JP2000223489A - Wiring material and conductor wiring layer employing the same - Google Patents

Wiring material and conductor wiring layer employing the same

Info

Publication number
JP2000223489A
JP2000223489A JP2711599A JP2711599A JP2000223489A JP 2000223489 A JP2000223489 A JP 2000223489A JP 2711599 A JP2711599 A JP 2711599A JP 2711599 A JP2711599 A JP 2711599A JP 2000223489 A JP2000223489 A JP 2000223489A
Authority
JP
Japan
Prior art keywords
wiring layer
wiring
wiring material
alloy
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2711599A
Other languages
Japanese (ja)
Inventor
Akihiko Furuya
明彦 古屋
Kenzo Fukuyoshi
健蔵 福吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2711599A priority Critical patent/JP2000223489A/en
Publication of JP2000223489A publication Critical patent/JP2000223489A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a wiring material being employed in a wiring layer of a semiconductor integrated circuit, or the like, in which electromigration resistance and excellent conductivity are ensured by composing the wiring material of an Ag-Au based alloy. SOLUTION: As an element being added to Ag, a heavy element including Pb, Au, Pt, or the like, is preferable in view point of suppressing movement of mobile Ag and an element including Ag, Au, Ni, Zn, Al, or the like, is preferable in view point of conductivity. A is most preferable because it satisfies both requirements. At first, an IC chip 10 where an Al electrode pad 12 and a passivation layer 13 are formed on an Si wafer 11 is prepared (a). Subsequently, a barrier metal TiN film is then formed on the IC chip 10 by sputtering, a conductive film of an Ag-Au based alloy interconnection material is formed thereon by sputtering and then a conductor wiring layer 14 is formed by patterning through use of photoetching (b).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路等
の配線層に使用される再配線材料及び導体配線層に関す
る。
The present invention relates to a rewiring material and a conductor wiring layer used for a wiring layer of a semiconductor integrated circuit or the like.

【0002】[0002]

【従来の技術】従来、半導体集積回路等の配線層の配線
材料として下記の材料を使って導体配線層を形成してい
た。Al単体或いはAl−Si、Al−Cu−Si等の
Al合金、W或いはW−Ti等のW合金、Cu−Al、
Cu−Si、Cu−Ti、Cu−Zn、Cu−Sn,C
u−Ni等の銅合金をスパッタ或いはCVDにより導電
薄膜を形成し、パターニング処理して導体配線層を形成
していた。
2. Description of the Related Art Conventionally, conductor wiring layers have been formed using the following materials as wiring materials for wiring layers of semiconductor integrated circuits and the like. Al alone or Al-Si, Al alloy such as Al-Cu-Si, W or W alloy such as W-Ti, Cu-Al,
Cu-Si, Cu-Ti, Cu-Zn, Cu-Sn, C
A conductive thin film is formed from a copper alloy such as u-Ni by sputtering or CVD, and is patterned to form a conductive wiring layer.

【0003】しかし、上記配線材料の中で特にAlまた
はAl合金及びCuまたはCu合金を使った導体配線層
ではエレクトロマイグレーションによる断線が発生する
という問題がある。
[0003] However, among the above-mentioned wiring materials, particularly, in a conductor wiring layer using Al or an Al alloy and Cu or a Cu alloy, there is a problem that disconnection due to electromigration occurs.

【0004】WまたはW合金及びCu−Al、Cu−S
i等の銅合金からなる配線材料で導体配線層を形成した
場合配線抵抗が高くなるという問題がある。
[0004] W or W alloy and Cu-Al, Cu-S
When the conductor wiring layer is formed of a wiring material made of a copper alloy such as i, there is a problem that the wiring resistance is increased.

【0005】また、AlまたはAl合金及びCuまたは
Cu合金からなる導体配線層の表面または裏面にWまた
はW合金からなる薄膜層を被接させ、上記エレクトロマ
イグレーションを防止する試みがなされているが、この
構成では配線抵抗が大きくなるという問題があり、さら
に材料、工程が増えるためコストの点で好ましくない。
Attempts have been made to prevent the above electromigration by contacting a thin film layer made of W or a W alloy on the front or back surface of a conductor wiring layer made of Al or an Al alloy and Cu or a Cu alloy. In this configuration, there is a problem that the wiring resistance is increased, and furthermore, the number of materials and steps are increased, which is not preferable in terms of cost.

【0006】さらにまた、Al、Al合金、W、W合
金、Cu、Cu合金からなる配線層のの表面は酸化しや
すく電気的コンタクト抵抗が増加するという問題もあ
る。
Furthermore, there is a problem that the surface of the wiring layer made of Al, Al alloy, W, W alloy, Cu, Cu alloy is easily oxidized and the electrical contact resistance increases.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みなされたもので、耐エレクトロマイグレーション性
を有し、且つ導電性の優れた配線層及び配線材料を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a wiring layer and a wiring material having electromigration resistance and excellent conductivity.

【0008】[0008]

【課題を解決するための手段】本発明において上記問題
を解決するために、鋭意検討した結果Ag元素にAu元
素を添加したAg−Au系合金配線材料を使った導体配
線層が耐エレクトロマイグレーション性と導電性に優れ
ていることを見出した。
Means for Solving the Problems In order to solve the above-mentioned problems in the present invention, as a result of intensive studies, a conductor wiring layer using an Ag-Au-based alloy wiring material in which an Au element is added to an Ag element has an electromigration resistance. And excellent conductivity.

【0009】具体的には、まず請求項1においては、半
導体集積回路等の配線層に使用される配線材料であっ
て、前記配線材料がAg−Au系合金からなることを特
徴とする配線材料としたものである。
More specifically, first, in claim 1, a wiring material used for a wiring layer of a semiconductor integrated circuit or the like, wherein the wiring material is made of an Ag-Au alloy. It is what it was.

【0010】また、請求項2においては、前記Ag−A
u系合金のAuの添加量が0.2〜4.0at%であるこ
とを特徴とする請求項1に記載の配線材料としたもので
ある。
Further, in the second aspect, the Ag-A
2. The wiring material according to claim 1, wherein the amount of Au added to the u-based alloy is 0.2 to 4.0 at%.

【0011】さらにまた、請求項3においては、請求項
1または2に記載の配線材料を用いて配線層を形成した
ことを特徴とする導体配線層としたものである。
According to a third aspect of the present invention, there is provided a conductive wiring layer wherein a wiring layer is formed using the wiring material according to the first or second aspect.

【0012】[0012]

【発明の実施の形態】以下本発明の実施の形態につき説
明する。一般にAg単体配線材料を用いた導体配線層は
エレクトロマイグレーションによりAgが移動しやすく
断線不良を生じやすい特性を有している。しかしなが
ら、本発明ではAg元素の導電性を生かしてAg合金系
でエレクトロマイグレーションを防止する材料を見いだ
した。Agへの添加元素は移動しやすいAgの動きを抑
制する観点からはPb、Au、Pt等の重い元素が、導
電性を期待する観点からはAg、Au、Ni、Zn、A
l等の元素が好ましく、両者を満足する元素としてAu
元素が最も好ましいことが判明した。これは、Agに重
金属を添加することによりAgの動きを抑制し、さらに
Auは電気抵抗が小さい良導体であり、かつ最外周の電
子配置がAgと同様であるため合金化した際に導電性を
低下させ難いためである。
Embodiments of the present invention will be described below. In general, a conductor wiring layer using a single Ag wiring material has a characteristic that Ag easily moves due to electromigration and a disconnection failure easily occurs. However, the present invention has found a material that prevents electromigration in an Ag alloy system by utilizing the conductivity of the Ag element. The element added to Ag is a heavy element such as Pb, Au, or Pt from the viewpoint of suppressing the movement of Ag which is likely to move, and Ag, Au, Ni, Zn, A from the viewpoint of expecting conductivity.
l and the like are preferable, and as an element satisfying both, Au
Elements have been found to be most preferred. This suppresses the movement of Ag by adding a heavy metal to Ag, and furthermore, Au is a good conductor having a small electric resistance, and the outermost electron arrangement is the same as that of Ag. This is because it is difficult to lower.

【0013】Auの添加量を多くすると導体配線層の電
気抵抗が大きくなり、少なすぎるとAgの動きを抑制す
る効果が小さくなり、Auの添加量は0.2〜4.0at
%の範囲が好ましく、この範囲でAuを添加したAg−
Au系合金配線材料で配線層を形成した場合、得られた
配線層は耐エレクトロマイグレーション性に優れ、且つ
配線抵抗も低い特性を示す。
When the amount of added Au is increased, the electric resistance of the conductor wiring layer is increased, and when the amount is too small, the effect of suppressing the movement of Ag is reduced, and the amount of added Au is 0.2 to 4.0 at.
% Is preferable, and in this range, Ag-
When the wiring layer is formed of an Au-based alloy wiring material, the obtained wiring layer has excellent electromigration resistance and low wiring resistance.

【0014】[0014]

【実施例】以下実施例により本発明を詳細に説明する。
図1はICチップ上に本発明のAg−Au系合金配線材
料を用いて配線層を形成したウェハーレベルパッケージ
の一実施例を示す断面図である。図2(a)〜(e)は
ICチップ上に本発明のAg−Au系合金配線材料を用
いて配線層を形成したウェハーレベルパッケージの一実
施例を工程順に示す断面図である。
The present invention will be described in detail with reference to the following examples.
FIG. 1 is a sectional view showing an embodiment of a wafer level package in which a wiring layer is formed on an IC chip by using the Ag-Au-based alloy wiring material of the present invention. 2A to 2E are cross-sectional views showing one embodiment of a wafer-level package in which a wiring layer is formed on an IC chip using the Ag-Au-based alloy wiring material of the present invention in the order of steps.

【0015】まず、Siウェハー11にAl電極パッド
12及びパッシベーション層13が形成されたICチッ
プ10を用意する(図2(a)参照)。
First, an IC chip 10 having an Al electrode pad 12 and a passivation layer 13 formed on a Si wafer 11 is prepared (see FIG. 2A).

【0016】次に、上記ICチップ10上にスパッタ法
にて膜厚2000ÅのバリアメタルTiN膜を、さら
に、Auの添加量を0、0.2、0.5、1.0、2.0、
4.0、4.5、5.0at%(原子パーセント)の範囲で
変化させたAg−Au系合金配線材料を用いてスパッタ
法にて膜厚5000Åの導電膜を形成し、公知のフォト
エッチング方を用いてパターニング処理して導体配線層
14を形成した(図2(b)参照)。なお、導電膜の形
成方法としては本実施例ではスパッタリング法を用いた
が、真空蒸着法、イオンプレーティング法、CVD法、
ゾルゲル法等いかなる方法でも良く、適宜選択されるも
のである。
Next, a barrier metal TiN film having a thickness of 2000 .ANG. Is formed on the IC chip 10 by a sputtering method, and Au is added in an amount of 0, 0.2, 0.5, 1.0, 2.0. ,
A conductive film having a thickness of 5000 ° is formed by a sputtering method using an Ag—Au-based alloy wiring material changed in a range of 4.0, 4.5, and 5.0 at% (atomic percent), and is then subjected to known photoetching. The conductor wiring layer 14 was formed by patterning using the other method (see FIG. 2B). Although a sputtering method was used in this embodiment as a method for forming the conductive film, a vacuum evaporation method, an ion plating method, a CVD method,
Any method such as a sol-gel method may be used, and is appropriately selected.

【0017】次に、導体配線層14の所定位置にセミア
ディティブ法にてメタルポスト15を形成した(図2
(c)参照)。
Next, metal posts 15 are formed at predetermined positions of the conductor wiring layer 14 by a semi-additive method.
(C)).

【0018】次に、封止樹脂16にてメタルポスト15
を除いて樹脂モールドした(図2(d)参照)。
Next, a metal post 15 is formed with a sealing resin 16.
And resin molding (see FIG. 2D).

【0019】最後に、メタルポスト15に半田ボール1
7を形成してウェハーレベルパッケージ20を得た(図
2(e)参照)。
Finally, solder balls 1 are placed on metal posts 15.
7 was formed to obtain a wafer level package 20 (see FIG. 2E).

【0020】ここで、上記8種類の配線層で形成したウ
ェハーレベルパッケージ20を温度200℃、電流密度
1×107A/cm2の高温通電試験を500時間実施し
た結果を表1に示す。
[0020] Here, it is shown above eight temperature 200 ° C. The wafer-level package 20 formed in the wiring layer, the current density 1 × 10 7 A / cm result of performing 500 hours burn-test 2 in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1の結果からも分かるように、Auの添
加量が0.2at%以上では導体配線層の断線は発生せ
ず、良好な耐エレクトロマイグレーション性を示すこと
が確認された。すなわち、Auを添加したことにより導
体配線層のAgが動きにくくなりエレクトロマイグレー
ションに対する信頼性が向上したことになる。また、A
uの添加量が0at%のサンプルではエレクトロマイグレ
ーションによる配線層の断線が発生し、耐エレクトロマ
イグレーション性がないことが確認された。
As can be seen from the results shown in Table 1, when the added amount of Au is 0.2 at% or more, no disconnection of the conductor wiring layer occurs, and it is confirmed that good electromigration resistance is exhibited. In other words, the addition of Au implies that the Ag of the conductor wiring layer is less likely to move and the reliability against electromigration is improved. Also, A
In the sample in which the addition amount of u was 0 at%, disconnection of the wiring layer due to electromigration occurred, and it was confirmed that there was no electromigration resistance.

【0023】さらに、Ag−Au系合金配線材料のAu
添加量が導体配線層の電気抵抗に及ぼす影響について調
べた。電気抵抗は導体配線層の表面抵抗を4端針式電気
抵抗測定器を用いて測定した。その測定結果を図3に示
す。
Further, the Au—Au-based alloy wiring material Au
The effect of the added amount on the electrical resistance of the conductor wiring layer was examined. The electric resistance was measured by measuring the surface resistance of the conductor wiring layer using a four-point needle electric resistance meter. FIG. 3 shows the measurement results.

【0024】図3に示すように、Auの添加量が4at%
を超えると急激に電気抵抗が増加することが確認され
た。
As shown in FIG. 3, the amount of Au added was 4 at%.
It was confirmed that the electrical resistance sharply increased when the value exceeded.

【0025】以上の結果から、耐エレクトロマイグレー
ション性及び導電性を満足すAg−Au系合金配線材料
のAuの添加量は0.2〜4.0at%の範囲が良好である
ことが確認された。
From the above results, it has been confirmed that the addition amount of Au in the Ag-Au alloy wiring material satisfying the electromigration resistance and the conductivity is preferably in the range of 0.2 to 4.0 at%. .

【0026】さらに、Ag−Au系合金配線材料を用い
て形成した導体配線層の熱処理前後での表面酸化状態に
ついて調べた。
Further, the surface oxidation state of the conductor wiring layer formed using the Ag-Au alloy wiring material before and after the heat treatment was examined.

【0027】Ag−Au系合金配線材料を用いて形成し
た導体配線層の加熱(300℃×1h)前後における表面
状態をX線光電子分光装置(VG Scientific社製:E
SCALAB−220IXL)を用いて以下の条件にて
測定した。 X線源:Al Kα モノクロX線(出力=200W) CAE=10eV、Step=50meV 測定レンズモード:LargeArea XL(約600μmφ
の面積を測定)
The surface state of the conductor wiring layer formed using the Ag-Au alloy wiring material before and after heating (300 ° C. × 1 h) was measured using an X-ray photoelectron spectrometer (VG Scientific: E
(SCALAB-220IXL) under the following conditions. X-ray source: Al Kα Monochrome X-ray (output = 200 W) CAE = 10 eV, Step = 50 meV Measurement lens mode: Large Area XL (about 600 μmφ)
Measure the area of

【0028】Auを1.0at%添加したAg−Au系合
金配線材料を用いてスパッタ法にて形成した膜厚100
0Åの導電膜サンプルをX線光電子分光装置にて分析
し、加熱前におけるX線光電子分光スペクトルのAg3
d5/2ピークに関する波形分離結果を図4に示す。さ
らに、このサンプルを300℃×1時間加熱後のX線光
電子分光スペクトル分析結果のAg3d5/2ピークに
関する波形分離結果を図5に示す。いずれも1本のピー
クにフィットされピーク幅(0.49〜0.51eV)、
ピーク位置(368.0eV)はAg単体のピーク位置
(日本電子XPSハンドブック)と良く一致している。す
なわち、300℃×1時間の加熱処理を施しても酸化さ
れていないことを示し、Auを添加したAg−Au系合
金配線材料を用いて形成した導電膜は酸化され難いと言
える。
A film thickness of 100 formed by sputtering using an Ag-Au alloy wiring material containing 1.0 at% of Au.
A 0 ° conductive film sample was analyzed with an X-ray photoelectron spectrometer, and the Ag3 of the X-ray photoelectron spectroscopy spectrum before heating was analyzed.
FIG. 4 shows the waveform separation result for the d5 / 2 peak. FIG. 5 shows the results of waveform separation on the Ag3d5 / 2 peak in the results of X-ray photoelectron spectroscopy after heating the sample at 300 ° C. for 1 hour. Both are fit to one peak and the peak width (0.49 to 0.51 eV),
The peak position (368.0 eV) is the peak position of Ag alone.
(JEOL XPS Handbook). In other words, it shows that the film is not oxidized even after the heat treatment at 300 ° C. × 1 hour, and it can be said that the conductive film formed using the Ag-Au alloy wiring material to which Au is added is hardly oxidized.

【0029】一方、Auを添加しないAg単体配線材料
を用いてスパッタ法にて形成した膜厚1000Åの導電
膜サンプルを同様にX線光電子分光装置にて分析し、加
熱前におけるX線光電子分光スペクトルのAg3d5/
2ピークに関する波形分離結果を図6に示す。さらに、
このサンプルを300℃×1時間加熱後のX線光電子分
光スペクトルのAg3d5/2ピークに関する波形分離
結果を図7に示す。図7のピークは3本に分離され各ピ
ークの位置は368.3eV、368.0eV、367.
4eVとなりそれぞれ、Ag2O、Ag単体、AgOの
ピーク位置(日本電子XPSハンドブック)と良く一致し
ている。すなわち、300℃×1時間の加熱処理を施す
ことにより酸化されていることを示し、Auを添加しな
いAg単体配線材料を用いて形成した導電膜は酸化され
やすいと言える。
On the other hand, a conductive film sample having a thickness of 1000 Å formed by a sputtering method using an Ag single wiring material to which Au was not added was similarly analyzed by an X-ray photoelectron spectrometer, and the X-ray photoelectron spectroscopic spectrum before heating was obtained. Ag3d5 /
FIG. 6 shows the waveform separation results for the two peaks. further,
FIG. 7 shows the results of waveform separation on the Ag3d5 / 2 peak of the X-ray photoelectron spectroscopy spectrum after heating this sample at 300 ° C. × 1 hour. The peak in FIG. 7 is separated into three peaks, and the position of each peak is 368.3 eV, 368.0 eV, 366.7 eV.
4 eV, which are in good agreement with the peak positions of Ag 2 O, Ag alone, and AgO, respectively (JEOL XPS Handbook). In other words, the heat treatment at 300 ° C. for 1 hour indicates that the conductive film is oxidized, and it can be said that the conductive film formed using the Ag single wiring material to which Au is not added is easily oxidized.

【0030】[0030]

【発明の効果】本発明によれば、Ag−Au系合金配線
材料を用いてICチップ上に導体配線層を形成すること
により、耐エレクトロマイグレーション性及び導電性に
優れたウェハーレベルパッケージが得られる。また、A
g−Au系合金配線材料を用いて形成した導体配線層は
耐熱性を有しているため、半導体集積回路、ビルドアッ
プ多層配線板の導体配線層及びビアホール形成用の配線
材料としても好適である。
According to the present invention, a wafer level package having excellent electromigration resistance and conductivity can be obtained by forming a conductive wiring layer on an IC chip using an Ag-Au alloy wiring material. . Also, A
Since the conductor wiring layer formed using the g-Au-based alloy wiring material has heat resistance, it is also suitable as a semiconductor integrated circuit, a conductor wiring layer of a build-up multilayer wiring board, and a wiring material for forming via holes. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】ICチップ上に本発明のAg−Au系合金配線
材料を用いて導体配線層を形成したウェハーレベルパッ
ケージの一実施例を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a wafer level package in which a conductor wiring layer is formed on an IC chip by using the Ag—Au alloy wiring material of the present invention.

【図2】(a)〜(e)は、ウェハーレベルパッケージ
の一実施例の製造工程を工程順に示す断面図である。
FIGS. 2A to 2E are cross-sectional views illustrating a manufacturing process of an embodiment of a wafer level package in the order of processes.

【図3】本発明のAg−Au系合金配線材料を用いて形
成した導体配線層のAu添加量に対する電気抵抗の変化
を示す説明図である。
FIG. 3 is an explanatory diagram showing a change in electric resistance with respect to an added amount of Au in a conductive wiring layer formed using the Ag—Au-based alloy wiring material of the present invention.

【図4】Auを1at%添加したAg−Au系合金配線材
料を用いて形成した導電膜をX線光電子分光装置にて分
析した結果を示す説明図である。
FIG. 4 is an explanatory diagram showing a result of analyzing a conductive film formed using an Ag—Au alloy wiring material to which 1 at% of Au is added by an X-ray photoelectron spectrometer.

【図5】Auを1at%添加したAg−Au系合金配線材
料を用いて形成した導電膜を350℃1時間加熱した後
X線光電子分光装置にて表面分析した結果を示す説明図
である。
FIG. 5 is an explanatory diagram showing the results of surface analysis performed by an X-ray photoelectron spectrometer after heating a conductive film formed using an Ag-Au-based alloy wiring material containing 1 at% of Au at 350 ° C. for 1 hour.

【図6】Ag単体配線材料を用いて形成した導電膜をX
線光電子分光装置にて表面分析した結果を示す説明図で
ある。
FIG. 6 shows that a conductive film formed by using an Ag simple wiring material is formed of X
It is explanatory drawing which shows the result of having performed the surface analysis with the linear photoelectron spectroscopy apparatus.

【図7】Ag単体配線材料を用いて形成した導電膜を3
50℃1時間加熱した後X線光電子分光装置にて表面分
析した結果を示す説明図である。
FIG. 7 shows a conductive film formed by using a single Ag wiring material.
It is explanatory drawing which shows the result of surface analysis with the X-ray photoelectron spectroscopy after heating at 50 degreeC for 1 hour.

【符号の説明】[Explanation of symbols]

10……ICチップ 11……Siウェハー 12……Al電極パッド 13……パッシベーション層 14……導体配線層 15……メタルポスト 16……封止樹脂 17……半田ボール 20……ウェハーレベルパッケージ Reference Signs List 10 IC chip 11 Si wafer 12 Al electrode pad 13 Passivation layer 14 Conductor wiring layer 15 Metal post 16 Sealing resin 17 Solder ball 20 Wafer level package

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体集積回路等の配線層に使用される配
線材料であって、前記配線材料がAg−Au系合金から
なることを特徴とする配線材料。
1. A wiring material used for a wiring layer of a semiconductor integrated circuit or the like, wherein the wiring material is made of an Ag-Au alloy.
【請求項2】前記Ag−Au系合金のAuの添加量が
0.2〜4.0at%であることを特徴とする請求項1に
記載の配線材料。
2. The wiring material according to claim 1, wherein the amount of Au added to the Ag—Au alloy is 0.2 to 4.0 at%.
【請求項3】請求項1または2に記載の配線材料を用い
て配線パターンを形成したことを特徴とする導体配線
層。
3. A conductive wiring layer, wherein a wiring pattern is formed using the wiring material according to claim 1.
JP2711599A 1999-02-04 1999-02-04 Wiring material and conductor wiring layer employing the same Pending JP2000223489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2711599A JP2000223489A (en) 1999-02-04 1999-02-04 Wiring material and conductor wiring layer employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2711599A JP2000223489A (en) 1999-02-04 1999-02-04 Wiring material and conductor wiring layer employing the same

Publications (1)

Publication Number Publication Date
JP2000223489A true JP2000223489A (en) 2000-08-11

Family

ID=12212081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2711599A Pending JP2000223489A (en) 1999-02-04 1999-02-04 Wiring material and conductor wiring layer employing the same

Country Status (1)

Country Link
JP (1) JP2000223489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014448A (en) * 2007-07-03 2009-01-22 Yamaha Corp Magnetic sensor and its manufacturing method
US7851237B2 (en) 2007-02-23 2010-12-14 Infineon Technologies Ag Semiconductor device test structures and methods
US7858406B2 (en) 2007-02-06 2010-12-28 Infineon Technologies Ag Semiconductor device test structures and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858406B2 (en) 2007-02-06 2010-12-28 Infineon Technologies Ag Semiconductor device test structures and methods
US8633482B2 (en) 2007-02-06 2014-01-21 Infineon Technologies Ag Semiconductor device test structures and methods
US9188625B2 (en) 2007-02-06 2015-11-17 Infineon Technologies Ag Semiconductor device test structures and methods
US7851237B2 (en) 2007-02-23 2010-12-14 Infineon Technologies Ag Semiconductor device test structures and methods
US8847222B2 (en) 2007-02-23 2014-09-30 Infineon Technologies Ag Semiconductor device test structures and methods
JP2009014448A (en) * 2007-07-03 2009-01-22 Yamaha Corp Magnetic sensor and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6170967B2 (en) Solder interconnection pad structure and manufacturing method thereof
KR0135739B1 (en) Electronic device having metallurgies containing copper-semiconductor compounds
US20020096764A1 (en) Semiconductor device having bump electrode
KR970060453A (en) Semiconductor integrated circuit device and manufacturing method thereof
JP2012230117A (en) Electric contact and socket for electric component
EP1922755A2 (en) Semiconductor device having improved mechanical and thermal reliability
JP2002050647A (en) Semiconductor device and its manufacturing method
TW200803674A (en) Method for fabricating circuit board with electrically connected structure
US20100190332A1 (en) Method of Forming a Copper Topped Interconnect Structure that has Thin and Thick Copper Traces
JP3524441B2 (en) Wiring formation method
CN100533698C (en) Method for making embedded resistor in semiconductor wafer
JP2000223489A (en) Wiring material and conductor wiring layer employing the same
JP2015097243A (en) Electronic component, manufacturing method of electronic component, and electronic apparatus
KR100806350B1 (en) Semiconductor device package and method of fabricating the same
US5633047A (en) Electronic devices having metallurgies containing copper-semiconductor compounds
TW201220371A (en) Semiconductor device and manufacturing method of semiconductor device
CN103367243B (en) Shallow through hole is formed by oxidation
JP2000353762A (en) Wiring material and conductor wiring layer using the same
JP2018200952A (en) Electronic component, manufacturing method for electronic component, and electronic apparatus
US20180315722A1 (en) Semiconductor device and manufacturing method thereof
KR100901241B1 (en) Semiconductor device with sacrificial layer and fabricating method thereof
JP5906812B2 (en) Wiring structure, semiconductor device, and manufacturing method of wiring structure
US10796956B2 (en) Contact fabrication to mitigate undercut
KR100901242B1 (en) Semiconductor device with current relief region and fabricating method thereof
KR101671973B1 (en) The multi layer metal bump structure and method of fabricating the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601