0.001 to 0.1 mol / L.

【0015】この場合、銀イオンの供給源としては、硫
酸銀、亜硫酸銀、硝酸銀、チオ硫酸銀、メタンスルホン
酸銀などが使用できるが、これに限定されるものではな
い。上記銀イオンを主成分とする溶液には、2価の金属
イオンを混合することで活性化の性能を向上することが
できる。
In this case, as a supply source of silver ions, silver sulfate, silver sulfite, silver nitrate, silver thiosulfate, silver methanesulfonate and the like can be used, but it is not limited thereto. Activation performance can be improved by mixing a divalent metal ion with the solution containing silver ions as a main component.

【0016】この例としては、Niイオン、Coイオ
ン、鉄イオン、亜鉛イオン、銅イオンなどが好適に使用
できる。これらの使用濃度は上記銀イオンと同様であ
る。なお、上記銀イオンに対するアニオンは、硫酸イオ
ン、硝酸イオン、ハロゲンイオン、メタンスルホン酸イ
オン等が好適に使用されるが、特に限定されない。ま
た、pHは5〜11程度が適当である。
As this example, Ni ion, Co ion, iron ion, zinc ion, copper ion and the like can be preferably used. These concentrations are the same as those of the silver ions. As the anion for the silver ion, a sulfate ion, a nitrate ion, a halogen ion, a methanesulfonate ion and the like are preferably used, but are not particularly limited. The pH is suitably about 5 to 11.

【0017】本発明の銀を主成分とする溶液の液温は、
広い範囲で設定できるが、通常は15〜60℃とするこ
とが好ましい。また、これらの活性化剤への浸漬時間も
適宜選択できるが、10秒〜5分、好ましくは30秒〜
2分間浸漬処理することが好適である。
The solution temperature of the silver-based solution of the present invention is:
Although it can be set in a wide range, it is usually preferable to be 15 to 60 ° C. Also, the immersion time in these activators can be appropriately selected, but is preferably 10 seconds to 5 minutes, and more preferably 30 seconds to
It is preferable to perform the immersion treatment for 2 minutes.

【0018】上記工程(5)で用いるパラジウムを含有
する活性化剤としては、PdCl2、PdSO4等の2価
のパラジウム塩を塩酸、硫酸等の酸溶液に溶解し、2価
のPdイオンを0.01〜1g/L含有し、pHが1〜
3である溶液を使用し、10〜60℃で1秒〜5分間、
好ましくは1秒〜1分間浸漬処理することが好ましい。
長時間浸漬しすぎると、Pdの塊粒化が生じるおそれが
あり、初期析出層の緻密化が達成されないおそれがあ
る。
As the palladium-containing activator used in the above step (5), a divalent palladium salt such as PdCl 2 or PdSO 4 is dissolved in an acid solution such as hydrochloric acid or sulfuric acid to form a divalent Pd ion. 0.01 to 1 g / L, pH 1 to 1
Using a solution that is 3 for 1 second to 5 minutes at 10-60 ° C.
The immersion treatment is preferably performed for 1 second to 1 minute.
If soaked for a long time, Pd may be agglomerated, and densification of the initially deposited layer may not be achieved.

【0019】上記Pdイオンを主成分とする溶液には、
Pb(NO32,Ag2SO4,又はホウ弗化水素酸をそ
れぞれ微量、好ましくは0.1〜100mg/L添加す
ることで、活性化剤の性能を向上させることができる。
The solution containing the Pd ion as a main component includes:
The performance of the activator can be improved by adding a trace amount, preferably 0.1 to 100 mg / L, of Pb (NO 3 ) 2 , Ag 2 SO 4 or borofluoric acid, respectively.

【0020】本発明においては、上記(3),(4)の
工程を間に水洗をはさんで複数回、好ましくは2〜6
回、特に3〜4回行うことが好ましく、これにより触媒
層の高密度化、緻密化をより確実に達成し得る。
In the present invention, the above steps (3) and (4) are washed a plurality of times with water between them, preferably 2 to 6 times.
It is preferably performed three times, especially three or four times, whereby the density and density of the catalyst layer can be more reliably achieved.

【0021】なお、(4),(5)の工程の繰り返し
は、Pdの塊粒化を避ける点から間に水洗をはさんで2
〜6回、特に2〜3回とすることが好ましい。
The steps (4) and (5) are repeated to avoid Pd agglomeration.
The number is preferably set to 6 times, particularly 2 to 3 times.

【0022】上記工程(6)で用いる無電解めっき液と
しては、公知の自己触媒型の無電解めっき液をいずれも
用いることができ、例えば、ホルムアルデヒドを還元剤
とする無電解銅めっき液、次亜リン酸ナトリウムを還元
剤とする無電解ニッケル−リンめっき液、ジメチルアミ
ンボランを還元剤とする無電解ニッケル−ホウ素めっき
液、無電解パラジウムめっき液、次亜リン酸ナトリウム
を還元剤とする無電解パラジウム−リンめっき液、無電
解金めっき液、無電解銀めっき液、次亜リン酸ナトリウ
ムを還元剤とする無電解ニッケル−コバルト−リンめっ
き液等の無電解めっき液を用いることができる。
As the electroless plating solution used in the above step (6), any known electrocatalytic electroless plating solution can be used. For example, an electroless copper plating solution using formaldehyde as a reducing agent; Electroless nickel-phosphorous plating solution using sodium phosphite as a reducing agent, electroless nickel-boron plating solution using dimethylamine borane as a reducing agent, electroless palladium plating solution, and electroless nickel-phosphorous plating solution using sodium hypophosphite as a reducing agent An electroless plating solution such as an electrolytic palladium-phosphorous plating solution, an electroless gold plating solution, an electroless silver plating solution, and an electroless nickel-cobalt-phosphorous plating solution using sodium hypophosphite as a reducing agent can be used.

【0023】これらの無電解めっき液を用いた無電解め
っきの条件は、そのめっき液の種類等に応じた公知の通
常の条件とすることができ、めっき膜厚は用途等に応じ
て適宜選定される。
The conditions for electroless plating using these electroless plating solutions can be known ordinary conditions according to the type of the plating solution and the like. The plating film thickness is appropriately selected according to the application and the like. Is done.

【0024】また、無電解めっき液として、酸化亜鉛
(ZnO)を析出し得る無電解酸化亜鉛めっき液を用い
ることができる。かかるめっき液としては、硝酸亜鉛等
の亜鉛塩0.01〜0.5モル/L、好ましくは0.0
5〜0.2モル/Lと、ジメチルアミンボラン等のボラ
ン系還元剤、その他の還元剤を0.001〜0.5モル
/L、好ましくは0.01〜0.2モル/L、特に0.
03〜0.1モル/L含有するpH4〜9程度、特にp
H6.5程度の処理液を好適に用いることができ、10
〜80℃で5〜120分間浸漬処理する方法が採用し得
る。
As the electroless plating solution, an electroless zinc oxide plating solution capable of depositing zinc oxide (ZnO) can be used. As such a plating solution, a zinc salt such as zinc nitrate 0.01 to 0.5 mol / L, preferably 0.0
5 to 0.2 mol / L, and 0.001 to 0.5 mol / L, preferably 0.01 to 0.2 mol / L, especially 0.001 to 0.5 mol / L of a borane-based reducing agent such as dimethylamine borane and other reducing agents. 0.
PH of about 4 to 9 containing 03 to 0.1 mol / L, especially p
A processing solution of about 6.5 can be suitably used, and 10
A method of immersion treatment at ~ 80 ° C for 5 to 120 minutes can be adopted.

【0025】最適な無電解めっき液としては、Zn(N
320.1モル/Lと、ジメチルアミンボラン0.0
3モル/Lを含有するpH6.5の処理液を用いること
がよい。この組成から得られた酸化亜鉛皮膜は、粒子径
が小さくなり、C軸配向(001)し、ボイドが減少す
るので、透明性、導電性が向上する。
The most suitable electroless plating solution is Zn (N
O 3 ) 2 0.1 mol / L and dimethylamine borane 0.0
It is preferable to use a treatment solution of pH 6.5 containing 3 mol / L. The zinc oxide film obtained from this composition has a small particle size, is C-axis oriented (001), and has a reduced number of voids, so that transparency and conductivity are improved.

【0026】本発明によれば、上記触媒化処理により、
基板の無電解めっきを施すべき非導電部に銀及びパラジ
ウムからなる金属触媒粒子を2000核/μm2以上、
好ましくは2000〜5000核/μm2、特に250
0〜3500核/μm2の核密度で付着することができ
る。この場合、付着した金属触媒粒子層は、平均表面粗
さが0.5nm以下、好ましくは0.05〜0.5n
m、特に0.1〜0.3nmとすることができ、また、
触媒粒子径は2nm以下、好ましくは0.1〜2nm、
更に好ましくは0.3〜1nmとすることができ、高密
度で緻密な触媒層を形成し得る。なお、上記核密度、平
均粗さ、平均粒子径は、AFM(原子間力顕微鏡)観察
により測定し得る。
According to the present invention, the above catalyzing treatment allows
A metal catalyst particle composed of silver and palladium is 2,000 nuclei / μm 2 or more on a non-conductive portion of the substrate to be subjected to electroless plating,
Preferably 2000 to 5000 nuclei / μm 2 , especially 250
It can be attached at a nucleus density of 0-3500 nuclei / μm 2 . In this case, the attached metal catalyst particle layer has an average surface roughness of 0.5 nm or less, preferably 0.05 to 0.5 n.
m, especially 0.1 to 0.3 nm, and
The catalyst particle diameter is 2 nm or less, preferably 0.1 to 2 nm,
More preferably, the thickness can be set to 0.3 to 1 nm, and a dense and dense catalyst layer can be formed. The above-mentioned nucleus density, average roughness, and average particle diameter can be measured by AFM (atomic force microscope) observation.

【0027】また、本発明で形成される金属触媒粒子
は、銀とパラジウムとからなるが、この場合、銀とパラ
ジウムとは重量比として1:10〜10:1、好ましく
は1:4〜3:1、更に好ましくは1:3〜1:1であ
ることがよい。なお、銀とパラジウムとの組成比は、E
SCA(X線光電子分光法)にて分析できる。
The metal catalyst particles formed in the present invention are composed of silver and palladium. In this case, the weight ratio of silver to palladium is from 1:10 to 10: 1, preferably from 1: 4 to 3: 1. : 1, more preferably 1: 3 to 1: 1. The composition ratio of silver and palladium is E
It can be analyzed by SCA (X-ray photoelectron spectroscopy).

【0028】本発明では、銀を主成分とする活性化剤と
パラジウムを含有する活性化剤を併用し、最終的にPd
イオンを含有する活性化剤に浸漬することにより、非導
電性基板上に微細な触媒粒子を高密度に吸着させること
ができる。
In the present invention, an activator containing silver as a main component and an activator containing palladium are used in combination,
By immersing in an activator containing ions, fine catalyst particles can be adsorbed on a non-conductive substrate at a high density.

【0029】吸着する触媒の微細化及び高密度化機構は
不明であるが、錫イオンを含有するセンシタイジング溶
液に浸漬するセンシタイジング処理と銀イオンを含有す
る活性化剤に浸漬するAg活性化処理を複数回繰り返す
ことにより、銀イオンが高密度に吸着され、最終的にP
dイオンを含有する活性化剤に浸漬することで、銀イオ
ンとパラジウムイオンとの相互作用により、より微細な
触媒粒子が高密度に吸着されると考えられる。
The mechanism of miniaturization and densification of the adsorbed catalyst is unknown, but sensitizing treatment by immersion in a sensitizing solution containing tin ions and Ag activity immersing in an activator containing silver ions Silver ions are adsorbed at a high density by repeating the
By immersing in an activator containing d ions, it is considered that finer catalyst particles are adsorbed at a high density due to the interaction between silver ions and palladium ions.

【0030】本発明の触媒化処理方法により、初期析出
層が緻密で高密度な欠陥のない無電解めっき皮膜が得ら
れ、この無電解めっき皮膜は、プリント配線基板や超L
SIチップ上のCu回路形成、コンピュータハードディ
スク用Ni−P下地層形成、液晶ディスプレイの透明電
極や太陽電池用の透明半導電体電極の形成などの電子部
品分野に有効に用いられる。
According to the catalyzing treatment method of the present invention, a high-density electroless plating film having a dense initial deposition layer can be obtained.
It is effectively used in the field of electronic components such as formation of Cu circuits on SI chips, formation of Ni-P underlayers for computer hard disks, formation of transparent electrodes for liquid crystal displays and transparent semiconductive electrodes for solar cells.

【0031】[0031]

【発明の効果】本発明によれば、非導電性基体上に微細
な銀とパラジウムからなる金属触媒粒子を高密度に付与
することができる。
According to the present invention, metal catalyst particles composed of fine silver and palladium can be provided on a non-conductive substrate at a high density.

【0032】[0032]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0033】〔実施例1〕非導電性基板として、結晶化
ガラス、エポキシ基板、TiN膜が形成されたSi基
板、無アルカリガラスを下記無電解めっきの種類に応じ
て使用し、下記の工程で触媒を付与した後、無電解めっ
きを行った。
Example 1 As a non-conductive substrate, a crystallized glass, an epoxy substrate, a Si substrate on which a TiN film was formed, and an alkali-free glass were used in accordance with the type of electroless plating described below. After applying the catalyst, electroless plating was performed.

【0034】触媒付与・めっき工程 i. 脱脂 基板を下記の脱脂剤溶液に50℃で3分間浸漬した。 ii. 水洗:25℃,15秒間 iii. 表面調整 下記表面調整溶液に30℃で5分間浸漬した。 iv. 水洗:25℃,15秒間 v. センシタイジング 下記のセンシタイジング溶液に20℃で1分間浸漬し
た。 vi. 水洗:25℃,15秒間 vii. 触媒付与 下記銀塩活性化溶液に20℃で1分間浸漬した。 viii. 水洗:25℃,15秒間 上記(v)〜(viii)の工程を計3回行った。 ix. 触媒付与 下記パラジウム活性化溶液に20℃で5秒間浸漬した。 x. 水洗:25℃,15秒間 上記(ix),(x)の工程を計2回行った。 xi. 無電解めっき
Catalyst application and plating step i. Degreasing The substrate was immersed in the following degreasing agent solution at 50 ° C for 3 minutes. ii. Rinse with water: 25 ° C, 15 seconds iii. Surface conditioning Dipped in the following surface conditioning solution at 30 ° C for 5 minutes. iv. Washing: 25 ° C, 15 seconds v. Sensitizing It was immersed in the following sensitizing solution at 20 ° C. for 1 minute. vi. Washing with water: 25 ° C, 15 seconds vii. Addition of catalyst The sample was immersed in the following silver salt activating solution at 20 ° C for 1 minute. viii. Water washing: The above steps (v) to (viii) were performed three times in total at 25 ° C. for 15 seconds. ix. Addition of catalyst The sample was immersed in the following palladium activating solution at 20 ° C for 5 seconds. x. Rinsing: 25 ° C., 15 seconds The above steps (ix) and (x) were performed twice in total. xi. Electroless plating

【0035】下記4種類の無電解めっきを行った。 (a)無電解Ni−Pめっき:下記無電解Ni−Pめっ
き液を用いてpH4.6,90℃で1分間浸漬した。 (b)無電解Ni−Bめっき:下記無電解Ni−Bめっ
き液を用いてpH6.6,65℃で1分間浸漬した。 (c)無電解Cuめっき:下記無電解Cuめっき液を用
いてpH13,35℃で1分間浸漬した。 (d)無電解ZnOめっき:下記無電解ZnOめっき液
(1)〜(3)を用いてpH6.5,65℃で30分間
浸漬した。
The following four types of electroless plating were performed. (A) Electroless Ni-P plating: Immersion was carried out at pH 4.6 and 90 ° C. for 1 minute using the following electroless Ni-P plating solution. (B) Electroless Ni-B plating: Immersion was carried out at pH 6.6 and 65 ° C. for 1 minute using the following electroless Ni-B plating solution. (C) Electroless Cu plating: Immersion was performed at pH 13, 35 ° C. for 1 minute using the following electroless Cu plating solution. (D) Electroless ZnO plating: It was immersed in the following electroless ZnO plating solutions (1) to (3) at pH 6.5 and 65 ° C. for 30 minutes.

【0036】この場合、非導電性基板として、上記
(a)無電解Ni−Pめっきについては結晶化ガラス、
(b)無電解Ni−Bめっきについてはエポキシ基板、
(c)無電解Cuめっきについてはバリア層であるTi
N膜が形成されたSi基板、(d)無電解ZnOめっき
については無アルカリガラスを用いた。
In this case, as the non-conductive substrate, crystallized glass is used for the above (a) electroless Ni-P plating,
(B) Epoxy substrate for electroless Ni-B plating,
(C) For the electroless Cu plating, the barrier layer Ti
Alkali-free glass was used for the Si substrate on which the N film was formed and (d) electroless ZnO plating.

【0037】触媒吸着後及び無電解めっき皮膜形成後の
表面状態をAFM(原子間力顕微鏡)を用いて観察し
た。また、上記(a)無電解Ni−Pめっきの結晶化ガ
ラスへの密着性と(c)無電解CuめっきのSi上Ti
N膜への密着性についてテープテストを行った。
The surface states after the adsorption of the catalyst and the formation of the electroless plating film were observed using an AFM (atomic force microscope). In addition, (a) the adhesion of the electroless Ni-P plating to the crystallized glass and (c) the Ti on Si of the electroless Cu plating
A tape test was performed for adhesion to the N film.

【0038】脱脂剤 上村工業株式会社製 アサヒクリーナーC−4000 5 g/L表面調整剤 上村工業株式会社製 スルカップCD−202 50 mL/Lセンシタイジング溶液 SnCl2・2H2O 15 g/L HCl 15 mL/L銀塩活性化溶液 AgNO3 1.5 g/L NiSO4・6H2O 0.3 g/L CoSO4・7H2O 0.2 g/L pH 7パラジウム活性化溶液 PdCl2 1 g/L HCl 1 mL/L Pb(NO32 0.1 g/L Ag2SO4 0.03g/L ホウ弗化水素酸 0.01mL/L pH 1.5無電解Ni−Pめっき溶液 上村工業株式会社製 ニムデンDX(還元剤:次亜リン酸ナトリウム) pH 4.6無電解Ni−Bめっき溶液 上村工業株式会社製 BEL 801(還元剤:ジメチルアミンボラン) pH 6.6無電解Cuめっき溶液 上村工業株式会社製 スルカップPEA(還元剤:ホルムアルデヒド) pH 13無電解ZnOめっき溶液(1) Zn(NO32 0.1 モル/L ジメチルアミンボラン 0.03モル/L pH 6.5無電解ZnOめっき溶液(2) Zn(NO32 0.1 モル/L ジメチルアミンボラン 0.05モル/L pH 6.5無電解ZnOめっき溶液(3) Zn(NO32 0.1 モル/L ジメチルアミンボラン 0.1 モル/L pH 6.5[0038] ASAHI CLEANER manufactured degreaser Uemura & Co., Ltd. C-4000 5 g / L surface modifier Uemura & Co. THRU-CUP CD-202 50 mL / L sensitizing solution SnCl 2 · 2H 2 O 15 g / L HCl 15 mL / L silver activating solution AgNO 3 1.5 g / L NiSO 4 · 6H 2 O 0.3 g / L CoSO 4 · 7H 2 O 0.2 g / L pH 7 palladium activating solution PdCl 2 1 g / L HCl 1 mL / L Pb (NO 3 ) 2 0.1 g / L Ag 2 SO 4 0.03 g / L borofluoric acid 0.01 mL / L pH 1.5 Electroless Ni-P plating solution Uemura & Co. Nimuden DX (reducing agent: sodium hypophosphite) pH 4.6 electroless Ni-B plating solution Uyemura & Co. BEL 801 (reductant: dimethylamine borane) pH .6 electroless Cu plating solution Uyemura & Co. THRU-CUP PEA (reducing agent: formaldehyde) pH 13 electroless ZnO plating solution (1) Zn (NO 3) 2 0.1 mol / L dimethylamine borane 0.03 mol / L pH 6.5 electroless ZnO plating solution (2) Zn (NO 3 ) 2 0.1 mol / L dimethylamine borane 0.05 mol / L pH 6.5 electroless ZnO plating solution (3) Zn (NO 3 2 ) 0.1 mol / L dimethylamine borane 0.1 mol / L pH 6.5

【0039】〔比較例1〕実施例1において、パラジウ
ム活性化剤を用いることなく、銀塩活性化剤のみにおい
て触媒化処理を行った以外は、実施例1と同様にして無
電解めっきを行った。
[Comparative Example 1] Electroless plating was performed in the same manner as in Example 1 except that the catalyst was treated only with a silver salt activator without using a palladium activator. Was.

【0040】〔比較例2〕実施例1において、銀塩活性
化剤を用いることなく、パラジウム活性化剤のみにおい
て触媒化処理を行った以外は、実施例1と同様にして無
電解めっきを行った。
[Comparative Example 2] Electroless plating was performed in the same manner as in Example 1 except that the catalyzing treatment was performed using only the palladium activating agent without using the silver salt activating agent. Was.

【0041】実施例1、比較例1,2により得られたエ
ポキシ基板上の触媒粒子の吸着状態のAFM観察による
結果を表1に示す。各種無電解めっきの初期析出状態の
AFM観察結果を表2に示す。結晶化ガラス上への無電
解Ni−Pめっき膜とSi上TiN膜への無電解Cuめ
っき膜のテープテストによる剥離の有無を表3に示す。
Table 1 shows the results of AFM observation of the adsorption state of the catalyst particles on the epoxy substrates obtained in Example 1 and Comparative Examples 1 and 2. Table 2 shows the AFM observation results of the initial deposition state of various electroless platings. Table 3 shows whether or not the electroless Ni-P plating film on the crystallized glass and the electroless Cu plating film on the TiN film on Si were peeled off by a tape test.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 注:無電解ZnOめっき皮膜の外観を評価したところ、
実施例1は無色透明であり、黄色味は全く認められなか
った。これに対し、比較例1は透明ではあったが、黄色
味が認められた。
[Table 2] Note: When the appearance of the electroless ZnO plating film was evaluated,
Example 1 was colorless and transparent, and no yellow color was observed. In contrast, Comparative Example 1 was transparent but yellowish.

【0044】[0044]

【表3】 [Table 3]

【0045】表1の結果より、本発明により非導電性基
板上に微細な触媒粒子を高密度に吸着し得ることが認め
られる。
From the results shown in Table 1, it is confirmed that the present invention can adsorb fine catalyst particles on a non-conductive substrate at a high density.

【0046】表2の結果より、本発明により非導電性基
板上に初期析出層に欠陥のない無電解めっきを形成し得
ることが認められる。
From the results shown in Table 2, it is recognized that the present invention can form electroless plating having no defect in the initial deposition layer on the non-conductive substrate according to the present invention.

【0047】表3の結果より、本発明により結晶化ガラ
ス上に密着性に優れた無電解Ni−P膜,Si上TiN
バリア膜上に密着性に優れた無電解Cu膜を形成し得る
ことが認められる。
From the results shown in Table 3, it can be seen that an electroless Ni—P film having excellent adhesion on a crystallized glass according to the present invention, TiN on Si
It is recognized that an electroless Cu film having excellent adhesion can be formed on the barrier film.

フロントページの続き (72)発明者 伊崎 昌伸 奈良県北葛城郡河合町久美ケ丘1丁目4番 地1 (72)発明者 畑瀬 博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西條 義司 大阪府枚方市出口1丁目5番1号 上村工 業株式会社中央研究所内 Fターム(参考) 4K022 AA01 AA02 AA03 AA18 AA42 BA04 BA08 BA14 BA15 BA16 BA25 BA33 CA06 CA07 CA18 CA20 CA21 DA01 Continuing from the front page (72) Inventor Masanobu Izaki 1-4-1, Kumigaoka, Kawai-machi, Kitakatsuragi-gun, Nara Prefecture 1-72 (72) Inventor Hiroshi Hatase 1006 Odakadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshiji Saijo 1-5-1, Hirakata-shi, Osaka Pref.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 銀及びパラジウムからなる金属触媒粒子
が無電解めっきすべき非導電部表面に2000核/μm
2以上の核密度で付着されてなる基体。
1. A metal catalyst particle comprising silver and palladium is 2,000 nuclei / μm on the surface of a non-conductive portion to be electrolessly plated.
A substrate adhered at a nuclear density of 2 or more.
【請求項2】 付着した金属触媒粒子層の平均表面粗さ
が0.5nm以下である請求項1記載の基体。
2. The substrate according to claim 1, wherein the attached metal catalyst particle layer has an average surface roughness of 0.5 nm or less.
【請求項3】 銀粒子とパラジウムとの比率が重量割合
で1:10〜10:1である請求項1又は2記載の基
体。
3. The substrate according to claim 1, wherein the weight ratio of silver particles to palladium is 1:10 to 10: 1.
【請求項4】 無電解めっきすべき非導電部を有する基
体を2価の錫イオンを含有するセンシタイジング溶液で
センシタイジング処理した後、銀イオンを含有する活性
化剤に浸漬するAg活性化処理を行い、最後にパラジウ
ムイオンを含有する活性化剤に浸漬するPd活性化処理
を行うことにより、粒子径1nm以下のAg及びPd核
からなる触媒粒子を上記非導電部に2000核/μm2
以上の核密度で吸着することができることを特徴とする
基体の触媒化処理方法。
4. Ag activity in which a substrate having a non-conductive portion to be electrolessly plated is subjected to a sensitizing treatment with a sensitizing solution containing divalent tin ions and then immersed in an activator containing silver ions. The catalyst particles comprising Ag and Pd nuclei having a particle diameter of 1 nm or less are deposited on the non-conductive portion at 2000 nuclei / μm by performing a Pd activation treatment by immersing in a palladium ion-containing activator. Two
A method for catalytically treating a substrate, characterized in that the substrate can be adsorbed at the above nuclear density.
【請求項5】 上記センシタイジング処理とAg活性化
処理とを複数回繰り返す請求項4記載の処理方法。
5. The processing method according to claim 4, wherein the sensitizing process and the Ag activation process are repeated a plurality of times.
【請求項6】 請求項4又は5記載の処理方法により無
電解めっきすべき表面に金属触媒粒子が付着された非導
電部を有する基体を無電解めっき液に浸漬することを特
徴とする無電解めっき方法。
6. An electroless plating method comprising immersing a substrate having a nonconductive portion having metal catalyst particles adhered to a surface to be electrolessly plated by the treatment method according to claim 4 or 5 in an electroless plating solution. Plating method.
【請求項7】 無電解めっき液が無電解ニッケルめっき
液、無電解銅めっき液、又は無電解酸化亜鉛めっき液で
ある請求項6記載の無電解めっき方法。
7. The electroless plating method according to claim 6, wherein the electroless plating solution is an electroless nickel plating solution, an electroless copper plating solution, or an electroless zinc oxide plating solution.
【請求項8】 無電解めっきすべき非導電部を有する基
体がシリコン基板表面にTa、TaN又はTiN膜が形
成されたものであり、無電解めっき液が無電解銅めっき
液である請求項6記載の無電解めっき方法。
8. A substrate having a non-conductive portion to be electrolessly plated has a Ta, TaN or TiN film formed on a silicon substrate surface, and the electroless plating solution is an electroless copper plating solution. Electroless plating method as described.
【請求項9】 無電解めっきすべき非導電部を有する基
体がスルホールを有し、該スルホール周壁部が無電解め
っきすべき非導電部であるプリント配線基板であり、無
電解めっき液が無電解銅めっき液である請求項6記載の
無電解めっき方法。
9. A printed wiring board in which a base having a non-conductive portion to be electrolessly plated has a through hole, a peripheral wall portion of the through hole is a non-conductive portion to be electrolessly plated, and the electroless plating solution is an electroless plating solution. The electroless plating method according to claim 6, which is a copper plating solution.
【請求項10】 無電解めっきすべき非導電部を有する
基体が結晶化ガラス基板であり、無電解めっき液が無電
解ニッケルめっき液である請求項6記載の無電解めっき
方法。
10. The electroless plating method according to claim 6, wherein the substrate having a non-conductive portion to be electrolessly plated is a crystallized glass substrate, and the electroless plating solution is an electroless nickel plating solution.
【請求項11】 無電解めっきすべき非導電部を有する
基体が透明基板であり、無電解めっき液が無電解酸化亜
鉛めっき液である請求項6記載の無電解めっき方法。
11. The electroless plating method according to claim 6, wherein the substrate having a non-conductive portion to be electrolessly plated is a transparent substrate, and the electroless plating solution is an electroless zinc oxide plating solution.
JP14965199A 1999-05-28 1999-05-28 Substrate applied with catalytic nucleus, catalyzing treatment to substrate and electroless plating method Pending JP2000336486A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14965199A JP2000336486A (en) 1999-05-28 1999-05-28 Substrate applied with catalytic nucleus, catalyzing treatment to substrate and electroless plating method
US09/580,557 US6406750B1 (en) 1999-05-28 2000-05-30 Process of forming catalyst nuclei on substrate, process of electroless-plating substrate, and modified zinc oxide film
US10/120,393 US6723679B2 (en) 1999-05-28 2002-04-12 Process of forming catalyst nuclei on substrate, process of electroless-plating substrate, and modified zinc oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14965199A JP2000336486A (en) 1999-05-28 1999-05-28 Substrate applied with catalytic nucleus, catalyzing treatment to substrate and electroless plating method

Publications (1)

Publication Number Publication Date
JP2000336486A true JP2000336486A (en) 2000-12-05

Family

ID=15479893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14965199A Pending JP2000336486A (en) 1999-05-28 1999-05-28 Substrate applied with catalytic nucleus, catalyzing treatment to substrate and electroless plating method

Country Status (1)

Country Link
JP (1) JP2000336486A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241951A (en) * 2001-02-16 2002-08-28 C Uyemura & Co Ltd Method for depositing electroless zinc oxide film
JP2006282464A (en) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd Method for producing metal oxide film
JP2007246963A (en) * 2006-03-15 2007-09-27 Yamato Denki Kogyo Kk Plated body and plating method
US20110266504A1 (en) * 2007-08-06 2011-11-03 Katholieke Universiteit Leuven Deposition from ionic liquids
JP2013122531A (en) * 2011-12-12 2013-06-20 Konica Minolta Business Technologies Inc Method of forming electrode relating to heat fixing belt, heat fixing belt, and fixing device
US9171671B2 (en) 2010-12-24 2015-10-27 Murata Manufacturing Co., Ltd. Laminate type electronic component and manufacturing method therefor
CN113005438A (en) * 2021-02-23 2021-06-22 广东工业大学 Method for using silver ion accelerator as additive for improving palladium plating rate in chemical palladium plating solution
CN114163233A (en) * 2021-12-30 2022-03-11 湖南省美程陶瓷科技有限公司 High-dielectric low-loss piezoelectric ceramic relay material and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241951A (en) * 2001-02-16 2002-08-28 C Uyemura & Co Ltd Method for depositing electroless zinc oxide film
JP4600623B2 (en) * 2001-02-16 2010-12-15 上村工業株式会社 Method for forming electroless zinc oxide film
JP2006282464A (en) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd Method for producing metal oxide film
JP4686234B2 (en) * 2005-03-31 2011-05-25 大日本印刷株式会社 Method for producing metal oxide film
JP2007246963A (en) * 2006-03-15 2007-09-27 Yamato Denki Kogyo Kk Plated body and plating method
US20110266504A1 (en) * 2007-08-06 2011-11-03 Katholieke Universiteit Leuven Deposition from ionic liquids
US9171671B2 (en) 2010-12-24 2015-10-27 Murata Manufacturing Co., Ltd. Laminate type electronic component and manufacturing method therefor
JP2013122531A (en) * 2011-12-12 2013-06-20 Konica Minolta Business Technologies Inc Method of forming electrode relating to heat fixing belt, heat fixing belt, and fixing device
CN113005438A (en) * 2021-02-23 2021-06-22 广东工业大学 Method for using silver ion accelerator as additive for improving palladium plating rate in chemical palladium plating solution
CN113005438B (en) * 2021-02-23 2023-08-22 广东工业大学 Method for using silver ion accelerator as additive for improving palladium plating rate in chemical palladium plating solution
CN114163233A (en) * 2021-12-30 2022-03-11 湖南省美程陶瓷科技有限公司 High-dielectric low-loss piezoelectric ceramic relay material and preparation method thereof

Similar Documents

Publication Publication Date Title
US6723679B2 (en) Process of forming catalyst nuclei on substrate, process of electroless-plating substrate, and modified zinc oxide film
US5190796A (en) Method of applying metal coatings on diamond and articles made therefrom
US4632857A (en) Electrolessly plated product having a polymetallic catalytic film underlayer
US4232060A (en) Method of preparing substrate surface for electroless plating and products produced thereby
US4701351A (en) Seeding process for electroless metal deposition
US20020197404A1 (en) Method of activating non-conductive substrate for use in electroless deposition
CN101096769A (en) Electroplating method
EP2725118B1 (en) A process for electroless plating and a solution used for the same
US7338752B2 (en) Method for forming metal pattern and electromagnetic interference filter using pattern formed by the method
JP2007128878A (en) Manufacturing method for conductive particle and anisotropic conductive film using this
JPS586781B2 (en) Kinzoku Haku Makakei Seihou
US20060019076A1 (en) Method for forming highly conductive metal pattern on flexible substrate and EMI filter using metal pattern formed by the method
JP2011225929A (en) Catalyst solution used in electroless plating method, method for preparing the catalyst solution, electroless plating method using the catalyst solution, and plated product with metal layer including metallic film formed by using the electroless plating method
CN100461000C (en) Method for forming metal pattern with low resistivity
JP2000336486A (en) Substrate applied with catalytic nucleus, catalyzing treatment to substrate and electroless plating method
US4981725A (en) Process and composition for sensitizing articles for metallization
EP0456982A1 (en) Novel metal accelerator
US4328266A (en) Method for rendering non-platable substrates platable
US4419390A (en) Method for rendering non-platable semiconductor substrates platable
JP3276919B2 (en) High adhesion plating method for resin substrate and copper plating solution used for the method
JP2023538951A (en) Method for depositing electroless nickel on copper without activation with palladium
JP2003293143A (en) Cleaning agent for palladium catalyst, method for cleaning palladium catalyst, method for plating electronic parts using the agent, and electronic parts
JPH0610146A (en) Method for obtaining platinum metal layer with very high catalytic activity
KR100996316B1 (en) Method of Forming Metal Pattern for Hermetic Sealing of Package
US4662944A (en) Process and composition for sensitizing articles for metallization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090225

A02 Decision of refusal

Effective date: 20090610

Free format text: JAPANESE INTERMEDIATE CODE: A02