JP2000248303A - Production of silver-coated copper powder - Google Patents
Production of silver-coated copper powderInfo
- Publication number
- JP2000248303A JP2000248303A JP11054981A JP5498199A JP2000248303A JP 2000248303 A JP2000248303 A JP 2000248303A JP 11054981 A JP11054981 A JP 11054981A JP 5498199 A JP5498199 A JP 5498199A JP 2000248303 A JP2000248303 A JP 2000248303A
- Authority
- JP
- Japan
- Prior art keywords
- copper powder
- silver
- reducing agent
- powder
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Chemically Coating (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は導電フィラー等に好
適な銀被覆銅粉の製法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silver-coated copper powder suitable for a conductive filler or the like.
【0002】[0002]
【従来の技術】導電ぺーストや塗料は,樹脂バインダー
やビヒクル中に金属粉を導電フィラーとして分散させる
ことによって得られるが,導電フィラーとしては銅粉や
銀粉が通常使用されている。銅粉は銀粉に比べて安価で
あるが,耐酸化性に劣り,また温度が110℃以上では
酸化膜が発生し易いので導電塗料の熱安定性を劣化させ
るという問題がある。一方,銀粉の場合は耐酸化性も耐
久性も良好であるが,マイグレーションが発生しやすい
ことや価格が高いことなどの問題がある。2. Description of the Related Art Conductive pastes and paints are obtained by dispersing metal powder as a conductive filler in a resin binder or vehicle. Copper powder and silver powder are usually used as the conductive filler. Copper powder is less expensive than silver powder, but is inferior in oxidation resistance and has a problem that when the temperature is 110 ° C. or higher, an oxide film is easily generated, which deteriorates the thermal stability of the conductive paint. On the other hand, silver powder has good oxidation resistance and durability, but has problems such as easy migration and high price.
【0003】このようなことから銅粉の表面に銀を被覆
する方法が種々提案されている。例えば特開昭53−1
34759号公報や特開昭60−243277号公報に
は銀錯塩溶液を用いて銅粉の表面に金属銀を置換析出さ
せる方法が記載され,また,特開平1−119602号
公報にはキレート剤としてのEDTAに銅粉を分散さ
せ,その表面に銀を還元被覆させる方法が記載されてい
る。[0003] In view of the above, various methods for coating the surface of copper powder with silver have been proposed. For example, JP-A-53-1
JP-A-34759 and JP-A-60-243277 describe a method of substituting and depositing metallic silver on the surface of copper powder using a silver complex salt solution, and JP-A-1-119602 discloses a method as a chelating agent. Discloses a method in which copper powder is dispersed in EDTA and the surface thereof is reduced and coated with silver.
【0004】[0004]
【発明が解決しようとする課題】銀錯塩溶液を用いて銀
を銅粉に被覆する方法は,それなりの特徴はあるが,一
度銅粉を生成させた後,銀錯塩溶液に銅粉を混合分散さ
せるために工程が多くなり,また混合分散前の銅粉の表
面の酸化の状態によっては,銀の析出にばらつきが生じ
て,必ずしも一様に置換析出が行われないことがあり,
被覆される銅粉の表面状態の制御が必要である。またE
DTAを用いる方法では,EDTAの廃液の回収が困難
である。このため,それなりの付帯装置が必要になり,
設備費用が嵩むことになる。The method of coating silver on a copper powder using a silver complex salt solution has a certain characteristic, but once the copper powder is formed, the copper powder is mixed and dispersed in the silver complex salt solution. In addition, depending on the oxidation state of the surface of the copper powder before mixing and dispersing, the precipitation of silver may vary, and the substitution precipitation may not always be performed uniformly.
It is necessary to control the surface condition of the copper powder to be coated. Also E
In the method using DTA, it is difficult to collect the waste liquid of EDTA. For this reason, some additional equipment is required.
Equipment costs will increase.
【0005】本発明は,このような問題の解決を課題と
したものであり,金属銅粉の表面に均一に且つ簡易に銀
の被膜を形成できる方法を提供しようとするものであ
る。An object of the present invention is to solve such a problem, and an object of the present invention is to provide a method capable of forming a silver film uniformly and easily on the surface of metallic copper powder.
【0006】[0006]
【課題を解決するための手段】本発明によれば,前記の
課題を解決した銀被覆銅粉の製法として,還元剤とくに
抱水ヒドラジンまたは有機系還元剤を溶存した水溶液中
で金属銅粉と硝酸銀を反応させる銀被覆銅粉の製法を提
供する。該還元剤を溶存した水溶液の還元電位は−20
0mV以下であるのがよい。また反応温度は40〜80
℃であるのが好適である。According to the present invention, as a method of producing a silver-coated copper powder which has solved the above-mentioned problems, a method of preparing a metal copper powder in an aqueous solution in which a reducing agent, particularly hydrazine hydrate or an organic reducing agent is dissolved, is used. Provided is a method for producing silver-coated copper powder by reacting silver nitrate. The reduction potential of the aqueous solution containing the reducing agent is -20.
It is preferably 0 mV or less. The reaction temperature is 40-80.
C. is preferred.
【0007】また本発明によれば,銅塩水溶液とアルカ
リ剤を反応させて水酸化銅を析出させた懸濁液に還元剤
を添加して亜酸化銅にまで中間還元し,該亜酸化銅の懸
濁液に酸素含有ガスを吹き込んで酸化処理したあと,ま
たは,この酸化処理を省略して,抱水ヒドラジンまたは
有機系還元剤を添加して金属銅粉にまで水中で最終還元
し,得られた該還元剤と属銅粉を含む液に硝酸銀を添加
することからなる銀被覆銅粉の製法を提供する。Further, according to the present invention, a reducing agent is added to a suspension obtained by reacting an aqueous solution of a copper salt with an alkali agent to precipitate copper hydroxide, and the resulting mixture is intermediately reduced to cuprous oxide. After the oxygen-containing gas is blown into the suspension and oxidized, or this oxidation is omitted, hydrazine hydrate or an organic reducing agent is added, and the water is finally reduced to copper metal powder in water. A method for producing a silver-coated copper powder, comprising adding silver nitrate to a liquid containing the reduced agent and the copper powder.
【0008】[0008]
【発明の実施の形態】還元剤が溶存した水溶液中で金属
銅粉と硝酸銀を反応させると,金属銅粉の各粒子の表面
に均一に銀の被膜を形成させることができる。還元剤と
しては抱水ヒドラジンまたは有機系還元剤を使用するの
がよい。この還元剤には,還元作用を有する水溶性還元
剤であれば原理的には使用可能であるが,ホルマリンな
どの有機系還元剤または抱水ヒドラジンが使用に便宜で
ある。金属イオンを含む無機系還元剤を使用すると銀被
覆銅粉に無機物質が混入するおそれがあるが,有機系還
元剤または抱水ヒドラジンを用いた場合には,このおそ
れがない。BEST MODE FOR CARRYING OUT THE INVENTION By reacting metallic copper powder and silver nitrate in an aqueous solution in which a reducing agent is dissolved, a silver coating can be formed uniformly on the surface of each particle of metallic copper powder. Hydrazine hydrate or an organic reducing agent is preferably used as the reducing agent. As the reducing agent, any water-soluble reducing agent having a reducing action can be used in principle, but an organic reducing agent such as formalin or hydrazine hydrate is convenient for use. When an inorganic reducing agent containing a metal ion is used, an inorganic substance may be mixed into the silver-coated copper powder. However, when an organic reducing agent or hydrazine hydrate is used, there is no danger.
【0009】このような還元剤の溶存下で金属銅粉を水
中に懸濁させると,銅粉粒子表面の酸化膜が除去され,
活性な金属表面が露出した状態に維持されることがその
理由であると考えられるが,この状態で硝酸銀を添加す
ると,銅粉粒子表面に均一に被着し,その被着強度も良
好となる。このため,銀量の少ない極薄の銀皮膜によ
り,通常の導電フィラー用銅粉に比べると,その耐酸化
性,熱安定性および導電性を著しく改善できる。したが
って,導電フィラーとして使用されていた通常の金属銅
粉(その製造法は問わない)に対して,本発明に従って
銀被覆を行うと,導電フィラーとしての特性を著しく高
めることができる。When metallic copper powder is suspended in water in the presence of such a reducing agent, an oxide film on the surface of the copper powder particles is removed,
It is thought that the reason is that the active metal surface is kept exposed, but when silver nitrate is added in this state, it is uniformly deposited on the surface of the copper powder particles, and the adhesion strength is also good. . For this reason, the ultra-thin silver film having a small amount of silver can significantly improve the oxidation resistance, thermal stability and conductivity as compared with ordinary copper powder for conductive filler. Therefore, when silver is coated according to the present invention on ordinary metallic copper powder used as a conductive filler (regardless of its production method), characteristics as a conductive filler can be remarkably enhanced.
【0010】還元剤を溶存させないで水中に金属銅粉を
懸濁させ,同様に硝酸銀を添加した場合には,金属銅粉
の表面状態によっては銀被覆が生ずることもあるが,そ
の銀被膜の均一性は悪く,銀被覆を安定して形成させる
ことは困難である。When copper metal powder is suspended in water without dissolving a reducing agent and silver nitrate is similarly added, silver coating may occur depending on the surface condition of the metal copper powder. The uniformity is poor and it is difficult to form a silver coating stably.
【0011】該還元剤の溶存下での金属銅粉と硝酸銀の
反応は,40℃以上好ましくは45℃以上で,80℃以
下好ましくは60℃以下で行うのがよく,攪拌下で行う
のがよい。これにより,金属銅粉の各粒子の表面全体を
均一に銀で被覆できる。反応温度がこの範囲より低くて
も,高くても銀の皮膜は形成するものの,その皮膜の均
一性については良好とならない場合がある。還元剤の添
加量は,用いる還元剤の種類によっても相違するが,硝
酸銀を添加する前の水溶液の還元電位が−200mV以
下,好ましくは−300mV以下,さらに好ましくは−
400mV以下となるように制御すればよい。The reaction between the metallic copper powder and silver nitrate in the presence of the reducing agent is carried out at a temperature of at least 40 ° C., preferably at least 45 ° C., and preferably at most 80 ° C., preferably at most 60 ° C., preferably under stirring. Good. This makes it possible to uniformly coat the entire surface of each particle of the metallic copper powder with silver. If the reaction temperature is lower or higher than this range, a silver film is formed, but the uniformity of the film may not be good. Although the amount of the reducing agent to be added varies depending on the type of the reducing agent used, the reduction potential of the aqueous solution before the addition of silver nitrate is -200 mV or less, preferably -300 mV or less, and more preferably-
What is necessary is just to control it to be 400 mV or less.
【0012】還元剤が溶存し且つ金属銅粉が共存する水
溶液に対して硝酸銀を粉末状で添加してもよいが,水溶
液として添加すると均一な銀皮膜を形成でき,この硝酸
銀水溶液の添加にさいしては,金属銅粉の液を攪拌しな
がら,硝酸銀水溶液を少量づつ時間をかけて添加するの
がよい。一括添加の場合よりも,このように少量づつ連
続的または回分式に添加する方が均一な銀皮膜を形成で
きる。Silver nitrate may be added in powder form to an aqueous solution in which a reducing agent is dissolved and metallic copper powder coexists. However, when added as an aqueous solution, a uniform silver film can be formed, and this silver nitrate aqueous solution is added. It is preferable to add the silver nitrate aqueous solution little by little over a period of time while stirring the metal copper powder solution. A more uniform silver film can be formed by adding such a small amount continuously or batchwise than in the case of batch addition.
【0013】添加する硝酸銀の量は意図する皮膜厚さに
応じて調整すればよいが,本発明に従うと金属銅粒子の
全表面に均一な皮膜が形成できるので,全粒子表面を被
覆するに必要な銀量は少なくて済む。全粒子表面を被覆
するに必要な銀量は,金属銅粉の比表面積に依存する
が,金属銅粉の比表面積が例えば1000cm2/g以
上の場合には,金属銅粉の全Cuに対するAgの重量比
Ag/Cuで,0.5/100〜10/100,好まし
くは1.0/100〜5.0/100となるように硝酸銀
を添加すればよい。この比が0.5/100未満では充
分な耐候性(耐酸化性)が得られず,10/100を超
えるとエレクトロマイグレーションが発生しやすくな
る。The amount of silver nitrate to be added may be adjusted according to the intended thickness of the film. However, according to the present invention, a uniform film can be formed on the entire surface of the metallic copper particles. The amount of silver required is small. The amount of silver required to coat the entire particle surface depends on the specific surface area of the metallic copper powder. If the specific surface area of the metallic copper powder is, for example, 1000 cm 2 / g or more, Ag of the metallic copper powder relative to the total Cu is used. Silver nitrate may be added so that the weight ratio of Ag / Cu becomes 0.5 / 100 to 10/100, preferably 1.0 / 100 to 5.0 / 100. If this ratio is less than 0.5 / 100, sufficient weather resistance (oxidation resistance) cannot be obtained, and if it exceeds 10/100, electromigration tends to occur.
【0014】代表的な例を挙げると,比表面積が160
0cm2/gの金属銅粉1000gを,抱水ヒドラジン
655gを溶解した水溶液4リットルに攪拌下に懸濁さ
せ,液温を55℃に保持したまま,硝酸銀16.2gを
溶解した水溶液150ミリリットルを60分間かけなが
ら少量づつ添加し続けると,平均膜厚が2〜3nmの銀
皮膜をもつ銀被覆銅粉が生成する。この懸濁液を固液分
離し,採取した粉体を水洗後乾燥して,均一な銀被膜を
もつ銀被覆銅粉が得られる。A typical example is that the specific surface area is 160
1000 g of 0 cm 2 / g metallic copper powder was suspended with stirring in 4 liters of an aqueous solution in which 655 g of hydrazine hydrate had been dissolved. If the addition is continued little by little over 60 minutes, a silver-coated copper powder having a silver film having an average film thickness of 2 to 3 nm is produced. This suspension is subjected to solid-liquid separation, and the collected powder is washed with water and dried to obtain a silver-coated copper powder having a uniform silver coating.
【0015】還元剤の溶存下での金属銅粉と硝酸銀の反
応により銀被覆銅粉を得る本発明法は,金属銅粉の湿式
製造法の最終工程に適用すると有利であり,これによれ
ば,銅化合物を出発材料として銀被覆銅粉の工業的生産
が有利に行える。金属銅粉の湿式製造法として,水酸化
銅の水中懸濁液から亜酸化銅粉→金属銅粉への二段階還
元を水中で行わせる方法が良く知られており,水酸化銅
から亜酸化銅への還元剤としては例えばブドウ糖,亜酸
化銅から金属銅粉への還元剤としては例えば抱水ヒドラ
ジンやホルマリンを用いる方法が一般化している。最終
工程である亜酸化銅から金属銅粉への還元が終了した時
点の液は,残余の還元剤を含んでおり且つ金属銅粉を含
んでいる。したがって,この液に前述したように硝酸銀
を添加すると銀被覆金属銅粉を得ることができる。The method of the present invention for obtaining silver-coated copper powder by the reaction of copper metal powder and silver nitrate in the presence of a reducing agent is advantageous when applied to the final step of the wet production method of copper metal powder. Industrial production of silver-coated copper powder can be advantageously performed using a copper compound as a starting material. A well-known method for wet production of copper metal powder is to perform a two-stage reduction of copper hydroxide powder in water from a suspension of copper hydroxide in water to copper copper powder. For example, glucose is used as a reducing agent for copper, and hydrazine hydrate or formalin is used as a reducing agent for converting cuprous oxide to metallic copper powder. The liquid at the time when the reduction of cuprous oxide to metallic copper powder, which is the final step, is completed, contains the remaining reducing agent and contains metallic copper powder. Therefore, when silver nitrate is added to this solution as described above, silver-coated metallic copper powder can be obtained.
【0016】このことから,本発明によれば,銅塩水溶
液とアルカリ剤を反応させて水酸化銅を析出させた懸濁
液に還元剤を添加して亜酸化銅にまで中間還元し,次い
で,有機系還元剤または抱水ヒドラジンを添加して金属
銅粉にまで水中で最終還元し,得られた該還元剤と金属
銅粉を含む液に硝酸銀を添加することからなる工業的に
有利な銀被覆銅粉の湿式製造法を提供する。From the above, according to the present invention, a reducing agent is added to a suspension in which copper hydroxide is precipitated by reacting an aqueous solution of a copper salt with an alkali agent, and intermediate reduction to cuprous oxide is carried out. An industrially advantageous method comprising adding an organic reducing agent or hydrazine hydrate to a final reduction to copper metal powder in water, and adding silver nitrate to a liquid containing the obtained reducing agent and copper metal powder. A wet production method of silver-coated copper powder is provided.
【0017】本発明者らは,この銀被覆銅粉の工業的方
法において,中間還元のあと,最終還元の前に,酸素含
有ガス吹き込みによる酸化工程を設けると,すなわち,
亜酸化銅までの還元が完了した段階で酸素含有ガス吹き
込みによる酸化処理を行い,この酸化処理後に最終還元
を行うと,最終還元後の金属銅粉の粒径制御が良好に行
えること,具体的には最終還元後の銅粉の粒径分布が小
さくなること,また酸化処理の程度を調節することによ
りその平均粒径を自在に変化させることができることを
知見した。したがって,本発明によればまた,銅塩水溶
液とアルカリ剤を反応させて水酸化銅を析出させた懸濁
液に還元剤を添加して亜酸化銅にまで中間還元し,該亜
酸化銅の懸濁液に酸素含有ガスを吹き込んで酸化処理し
たあと,有機系還元剤または抱水ヒドラジンを添加して
金属銅粉にまで水中で最終還元し,得られた該還元剤と
金属銅粉を含む液に硝酸銀を添加することからなる工業
的にさらに有利な銀被覆銅粉の湿式製造法を提供する。The inventors of the present invention provide an industrial process for silver-coated copper powder by providing an oxidation step by blowing oxygen-containing gas after intermediate reduction and before final reduction.
Oxidation treatment by blowing oxygen-containing gas is performed at the stage when the reduction to cuprous oxide is completed, and final reduction is performed after this oxidation treatment. It was found that the particle size distribution of the copper powder after the final reduction was reduced, and that the average particle size could be freely changed by adjusting the degree of oxidation treatment. Therefore, according to the present invention, a reducing agent is added to a suspension obtained by reacting an aqueous solution of a copper salt with an alkali agent to precipitate copper hydroxide, and the resulting mixture is intermediately reduced to cuprous oxide. After the oxygen-containing gas is blown into the suspension to oxidize it, an organic reducing agent or hydrazine hydrate is added to the suspension to make a final reduction in water to copper metal powder, which contains the obtained reducing agent and copper metal powder An industrially more advantageous method for producing a silver-coated copper powder by adding silver nitrate to a liquid is provided.
【0018】後者の酸化処理を行う方法において,亜酸
化銅の懸濁液に吹き込む酸素含有ガスの量を多くすると
最終還元されたときの銅粉の粒径は大きくなる。酸素含
有ガスの吹き込み量は流量と吹き込み時間で決まるが,
この流量と吹き込み時間を調節することにより,銅粉の
粒径制御を正確に行うことができる。また,この酸化処
理を行うと,行わない場合に比べて,粒度分布の幅が狭
くなって粒径の揃った粒子が得られ,しかも,その形状
も,球状のものを得る場合には,殆んどが球状になるこ
とがわかった。このような成果を得るに必要な酸素含有
ガスの吹き込み量は,液中の銅1モルに対して酸素量が
少なくとも0.1モル以上となるように流量と吹き込み
時間を調節するのがよい。しかし,あまり吹き込み量が
多くなっても効果が飽和するので,吹き込みの仕方にも
よるが,液中の銅1モルに対して酸素量が20モル以
下,場合によっては10モル以下であってもよい。吹き
込む酸素含有ガスとしては空気の使用が最も便利であ
り,特別のことがない限り,常温の空気を常温の懸濁液
に吹き込めばよい。もちろん酸素富化空気や純酸素ガス
も使用できる。In the latter method of carrying out the oxidation treatment, when the amount of the oxygen-containing gas blown into the suspension of cuprous oxide is increased, the particle size of the copper powder at the time of final reduction increases. The injection amount of oxygen-containing gas is determined by the flow rate and the injection time.
By adjusting the flow rate and the blowing time, the particle size of the copper powder can be accurately controlled. In addition, when this oxidation treatment is performed, compared with the case where the oxidation treatment is not performed, the width of the particle size distribution is narrowed, and particles having a uniform particle size can be obtained. It turns out that most become spherical. It is preferable to adjust the flow rate and the blowing time so that the oxygen-containing gas is blown at a rate of at least 0.1 mole or more per mole of copper in the solution. However, the effect is saturated even if the blowing amount is too large. Therefore, depending on the blowing method, even if the oxygen amount is 20 moles or less per 1 mole of copper in the liquid, even if the oxygen amount is 10 moles or less in some cases. Good. As the oxygen-containing gas to be blown, the use of air is most convenient. Unless otherwise specified, air at room temperature may be blown into the suspension at room temperature. Of course, oxygen-enriched air or pure oxygen gas can also be used.
【0019】酸化処理を行うか,または省略する前記の
銀被覆銅粉の工業的湿式製造法において,水酸化銅の析
出工程,中間還元工程および最終還元工程は通常の方法
に従えばよい。例えば水酸化銅の析出工程では,銅塩水
溶液とアルカリ剤を反応させて水酸化銅を析出させれば
よく,銅塩水溶液としては硫酸銅水溶液を,またアルカ
リ剤としてはNaOH水溶液が最も普通に使用でき,場
合によっては,前者は塩化銅,炭酸銅,硝酸銅などの水
溶液であってもよく,後者についても他に影響を与えな
いアルカリ剤であれば使用可能である。水酸化銅の析出
反応は,所定濃度の銅塩水溶液と所定の濃度のアルカリ
水溶液を別途に作製し,両液を混ぜ合わせて直ちに強攪
拌する方法,或いは銅塩水溶液にアルカリ水溶液を攪拌
下に添加し続けるという方法で進行させるのがよい。こ
れにより粒状の水酸化銅が析出した懸濁液が得られる。In the above-mentioned industrial wet production method of silver-coated copper powder which is subjected to oxidation treatment or is omitted, the steps of depositing copper hydroxide, the intermediate reduction step and the final reduction step may be in accordance with ordinary methods. For example, in the step of depositing copper hydroxide, copper hydroxide may be precipitated by reacting an aqueous solution of copper salt with an alkali agent. As the copper salt aqueous solution, an aqueous solution of copper sulfate is used, and as the alkali agent, an aqueous solution of NaOH is most commonly used. In some cases, the former may be an aqueous solution of copper chloride, copper carbonate, copper nitrate, or the like, and the latter may be an alkaline agent that does not affect the other. For the precipitation reaction of copper hydroxide, a method of separately preparing an aqueous solution of a copper salt having a predetermined concentration and an aqueous solution of an alkali having a predetermined concentration, mixing the two solutions and immediately stirring vigorously, or stirring the aqueous alkali solution in the aqueous copper salt solution with stirring It is preferable to proceed by a method of continuously adding. As a result, a suspension in which granular copper hydroxide is precipitated is obtained.
【0020】ついで,得られた水酸化銅懸濁液に対し
て,還元剤を添加して水酸化銅を亜酸化銅に中間還元す
るが,この還元剤にはグルコース(ブドウ糖)が使用で
きる。この中間還元工程は不活性ガス雰囲気下で昇温し
ながら行うのがよい。そして,この中間還元処理を終え
たあと,酸化処理を行う場合には,雰囲気ガスを酸素含
有ガスに代え,この酸素含有ガスを液中にバブリングす
る。この酸化処理を行うことにより,液のpHは5〜9
となる。次いで,この懸濁液を不活性ガス雰囲気下でデ
カンテーションし,その上澄液を除去することにより,
沈殿を採取する。酸化処理を省略する場合には,中間還
元処理を終えた懸濁液を不活性ガス雰囲気下でデカンテ
ーションし,その上澄液を除去することにより沈殿を採
取する。Then, a reducing agent is added to the obtained copper hydroxide suspension to intermediately reduce the copper hydroxide to cuprous oxide, and glucose (glucose) can be used as the reducing agent. This intermediate reduction step is preferably performed while raising the temperature in an inert gas atmosphere. When the oxidation treatment is performed after the completion of the intermediate reduction treatment, the atmosphere gas is replaced with an oxygen-containing gas, and the oxygen-containing gas is bubbled in the liquid. By performing this oxidation treatment, the pH of the solution is 5 to 9
Becomes Then, the suspension was decanted under an inert gas atmosphere, and the supernatant was removed.
Collect the precipitate. When the oxidation treatment is omitted, the suspension after the intermediate reduction treatment is decanted under an inert gas atmosphere, and the supernatant is removed to collect a precipitate.
【0021】この沈殿を新たな水中に懸濁させ,還元剤
として抱水ヒドラジンまたはホルマリンを用いて金属銅
にまで最終還元する。この還元反応では発熱が起きるの
で液温は上昇する。The precipitate is suspended in fresh water and finally reduced to metallic copper using hydrazine hydrate or formalin as a reducing agent. In this reduction reaction, heat is generated, and the liquid temperature rises.
【0022】そのさい,金属銅粉の還元に必要十分な量
の還元剤を添加するのが通常であるから,金属銅粉にま
で還元が完了した液には還元剤すなわち抱水ヒドラジン
またはホルマリンが溶存している。したがって,この最
終懸濁液に硝酸銀を添加すると,有機系還元剤が溶存し
た水溶液中で金属銅粉と硝酸銀を反応させることがで
き,これにより銀被覆銅粉の懸濁液が得られる。これを
固液分離し乾燥することにより,銀金属銅粉を得ること
ができる。この銀被覆工程では先に説明した条件が満た
されるようにするのがよく,例えば反応温度を40〜8
0℃,好ましくは45〜55℃に維持し,硝酸銀添加前
の還元電位を−200mV以下,好ましくは−400m
V以下となるように調整し,攪拌下で硝酸銀水溶液を少
量つづ連続的または回分的に時間をかけて添加するのが
よい。At that time, since it is usual to add a reducing agent in an amount necessary and sufficient for reducing the metallic copper powder, the reducing agent, ie, hydrazine hydrate or formalin, is added to the liquid which has been reduced to the metallic copper powder. It is dissolved. Therefore, when silver nitrate is added to this final suspension, metallic copper powder and silver nitrate can be reacted in an aqueous solution in which an organic reducing agent is dissolved, whereby a suspension of silver-coated copper powder is obtained. This is separated into solid and liquid and dried to obtain silver metallic copper powder. In the silver coating step, it is preferable that the conditions described above are satisfied.
0 ° C., preferably 45-55 ° C., and the reduction potential before adding silver nitrate is -200 mV or less, preferably -400 mV.
V or less, and the silver nitrate aqueous solution is preferably added little by little continuously or batchwise with stirring over time.
【0023】[0023]
【実施例】〔実施例1〕濃度48%のNaOH水溶液5
39gに純水4158gを加えてなる温度27℃のアル
カリ水溶液と,純水2200gに硫酸銅(CuSO4・
5H2O)662.5gを溶解した温度29℃の硫酸銅水
溶液とを混合(pHは13.7であり,液中の銅に対し
て苛性ソーダの当量比が1.25である)し,攪拌して
水酸化銅が析出した懸濁液を得る。[Example 1] A 48% strength NaOH aqueous solution 5
An alkaline aqueous solution at a temperature of 27 ° C. obtained by adding 4158 g of pure water to 39 g, and copper sulfate (CuSO 4.
(5H 2 O) was mixed with an aqueous solution of copper sulfate at a temperature of 29 ° C. in which 662.5 g of 662.5 g were dissolved (pH was 13.7, and the equivalent ratio of caustic soda to copper in the solution was 1.25). Thus, a suspension in which copper hydroxide is precipitated is obtained.
【0024】この懸濁液全量に対し,ブドウ糖993.
5gを純水4140gに溶かしたブドウ糖水溶液全量を
添加し,添加後30分間で液の温度を70℃まで昇温し
た後,15分間保持する。ここまでの処理操作は全て窒
素雰囲気下で行う。Glucose 993.
A total amount of an aqueous glucose solution obtained by dissolving 5 g in 4140 g of pure water is added, and after 30 minutes from the addition, the temperature of the solution is raised to 70 ° C., and then maintained for 15 minutes. All the processing operations so far are performed in a nitrogen atmosphere.
【0025】ついで,この液中に62ml/分の流量で
200分間にわたって空気をバブリングさせる。これに
より,液のpHは6.2となる。Next, air is bubbled through the liquid at a flow rate of 62 ml / min for 200 minutes. As a result, the pH of the solution becomes 6.2.
【0026】この懸濁液を窒素雰囲気中で2日間静置し
たあと,上澄液(pH7.01)を除去し,沈殿をほぼ
全量採取し,この沈殿物に純水700gを追加する。After the suspension is allowed to stand in a nitrogen atmosphere for 2 days, the supernatant (pH 7.01) is removed, almost all of the precipitate is collected, and 700 g of pure water is added to the precipitate.
【0027】この懸濁液全量に対し,抱水ヒドラジン6
5gを添加する。発熱反応により液の温度は50℃に昇
温し,最終的に80℃まで昇温して反応が終了する。反
応が終了した液は,抱水ヒドラジンが溶存した水溶液中
に金属銅粉が含まれる液である。Hydrazine hydrate 6 was added to the total amount of the suspension.
Add 5 g. Due to the exothermic reaction, the temperature of the liquid is raised to 50 ° C., and finally to 80 ° C., and the reaction is completed. The solution after the reaction is a solution in which metallic copper powder is contained in an aqueous solution in which hydrazine hydrate is dissolved.
【0028】このようにして得られた,抱水ヒドラジン
が溶存した水溶液中に金属銅粉が懸濁した液は,還元電
位が−400mVであり,液中の金属銅粉は当初の硫酸
銅のモル比に実質的に等しく,ほぼ260gである。こ
の銅量のほぼ1重量%に相当する銀量となるように硝酸
銀4.1gを純水36gに溶解し,この硝酸銀水溶液の
全量を,チューブポンプを用いて60分かけて少量づづ
連続的に,50℃に維持した該金属銅粉の懸濁液に,攪
拌しながら,添加した。The liquid obtained by suspending the metallic copper powder in the aqueous solution in which hydrazine hydrate was dissolved had a reduction potential of -400 mV, and the metallic copper powder in the liquid was initially copper sulfate. Substantially equal to the molar ratio, approximately 260 g. 4.1 g of silver nitrate is dissolved in 36 g of pure water so that the silver amount corresponds to approximately 1% by weight of the copper amount, and the whole amount of the silver nitrate aqueous solution is continuously reduced in small amounts over 60 minutes using a tube pump. Was added to the suspension of the metallic copper powder maintained at 50 ° C. while stirring.
【0029】反応終了後の懸濁液をろ過し,水洗し乾燥
して銀被覆銅粉を得た。この粉体に荷重をかけながら電
気抵抗を測定し,その荷重と電気抵抗との関係を調べ
た。その結果を図1に示した。After the completion of the reaction, the suspension was filtered, washed with water and dried to obtain a silver-coated copper powder. The electrical resistance was measured while applying a load to the powder, and the relationship between the load and the electrical resistance was examined. The result is shown in FIG.
【0030】〔比較例〕金属銅粉にまで最終還元するま
では実施例1と同様にして金属銅粉が懸濁した液を得
た。この液から粉体をろ過,水洗し,窒素雰囲気中で乾
燥して金属銅粉を得た。この金属銅粉493.3gを,
EDTA5gを溶解した液量4.8リットルの水溶液に
加えて,200rpmで5分間攪拌したあと,この攪拌
を続行しながら,純水200mlに硝酸銀15.7gを
溶解した硝酸銀水溶液全量を添加し,ついで還元剤であ
る酒石酸10gを添加し,その後30分攪拌を続けた
後,ろ過処理し,ろ液が透明になるまで水洗した。Comparative Example A liquid in which metallic copper powder was suspended was obtained in the same manner as in Example 1 until final reduction to metallic copper powder. The powder was filtered, washed with water and dried in a nitrogen atmosphere to obtain metallic copper powder. 493.3 g of this metallic copper powder was
After adding 5 g of EDTA to a 4.8 liter aqueous solution and stirring at 200 rpm for 5 minutes, while continuing the stirring, the entire amount of silver nitrate aqueous solution in which 15.7 g of silver nitrate was dissolved in 200 ml of pure water was added. 10 g of tartaric acid as a reducing agent was added, followed by stirring for 30 minutes, followed by filtration, and washing with water until the filtrate became transparent.
【0031】得られた粉体を真空ポンプで吸引し,70
℃で乾燥し,銀被覆銅粉490gを得た。この銀被覆銅
粉の銀量も,実施例1と同じく1重量%である。この銀
被覆銅粉についても実施例1と同様に,粉体に荷重をか
けながら電気抵抗を測定し,その荷重と電気抵抗との関
係を調べた。その結果を図1に併記した。The obtained powder is sucked by a vacuum pump and
It dried at ℃ and obtained 490g of silver covering copper powder. The silver content of this silver-coated copper powder was also 1% by weight, as in Example 1. Similarly to Example 1, the electrical resistance of the silver-coated copper powder was measured while applying a load to the powder, and the relationship between the load and the electrical resistance was examined. The results are also shown in FIG.
【0032】図1の結果から,実施例の粉体は比較例の
それに比べて粉体抵抗が低く(導電性が良好であり),
とくに低荷重での粉体抵抗が低いことがわかる。From the results shown in FIG. 1, the powder of the example has lower powder resistance (good conductivity) than that of the comparative example.
It can be seen that the powder resistance at low load is particularly low.
【0033】また,実施例と比較例の粉体をそれぞれ2
00mgを示差熱分析装置の坩堝に装填し,大気雰囲気
下で毎分4℃で昇温して示差熱分析を行ったところ,実
施例の粉体は475.8℃,比較例の粉体は473.8℃
でそれぞれ単独のピークを示した。銀被覆しない銅粉で
は370℃にピークが見られ,この温度で酸化が開始す
るが,実施例および比較例の両粉体とも370℃付近で
のピークは観測されなかった。このことから,実施例の
粉体は充分な耐酸化性(耐候性)を有することがわか
る。The powders of the example and the comparative example were 2
00 mg was loaded into the crucible of the differential thermal analyzer, and the temperature of the powder was raised at 4 ° C./min. In the air atmosphere, and the differential thermal analysis was performed. 473.8 ° C
Indicates a single peak. A peak was observed at 370 ° C. for copper powder without silver coating, and oxidation started at this temperature, but no peak was observed at around 370 ° C. for both powders of the examples and comparative examples. This indicates that the powders of the examples have sufficient oxidation resistance (weather resistance).
【0034】[0034]
【発明の効果】以上説明したように,本発明によると,
金属銅粉の表面に均一に且つ簡易な操作で銀の被膜を形
成でき,銀被膜が均一であるから金属銅粉の全表面を覆
うに必要な銀量も少なくてすむ。また本発明法は,湿式
銅粉の製造法の最終工程にそのまま適用することができ
る点でも有利であり,高品質の導電フィラーを工業的に
且つ経済的に製造することができる。As described above, according to the present invention,
A silver coating can be formed on the surface of the metal copper powder uniformly and by a simple operation, and since the silver coating is uniform, the amount of silver required to cover the entire surface of the metal copper powder can be reduced. The method of the present invention is also advantageous in that it can be directly applied to the final step of the method for producing wet copper powder, and can produce a high-quality conductive filler industrially and economically.
【図1】本発明法で得られた銀被覆粉体に荷重をかけな
がら電気抵抗を測定した結果を比較例の銀被覆粉体と対
比して示した図である。FIG. 1 is a diagram showing the results of measuring electrical resistance while applying a load to a silver-coated powder obtained by the method of the present invention, in comparison with a silver-coated powder of a comparative example.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三好 宏昌 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4K017 AA06 BA02 BA05 BB02 DA01 EH18 EJ01 FB03 FB07 4K018 BA02 BC23 BD04 KA33 4K022 AA02 AA35 AA41 BA01 DA01 DB04 DB05 DB06 DB13 DB14 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiromasa Miyoshi 1-8-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Dowa Mining Co., Ltd. 4K017 AA06 BA02 BA05 BB02 DA01 EH18 EJ01 FB03 FB07 4K018 BA02 BC23 BD04 KA33 4K022 AA02 AA35 AA41 BA01 DA01 DB04 DB05 DB06 DB13 DB14
Claims (6)
硝酸銀を反応させる銀被覆銅粉の製法。1. A method for producing silver-coated copper powder by reacting metallic copper powder and silver nitrate in an aqueous solution in which a reducing agent is dissolved.
元剤である請求項1に記載の銀被覆銅粉の製法。2. The method according to claim 1, wherein the reducing agent is hydrazine hydrate or an organic reducing agent.
ある請求項1または2に記載の銀被覆銅粉の製法。3. The method for producing a silver-coated copper powder according to claim 1, wherein the reduction potential of the aqueous solution is −200 mV or less.
1,2または3に記載の銀被覆銅粉の製法。4. The method for producing a silver-coated copper powder according to claim 1, wherein the reaction temperature is 40 to 80 ° C.
酸化銅を析出させた懸濁液に還元剤を添加して亜酸化銅
にまで中間還元し,次いで,抱水ヒドラジンまたは有機
系還元剤を添加して金属銅粉にまで水中で最終還元し,
得られた該還元剤と金属銅粉を含む液に硝酸銀を添加す
ることからなる銀被覆銅粉の製法。5. A method in which a reducing agent is added to a suspension obtained by reacting an aqueous solution of a copper salt with an alkali agent to precipitate copper hydroxide, intermediate reduction to cuprous oxide is performed, and then hydrazine hydrate or organic reduction is performed. The final reduction in water to the metal copper powder by adding the agent,
A method for producing a silver-coated copper powder, comprising adding silver nitrate to the obtained liquid containing the reducing agent and metallic copper powder.
酸化銅を析出させた懸濁液に還元剤を添加して亜酸化銅
にまで中間還元し,該亜酸化銅の懸濁液に酸素含有ガス
を吹き込んで酸化処理したあと,抱水ヒドラジンまたは
有機系還元剤を添加して金属銅粉にまで水中で最終還元
し,得られた該還元剤と金属銅粉を含む液に硝酸銀を添
加することからなる銀被覆銅粉の製法。6. A copper salt aqueous solution and an alkali agent are reacted with each other to cause a copper hydroxide to precipitate, and a reducing agent is added to the suspension for intermediate reduction to cuprous oxide. After oxidizing by blowing an oxygen-containing gas, hydrazine hydrate or an organic reducing agent is added and the final reduction is performed in water to metallic copper powder. A method for producing silver-coated copper powder comprising adding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05498199A JP4168108B2 (en) | 1999-03-03 | 1999-03-03 | Production method of silver-coated copper powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05498199A JP4168108B2 (en) | 1999-03-03 | 1999-03-03 | Production method of silver-coated copper powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000248303A true JP2000248303A (en) | 2000-09-12 |
JP4168108B2 JP4168108B2 (en) | 2008-10-22 |
Family
ID=12985837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05498199A Expired - Lifetime JP4168108B2 (en) | 1999-03-03 | 1999-03-03 | Production method of silver-coated copper powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4168108B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100438408B1 (en) * | 2001-08-16 | 2004-07-02 | 한국과학기술원 | Method for Synthesis of Core-Shell type and Solid Solution type Metallic Alloy Nanoparticles via Transmetalation Reactions and Their Applications |
KR100477383B1 (en) * | 2002-08-16 | 2005-03-17 | 한국지질자원연구원 | Preparation method of precious metal-coated metal powder |
WO2006126527A1 (en) * | 2005-05-27 | 2006-11-30 | Neomax Materials Co., Ltd. | Silver-coated ball and method for manufacturing same |
KR100781586B1 (en) | 2006-02-24 | 2007-12-05 | 삼성전기주식회사 | Core-shell structure metall nanoparticles and its manufacturing method |
WO2008059789A1 (en) * | 2006-11-17 | 2008-05-22 | Nippon Mining & Metals Co., Ltd. | Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder |
CN100448570C (en) * | 2007-02-01 | 2009-01-07 | 北京化工大学 | Preparation method of nanometer copper-silver bimetallic composite powder |
CN102211186A (en) * | 2011-06-08 | 2011-10-12 | 北京工业大学 | Method for plating silver on surface of dendritic copper powder |
CN102950282A (en) * | 2012-10-15 | 2013-03-06 | 宁波广博纳米新材料股份有限公司 | Preparation method of silver-copper coating powder |
RU2499082C1 (en) * | 2012-05-04 | 2013-11-20 | Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" | Solution for chemical silver-plating of copper alloys |
KR101483733B1 (en) | 2012-09-26 | 2015-01-16 | 김상호 | Conductive powder and menufacturing method of thereof |
CN104439271A (en) * | 2013-09-17 | 2015-03-25 | Oci有限公司 | Method for preparing multilayer metal complex having excellent surface properties |
CN105665745A (en) * | 2016-04-10 | 2016-06-15 | 欧振云 | Preparation method of silver nanoparticles |
JP6063095B2 (en) * | 2014-06-25 | 2017-01-18 | タツタ電線株式会社 | Sulfur removing material, purification column using the same, and pretreatment method for organic substance analysis |
KR20170031215A (en) | 2014-09-12 | 2017-03-20 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder |
KR20170031210A (en) | 2014-08-26 | 2017-03-20 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same |
CN109773212A (en) * | 2019-03-29 | 2019-05-21 | 金陵科技学院 | A kind of preparation method suitable for the anti-oxidant silver-plated copper soldering paste of high-power encapsulation |
US10486231B2 (en) | 2015-08-31 | 2019-11-26 | Mitsui Mining & Smelting Co., Ltd. | Silver-coated copper powder |
CN110523973A (en) * | 2019-09-21 | 2019-12-03 | 深圳市百柔新材料技术有限公司 | Surface coats the sheet silver-bearing copper powder of fine and close silver layer, preparation method and applications |
US10654101B2 (en) | 2015-05-15 | 2020-05-19 | Sumitomo Metal Mining Co., Ltd. | Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder |
US10695830B2 (en) | 2015-05-15 | 2020-06-30 | Sumitomo Metal Mining Co., Ltd. | Copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing copper powder |
JP2021055142A (en) * | 2019-09-30 | 2021-04-08 | Dowaエレクトロニクス株式会社 | Silver-coated metal powder and method for producing the same, and electroconductive coating material |
-
1999
- 1999-03-03 JP JP05498199A patent/JP4168108B2/en not_active Expired - Lifetime
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100438408B1 (en) * | 2001-08-16 | 2004-07-02 | 한국과학기술원 | Method for Synthesis of Core-Shell type and Solid Solution type Metallic Alloy Nanoparticles via Transmetalation Reactions and Their Applications |
KR100477383B1 (en) * | 2002-08-16 | 2005-03-17 | 한국지질자원연구원 | Preparation method of precious metal-coated metal powder |
US8039107B2 (en) | 2005-05-27 | 2011-10-18 | Neomax Materials Co., Ltd. | Silver-coated ball and method for manufacturing same |
WO2006126527A1 (en) * | 2005-05-27 | 2006-11-30 | Neomax Materials Co., Ltd. | Silver-coated ball and method for manufacturing same |
EP1900471A1 (en) * | 2005-05-27 | 2008-03-19 | Neomax Materials Co., Ltd. | Silver-coated ball and method for manufacturing same |
EP1900471A4 (en) * | 2005-05-27 | 2010-06-02 | Neomax Materials Co Ltd | Silver-coated ball and method for manufacturing same |
KR100781586B1 (en) | 2006-02-24 | 2007-12-05 | 삼성전기주식회사 | Core-shell structure metall nanoparticles and its manufacturing method |
WO2008059789A1 (en) * | 2006-11-17 | 2008-05-22 | Nippon Mining & Metals Co., Ltd. | Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder |
JPWO2008059789A1 (en) * | 2006-11-17 | 2010-03-04 | 日鉱金属株式会社 | Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder |
CN100448570C (en) * | 2007-02-01 | 2009-01-07 | 北京化工大学 | Preparation method of nanometer copper-silver bimetallic composite powder |
CN102211186A (en) * | 2011-06-08 | 2011-10-12 | 北京工业大学 | Method for plating silver on surface of dendritic copper powder |
RU2499082C1 (en) * | 2012-05-04 | 2013-11-20 | Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" | Solution for chemical silver-plating of copper alloys |
KR101483733B1 (en) | 2012-09-26 | 2015-01-16 | 김상호 | Conductive powder and menufacturing method of thereof |
CN102950282B (en) * | 2012-10-15 | 2015-03-18 | 宁波广博纳米新材料股份有限公司 | Preparation method of silver-copper coating powder |
CN102950282A (en) * | 2012-10-15 | 2013-03-06 | 宁波广博纳米新材料股份有限公司 | Preparation method of silver-copper coating powder |
CN104439271A (en) * | 2013-09-17 | 2015-03-25 | Oci有限公司 | Method for preparing multilayer metal complex having excellent surface properties |
JP2015059271A (en) * | 2013-09-17 | 2015-03-30 | オーシーアイ カンパニー リミテッドOCI Company Ltd. | Method of manufacturing multistep metal composite body with superior surface quality |
US9574273B2 (en) | 2013-09-17 | 2017-02-21 | Oci Company Ltd. | Method for preparing multilayer metal complex having excellent surface properties |
JP6063095B2 (en) * | 2014-06-25 | 2017-01-18 | タツタ電線株式会社 | Sulfur removing material, purification column using the same, and pretreatment method for organic substance analysis |
KR20170031210A (en) | 2014-08-26 | 2017-03-20 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same |
KR20170031215A (en) | 2014-09-12 | 2017-03-20 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder |
US10695830B2 (en) | 2015-05-15 | 2020-06-30 | Sumitomo Metal Mining Co., Ltd. | Copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing copper powder |
US10654101B2 (en) | 2015-05-15 | 2020-05-19 | Sumitomo Metal Mining Co., Ltd. | Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder |
US10486231B2 (en) | 2015-08-31 | 2019-11-26 | Mitsui Mining & Smelting Co., Ltd. | Silver-coated copper powder |
CN105665745A (en) * | 2016-04-10 | 2016-06-15 | 欧振云 | Preparation method of silver nanoparticles |
CN109773212A (en) * | 2019-03-29 | 2019-05-21 | 金陵科技学院 | A kind of preparation method suitable for the anti-oxidant silver-plated copper soldering paste of high-power encapsulation |
CN109773212B (en) * | 2019-03-29 | 2022-05-20 | 金陵科技学院 | Preparation method of antioxidant silver-plated copper soldering paste suitable for high-power packaging |
CN110523973A (en) * | 2019-09-21 | 2019-12-03 | 深圳市百柔新材料技术有限公司 | Surface coats the sheet silver-bearing copper powder of fine and close silver layer, preparation method and applications |
JP2021055142A (en) * | 2019-09-30 | 2021-04-08 | Dowaエレクトロニクス株式会社 | Silver-coated metal powder and method for producing the same, and electroconductive coating material |
JP7335768B2 (en) | 2019-09-30 | 2023-08-30 | Dowaエレクトロニクス株式会社 | Silver-coated metal powder, method for producing the same, and conductive paint |
Also Published As
Publication number | Publication date |
---|---|
JP4168108B2 (en) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000248303A (en) | Production of silver-coated copper powder | |
EP3466570B1 (en) | Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method | |
EP3159078B1 (en) | Method of preparing a silver-coated copper nanowire | |
KR101236253B1 (en) | Method of producing copper powder and copper powder | |
US20090324487A1 (en) | Method for preparing iron oxides | |
EP1552896A1 (en) | Method for producing fine metal powder | |
JP3570591B2 (en) | Production method of copper powder | |
JP4094480B2 (en) | Chain metal powder, method for producing the same, and conductivity imparting material using the same | |
CN110899722B (en) | Thin single crystal flake silver powder synthesized by chemical method and preparation method thereof | |
JP2001011502A (en) | Copper powder, its manufacture, and electrical conductive paste using the same | |
JP4215583B2 (en) | Reducing agent solution, method for producing metal powder using the same, and method for forming metal film | |
JP3640552B2 (en) | Manufacturing method of copper powder with small particle size distribution | |
JP2001261343A (en) | Super fine particle of trimanganese tetraoxide and method of producing the same | |
JP4012961B2 (en) | Production method of plate copper powder | |
CN114346254A (en) | Method for preparing nano copper powder in eutectic ionic liquid | |
JP4154491B2 (en) | Cu / In-based metal powder and production method thereof | |
JP3918036B2 (en) | Copper powder manufacturing method | |
JP3201732B2 (en) | Production method of bis (1,2-ethanediamine) gold chloride and gold plating solution using the same | |
JP4644765B2 (en) | Silver diffused copper powder, process for producing the same, and conductive paste using the same | |
JP3444608B2 (en) | Production method of copper fine powder | |
JP3245965B2 (en) | Production method of copper powder | |
JPH03180481A (en) | Production of copper oxide powder by electrolysis | |
JP2004035321A (en) | Method for manufacturing nickel hydroxide powder coated with cobalt hydroxide | |
KR100791231B1 (en) | Silver-dispersed copper powder, process for producing the powder, and conductive paste and a conductor for a printed electronic circuit utilizing the powder | |
JP2002363618A (en) | Copper ultrafine grain and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080617 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080630 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080630 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080630 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |