JP2000322115A - Numerical controller - Google Patents

Numerical controller

Info

Publication number
JP2000322115A
JP2000322115A JP11132215A JP13221599A JP2000322115A JP 2000322115 A JP2000322115 A JP 2000322115A JP 11132215 A JP11132215 A JP 11132215A JP 13221599 A JP13221599 A JP 13221599A JP 2000322115 A JP2000322115 A JP 2000322115A
Authority
JP
Japan
Prior art keywords
acceleration
movable body
support member
elastic deformation
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11132215A
Other languages
Japanese (ja)
Other versions
JP3646562B2 (en
Inventor
Katsuhiko Takeuchi
勝彦 竹内
Shinji Murakami
慎二 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP13221599A priority Critical patent/JP3646562B2/en
Publication of JP2000322115A publication Critical patent/JP2000322115A/en
Application granted granted Critical
Publication of JP3646562B2 publication Critical patent/JP3646562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To actualize high-speed, high-precision curve machining by making corrections with a correction quantity which in nearly proportional to the corresponding axial components of acceleration according to relative values of partial elastic deformation such as the mass and elasticity or deformation quantity, etc., of a movable body which moves together with a support member in parallel to the axis. SOLUTION: An acceleration arithmetic part 123 calculates the acceleration between interpolation points from the coordinates of the interpolation points found by an interpolative arithmetic part 122. A correction quantity arithmetic part 124 inputs the x-axial component and y-axial component of the acceleration of a tool between the interpolation points on a machining curve and finds the x-axial elastic deformation quantity and y-axial elastic deformation quantity at each interpolation point on the machining curve. An addition arithmetic part 125 corrects the position command values at each interpolation point into coordinate values with the coordinates of the interpolation points on the machining curve inputted from the interpolative arithmetic part 122 and the x-axial elastic deformation quantities and y-axial elastic deformation quantities at the interpolation points inputted from the correction quantity arithmetic part 124. This corrected position command value is outputted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工作機械の数値制
御装置に関し、特に、高速に加工を行う際に発生する工
作機械系の部分的弾性変形による加工形状誤差の発生を
防止する数値制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a numerical control device for a machine tool, and more particularly, to a numerical control device for preventing the occurrence of a machining shape error due to a partial elastic deformation of a machine tool system which occurs during high-speed machining. About.

【0002】[0002]

【従来の技術】マシニングセンタ等の工作機械の分野で
は、工作物に関する加工時間の短縮等を目的として、例
えば、リニアモータ駆動の採用や可動体の軽量化等によ
る高速、或いは、高加速度の工作機械が提案・開発され
ている。これらの技術革新により、従来のボールネジ駆
動、鋳鉄製コラム等による工作機械では実現できなかっ
た高加速度(1G以上)が達成されるようになってきて
いる。
2. Description of the Related Art In the field of machine tools such as machining centers, high-speed or high-acceleration machine tools, for example, by adopting a linear motor drive or reducing the weight of a movable body, for the purpose of shortening the machining time for a workpiece. Has been proposed and developed. With these technological innovations, a high acceleration (1 G or more) which cannot be realized by a conventional machine tool using a ball screw drive, a cast iron column, or the like has been achieved.

【0003】[0003]

【発明が解決しようとする課題】工作機械系の一部を構
成する移動体(工具などの支持部材)が加減速される
と、移動体にはその質量及び加速度に比例する慣性力が
働く。この慣性力の作用により、この工作機械系には部
分的な弾性変形が生じ、特に工具先端などの制御点と、
工具の位置を検出する測位点との間でこの弾性変形が生
じると、支持部材等からなる移動体の加減速時に、上記
制御点に対する測位精度が劣化することになる。
When a moving body (a support member such as a tool) constituting a part of a machine tool system is accelerated or decelerated, an inertial force proportional to the mass and acceleration acts on the moving body. Due to the action of this inertial force, a partial elastic deformation occurs in the machine tool system, and in particular, control points such as a tool tip,
If this elastic deformation occurs between a positioning point for detecting the position of the tool and the moving body composed of a support member or the like, the positioning accuracy with respect to the control point deteriorates when the moving body including the support member is accelerated or decelerated.

【0004】このような問題は、特に、可動体等が軽量
化されて構成部品の剛性が比較的低いか、或いは、リニ
アモータ駆動等により高速加工が可能な工作機械が製造
されるようになってから表面化、或いは、顕在化するよ
うになってきている。また、このような形状誤差は、上
記移動体の加工時の速度、或いは、加速度が大きくなる
ほど大きくなる。
[0004] Such a problem is particularly caused by the fact that the rigidity of the components is relatively low due to the weight reduction of the movable body or the like, or a machine tool capable of high-speed machining by driving a linear motor or the like has been manufactured. Since then, it has been surfaced or revealed. In addition, such a shape error increases as the speed or acceleration of the moving body during processing increases.

【0005】本発明は、上記の課題を解決するために成
されたものであり、その目的は、高速、高精度の曲線加
工を実現することである。
The present invention has been made to solve the above problems, and an object thereof is to realize high-speed, high-precision curve machining.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めには、以下の手段が有効である。即ち、第1の手段
は、工具又は工作物より成る被支持物を支持する支持部
材を工作物の加工曲線に沿って高速に移動させるための
数値制御装置において、支持部材等の加速度による工作
機械系の部分的弾性変形により生じる、支持部材の移動
経路の加工曲線からのズレを制御軸の各軸成分毎に、支
持部材の予定された加速度と、支持部材と共に軸方向に
平行移動する可動体の質量及び弾性率、或いは、変形量
等の部分的弾性変形の関連値に基づいて、加速度の対応
軸成分に略比例する補正量で補正する位置指令値補正手
段を備えることである。
In order to solve the above-mentioned problems, the following means are effective. That is, a first means is a numerical controller for moving a support member, which supports a supported object made of a tool or a workpiece, at a high speed along a machining curve of the workpiece, wherein the machine tool is driven by acceleration of the support member or the like. A movable body that moves in parallel with the planned acceleration of the support member and the support member for each axis component of the control axis, the deviation of the movement path of the support member from the processing curve caused by the partial elastic deformation of the system. And a position command value corrector that corrects with a correction amount substantially proportional to the corresponding axis component of the acceleration based on the relevant value of the partial elastic deformation such as the mass and the elastic modulus or the deformation amount.

【0007】また、第2の手段は、工具又は工作物より
成る被支持物を支持する支持部材を第1の軸線方向に移
動可能に支持する第1の可動体と、この第1の可動体を
第1の軸線方向と直交する第2の軸線方向に移動可能に
支持する第2の可動体とを制御して、支持部材を工作物
の加工曲線に沿って高速に移動させるための数値制御装
置において、被支持物の加速度(a)による第1の可動
体の部分的弾性変形により生じる支持部材の移動の経路
の加工曲線からのズレを、第1の軸線方向に作用する加
速度(ay )と、支持部材及び第1の可動体の質量my
と第1の可動体の弾性率(Ky )との比に係わる関連値
(Cy )に基づいて、加速度aの第1の軸線方向成分
(ay )に略比例する補正量(εy )で補正すると共
に、加速度(a)による第2の可動体の部分的弾性変形
により生じる支持部材の移動の経路の加工曲線からのズ
レを、第2の軸線方向に作用する加速度(ax )と、支
持部材及び第1の可動体及び第2の可動体の質量
(mx )と第2の可動体の弾性率(K x )との比に係わ
る関連値(Cx )に基づいて、加速度aの第2の軸線方
向成分(ax )に略比例する補正量(εx )で補正する
位置補正手段を備えることである。
[0007] The second means may be a tool or a workpiece.
The supporting member for supporting the object to be supported is moved in the first axial direction.
A first movable body movably supported, and the first movable body
Moveable in a second axis direction orthogonal to the first axis direction
A second movable body to be supported is controlled so that the supporting member is
Numerical control unit for high-speed movement along the machining curve
First movable by the acceleration (a) of the supported object
Path of support member movement caused by partial elastic deformation of body
The deviation from the machining curve of
Speed (ay) And mass m of the support member and the first movable bodyy
And the elastic modulus of the first movable body (Ky) And related value
(Cy), A first axial component of the acceleration a
(Ay), The correction amount (εy)
In addition, partial elastic deformation of the second movable body due to acceleration (a)
Of the movement path of the support member caused by
To the acceleration acting in the second axis direction (ax)
Mass of holding member, first movable body and second movable body
(Mx) And the elastic modulus of the second movable body (K x)
Related value (Cx), The direction of the second axis of the acceleration a
Directional component (ax), The correction amount (εx)
That is, a position correcting means is provided.

【0008】また、第3の手段は、上記の第2の手段に
おいて、関連値(Cx,y )を予め実験的に求めておく
ことである。
A third means is that the related values (C x, C y ) are experimentally obtained in advance in the second means.

【0009】また、第4の手段は、上記の第2又は第3
の手段において、第1の軸線方向に作用する加速度(a
y )及び前記第2の軸線方向に作用する加速度(ax
を支持部材の移動の経路を指令するNCデータから計算
することである。
Further, the fourth means is the second or third means.
Means (a) acting in the first axial direction
y) and acceleration acting on said second axial (a x)
Is calculated from the NC data for instructing the movement route of the support member.

【0010】更に、第5の手段は、上記の第1乃至第4
の何れか1つの手段において、支持部材および各可動体
の少なくとも1つをリニアモータで駆動することであ
る。以上の手段により、前記の課題を解決することがで
きる。
Further, the fifth means includes the first to fourth means.
In any one of the means, at least one of the support member and each of the movable bodies is driven by a linear motor. With the above means, the above-mentioned problem can be solved.

【0011】[0011]

【作用及び発明の効果】本発明の作用・効果を簡単のた
め、xy平面上での曲線加工の場合について以下に説明
する。加工処理時の慣性力及び形状誤差をそれぞれx軸
成分、y軸成分毎に(Fx ,Fy ),(εx ,εy )と
表すことにすれば、次式(1)〜(8)が成り立つ。た
だし、その他の各変数の定義は、以下の通りである。 (変数定義) a:支持部材の加速度の大きさ θ:支持部材の加速度の曲座標表示における角度(加速
度の向き) ε:形状誤差の大きさ ax :支持部材の加速度のx軸成分(第2の軸線方向成
分) mx :支持部材と共にx軸方向に平行移動する可動体の
質量(支持部材、第1の可動体、及び第2の可動体の質
量) Kx :形状誤差εx の発生要因となる工作機械系のx軸
方向の弾性率 ay :支持部材の加速度のy軸成分(第1の軸線方向成
分) my :支持部材と共にy軸方向に平行移動する可動体の
質量(支持部材、及び第1の可動体の質量) Ky :形状誤差εy の発生要因となる工作機械系のy軸
方向の弾性率 v:支持部材の速度の大きさ r:加工円の半径
[Effects and Effects of the Invention] For simplification of the functions and effects of the present invention, a case of curved processing on the xy plane will be described below. If the inertial force and the shape error during the processing are expressed as (F x , F y ) and (ε x , ε y ) for each of the x-axis component and the y-axis component, the following equations (1) to (8) ) Holds. However, the definitions of other variables are as follows. (Variable definition) a: magnitude of acceleration of support member θ: angle of acceleration of support member in curved coordinate display (direction of acceleration) ε: magnitude of shape error a x : x-axis component of acceleration of support member 2: axial component) mx : mass of the movable body that moves in parallel with the support member in the x-axis direction (mass of the support member, the first movable body, and the second movable body) K x : the shape error ε x modulus a y in the x-axis direction-causing machine system: y-axis component of the acceleration of the support member (first axis direction component) m y: mass of the movable body that moves parallel to the y-axis direction together with the support member (Mass of the support member and the first movable body) Ky : Elastic modulus in the y-axis direction of the machine tool system which causes the shape error ε y v: The magnitude of the speed of the support member r: Radius of the processing circle

【0012】[0012]

【数1】 ε2 =εx 2 +εy 2 …(1)2 = 1 x 2 + ε y 2 (1)

【数2】 Fx =−mx x =Kx εx (x軸方向慣性力) …(2)[Number 2] F x = -m x a x = K x ε x (x -axis direction inertia force) ... (2)

【数3】 Fy =−my y =Ky εy (y軸方向慣性力) …(3)[Number 3] F y = -m y a y = K y ε y (y -axis direction inertia force) ... (3)

【数4】 εx =−Cx x (Cx ≡mx /Kx ) …(4)[Number 4] ε x = -C x a x ( C x ≡m x / K x) ... (4)

【数5】 εy =−Cy y (Cy ≡my /Ky ) …(5)[Number 5] ε y = -C y a y ( C y ≡m y / K y) ... (5)

【数6】 ax =a cosθ …(6)A x = a cos θ (6)

【数7】 ay =a sinθ …(7)A y = a sin θ (7)

【数8】 ε(θ)=a{(Cx cosθ)2 +(Cy sinθ)2 1/2 …(8) ただし、ε(θ)の角θは、あくまでも上記の支持部材
の加速度の向きを表すものであり、変位(形状誤差ε)
の方向とは必ずしも一致しない。
Equation 8] ε (θ) = a {( C x cosθ) 2 + (C y sinθ) 2} 1/2 ... (8) where the angle theta of the epsilon (theta), last acceleration of the support member And the displacement (shape error ε)
Does not necessarily coincide with the direction.

【0013】尚、上記のCx 、Cy は、次式(9)を満
たす試験的な円加工、或いは試験的な円運動(空運転)
を実施することにより、式(10)、(11)の通りに求め
ることができる。
The above C x and C y are the test circular machining or the test circular motion (idling) satisfying the following equation (9).
By performing the above, the values can be obtained as in equations (10) and (11).

【数9】 a=v2 /r=(一定) …(9)A = v 2 / r = (constant) (9)

【数10】 Cx =ε(α)/a (α=0,π) …(10)C x = ε (α) / a (α = 0, π) (10)

【数11】 Cy =ε(β)/a (β=π/2,3π/2) …(11)C y = ε (β) / a (β = π / 2, 3π / 2) (11)

【0014】即ち、半径rの円加工を行って、その際の
形状誤差εをθの関数ε(θ)として測定すれば、モデ
リングや数値計算などの複雑、或いは高度な解析技法を
用いてmx 、Kx 、my 、Ky の各値を個々に求めるこ
とが困難な場合でも、Cx ≡mx /Kx 、Cy ≡my
y の値を(10)、(11)により求めることが可能とな
る。
That is, if a circular processing with a radius r is performed and the shape error ε at that time is measured as a function ε (θ) of θ, m or m is calculated using a complicated or advanced analysis technique such as modeling or numerical calculation. x, K x, m y, even when it is difficult to determine individually the values of K y, C x ≡m x / K x, C y ≡m y /
The values of K y (10), it becomes possible to obtain by (11).

【0015】したがって、(4),(5)を用いて、位
置指令値に対する補正を行えば、高速の曲線加工の際に
も所望の加工形状を得ることができる。
Therefore, if the position command value is corrected using (4) and (5), a desired machining shape can be obtained even at the time of high-speed curve machining.

【0016】また、式(2)、(3)からも判る様に、
本発明は工具又は工作物より成る被支持物を支持する支
持部材を有する可動体の質量が大きな場合や、或いは、
工作機械系の部分的弾性変形に関する弾性率が小さな場
合においても、上記と同様に大きな効果を発揮する。
As can be seen from equations (2) and (3),
The present invention relates to a case where the mass of a movable body having a support member for supporting a supported object formed of a tool or a workpiece is large, or
Even in the case where the elastic modulus relating to the partial elastic deformation of the machine tool system is small, a large effect is exhibited in the same manner as described above.

【0017】[0017]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。図1及び図2に、本発明を適用する
工作機械の側面図及び正面図を示す。本工作機械は、互
いに直交する3軸を有するリニアモータ駆動式であり、
その主な構成要素は、ベース10の前部に配置されたワ
ークテーブル11、ベース10の後部に配置された固定
フレーム15、固定フレーム15の前側でベース10及
び固定フレーム15によりガイドされてx軸方向に水平
移動するガントリ20、このガントリ20により案内さ
れてy軸方向に上下移動するサドル50、サドル50に
よりZ方向に水平移動するラム60(工具Tより成る被
支持物を支持する支持部材)、ガントリ20、可動体の
一部を構成しているサドル50、ラム60をそれぞれ移
動する電気リニアモータ35、37、57、67、及び
ラム60に回転自在に支持された工具主軸71などであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. 1 and 2 show a side view and a front view of a machine tool to which the present invention is applied. This machine tool is a linear motor drive type having three axes orthogonal to each other,
Its main components are a work table 11 arranged at the front of the base 10, a fixed frame 15 arranged at the rear of the base 10, and an x-axis guided by the base 10 and the fixed frame 15 at the front side of the fixed frame 15. 20 that horizontally moves in the direction, a saddle 50 that is guided by the gantry 20 and moves up and down in the y-axis direction, and a ram 60 that horizontally moves in the Z direction by the saddle 50 (a support member that supports a supported object made of a tool T). , The gantry 20, the saddle 50 constituting a part of the movable body, the electric linear motors 35, 37, 57, 67 for respectively moving the ram 60, the tool spindle 71 rotatably supported by the ram 60, and the like. .

【0018】また、各軸方向のガイド機構は、x軸方向
がガイドレール29、32、及びベアリングブロック3
0、31、33により、y軸方向がガイドレール53、
55、及びベアリングブロック54、56により、Z方
向が下部リニアガイド機構61、及び上部リニアガイド
機構62により、それぞれ構成されている。尚、図1の
記号T、及びWはそれぞれ、工具、及び工作物を表して
いる。
The guide mechanism in each axial direction is such that the guide rails 29 and 32 and the bearing block 3
0, 31, 33, the y-axis direction is the guide rail 53,
The lower linear guide mechanism 61 and the upper linear guide mechanism 62 constitute the Z direction by the bearing 55 and the bearing blocks 54 and 56, respectively. The symbols T and W in FIG. 1 represent a tool and a workpiece, respectively.

【0019】図3に、本発明の作用を説明する簡易モデ
ルの物理的概念図を示す。各数値符号は、各々上記図1
又は図2と同一の構成要素を示している。図1及び図2
に示す様にリニアモータ駆動式の工作機械を構成した場
合、工具又は工具を支持する支持部材と各測位点(各々
図中の△印の位置)とが離れているため、その間の工作
機械系の部分的弾性変形により、測位誤差が生じる。
FIG. 3 shows a physical conceptual diagram of a simplified model for explaining the operation of the present invention. Each numerical code is shown in FIG.
Alternatively, the same components as those in FIG. 2 are shown. 1 and 2
When a linear motor-driven machine tool is configured as shown in FIG. 1, since the tool or a support member supporting the tool is separated from each positioning point (the position indicated by a triangle in the figure), the machine tool A positioning error occurs due to the partial elastic deformation of.

【0020】また、y軸方向の移動機構が、x軸方向の
移動機構の内部に包括的に組み込まれる、いわゆる入れ
子構造をしているため、工作物の形状誤差εの、x軸方
向の弾性変形量(形状誤差εx )に寄与する可動体の質
量mx と、y軸方向の弾性変形量(形状誤差εy )に寄
与する可動体の質量my とは大きく異なっている(m x
>my >m;ただし、mはラム60の質量とする)。し
かしながら、本発明では、式(4)、(5)により、各
軸単位に形状誤差の補正を行うため、上記の様な弾性変
形量についての異方性が有っても、各軸対応に正確に補
正することができる。
Also, the moving mechanism in the y-axis direction is
A so-called container that is comprehensively integrated inside the moving mechanism
The x-axis of the workpiece shape error ε
Elastic deformation (shape error εxQuality of movable body that contributes to)
Quantity mxAnd the amount of elastic deformation in the y-axis direction (shape error εyStop by
The mass m of the movable body to be giveny(M x
> My> M; where m is the mass of the ram 60). I
However, in the present invention, each of the equations (4) and (5)
In order to correct the shape error for each axis,
Even if there is anisotropy in the shape amount, it is accurately compensated for each axis
Can be corrected.

【0021】図4に、本実施例の工作機械のハードウェ
ア構成図を示す。数値制御装置100は、CPU10
1、メモリ102、サーボ制御装置との物理的インター
フェイスを取るインターフェイス部(I/F)103、
入出力装置104等の主要構成要素を有する。CPU1
01は、各リニアモータに対応する測位装置(リニアス
ケール)により測定された工具のx座標、y座標、z座
標の各値(x,y,z)をI/F103を介して随時入
力する。また、CPU101は、補間演算により求めら
れた、次に到達すべき補間点の位置を与える差分量の各
値(dx,dy,dz)をI/F103を介して、x軸
サーボ制御装置111、y軸サーボ制御装置112、及
びz軸サーボ制御装置113に対し各々随時出力する。
各軸のサーボ制御装置111〜113は、差分量(d
x,dy,dz)により与えられた次の補間点までの工
具の移動を制御する。
FIG. 4 shows a hardware configuration diagram of the machine tool of the present embodiment. The numerical control device 100 includes a CPU 10
1, an interface unit (I / F) 103 for taking a physical interface with a memory 102 and a servo controller,
It has main components such as an input / output device 104. CPU1
In step 01, the x-, y-, and z-coordinate values (x, y, z) of the tool measured by the positioning device (linear scale) corresponding to each linear motor are input as needed via the I / F 103. In addition, the CPU 101 obtains, via the I / F 103, the respective values (dx, dy, dz) of the difference amounts that determine the position of the next interpolation point to be reached, obtained by the interpolation operation, via the x-axis servo controller 111, Output to the y-axis servo controller 112 and the z-axis servo controller 113 as needed.
The servo controllers 111 to 113 of the respective axes determine the difference amount (d
(x, dy, dz) to control the movement of the tool to the next interpolation point.

【0022】図5に、本実施例の数値制御装置100の
ソフトウェア構成図を示す。NCプログラム解析部12
1は、与えられたNCデータを解析し、補間演算部12
2は解析されたデータに基づいて補間処理を行う。すな
わち、指令された速度と予め設定された速度パターンに
基づいて一定の補間周期毎の速度を求め、この速度と補
間周期の積により移動距離を求める。そして、NCデー
タで与えられる加工曲線上に求められた移動距離だけ離
れた点(x,y,z)を補間点として順次設定してい
く。ただし、ここでは、本加工曲線は簡単のため、xy
座標平面(z=(一定値))上にあるものとする。
FIG. 5 shows a software configuration diagram of the numerical controller 100 of the present embodiment. NC program analysis unit 12
1 analyzes the given NC data,
2 performs an interpolation process based on the analyzed data. That is, the speed for each fixed interpolation cycle is obtained based on the commanded speed and a preset speed pattern, and the moving distance is obtained by the product of this speed and the interpolation cycle. Then, points (x, y, z) separated by the movement distance obtained on the machining curve given by the NC data are sequentially set as interpolation points. However, here, since this processing curve is simple, xy
It is assumed that it is on a coordinate plane (z = (constant value)).

【0023】加速度演算部123は、補間演算部122
にて求められた各補間点の座標(x,y,z)から各補
間点における加速度(ax,y )を演算する。補正量演
算部124は、この加工曲線上の各補間点における工具
の加速度のx軸成分ax 及びy軸成分ay を入力し、式
(4),(5)を用いて、加工曲線上の各補間点(x,
y,z)におけるx軸方向の形状誤差εx 、及びy軸方
向の形状誤差εy を求める。
The acceleration calculation unit 123 includes an interpolation calculation unit 122
The acceleration (ax , ay ) at each interpolation point is calculated from the coordinates (x, y, z) of each interpolation point obtained in. Correction amount calculation unit 124 inputs the x-axis component a x and y-axis components a y of the acceleration of the tool at each interpolation point on the machining curve, equation (4), with (5), on the work curve Of each interpolation point (x,
y, x-axis direction of the shape error epsilon x in z), and the y-axis direction the shape error epsilon y determined.

【0024】加算演算部125は、補間演算部122か
ら入力した加工曲線上の各補間点の座標(x,y,z)
と、補正量演算部124から入力したこの各補間点
(x,y,z)におけるx軸方向の形状誤差εx 及びy
軸方向の形状誤差εy より、各補間点の位置指令値を
(x−εx ,y−εy ,z)なる座標値に補正する。そ
して、この補正された位置指令値が各サーボ制御装置に
対して各々随時出力される。このように曲線加工を実施
することにより、例えば、上記の加工曲線が真円である
場合には、所望の精度の真円加工を実現することができ
る。
The addition operation unit 125 calculates the coordinates (x, y, z) of each interpolation point on the machining curve input from the interpolation operation unit 122.
And the shape errors ε x and y in the x-axis direction at the respective interpolation points (x, y, z) input from the correction amount calculation unit 124.
The position command value of each interpolation point is corrected to a coordinate value (x−ε x , y−ε y , z) based on the axial shape error ε y . Then, the corrected position command value is output to each servo control device as needed. By performing the curve processing as described above, for example, when the above-described processing curve is a perfect circle, it is possible to realize the perfect circle processing with a desired accuracy.

【0025】尚、加速度演算部123における加速度演
算は、補間演算部122の出力を用いずに、工具の加速
度を直に事前の試し加工時にリニアスケールで実測する
ことにより行っても良い。即ち、I/F103を介して
随時入力される工具のx座標、y座標、z座標の各値
(x,y,z)を用いて、微分演算により、工具の加速
度ベクトルを直に事前の試し加工により求めることが可
能となる。
The acceleration calculation in the acceleration calculation unit 123 may be performed by directly measuring the acceleration of the tool on a linear scale at the time of preliminary test machining without using the output of the interpolation calculation unit 122. That is, using the x-, y-, and z-coordinate values (x, y, z) of the tool input as needed via the I / F 103, the acceleration vector of the tool is directly tested in advance by a differential operation. It can be obtained by processing.

【0026】この方法を用いて、加速度演算部123に
おける加速度演算を試し加工により実行すれば、複雑な
形状の曲線加工においても、加工曲線上の各点での加速
度を簡単な演算により容易に求めることができる。従っ
て、本発明は、加工曲線上の各点における加速度を予測
または予定することが容易でない場合においても、事前
の試し加工時に各点における加速度を測定しておくこと
により、任意の曲線形状に対しても適応が容易である。
If the acceleration calculation in the acceleration calculation unit 123 is performed by trial processing using this method, the acceleration at each point on the processing curve can be easily obtained by a simple calculation even in the processing of a curve having a complicated shape. be able to. Therefore, the present invention, even when it is not easy to predict or schedule the acceleration at each point on the machining curve, by measuring the acceleration at each point at the time of preliminary trial machining, for any curve shape Even adaptation is easy.

【0027】また、上記の実施例においては、簡単のた
め、xy平面上での曲線加工について、具体的な加工手
段を示したが、これらの曲線加工は三次元空間において
も、本発明の手段により実施することができ、この場合
にも、本発明の作用により本発明の効果を得ることがで
きる。
In the above embodiment, for the sake of simplicity, concrete processing means for curve processing on the xy plane have been described. In this case also, the effect of the present invention can be obtained by the operation of the present invention.

【0028】また、上記の実施例においては、簡単のた
め、x軸とy軸とが直交している場合について示した
が、式(4)、(5)に示した様な互いに独立した関係
が得られれば、本発明の手段を適用することができる。
従って、この様な場合にも、本発明の作用により本発明
の効果を得ることができる。
In the above embodiment, for simplicity, the case where the x-axis and the y-axis are orthogonal to each other is shown. However, the independent relations as shown in the equations (4) and (5) are used. Is obtained, the means of the present invention can be applied.
Therefore, even in such a case, the effect of the present invention can be obtained by the operation of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係わる工作機械を示す側面
図。
FIG. 1 is a side view showing a machine tool according to an embodiment of the present invention.

【図2】本発明の実施例に係わる工作機械を示す正面
図。
FIG. 2 is a front view showing the machine tool according to the embodiment of the present invention.

【図3】本発明の作用を説明する簡易モデルの物理的概
念図。
FIG. 3 is a physical conceptual diagram of a simplified model for explaining the operation of the present invention.

【図4】本発明の実施例に係わる工作機械のハードウェ
ア構成図。
FIG. 4 is a hardware configuration diagram of the machine tool according to the embodiment of the present invention.

【図5】本発明の実施例に係わる数値制御装置のソフト
ウェア構成図。
FIG. 5 is a software configuration diagram of the numerical control device according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100 … 数値制御装置 60 … ラム T … 工具 W … 工作物 100: Numerical control device 60: Ram T: Tool W: Workpiece

フロントページの続き Fターム(参考) 3C001 KA01 KB04 KB09 TA02 TB02 TD01 5H269 AB01 BB03 CC02 EE01 EE05 EE13 GG08 QB17 RB11 RC04Continued on the front page F-term (reference) 3C001 KA01 KB04 KB09 TA02 TB02 TD01 5H269 AB01 BB03 CC02 EE01 EE05 EE13 GG08 QB17 RB11 RC04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 工具又は工作物より成る被支持物を支持
する支持部材を前記工作物の加工曲線に沿って高速に移
動させるための数値制御装置であって、 前記支持部材等の加速度による工作機械系の部分的弾性
変形により生じる、前記移動の経路の前記加工曲線から
のズレを制御軸の各軸成分毎に、 前記支持部材の予定された加速度と前記支持部材と共に
軸方向に平行移動する可動体の質量及び弾性率、 或いは、変形量等の前記部分的弾性変形の関連値に基づ
いて、 前記加速度の対応軸成分に略比例する補正量で、補正す
る位置指令値補正手段を備えたことを特徴とする数値制
御装置。
1. A numerical controller for moving a support member, which supports a supported object made of a tool or a workpiece, at high speed along a machining curve of the workpiece, wherein the workpiece is driven by acceleration of the support member or the like. The deviation of the path of the movement from the processing curve caused by the partial elastic deformation of the mechanical system is translated in the axial direction together with the predetermined acceleration of the support member and the support member for each axis component of the control axis. A position command value correction unit that corrects with a correction amount substantially proportional to a corresponding axis component of the acceleration based on a value related to the partial elastic deformation such as a mass and an elastic modulus of the movable body, or a deformation amount. A numerical controller characterized by the above-mentioned.
【請求項2】 工具又は工作物より成る被支持物を支持
する支持部材を第1の軸線方向に移動可能に支持する第
1の可動体と、前記第1の可動体を第1の軸線方向と直
交する第2の軸線方向に移動可能に支持する第2の可動
体とを制御して、前記支持部材を前記工作物の加工曲線
に沿って高速に移動させるための数値制御装置であっ
て、 前記被支持物の加速度(a)による前記第1の可動体の
部分的弾性変形により生じる前記移動の経路の前記加工
曲線からのズレを、前記第1の軸線方向に作用する加速
度(ay )と、前記支持部材及び前記第1の可動体の質
量my と第1の可動体の弾性率(Ky )との比に係わる
関連値(Cy )に基づいて、前記加速度aの前記第1の
軸線方向成分(ay )に略比例する補正量(εy )で補
正すると共に、 前記加速度(a)による前記第2の可動体の部分的弾性
変形により生じる前記移動の経路の前記加工曲線からの
ズレを、前記第2の軸線方向に作用する加速度(ax
と、前記支持部材及び前記第1の可動体及び前記第2の
可動体の質量(mx )と前記第2の可動体の弾性率(K
x )との比に係わる関連値(Cx )に基づいて、前記加
速度の前記第2の軸線方向成分(ax )に略比例する補
正量(ε x )で補正する位置補正手段を備えたことを特
徴とする数値制御装置。
2. Supporting a supported object comprising a tool or a workpiece.
The second supporting member movably supports the supporting member to be moved in the first axial direction.
1 movable body, and the first movable body is perpendicular to a first axial direction.
A second movable support for movably supporting the second intersecting axial direction
And controlling the body so that the support member
Numerical control device for moving at high speed along
Of the first movable body due to the acceleration (a) of the supported object.
Machining the path of the movement caused by partial elastic deformation
Acceleration acting in the direction of the first axis to deviate from the curve
Degree (ay) And the quality of the support member and the first movable body.
Quantity myAnd the elastic modulus of the first movable body (KyRelated to the ratio
Related value (Cy), The first of the acceleration a
The axial component (ay), The correction amount (εy)
And a partial elasticity of the second movable body due to the acceleration (a).
The path of the movement caused by the deformation from the machining curve
The displacement is determined by the acceleration (a) acting in the second axial direction.x)
And the support member, the first movable body, and the second
Mass of movable body (mx) And the elastic modulus (K) of the second movable body.
x) And the related value (Cx) Based on the
The second axial component of velocity (ax) Is approximately proportional to
Positive quantity (ε x) Is provided.
Numerical control device.
【請求項3】 前記関連値(Cx,y )は、予め実験的
に求められることを特徴とする請求項2に記載の数値制
御装置。
3. The numerical control device according to claim 2, wherein the related values (C x, C y ) are obtained experimentally in advance.
【請求項4】 前記第1の軸線方向に作用する加速度
(ay )及び前記第2の軸線方向に作用する加速度(a
x )は、前記移動の経路を指令するNCデータから計算
することを特徴とする請求項2又は請求項3に記載の数
値制御装置。
4. An acceleration (a y ) acting in the first axis direction and an acceleration (a a) acting in the second axis direction.
4. The numerical controller according to claim 2, wherein x ) is calculated from NC data for instructing the movement route.
【請求項5】 前記支持部材および前記各可動体の少な
くとも1つはリニアモータで駆動されることを特徴とす
る請求項1乃至請求項4の何れか1項に記載の数値制御
装置。
5. The numerical control device according to claim 1, wherein at least one of the support member and each of the movable members is driven by a linear motor.
JP13221599A 1999-05-13 1999-05-13 Numerical controller Expired - Fee Related JP3646562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13221599A JP3646562B2 (en) 1999-05-13 1999-05-13 Numerical controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13221599A JP3646562B2 (en) 1999-05-13 1999-05-13 Numerical controller

Publications (2)

Publication Number Publication Date
JP2000322115A true JP2000322115A (en) 2000-11-24
JP3646562B2 JP3646562B2 (en) 2005-05-11

Family

ID=15076091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13221599A Expired - Fee Related JP3646562B2 (en) 1999-05-13 1999-05-13 Numerical controller

Country Status (1)

Country Link
JP (1) JP3646562B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100586831B1 (en) 2004-05-11 2006-06-08 고등기술연구원연구조합 On-the-machine measurement device for super-precision turning operations using a accelerometer
WO2013187106A1 (en) * 2012-06-14 2013-12-19 村田機械株式会社 Machine tool and method for correcting thermal deformation thereof
JP2021088024A (en) * 2019-12-04 2021-06-10 ファナック株式会社 Numerical control device and control method
JP7278507B1 (en) * 2022-07-14 2023-05-19 三菱電機株式会社 Numerical controller, numerically controlled machine tool, machining program generation device and machining program generation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100586831B1 (en) 2004-05-11 2006-06-08 고등기술연구원연구조합 On-the-machine measurement device for super-precision turning operations using a accelerometer
WO2013187106A1 (en) * 2012-06-14 2013-12-19 村田機械株式会社 Machine tool and method for correcting thermal deformation thereof
JP5846400B2 (en) * 2012-06-14 2016-01-20 村田機械株式会社 Machine tool and its thermal deformation correction method
JPWO2013187106A1 (en) * 2012-06-14 2016-02-04 村田機械株式会社 Machine tool and its thermal deformation correction method
JP2021088024A (en) * 2019-12-04 2021-06-10 ファナック株式会社 Numerical control device and control method
JP7517814B2 (en) 2019-12-04 2024-07-17 ファナック株式会社 Numerical control device and control method
JP7278507B1 (en) * 2022-07-14 2023-05-19 三菱電機株式会社 Numerical controller, numerically controlled machine tool, machining program generation device and machining program generation method
WO2024013955A1 (en) * 2022-07-14 2024-01-18 三菱電機株式会社 Numerical control device, numerical control machine tool, machining program generation device, and machining program generation method

Also Published As

Publication number Publication date
JP3646562B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP5399624B2 (en) Numerical control method and numerical control device
JP5037704B2 (en) Numerical control device with work placement error correction unit for 3-axis processing machine
JP5705283B2 (en) Machine tool and measuring method of rotation axis of machine tool
CN107797515A (en) Control device, control method and the computer-readable medium of lathe
KR100820438B1 (en) Numerical control apparatus
JP2005071016A (en) Numerical control device
JP4172614B2 (en) Ball screw feed drive correction method
JP2012164200A (en) Numerical controller making in-position check on rotating shaft
JP2009523279A (en) Method for controlling axial relative position and / or relative movement and machine tool
JP2000322115A (en) Numerical controller
JP4859941B2 (en) Processing apparatus and processing method
JP2015055923A (en) Machine tool
JP2000322116A (en) Servo controller and positioning device
JP5334932B2 (en) Parameter setting method and parameter setting device
JP2004237394A (en) Correction device of nc machine tool
CN103900805A (en) Control system for machine tool rolling functional component precision retaining ability measurement device
JP6582814B2 (en) Numerical controller and lost motion compensation method for numerical controller
EP0625739B1 (en) Apparatus for movement of an object
JPH1158285A (en) Force control system of hand mechanism
CN115516389A (en) Processing method
JP2010099753A (en) Pitch error correction method and pitch error correction device of machine tool
JP3064043B2 (en) Machining method in which workpiece deformation due to clamp is corrected, and NC machine tool for implementing the method
WO2021200403A1 (en) Machine tool, machining path generation method, and computer program
JP4842903B2 (en) Numerical control apparatus and numerical control method
JP2745355B2 (en) Method and apparatus for correcting thermal displacement of a spindle of a machine tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees