JP2000223774A - Wavelength-variable light source - Google Patents

Wavelength-variable light source

Info

Publication number
JP2000223774A
JP2000223774A JP11019459A JP1945999A JP2000223774A JP 2000223774 A JP2000223774 A JP 2000223774A JP 11019459 A JP11019459 A JP 11019459A JP 1945999 A JP1945999 A JP 1945999A JP 2000223774 A JP2000223774 A JP 2000223774A
Authority
JP
Japan
Prior art keywords
region
waveguide
wavelength
light source
dbr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11019459A
Other languages
Japanese (ja)
Inventor
Masanobu Okayasu
雅信 岡安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11019459A priority Critical patent/JP2000223774A/en
Publication of JP2000223774A publication Critical patent/JP2000223774A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To oscillate at only equally spaced wavelengths to hold the allowance constant for controlling the frequency grid width, by optically coupling a Bragg waveguide with a Machzender waveguide at both sides of an active medium, so that the former has reflected light characteristics having reflection factor peaks at equally spaced frequencies. SOLUTION: A DBR region 2 having a super-periodic structure and a Machzender interference type (MZI) waveguide region 3 are disposed at both sides of an active region 1 of an active medium. A part roughed by etching is planarized with polyimide, the surface of a substrate is patterned by photography to form a p-electrode on the entire surfaces of an SSG-DBR region 2, the active region 1, and a phase adjusting region 4 and a part of the MZI waveguide region 3 and an n-electrode on the entire back surface after polishing, it is cleaved to finish an element, and the period and phase of a diffraction grating on the SSG-DBR region 2 and the super-period are optimized to realize reflection characteristics having equally spaced sharp peaks having approximately the same reflection factor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波長可変光源に関
する。例えば、多波長光源に関し、主として波長多重
(Wavelength Division Multiplexing:WDM)伝送用
の光源として利用しうる多波長光源を提供するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tunable light source. For example, with respect to a multi-wavelength light source, the present invention provides a multi-wavelength light source that can be mainly used as a light source for wavelength division multiplexing (WDM) transmission.

【0002】[0002]

【従来の技術】近年、通信容量の増大に対応するため、
光ファイバの広帯域性を利用したWDM伝送方式が実用
化され、更に将来Add−Drop機能、Mux−De
mux機能を光のまま行うフォトニックネットワークが
提唱されている。WDM伝送方式ではl00GHz、又
は200GHz間隔に並んだ4、16、32、64波の
周波数の光源が必要とされており、通常、分布帰還型
(Distributed Feedback:DFB)レーザが用いられて
いる。即ち、発振波長の異なるDFBレーザを多重度数
分用意している。
2. Description of the Related Art In recent years, in order to cope with an increase in communication capacity,
A WDM transmission system utilizing the broadband characteristics of optical fibers has been put to practical use, and in the future Add-Drop function, Mux-De
A photonic network that performs a mux function with light has been proposed. In the WDM transmission system, light sources having frequencies of 4, 16, 32, and 64 waves arranged at intervals of 100 GHz or 200 GHz are required, and a distributed feedback (DFB) laser is usually used. That is, DFB lasers having different oscillation wavelengths are prepared for the multiplicity.

【0003】DFBレーザでは発振波長は主として回折
格子の周期で決まるため、回折格子の周期の異なるDF
Bレーザを別々に作製しなければならない。また、製造
時の半導体膜厚やストライプ幅のばらつき、半導体組成
のずれ等により、発振波長は微妙に変わるため、WDM
伝送方式で用いられる周波数グリッドにあったDFBレ
ーザの歩留りは極めて低く、そのため製造コストが高く
なるという問題があった。
In a DFB laser, the oscillation wavelength is mainly determined by the period of the diffraction grating.
The B laser must be made separately. In addition, since the oscillation wavelength slightly changes due to variations in the semiconductor film thickness and stripe width at the time of manufacture, deviations in the semiconductor composition, etc.
The yield of the DFB laser that is in the frequency grid used in the transmission method is extremely low, and there is a problem that the manufacturing cost increases.

【0004】これに対し波長可変光源は、こうした製造
上の問題からくる発振波長のばらつきを後に修正できる
ため、WDM伝送方式の光源として極めて有望である。
波長可変機能を持った半導体レーザとして、分布反射型
(Distributed BraggRefrector:DBR)レーザがよく
知られている。これは回折格子を有するDBR領域を活
性領域の両側又は片側に設け、回折格子の周期によって
決まるブラッグ波長近傍の共振モードだけを選択的に単
一モード発振させるものである。波長選択性は、DBR
領域へ電流を注入することによって生じるプラズマ効果
による屈折率変化により、ブラッグ波長を変化させるこ
とによって得られる。
On the other hand, a wavelength variable light source is very promising as a light source of the WDM transmission system because it can correct the variation of the oscillation wavelength caused by such a manufacturing problem later.
As a semiconductor laser having a wavelength variable function, a distributed Bragg Reflector (DBR) laser is well known. In this technique, a DBR region having a diffraction grating is provided on both sides or one side of an active region, and only a resonance mode near a Bragg wavelength determined by the period of the diffraction grating is selectively oscillated in a single mode. Wavelength selectivity is DBR
It is obtained by changing the Bragg wavelength by a change in the refractive index due to the plasma effect caused by injecting a current into the region.

【0005】この場合の発振波長に対する波長変化の割
合(Δλ/λ)は屈折率変化の割合(Δn/n)に等し
い。半導体のプラズマ効果による最大屈折率変化量は約
1%であるため、波長可変幅は10nm程度になる。屈
折率変化に対する波長変化の割合を増大させる方法とし
て、図2に示すように、活性層両側のDBR領域の回折
格子に超周期性(Super-Structure Grating:SSG)
を持たせ、かつ両側の回折格子の周期をわずかに変える
ことによりバーニア効果を与えて波長可変範囲を大幅に
拡大したレーザ(SSG−DBRレーザ)が提案され、
疑似連続的に100nm近い波長可変幅を実現してい
る。
In this case, the rate of change in wavelength (Δλ / λ) with respect to the oscillation wavelength is equal to the rate of change in refractive index (Δn / n). Since the maximum refractive index change due to the plasma effect of the semiconductor is about 1%, the wavelength variable width is about 10 nm. As a method of increasing the ratio of the wavelength change to the refractive index change, as shown in FIG. 2, the diffraction grating in the DBR region on both sides of the active layer has a super periodic structure (SSG).
A laser (SSG-DBR laser) has been proposed in which a Vernier effect is provided by slightly changing the period of the diffraction gratings on both sides to greatly expand the wavelength tunable range.
A wavelength tunable width close to 100 nm is realized in a quasi-continuous manner.

【0006】WDM伝送方式用の光源に限れば、通常は
使用する波長はあるグリッドに限られ、例えば、国際電
気通信連合ITUで識論されている周波数グリッドは、
193.1THz(1552.52nm)を参照周波数
とし、そこから100GHz間隔で並んでいるため、必
ずしも連続的に波長掃引できる必要はない。前述したS
SG−DBRレーザに関して述べれば、波長掃引は前後
のDBR領域と位相調整領域の合計3つの領域への電流
注入によって実現しているが、任意の波長を得るための
注入電流値は、これら3つのパラメータの複雑な組み合
わせで実現されるため、容易には見つけにくい。
[0006] In the case of a light source for the WDM transmission system, the wavelength used is usually limited to a certain grid. For example, a frequency grid known in the International Telecommunication Union ITU is:
193.1 THz (1552.52 nm) is used as a reference frequency, and since it is arranged at intervals of 100 GHz therefrom, it is not always necessary to be able to continuously perform wavelength sweeping. S mentioned above
Regarding the SG-DBR laser, the wavelength sweep is realized by injecting current into a total of three regions of the front and rear DBR regions and the phase adjustment region. Because it is realized by a complex combination of parameters, it is hard to find easily.

【0007】一方、等間隔に並ぶ波長のみを選択的に発
振するDBRレーザも報告されている。図3がその一例
で、活性層と位相調整領域の長さで決まる共振器長によ
って規定される縦モード間隔Δλを周波数間隔に合わ
せ、微調整をDBR領域への注入電流で行うものであ
る。この場合、DBR領域への注入電流に対して、発振
波長の変化は図4のようになる。
On the other hand, a DBR laser that selectively oscillates only wavelengths arranged at equal intervals has also been reported. FIG. 3 shows an example in which the longitudinal mode interval Δλ defined by the length of the resonator determined by the length of the active layer and the phase adjustment region is adjusted to the frequency interval, and the fine adjustment is performed by the injection current into the DBR region. In this case, the change in the oscillation wavelength with respect to the injection current into the DBR region is as shown in FIG.

【0008】一般に電流、即ちキャリア注入による屈折
率変化は注入キャリアの2乗に比例するため、注入電流
対発振波長の変化曲線は線型ではなく、放物線形状に近
いものになる。このため周波数グリッド幅に制御するた
めの許容電流幅が波長によって異なることとなり、制御
性がやや劣る。
In general, the change in the refractive index due to the current, that is, the carrier injection, is proportional to the square of the injected carriers. Therefore, the change curve of the injection current versus the oscillation wavelength is not linear but close to a parabolic shape. For this reason, the allowable current width for controlling to the frequency grid width differs depending on the wavelength, and the controllability is slightly inferior.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、WDM伝送用の光源として適用可能な、等間
隔に並ぶ波長のみを選択的に発振させ、かつ周波数グリ
ッド幅に制御するための許容幅が一定となる制御方法を
有する波長可変光源を提供するものである。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, the present invention is intended to selectively oscillate only equally-spaced wavelengths applicable to a light source for WDM transmission and to control the frequency grid width. Is to provide a wavelength tunable light source having a control method in which the allowable width is constant.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の請求項1に係る波長可変光源は、活性媒質の両側に
ブラッグ導波路とマハツエンダ干渉型導波路とが光学的
に結合されてなり、かつ、前記ブラッグ導波路は、等間
隔に並ぶ複数の周波数で反射率の極大を持つ反射光特性
を有することを特徴とする。
A tunable light source according to a first aspect of the present invention for solving the above-mentioned problems comprises a Bragg waveguide and a Mahachenda interference type waveguide optically coupled to both sides of an active medium. Further, the Bragg waveguide has a reflected light characteristic having a maximum reflectance at a plurality of frequencies arranged at equal intervals.

【0011】上記課題を解決する本発明の請求項2に係
る波長可変光源は、請求項1記載の前記活性媒質、前記
ブラッグ導波路及び前記マハツエンダ干渉型導波路が半
導体基板上にモノリシックに集積されてなることを特徴
とする。
According to a second aspect of the present invention, there is provided a wavelength tunable light source according to the second aspect of the present invention, wherein the active medium, the Bragg waveguide, and the Mach-Zehnder interference type waveguide are monolithically integrated on a semiconductor substrate. It is characterized by becoming.

【0012】上記課題を解決する本発明の請求項3に係
る波長可変光源は、請求項1又は2記載の前記ブラッグ
導波路の回折格子の周期が連続的に変化する短周期性を
持ち、かつ、その短周期性が複数回繰り返される超周期
性を有することを特徴とする。
According to a third aspect of the present invention, there is provided a wavelength tunable light source having a short period in which the period of the diffraction grating of the Bragg waveguide changes continuously. , Characterized by having a super-periodicity in which the short-periodicity is repeated a plurality of times.

【0013】[0013]

【発明の実施の形態】以下、本発明を実施例により辞細
に説明する。本発明にかかる波長可変光源を図1に示
す。図1(a)は本発明の一実施例にかかる波長可変光
源の平面図、図1(b)はそれを部分的に破断して示す
鳥瞰図である。同図に示すように、活性媒質である活性
領域1の両側に超周期構造(Super-Structure Gratin
g:SSG)を持つDBR領域2とマハツエンダ干渉型
(MZI)導波路領域3とが配置された構成となってい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to examples. FIG. 1 shows a tunable light source according to the present invention. FIG. 1A is a plan view of a wavelength tunable light source according to an embodiment of the present invention, and FIG. As shown in the figure, a super-periodic structure (Super-Structure Gratin) is provided on both sides of the active region 1, which is the active medium.
g: SSG), and a configuration in which a DBR region 2 having a Mach-Zehnder interference (MZI) waveguide region 3 is arranged.

【0014】SSG構造のDBR領域2は、周期が連続
的に変化する短周期と、その短周期が複数回繰り返され
る超周期性を有する。更に、活性領域1とマハツエンダ
干渉型導波路領域3との問には、位相調整領域4が挿入
されている。位相調整領域4は、省略することも可能で
ある。本実施例ではマハツエンダ干渉型導波路領域3の
端面に高反射膜5を形成し、折り返しの構成となってい
るので、導波路長は通常の半分となっている。
The DBR region 2 having the SSG structure has a short period in which the period continuously changes and a super-periodicity in which the short period is repeated a plurality of times. Further, a phase adjusting region 4 is inserted between the active region 1 and the Mahachenda interference type waveguide region 3. The phase adjustment region 4 can be omitted. In the present embodiment, the high reflection film 5 is formed on the end face of the Mahachenda interference type waveguide region 3 and the structure is folded, so that the waveguide length is half of the normal length.

【0015】上記構成を有する本実施例の波長可変光源
は、次のように製作される。先ず、n型のInP基板上
に多重量子井戸(MQW)構造の活性層とそれを挟む光
閉じ込め(SCH)層と上クラッド層の一部を有機金属
気相成長(MOVPE)法により成長する。
The wavelength tunable light source of this embodiment having the above configuration is manufactured as follows. First, an active layer having a multiple quantum well (MQW) structure, a light confinement (SCH) layer sandwiching the active layer, and a part of an upper cladding layer are grown on an n-type InP substrate by a metal organic chemical vapor deposition (MOVPE) method.

【0016】活性層の組成は1.55μmとなるように
井戸幅と組成を設定しておく。次に最終的に活性層とな
る部分を含むように50×300μmの大きさのSiNx
膜をマスクとして、ドライエッチングによりInP基板
に達する程度までエッチングする。引き続き、2回目の
成長として1.3μm組成のInGaAsP層を、先のSi
x膜をマスクとして選択的に成長する。
The composition of the active layer is adjusted to 1.55 μm.
Set the well width and composition. Next, the final active layer
50 × 300 μm SiN to include the partx
InP substrate by dry etching using film as a mask
Until it reaches. Continued for the second time
As a growth, an InGaAsP layer having a composition of 1.3 μm was formed on the Si layer.
N xThe film is selectively grown using the film as a mask.

【0017】この層は、SSG−DBR領域2、位相調
整領域4及びMZI導波路領域3の導波路層となり、活
性層に対してButt−jointされている。2回目
の成長後、SSG−DBR領域2となる部分に、電子ビ
ーム(EB)露光法により超周期構造をもった回折格子
を描画し、エッチングにより形成する。次に3回目の成
長としてp−InP層を全面に成長し、回折格子を埋め
込む。
This layer becomes a waveguide layer of the SSG-DBR region 2, the phase adjustment region 4, and the MZI waveguide region 3, and is Butt-joined to the active layer. After the second growth, a diffraction grating having a super-periodic structure is drawn on a portion to be the SSG-DBR region 2 by an electron beam (EB) exposure method, and is formed by etching. Next, as a third growth, a p-InP layer is grown on the entire surface and a diffraction grating is embedded.

【0018】更に、電流狭窄用の埋め込み成長工程(p
−InP,n−InP,p−InP)をDBR領域2、活
性領域1について行い、ストライプ幅1.5μm程度の
導波路を形成する。5回目の成長としてp型のInGaA
sPキャップ層を全面に成長する。MZI導波路領域に
ついては、この後リッジ型導波路を形成するようにエッ
チングを行 この段階での素子構造は図1(b)のよう
である。
Further, a buried growth step (p
-InP, n-InP, p-InP) are performed on the DBR region 2 and the active region 1 to form a waveguide having a stripe width of about 1.5 μm. As the fifth growth, p-type InGaA
An sP cap layer is grown over the entire surface. Thereafter, the MZI waveguide region is etched so as to form a ridge-type waveguide. The element structure at this stage is as shown in FIG.

【0019】ここでエッチングにより凹凸のできた部分
をポリイミドで平坦化した後、基板の表面側に、ホトリ
ソグラフィによるパタニングによりSSG−DBR領域
2、活性領域1、位相調整領域4の全面とMZI導波路
領域3の一部にp電極を、裏面側には研磨の後全面にn
電極を形成し、劈開して素子を完成させる。
Here, after the portion having irregularities formed by etching is flattened with polyimide, the entire surface of the SSG-DBR region 2, the active region 1, the phase adjustment region 4 and the MZI waveguide are formed on the surface side of the substrate by patterning by photolithography. A p-electrode is formed on a part of the region 3 and n is formed on the entire back surface after polishing.
An electrode is formed and cleaved to complete the device.

【0020】本発明にかかる構成法の動作原理は以下の
ようである。ここでは一例として図1に示した構成例を
もとに説明する。図5(a)は劈開面で構成される共振
器で決まるファブリぺロ(FP)モードの特性を、図5
(b)はSSG構造をもつDBR領域2の反射特性を、
図5(c)は、MZI導波路領域3の反射特性を、それ
ぞれ波長の関数として示したものである。
The operation principle of the construction method according to the present invention is as follows. Here, an example will be described based on the configuration example shown in FIG. FIG. 5A shows the characteristics of the Fabry-Perot (FP) mode determined by the resonator constituted by the cleavage plane.
(B) shows the reflection characteristics of the DBR region 2 having the SSG structure,
FIG. 5C shows the reflection characteristics of the MZI waveguide region 3 as a function of wavelength.

【0021】活性層への電流注入によって生じる利得幅
は100nm程度であり、図5(a)で示すように、F
Pモード間隔Δλmごとに縦モードが現れる。例えば共
振器長を1.5mmとすると、Δλm=30GHz程度
となる。一方、SSG−DBR領域2の反射特性につい
ては、例えば文献(IEEE Journal of Quantum Electron
ics, Vol.32,No.3,pp.433-441,1996)に示されているよ
うに、SSG−DBR領域2の回折格子の周期と位相、
超周期を最適化することにより、図5(b)に示したよ
うな、間隔が等しく反射率がほぼ同一の数本の鋭い極大
(ピーク)からなる反射特性が実現できることが知られ
ている。
The gain width caused by current injection into the active layer is about 100 nm, and as shown in FIG.
A longitudinal mode appears at every P-mode interval Δλm. For example, if the resonator length is 1.5 mm, Δλm = about 30 GHz. On the other hand, the reflection characteristics of the SSG-DBR region 2 are described in, for example, a literature (IEEE Journal of Quantum Electron).
ics, Vol. 32, No. 3, pp. 433-441, 1996), the period and the phase of the diffraction grating in the SSG-DBR region 2;
It is known that by optimizing the super-period, it is possible to realize a reflection characteristic composed of several sharp maxima (peaks) having equal intervals and substantially the same reflectance as shown in FIG.

【0022】また、MZI導波路領域3の反射特性は、
分岐された一方の導波路に印加する電圧によってもたら
される屈折率変化によりピーク位置が変化し、図5
(c)のようになる。ピーク位置のシフト量は、MZI
導波路領域3のFSR(Free Spectral Range )の1/
2であり、例えばMZIを構成する2本の導波路の光路
長差ΔLを25μmとすると、FSRは約60nmとな
るから、30nmのピーク位置のシフトが可能となる。
The reflection characteristics of the MZI waveguide region 3 are as follows:
The peak position changes due to the change in the refractive index caused by the voltage applied to one of the branched waveguides.
(C). The shift amount of the peak position is MZI
1/1 of FSR (Free Spectral Range) of waveguide region 3
For example, if the optical path length difference ΔL between the two waveguides forming the MZI is 25 μm, the FSR becomes about 60 nm, so that the peak position can be shifted by 30 nm.

【0023】出射される光スペクトルは、活性領域1を
挟むDBR領域2とMZI導波路領域3のトータルの反
射特性で決まり、図5(d)に示したように、MZI導
波路領域3に印加する電圧によってλbからλaまで変
化することが判る。本実施例に係る波長可変光源の縦モ
ードについて考察してみる。単一縦モード発振するか、
マルチモード発振するかは、主モードと副モードとの間
のミラー損失差がどの程度あるかによって決まる。
The emitted light spectrum is determined by the total reflection characteristics of the DBR region 2 and the MZI waveguide region 3 sandwiching the active region 1, and is applied to the MZI waveguide region 3 as shown in FIG. It can be seen that the voltage changes from λb to λa depending on the applied voltage. Consider the longitudinal mode of the tunable light source according to the present embodiment. Single longitudinal mode oscillation,
Whether multi-mode oscillation occurs depends on the mirror loss difference between the main mode and the sub-mode.

【0024】本実施例の波長可変光源の場合、上で述べ
た原理により発振特性が決まるため、SSG−DBR領
域2とMZI導波路領域3の反射特性によってミラー損
失が大略決定される。MZI導波路領域3の反射特性は
sine状であり、上で述べたようにFSRを大きくと
る構成の場合、波長に対して緩やかな変化となるため、
主としてSSG−DBR領域2の反射特性によって発振
特性が決定されることになる。一方、SSG−DBR領
域2の各反射ピークの半値全幅は短周期性の繰り返し回
数mで決まり、mを大きくすると半値全幅が狭くなる。
In the case of the wavelength tunable light source of this embodiment, since the oscillation characteristics are determined by the above-described principle, the mirror loss is substantially determined by the reflection characteristics of the SSG-DBR region 2 and the MZI waveguide region 3. The reflection characteristic of the MZI waveguide region 3 is sine-like, and in the case of a configuration in which the FSR is large as described above, the change is gradual with respect to the wavelength.
The oscillation characteristic is mainly determined by the reflection characteristic of the SSG-DBR region 2. On the other hand, the full width at half maximum of each reflection peak in the SSG-DBR region 2 is determined by the number of repetitions m of the short-period, and when m is increased, the full width at half maximum becomes narrower.

【0025】従って、mを制御することによって縦モー
ドの制御、即ちマルチモード発振も単一縦モード発振も
可能となる。一般的には主・副モード抑圧比(SMS
R)を30dBとするためには、ミラー損失差として3
%以上とれば良い。縦モードはファイバ分散の影響を受
け、伝送距離を規定する。従って20km程度以上の長
距離用には単一縦モード性が必須となる。一方、短距離
ではファイバ分散の影響はあまり効かないため、マルチ
モード発振でも十分である。
Therefore, by controlling m, it is possible to control the longitudinal mode, that is, to perform both multi-mode oscillation and single longitudinal mode oscillation. Generally, the main / sub mode suppression ratio (SMS)
In order to make R) 30 dB, a mirror loss difference of 3 dB is required.
% Or more. The longitudinal mode is affected by the fiber dispersion and defines the transmission distance. Therefore, a single longitudinal mode is indispensable for long distances of about 20 km or more. On the other hand, at short distances, the effect of fiber dispersion is not so effective, so multimode oscillation is sufficient.

【0026】一般的にはマルチモードレーザの方が外部
からの戻り光に対する耐性が高いので、むしろ短距離用
にはアイソレータを必要としないマルチモードレーザの
方が適している。いずれの用途に対しても、SSG−D
BR領域2の反射特性の最適化により対応可能である。
図6はMZIの印加電圧に対する波長変化の様子を示し
たもので、電圧の変化に対する波長シフト量はほほ直線
の関係になる。
In general, a multi-mode laser has higher resistance to return light from the outside, and therefore a multi-mode laser that does not require an isolator for short distances is more suitable. SSG-D for all applications
This can be achieved by optimizing the reflection characteristics of the BR region 2.
FIG. 6 shows how the wavelength changes with respect to the applied voltage of the MZI, and the wavelength shift amount with respect to the change in voltage has a substantially linear relationship.

【0027】従って周波数グリッド幅に制御するための
許容電圧幅は波長によらず一定となり、制御性が高い。
また、位相調整領域4を設けた場合には、MZIの印加
電圧によらない波長の微調整が可能となり、制御性が一
層向上する。図4に示す従来のDBRレーザと比較して
も明らかなように、本発明の波長可変光源は制御性に優
れる点が特徴である。
Therefore, the allowable voltage width for controlling the frequency grid width is constant regardless of the wavelength, and the controllability is high.
Further, when the phase adjustment region 4 is provided, fine adjustment of the wavelength can be performed without depending on the applied voltage of the MZI, and the controllability is further improved. As is clear from comparison with the conventional DBR laser shown in FIG. 4, the tunable light source of the present invention is characterized by having excellent controllability.

【0028】[0028]

【発明の効果】以上、詳細に説明したように、本発明に
よりWDM伝送用の光源として適用可能な、等間隔に並
ぶ波長のみを選択的に発振させ、かつ周波数グリッド幅
に制御するための許容幅が一定となる制御方法を有する
波長可変光源を実現することができる。
As described in detail above, according to the present invention, it is possible to selectively oscillate only equally-spaced wavelengths applicable to a light source for WDM transmission and to control the wavelength to a frequency grid width. A tunable light source having a control method with a constant width can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る波長可変光源に関し、
図1(a)はその平面図(導波路部分のみを表示し
た)、図1(b)はそれを部分的に破断して示す鳥瞰図
(但し半導体部のみを表示した)である。
FIG. 1 relates to a wavelength tunable light source according to an embodiment of the present invention;
FIG. 1A is a plan view (only the waveguide portion is shown), and FIG. 1B is a bird's-eye view (only the semiconductor portion is shown) of the partially cutaway view.

【図2】従来例に係るSSG−DBRレーザの構造図で
ある。
FIG. 2 is a structural diagram of an SSG-DBR laser according to a conventional example.

【図3】従来例に係るDBRレーザの構造図である。FIG. 3 is a structural diagram of a DBR laser according to a conventional example.

【図4】従来のDBRレーザでの波長可変特性を示すグ
ラフである。
FIG. 4 is a graph showing a wavelength tunable characteristic of a conventional DBR laser.

【図5】本発明にかかる波長可変光源の動作原理を示す
説明図である。
FIG. 5 is an explanatory diagram showing the operation principle of the wavelength variable light source according to the present invention.

【図6】本発明にかかる波長可変光源の波長可変特性を
示すグラフである。
FIG. 6 is a graph showing a wavelength tunable characteristic of the wavelength tunable light source according to the present invention.

【符号の説明】[Explanation of symbols]

1 活性領域 2 DBR領域 3 MZI導波路領域 4 位相調整領域 5 高反射膜 DESCRIPTION OF SYMBOLS 1 Active area 2 DBR area 3 MZI waveguide area 4 Phase adjustment area 5 High reflection film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性媒質の両側にブラッグ導波路とマハ
ツエンダ干渉型導波路とが光学的に結合されてなり、か
つ、前記ブラッグ導波路は、等間隔に並ぶ複数の周波数
で反射率の極大を持つ反射光特性を有することを特徴と
する波長可変光源。
1. A Bragg waveguide and a Mahachenda interference type waveguide are optically coupled to both sides of an active medium, and the Bragg waveguide has a maximum reflectance at a plurality of frequencies arranged at equal intervals. A wavelength tunable light source having reflected light characteristics.
【請求項2】 前記活性媒質、前記ブラッグ導波路及び
前記マハツエンダ干渉型導波路が半導体基板上にモノリ
シックに集積されてなることを特徴とする請求項1記載
の波長可変光源。
2. The wavelength tunable light source according to claim 1, wherein said active medium, said Bragg waveguide and said Mach-Zehnder interference type waveguide are monolithically integrated on a semiconductor substrate.
【請求項3】 前記ブラッグ導波路の回折格子の周期が
連続的に変化する短周期性を持ち、かつ、その短周期性
が複数回繰り返される超周期性を有することを特徴とす
る請求項1又は2記載の波長可変光源。
3. The Bragg waveguide has a short period in which the period of the diffraction grating changes continuously, and has a super period in which the short period is repeated a plurality of times. Or the tunable light source according to 2.
JP11019459A 1999-01-28 1999-01-28 Wavelength-variable light source Withdrawn JP2000223774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11019459A JP2000223774A (en) 1999-01-28 1999-01-28 Wavelength-variable light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11019459A JP2000223774A (en) 1999-01-28 1999-01-28 Wavelength-variable light source

Publications (1)

Publication Number Publication Date
JP2000223774A true JP2000223774A (en) 2000-08-11

Family

ID=11999913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11019459A Withdrawn JP2000223774A (en) 1999-01-28 1999-01-28 Wavelength-variable light source

Country Status (1)

Country Link
JP (1) JP2000223774A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320127A (en) * 2000-05-02 2001-11-16 Sumitomo Electric Ind Ltd Semiconductor laser
JP2008153297A (en) * 2006-12-14 2008-07-03 Opnext Japan Inc Semiconductor laser element and optical module using it
JP2010021308A (en) * 2008-07-10 2010-01-28 Mitsubishi Electric Corp Wavelength variable semiconductor laser
JP2010153826A (en) * 2008-11-25 2010-07-08 Opnext Japan Inc Wavelength-tunable filter and wavelength-tunable laser module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320127A (en) * 2000-05-02 2001-11-16 Sumitomo Electric Ind Ltd Semiconductor laser
JP2008153297A (en) * 2006-12-14 2008-07-03 Opnext Japan Inc Semiconductor laser element and optical module using it
JP2010021308A (en) * 2008-07-10 2010-01-28 Mitsubishi Electric Corp Wavelength variable semiconductor laser
JP2010153826A (en) * 2008-11-25 2010-07-08 Opnext Japan Inc Wavelength-tunable filter and wavelength-tunable laser module
US8179931B2 (en) 2008-11-25 2012-05-15 Opnext Japan, Inc. Wavelength tunable filter and wavelength tunable laser module
US8451872B2 (en) 2008-11-25 2013-05-28 Oclaro Japan, Inc. Wavelength tunable filter and wavelength tunable laser module
JP2014056264A (en) * 2008-11-25 2014-03-27 Japan Oclaro Inc Wavelength variable filter and wavelength-variable laser module

Similar Documents

Publication Publication Date Title
US10193305B2 (en) Wavelength tunable laser device and laser module
US8155161B2 (en) Semiconductor laser
US5699378A (en) Optical comb filters used with waveguide, laser and manufacturing method of same
US6198863B1 (en) Optical filters
JP2011204895A (en) Semiconductor laser
JP6588859B2 (en) Semiconductor laser
US20020181532A1 (en) Multi-wavelength semiconductor laser array and method for fabricating the same
JP2001036192A (en) Distribution feedback type semiconductor laser and manufacture thereof
JP3682367B2 (en) Distributed feedback laser diode
US6693937B2 (en) Integrated tunable laser
US7949020B2 (en) Semiconductor laser and optical integrated semiconductor device
US6967983B2 (en) Semiconductor laser apparatus
JP5001239B2 (en) Semiconductor tunable laser
JP3463740B2 (en) Distributed feedback semiconductor laser
US20050226283A1 (en) Single-mode semiconductor laser with integrated optical waveguide filter
JP3689483B2 (en) Multiple wavelength laser
KR100626270B1 (en) Widely Tunable Coupled-Ring Reflector Laser Diode
JP3220259B2 (en) Laser device
US20020064203A1 (en) Strip-loaded tunable distributed feedback laser
JP2000223774A (en) Wavelength-variable light source
JP7294453B2 (en) directly modulated laser
JPH10261837A (en) Polarization-modulatable semiconductor laser having ring resonator, method for using it, and optical communication system using it
JP6927153B2 (en) Semiconductor laser
JP4074534B2 (en) Semiconductor laser
JP5058087B2 (en) Tunable semiconductor laser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404