JP2000216434A - Light emitting diode and its forming method - Google Patents
Light emitting diode and its forming methodInfo
- Publication number
- JP2000216434A JP2000216434A JP11321930A JP32193099A JP2000216434A JP 2000216434 A JP2000216434 A JP 2000216434A JP 11321930 A JP11321930 A JP 11321930A JP 32193099 A JP32193099 A JP 32193099A JP 2000216434 A JP2000216434 A JP 2000216434A
- Authority
- JP
- Japan
- Prior art keywords
- light
- led chip
- light emitting
- emitting diode
- coating portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本願発明は、バックライト光
源、光センサ−や光プリンターなどの読みとり/書き込
み光源、各種デ−タなどが表示可能な表示装置に用いら
れる発光ダイオードに係わり、特に蛍光物質と、発光素
子と、を有し高輝度且つ均一に発光可能な発光ダイオー
ド及びその形成方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a backlight light source, a read / write light source such as an optical sensor and an optical printer, and a light emitting diode used for a display device capable of displaying various data, and particularly to a fluorescent material. The present invention relates to a light emitting diode having high brightness and uniform light emission, and a method for forming the same.
【0002】[0002]
【従来の技術】今日、RGB(赤色系、緑色系、青色
系)において、1000mcd以上にも及ぶ超高輝度に
発光可能な発光素子(以下LEDチップとも言う。)が
それぞれ開発された。これに伴い、赤色系(R)、緑色
系(G)、青色系(B)が発光可能な各LEDチップを
用い混色発光させることでフルカラーLED表示器が設
置されつつある。このようなLED表示器例としてフル
カラ−大型映像装置などの他に、単一色表示を用いた文
字表示板等がある。単一色表示として白色系は赤色系な
どの注意を引きつける色とは異なり、そのため長時間視
認しても疲れにくい。このことから特に白色系などの単
一色LED表示器が要望されている。2. Description of the Related Art At present, light-emitting elements (hereinafter, also referred to as LED chips) capable of emitting light with an ultra-high luminance of 1000 mcd or more in RGB (red, green, and blue) have been developed. Along with this, a full-color LED display is being installed by causing each of the LED chips capable of emitting red (R), green (G), and blue (B) to emit mixed color light. Examples of such an LED display include a character display board using a single color display, in addition to a full-color large-sized image device. As a single color display, a white system is different from a color that draws attention, such as a red system, and is therefore less tiring even when viewed for a long time. For this reason, a single color LED display such as a white color display is particularly desired.
【0003】一方、LEDチップは優れた単色性のピー
ク波長を有する。そのため白色系などを表示させる場合
には、RGBやB(青色系)Y(黄色系)の混色など2
種類以上のLEDチップからの発光を混色させる必要が
ある。しかし、行き先表示板等に用いられるLED表示
器などにおいては必ずしも2種類以上のLEDチップを
用いて白色系など表示させる必要性はない。On the other hand, LED chips have an excellent monochromatic peak wavelength. Therefore, when displaying a white color or the like, two colors such as RGB, B (blue) and Y (yellow) are mixed.
It is necessary to mix colors of light emitted from more than one type of LED chip. However, in an LED display or the like used for a destination display board or the like, it is not always necessary to use two or more types of LED chips to display white or the like.
【0004】そこで本願出願人は、LEDチップと蛍光
物質により青色発光ダイオードからの発光を色変換させ
て他の色などが発光可能な発光ダイオードとして特開平
5−152609号公報、特開平7−99345号公報
などに記載された発光ダイオードを開発した。これらの
発光ダイオードによって、1種類のLEDチップを用い
て白色系など種々の発光色を発光させることができる。Accordingly, the applicant of the present application has proposed a light emitting diode capable of emitting light of another color by converting the color of light emitted from a blue light emitting diode by using an LED chip and a fluorescent substance as disclosed in Japanese Patent Application Laid-Open Nos. 5-152609 and 7-99345. The light-emitting diode described in Japanese Patent Publication No. 1993-216, etc. was developed. With these light-emitting diodes, various kinds of luminescent colors such as white light can be emitted using one type of LED chip.
【0005】具体的には、発光層のエネルギー・バンド
ギャップが大きいLEDチップをリードフレームの先端
に設けられたカップ上などに配置する。LEDチップ
は、LEDチップが設けられたメタルステムやメタルポ
ストとそれぞれ電気的に接続させる。そして、LEDチ
ップを被覆するモールド部材中などにLEDチップから
の光を吸収し波長変換する蛍光体を含有させて形成させ
てある。Specifically, an LED chip having a large energy band gap of a light emitting layer is disposed on a cup provided at the tip of a lead frame. The LED chip is electrically connected to a metal stem or a metal post provided with the LED chip. Then, a fluorescent material that absorbs light from the LED chip and converts the wavelength is contained in a mold member that covers the LED chip.
【0006】この場合、青色系の発光ダイオードと、そ
の発光を吸収し黄色系を発光する蛍光物質などを選択す
ることにより、これらの発光の混色を利用して白色系を
発光させることができる。このような発光ダイオード
は、白色系を発光する発光ダイオードとして利用した場
合においても十分な輝度を発光する発光ダイオードとし
て利用することができる。In this case, by selecting a blue light emitting diode and a fluorescent substance that absorbs the emitted light and emits a yellow light, a white light can be emitted by using a mixed color of these lights. Such a light emitting diode can be used as a light emitting diode that emits sufficient luminance even when used as a light emitting diode that emits white light.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、発光ダ
イオードに用いられるマウント・リード上の反射カップ
内などに単にLEDチップ及び蛍光物質を実装させる
と、発光観測面において色むらを生じる場合がある。よ
り詳しくは、発光観測面側から見てLEDチップが配置
された中心部が青色ぽっく、その周辺にリング状に黄、
緑や赤色っぽい部分が見られる場合がある。人間の色調
感覚は、白色において特に敏感である。そのため、僅か
な色調差でも赤っぽい白、緑色っぽい白、黄色っぽい白
などと感じる。However, if an LED chip and a fluorescent substance are simply mounted in a reflection cup on a mount lead used for a light emitting diode, color unevenness may occur on a light emission observation surface. More specifically, when viewed from the light emission observation surface side, the center where the LED chip is arranged is blueish, and the periphery thereof is yellow in a ring shape,
Green or reddish parts may be seen. Human tone perception is particularly sensitive in white. Therefore, even a slight difference in color tone is perceived as reddish white, greenish white, yellowish white, or the like.
【0008】このような発光観測面を直視することによ
って生ずる色むらは、品質上好ましくないばかりでな
く、LED表示器に応用した場合における表示面の色調
むらや、光センサーなどの精密機器における誤差を生ず
ることにもなる。さらに、このような発光装置は、時間
と共に発光輝度が低下する傾向にあるという問題を有す
る。本願発明は、上記問題点を解決し発光観測面におけ
る色調むらが極めて少なく高輝度に白色系などが発光可
能な発光ダイオード及びその形成方法を提供することに
ある。[0008] Such color unevenness caused by looking directly at the light emission observation surface is not only unfavorable in terms of quality, but also uneven color tone of the display surface when applied to an LED display, and errors in precision equipment such as an optical sensor. Will also occur. Further, such a light emitting device has a problem that the light emission luminance tends to decrease with time. It is an object of the present invention to provide a light emitting diode capable of solving the above-mentioned problems and having a very small color tone unevenness on a light emission observation surface and capable of emitting white light or the like with high luminance and a method of forming the same.
【0009】[0009]
【課題を解決するための手段】本願発明は、窒化ガリウ
ム系化合物半導体を発光層とした青色系が発光可能なL
EDチップと、LEDチップの各電極とそれぞれ接続さ
せた一対の外部電極と、LEDチップ上に設けられたコ
ーティング部とを有する発光ダイオードである。特に、
コーティング部は、透光性の第1のコーティング部と、
第1のコーティング部上に配置されると共にLEDチッ
プから放出された可視光で励起されて波長変換した可視
光を放出する蛍光物質が含有された透光性の第2のコー
ティング部からなる発光ダイオードである。SUMMARY OF THE INVENTION The present invention relates to a light emitting device that emits blue light using a gallium nitride compound semiconductor as a light emitting layer.
It is a light emitting diode having an ED chip, a pair of external electrodes respectively connected to each electrode of the LED chip, and a coating portion provided on the LED chip. In particular,
The coating unit includes a light-transmitting first coating unit,
A light-emitting diode disposed on the first coating portion and having a light-transmitting second coating portion containing a fluorescent substance that emits visible light whose wavelength has been converted by being excited by visible light emitted from the LED chip; It is.
【0010】本発明の請求項2に記載の発光ダイオード
は、LEDチップから放出された可視光と、蛍光物質か
らの波長変換された可視光との混色表示により白色表示
させるものである。A light emitting diode according to a second aspect of the present invention displays white light by a mixed color display of visible light emitted from an LED chip and visible light whose wavelength has been converted from a fluorescent substance.
【0011】本発明の請求項3に記載の発光ダイオード
は、第2のコーティング部上にモールド部材が設けられ
ている発光ダイオードである。[0011] A light emitting diode according to a third aspect of the present invention is a light emitting diode in which a mold member is provided on the second coating portion.
【0012】本発明の請求項4に記載の発光ダイオード
は、蛍光物質が含有されたコーティング部を通過するL
EDチップからの光の光路長差を実質的に低減させるこ
とによって、色むらが低減するように第2のコーティン
グ部を介して第1のコーティング部とLEDチップを配
置している。According to a fourth aspect of the present invention, there is provided a light emitting diode, wherein the light emitting diode passes through a coating portion containing a fluorescent substance.
The first coating portion and the LED chip are arranged via the second coating portion so as to reduce the color unevenness by substantially reducing the optical path length difference of the light from the ED chip.
【0013】本発明の請求項5に記載の発光ダイオード
は、LEDチップがサファイア基板上に形成されたIn
GaNの発光層を有するものである。According to a fifth aspect of the present invention, there is provided a light emitting diode wherein an LED chip is formed on a sapphire substrate.
It has a light emitting layer of GaN.
【0014】本発明の請求項6に記載の発光ダイオード
は、蛍光物質が(Re1-xSmx)3(Al1-yGay)5O
12:Ceである。但し、0≦x<1、0≦y≦1であ
り、Reは、Y、Gd、La、Lu、Scからなる群よ
り選択される少なくとも一種の元素である。[0014] The light emitting diode according to claim 6 of the present invention, a fluorescent substance (Re 1-x Sm x) 3 (Al 1-y Ga y) 5 O
12 : Ce. Here, 0 ≦ x <1, 0 ≦ y ≦ 1, and Re is at least one element selected from the group consisting of Y, Gd, La, Lu, and Sc.
【0015】本発明の請求項7に記載の発光ダイオード
は、第1及び第2のコーティング部材が、透光性樹脂或
いは硝子からなる。In a light emitting diode according to a seventh aspect of the present invention, the first and second coating members are made of a translucent resin or glass.
【0016】本発明の請求項8に記載の発光ダイオード
は、窒化ガリウム系化合物半導体を発光層とした青色系
が発光可能なLEDチップと、LEDチップ上に設けら
れたコーティング部と、LEDチップの各電極とそれぞ
れ接続された一対の外部電極とを有する。特に、コーテ
ィング部は少なくとも一部にLEDチップからの可視光
によって励起され波長変換された可視光を発光する蛍光
物質を含まれた薄膜をLEDチップ上に接着させること
によって形成させた発光ダイオードである。The light emitting diode according to claim 8 of the present invention is an LED chip capable of emitting blue light using a gallium nitride compound semiconductor as a light emitting layer, a coating portion provided on the LED chip, It has a pair of external electrodes respectively connected to each electrode. In particular, the coating part is a light emitting diode formed by adhering a thin film containing a fluorescent substance that emits visible light whose wavelength is converted by being excited by visible light from the LED chip at least partially on the LED chip. .
【0017】本発明の請求項9に記載の発光ダイオード
は、マウント・リードの反射カップ内に配置させた発光
層が窒化ガリウム系化合物半導体である青色系が発光可
能なLEDチップと、LEDチップと導電性ワイヤーを
用いて電気的に接続させたインナー・リードと、LED
チップ、導電性ワイヤー及びマウント・リードとインナ
ー・リードの一部を被覆するモールド部材とを有する。
特に、反射カップ内にはLEDチップ上に設けられた透
光性の第1のコーティング部と、第1のコーティング部
上に配置されると共にLEDチップから放出された可視
光で励起されて波長変換された可視光を放出する蛍光物
質が含有された透光性の第2のコーティング部とを収容
してなる発光ダイオードである。According to a ninth aspect of the present invention, there is provided an LED chip capable of emitting blue light, wherein a light emitting layer disposed in a reflection cup of a mount lead is a gallium nitride-based compound semiconductor; Inner leads electrically connected using conductive wires, and LEDs
It has a chip, a conductive wire, a mounting lead, and a mold member that covers a part of the inner lead.
In particular, in the reflection cup, a light-transmitting first coating portion provided on the LED chip, and a wavelength conversion device which is disposed on the first coating portion and is excited by visible light emitted from the LED chip to perform wavelength conversion. And a light-transmitting second coating portion containing a fluorescent material that emits visible light.
【0018】本発明の請求項10に記載の発光ダイオー
ドは、モールド部材がレンズ形状を有する。In a light emitting diode according to a tenth aspect of the present invention, the mold member has a lens shape.
【0019】本発明の請求項11に記載の発光ダイオー
ドの形成方法は、カップ内に配置された窒化物系化合物
半導体からなる発光層を有する青色系が発光可能なLE
Dチップ上に透光性樹脂を注入して第1のコーティング
部を形成する工程と、第1のコーティング部上にLED
チップから放出された可視光で励起されて波長変換され
た可視光を放出する蛍光物質が含有された透光性樹脂を
注入して第2のコーティング部を形成する工程とを有す
る。According to a method of forming a light-emitting diode according to the present invention, an LED capable of emitting blue light having a light-emitting layer made of a nitride-based compound semiconductor disposed in a cup is provided.
A step of injecting a translucent resin onto the D chip to form a first coating portion, and forming an LED on the first coating portion
Forming a second coating portion by injecting a translucent resin containing a fluorescent substance that emits visible light whose wavelength has been converted by being excited by visible light emitted from the chip.
【0020】[0020]
【作用】本願発明は、LEDチップ近傍の第1のコーテ
ィング部と、第1のコーティング部上に蛍光物質を有す
る第2のコーティング部とすることによってLEDチッ
プから放出される光の光路長差を実質的に低減させるこ
とによって発光装置の色調むらを低減させると共に蛍光
物質が設けられたことによる光の閉じこめを緩和させる
ことができる。そのため、長時間の使用においても発光
輝度の低下が少ない均一光が発光可能な発光ダイオード
などとすることができる。According to the present invention, an optical path length difference of light emitted from an LED chip is reduced by forming a first coating portion near an LED chip and a second coating portion having a fluorescent substance on the first coating portion. Substantially reducing the color tone unevenness of the light emitting device and alleviating light confinement due to the provision of the fluorescent substance can be achieved. Therefore, a light-emitting diode or the like that can emit uniform light with a small decrease in emission luminance even when used for a long time can be provided.
【0021】[0021]
【発明の実施の形態】本願発明者らは、種々の実験の結
果、発光素子と蛍光物質とを特定の配置関係とすること
によって、発光観測面における色調むらや輝度低下を改
善できることを見出し本願発明を成すに至った。BEST MODE FOR CARRYING OUT THE INVENTION As a result of various experiments, the present inventors have found that by setting a light emitting element and a fluorescent substance in a specific arrangement relationship, it is possible to improve color tone unevenness and luminance reduction on a light emission observation surface. Invented the invention.
【0022】本願発明の構成によって、色調むらや輝度
低下の改善が図れることは定かではないが以下の如く考
えられる。即ち、発光素子から放出された光は、図5
(A)に示すように(a)、(b)、(c)、(d)、
(e)、(f)の如く様々な角度に放出される。このよ
うな光は、蛍光物質が含有されたコーティング部を通過
する光路長がそれぞれ異なる。特に、LEDチップから
放出される光の角度が浅い光ほど光路長が長くなる傾向
にある。このため、光路長差によって蛍光物質に変換さ
れる光量が異なり、色調むらが生ずることとなる。特に
(d)、(e)の領域では光路長が長いためLEDチッ
プからの光が蛍光物質によって波長変換される光が多く
なり、発光観測面側から見て色調むらが生じやすいと考
えられる。また、LEDチップから放出される光は、半
導体内を導波管の如く伝搬し放出される光(f)ある。
このような光もLEDチップ周辺の色調むら原因になる
と考えられる。Although it is not clear that the structure of the present invention can improve the uneven color tone and the reduction in luminance, it is considered as follows. In other words, the light emitted from the light emitting element is
As shown in (A), (a), (b), (c), (d),
(E) and (f) are emitted at various angles. Such light has different optical path lengths passing through the coating portion containing the fluorescent substance. In particular, light having a smaller angle of light emitted from the LED chip tends to have a longer optical path length. For this reason, the amount of light converted into the fluorescent substance varies depending on the optical path length difference, and color tone unevenness occurs. In particular, in the regions (d) and (e), since the light path length is long, the light from the LED chip whose wavelength is converted by the fluorescent substance increases, and it is considered that color tone unevenness is likely to occur when viewed from the light emission observation surface side. Further, the light emitted from the LED chip is light (f) which propagates and is emitted like a waveguide in the semiconductor.
It is considered that such light also causes uneven color tone around the LED chip.
【0023】また、LEDチップ上に蛍光物質を有する
コ−ティング部を直接配置させると、蛍光物質によって
LEDチップからの光が反射・散乱される割合が増え
る。特に、LEDチップ近傍では、LEDチップからの
可視光が蛍光体物質によって反射散乱などされる回数が
極端に増加し光の密度が高くなる。この結果、コ−ティ
ング部の母材である有機樹脂などが劣化しやすく、最終
的には輝度が低下する傾向にあると考えられる。Further, when the coating portion having the fluorescent material is directly disposed on the LED chip, the ratio of the fluorescent material reflecting and scattering light from the LED chip increases. In particular, in the vicinity of the LED chip, the number of times that the visible light from the LED chip is reflected and scattered by the fluorescent substance is extremely increased, and the light density is increased. As a result, it is considered that the organic resin or the like, which is the base material of the coating portion, is liable to deteriorate, and the luminance tends to eventually decrease.
【0024】本願発明は、図5(B)の如く、LEDチ
ップ上に第1のコーティング部、第2のコーティング部
の積層構造とすることにより光路長差を少なくすると共
にLEDチップ近傍の光の散乱を少なく輝度の低下を抑
制しうるものである。According to the present invention, as shown in FIG. 5B, by forming a first coating portion and a second coating portion on the LED chip, a difference in optical path length can be reduced, and light near the LED chip can be reduced. It is possible to reduce scattering and suppress a decrease in luminance.
【0025】具体的な発光装置の一例として、チップタ
イプLEDを図2に示す。チップタイプLEDとして外
部電極を有し凹部が形成されたパッケージを用いた。凹
部内に窒化ガリウム系化合物半導体を発光層としたLE
Dチップがエポキシ樹脂によってダイボンディングされ
ている。LEDチップの各電極と外部電極とは、それぞ
れ金線を用いてワイヤーボンディングされている。凹部
のLEDチップ上に第1のコーティング部としてエポキ
シ樹脂を塗布し乾燥させた。次に第2のコーティング部
として、シリコーン樹脂の基材中に(Re1-xSmx)3
(Al1-yGay)5O12:Ce蛍光物質を含有させたも
のを第1のコーティング部上に形成させた。FIG. 2 shows a chip type LED as an example of a specific light emitting device. As the chip type LED, a package having external electrodes and a concave portion was used. LE with gallium nitride-based compound semiconductor as light emitting layer in recess
The D chip is die-bonded with an epoxy resin. Each electrode of the LED chip and the external electrode are wire-bonded using a gold wire. An epoxy resin was applied as a first coating portion on the recessed LED chip and dried. Next, as a second coating part, (Re 1-x Sm x ) 3
A material containing (Al 1-y G ay ) 5 O 12 : Ce phosphor was formed on the first coating portion.
【0026】第1のコーティングと第2のコーティング
部は、積層構成となっている。また、図2の如く第1の
コーティング部の断面端部が上がっている。そのため第
1のコーティング部の表面が、発光観測面側から見て窪
んだ凹球面状をとる。第1のコーティング部が凹球面状
をとることにより第2のコーティング部中の蛍光物質を
より中心付近に集めることが可能となる。このような形
状は、第1のコーティング部であるエポキシ樹脂の粘度
及び硬化温度・時間を制御して作成することができる。
これにより実質的な光路長差を少なくし、より色調むら
や輝度低下の少ない発光装置とすることができる。以
下、本願発明の構成部材について詳述する。The first coating and the second coating have a laminated structure. Also, as shown in FIG. 2, the cross-sectional end of the first coating portion is raised. Therefore, the surface of the first coating portion has a concave spherical shape as viewed from the light emission observation surface side. When the first coating portion has a concave spherical shape, the fluorescent substance in the second coating portion can be collected closer to the center. Such a shape can be created by controlling the viscosity and the curing temperature and time of the epoxy resin as the first coating portion.
As a result, a substantial difference in optical path length can be reduced, and a light emitting device with less color tone unevenness and lower luminance can be obtained. Hereinafter, the constituent members of the present invention will be described in detail.
【0027】(コーティング部101、102、20
1、202、401、402)本願発明のコーティング
部とは、LEDチップを外部環境などから保護するもの
である。コーティング部は、LEDチップ上に設けられ
るものであり少なくとも一部にLEDチップからの可視
光によって励起され可視光を発光する蛍光物質を含む樹
脂や硝子などである。いずれにしてもコーティング部
は、LEDチップからの可視光の行路長差を低減させる
ことによりLEDチップと蛍光物質からの可視光を十分
混色などさせられるものである。特に、本願発明のコー
ティング部は、蛍光物質が含有された単なる層形状とし
たものよりもLEDチップから放出された光の光路長差
がより少なくなるように設けられてある。また、効率よ
く外部に放出されるよう多層構成とさせてある。したが
って、コーティング部の形状は、凸レンズ形状、種々の
多層形状などが挙げられる。また、薄膜に形成されたコ
ーティング部を接着させることによって形成させても良
い。(Coating sections 101, 102, 20
1, 202, 401, 402) The coating part of the present invention protects the LED chip from the external environment and the like. The coating portion is provided on the LED chip, and is at least partially made of a resin or glass containing a fluorescent substance that emits visible light when excited by visible light from the LED chip. In any case, the coating portion can sufficiently mix the visible light from the LED chip and the fluorescent substance by reducing the difference in the path length of the visible light from the LED chip. In particular, the coating portion of the present invention is provided so that the difference in the optical path length of the light emitted from the LED chip is smaller than that of a simple layer shape containing a fluorescent substance. In addition, it has a multilayer structure so that it is efficiently emitted to the outside. Therefore, the shape of the coating portion includes a convex lens shape, various multilayer shapes, and the like. Alternatively, it may be formed by bonding a coating portion formed on a thin film.
【0028】第1のコーティング部101と、第2のコ
ーティング部102の基材は、同じ材料を用いてもよい
し、異なる材料を用いてもよい。異なる材料を用いる場
合は、より外部に近い側に耐候性のある材料を用いるこ
とが好ましい。また、より内部にある材料ほど膨張の少
ない材料を用いることが好ましい。このようなコーティ
ング部を構成する具体的基材としては、エポキシ樹脂、
ユリア樹脂、アクリル樹脂、シリコーン樹脂などの透光
性樹脂や硝子などが好適に用いられる。また、第1のコ
ーティング部及び第2のコーティング部の厚みは、それ
ぞれ同じでも良いし、異なっていても良い。蛍光物質と
しては、LEDチップからの光などを考慮して有機、無
機の染料や顔料等種々のものが挙げられる。The base material of the first coating part 101 and the base material of the second coating part 102 may be made of the same material or different materials. When a different material is used, it is preferable to use a weather-resistant material on the side closer to the outside. Further, it is preferable to use a material having a smaller expansion as the material is located further inside. As a specific base material constituting such a coating portion, epoxy resin,
Translucent resins such as urea resin, acrylic resin, and silicone resin, glass, and the like are preferably used. Further, the thickness of the first coating portion and the thickness of the second coating portion may be the same or different. Examples of the fluorescent substance include various substances such as organic and inorganic dyes and pigments in consideration of light from the LED chip.
【0029】第1及び/又は第2のコーティング部に
は、拡散剤、着色剤や光安定剤を含有させても良い。着
色剤を含有させることによってLEDチップ及び/又は
蛍光物質からの光を所望にカットするフィルター効果を
持たせることができる。拡散剤を含有させることによっ
て指向特性を所望に調節させることができる。光安定剤
である紫外線吸収剤を含有させることによってコーティ
ング部を構成する樹脂などの劣化を抑制することができ
る。具体的な拡散剤としては、チタン酸バリウム、酸化
チタン、酸化アルミニウム、酸化珪素等が好適に用いら
れる。光安定剤としては、ベンゾトリアゾール系、ベン
ゾフェノン系、サリシレート系、シアノアクリレート
系、ヒンダードアミン系などが挙げられる。The first and / or second coating portions may contain a diffusing agent, a coloring agent and a light stabilizer. By including a coloring agent, a filter effect of cutting light from the LED chip and / or the fluorescent substance as desired can be provided. By including a diffusing agent, the directional characteristics can be adjusted as desired. By incorporating an ultraviolet absorber as a light stabilizer, it is possible to suppress deterioration of the resin or the like constituting the coating portion. As a specific diffusing agent, barium titanate, titanium oxide, aluminum oxide, silicon oxide, or the like is suitably used. Examples of the light stabilizer include benzotriazole, benzophenone, salicylate, cyanoacrylate, and hindered amine.
【0030】また、コーティング部の主材料は、モール
ド部材と同じ材料を用いてもよいし、異なる部材として
も良い。コーティング部を異なる部材で形成させた場合
においては、LEDチップや導電性ワイヤーなどにかか
る外部応力や熱応力をより緩和させることもできる。The main material of the coating portion may be the same material as the mold member or may be a different member. When the coating portion is formed of a different member, external stress and thermal stress applied to the LED chip, the conductive wire, and the like can be further reduced.
【0031】(蛍光物質)本願発明に用いられる蛍光物
質としては、少なくとも半導体発光層から発光された可
視光で励起されて可視光を発光する蛍光物質をいう。L
EDチップから発光した可視光と、蛍光物質から発光す
る可視光が補色関係などにある場合やLEDチップから
の可視光とそれによって励起され発光する蛍光物質の可
視光がそれぞれ光の3原色(赤色系、緑色系、青色系)
に相当する場合、LEDチップからの発光と、蛍光物質
からの発光と、を混色表示させると白色系の発光色表示
を行うことができる。そのため発光装置の外部には、L
EDチップからの発光と蛍光物質からの発光とがコーテ
ィング部などを透過する必要がある。このような調整
は、蛍光物質と樹脂などとの比率や塗布、充填量などを
種々調整する。或いは、発光素子の発光波長を種々選択
することにより白色を含め電球色など任意の色調を提供
させることができる。(Fluorescent substance) The fluorescent substance used in the present invention means a fluorescent substance which emits visible light when excited by at least visible light emitted from the semiconductor light emitting layer. L
When the visible light emitted from the ED chip and the visible light emitted from the fluorescent substance are in a complementary color relationship or the like, the visible light from the LED chip and the visible light of the fluorescent substance excited and emitted by the light are respectively three primary colors (red). System, green system, blue system)
When light emission from the LED chip and light emission from the fluorescent substance are mixed and displayed, white light emission color display can be performed. Therefore, L
It is necessary that the light emitted from the ED chip and the light emitted from the fluorescent substance pass through the coating part and the like. For such adjustment, the ratio between the fluorescent substance and the resin and the like, the application and the filling amount are variously adjusted. Alternatively, an arbitrary color tone such as a light bulb color including white can be provided by variously selecting the emission wavelength of the light emitting element.
【0032】さらに、第2のコーティング部内における
蛍光物質の含有分布は、混色性や耐久性にも影響する。
すなわち、第2のコーティング部の外部表面側からLE
Dチップに向かって蛍光物質の分布濃度が高い場合は、
外部環境からの水分などの影響をより受けにくく水分な
どによる劣化を抑制しやすい。Further, the content distribution of the fluorescent substance in the second coating portion affects the color mixing property and the durability.
That is, LE from the outer surface side of the second coating portion.
When the distribution concentration of the fluorescent substance is high toward the D chip,
It is less susceptible to moisture and the like from the external environment, and it is easy to suppress deterioration due to moisture and the like.
【0033】他方、蛍光物質の含有分布をLEDチップ
からモールド部材表面側に向かって分布濃度が高くなる
と外部環境からの水分の影響を受けやすいがLEDチッ
プからの発熱、照射強度などの影響がより少なく蛍光物
質の劣化を抑制することもできる。したがって、使用環
境によって種々選択することができる。このような、蛍
光物質の分布は、蛍光物質を含有する基材、形成温度、
粘度や蛍光物質の形状、粒度分布などを調整させること
によって種々形成させることができる。On the other hand, if the concentration distribution of the fluorescent substance increases from the LED chip toward the surface of the mold member, the distribution of the fluorescent substance is likely to be affected by moisture from the external environment, but the influence of heat generation and irradiation intensity from the LED chip is more. The deterioration of the fluorescent substance can be suppressed to a small extent. Therefore, various selections can be made according to the use environment. Such a distribution of the fluorescent substance, the base material containing the fluorescent substance, the formation temperature,
Various shapes can be formed by adjusting the viscosity, the shape of the fluorescent substance, the particle size distribution, and the like.
【0034】半導体発光層によって励起される蛍光物質
は、無機蛍光体、有機蛍光体、蛍光染料、蛍光顔料など
種々のものが挙げられる。具体的な蛍光物質としては、
ペリレン系誘導体やセリウム付活されたイットリウム・
アルミニウム・ガーネット蛍光体である(Re1-xS
mx)3(Al1-yGay)5O12:Ce(0≦x<1、0
≦y≦1、但し、Reは、Y,Gd,La,Lu,Sc
からなる群より選択される少なくとも一種の元素であ
る。)などが挙げられる。特に、蛍光物質として(Re
1-xSmx)3(Al1-yGay)5O12:Ceを用いた場合
には、エネルギーバンドギャップの大きい窒化物系化合
物半導体を発光層に用いたLEDチップと接する或いは
近接して配置され放射照度として(Ee)=3W・cm
-2以上10W・cm-2以下においても高効率に十分な耐
光性有する発光装置とすることができる。The fluorescent substance excited by the semiconductor light emitting layer includes various substances such as an inorganic fluorescent substance, an organic fluorescent substance, a fluorescent dye and a fluorescent pigment. Specific fluorescent substances include:
Perylene derivatives and yttrium with cerium
Aluminum garnet phosphor (Re 1-x S
m x) 3 (Al 1- y Ga y) 5 O 12: Ce (0 ≦ x <1,0
≦ y ≦ 1, where Re is Y, Gd, La, Lu, Sc
At least one element selected from the group consisting of ). In particular, as a fluorescent substance (Re
1-x Sm x) 3 ( Al 1-y Ga y) 5 O 12: in the case of using the Ce is greater nitride compound semiconductor energy band gap LED chip and contact or proximity using the light-emitting layer (Ee) = 3W · cm as irradiance
It can be a light emitting device having sufficient light resistance in high efficiency -2 10 W · cm -2 or less.
【0035】(Re1-xSmx)3(Al1-yGay)
5O12:Ce蛍光体は、ガーネット構造のため、熱、光
及び水分に強く、励起スペクトルのピークが470nm
付近などにさせることができる。また、発光ピークも5
30nm付近にあり720nmまで裾を引くブロードな
発光スペクトルを持たせることができる。しかも、組成
のAlの一部をGaで置換することで発光波長が短波長
にシフトし、また組成のYの一部をGdで置換すること
で、発光波長が長波長へシフトする。このように組成を
変化することで発光色を連続的に調節することが可能で
ある。したがって、長波長側の強度がGdの組成比で連
続的に変えられるなど窒化物半導体の青色系発光を利用
して白色系発光に変換するための理想条件を備えてい
る。(Re 1-x Sm x ) 3 (Al 1-y G ay )
Since the 5 O 12 : Ce phosphor has a garnet structure, it is resistant to heat, light and moisture, and has a peak of an excitation spectrum of 470 nm.
It can be made nearby. The emission peak is 5
A broad emission spectrum that is near 30 nm and extends down to 720 nm can be provided. In addition, the emission wavelength shifts to a short wavelength by substituting a part of the Al in the composition with Ga, and the emission wavelength shifts to a long wavelength by substituting a part of the Y in the composition with Gd. By changing the composition in this way, the emission color can be continuously adjusted. Therefore, there is provided an ideal condition for converting the blue light emission of the nitride semiconductor to white light emission such that the intensity on the long wavelength side can be continuously changed by the composition ratio of Gd.
【0036】このような蛍光体は、Y、Gd、Ce、S
m、Al、La及びGaの原料として酸化物、又は高温
で容易に酸化物になる化合物を使用し、それらを化学量
論比で十分に混合して原料を得る。又は、Y、Gd、C
e、Smの希土類元素を化学量論比で酸に溶解した溶解
液を蓚酸で共沈したものを焼成して得られる共沈酸化物
と、酸化アルミニウム、酸化ガリウムなどとを混合して
混合原料を得る。これにフラックスとしてフッ化アンモ
ニウム等のフッ化物を適量混合して坩堝に詰め、空気中
1350〜1450°Cの温度範囲で2〜5時間焼成し
て焼成品を得、次に焼成品を水中でボールミルして、洗
浄、分離、乾燥、最後に篩を通すことで得ることができ
る。Such phosphors include Y, Gd, Ce, S
An oxide or a compound which easily becomes an oxide at a high temperature is used as a raw material of m, Al, La and Ga, and these are sufficiently mixed in a stoichiometric ratio to obtain a raw material. Or Y, Gd, C
e, a co-precipitated oxide obtained by calcining a solution obtained by dissolving a rare earth element of Sm in an acid at a stoichiometric ratio with oxalic acid, and aluminum oxide, gallium oxide, etc., and mixing raw materials Get. An appropriate amount of a fluoride such as ammonium fluoride is mixed as a flux into the crucible, and calcined in air at a temperature in the range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a calcined product. It can be obtained by ball milling, washing, separating, drying and finally passing through a sieve.
【0037】本願発明の発光装置において、蛍光物質
は、2種類以上の蛍光物質を混合させてもよい。即ち、
Al、Ga、Y、La及びGdやSmの含有量が異なる
2種類以上の(Re1-xSmx)3(Al1-yGay)
5O12:Ce蛍光体を混合させてRGBの波長成分を増
やすことができる。In the light emitting device of the present invention, the fluorescent substance may be a mixture of two or more fluorescent substances. That is,
Al, Ga, Y, the content of La and Gd and Sm are two or more kinds of (Re 1-x Sm x) 3 (Al 1-y Ga y)
By mixing 5 O 12 : Ce phosphor, the wavelength components of RGB can be increased.
【0038】(LEDチップ103、203、403)
本願発明に用いられるLEDチップとは、蛍光物質を効
率良く励起できる比較的短波長を効率よく発光可能な窒
化物系化合物半導体などが好適に挙げられる。このよう
なLEDチップは、MOCVD法等により基板上にIn
GaN等の半導体を発光層として形成させることができ
る。半導体の構造としては、MIS接合、PIN接合や
pn接合などを有するホモ構造、ヘテロ構造あるいはダ
ブルへテロ構成のものが挙げられる。半導体層の材料や
その混晶度によって発光波長を種々選択することができ
る。また、半導体活性層を量子効果が生ずる薄膜に形成
させた単一量子井戸構造や多重量子井戸構造とすること
もできる。(LED chips 103, 203, 403)
The LED chip used in the present invention is preferably a nitride-based compound semiconductor capable of efficiently exciting a fluorescent substance and emitting light at a relatively short wavelength efficiently. Such an LED chip is formed on a substrate by MOCVD or the like.
A semiconductor such as GaN can be formed as the light emitting layer. Examples of the semiconductor structure include a homo structure, a hetero structure, and a double hetero structure having an MIS junction, a PIN junction, a pn junction, and the like. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal thereof. Also, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed as a thin film in which a quantum effect occurs can be used.
【0039】窒化ガリウム系化合物半導体を使用した場
合、半導体基板にはサファイヤ、スピネル、SiC、S
i、ZnO等の材料が用いられる。結晶性の良い窒化ガ
リウムを形成させるためにはサファイヤ基板を用いるこ
とが好ましい。このサファイヤ基板上にGaN、AlN
等のバッファー層を低温で形成しその上にpn接合を有
する窒化ガリウム半導体を形成させる。窒化ガリウム系
半導体は、不純物をドープしない状態でn型導電性を示
す。発光効率を向上させるなど所望のn型窒化ガリウム
半導体を形成させる場合は、n型ドーパントとしてS
i、Ge、Se、Te、C等を適宜導入することが好ま
しい。一方、p型窒化ガリウム半導体を形成させる場合
は、p型ドーパンドであるZn、Mg、Be、Ca、S
r、Ba等をドープさせる。When a gallium nitride compound semiconductor is used, sapphire, spinel, SiC, S
Materials such as i and ZnO are used. In order to form gallium nitride having good crystallinity, a sapphire substrate is preferably used. GaN, AlN on this sapphire substrate
Is formed at a low temperature, and a gallium nitride semiconductor having a pn junction is formed thereon. Gallium nitride-based semiconductors exhibit n-type conductivity without being doped with impurities. When a desired n-type gallium nitride semiconductor is formed, for example, to improve luminous efficiency, S is used as an n-type dopant.
It is preferable to appropriately introduce i, Ge, Se, Te, C, and the like. On the other hand, when a p-type gallium nitride semiconductor is formed, p-type dopants such as Zn, Mg, Be, Ca, and S
Doping with r, Ba, etc.
【0040】窒化ガリウム系化合物半導体は、p型ドー
パントをドープしただけではp型化しにくいためp型ド
ーパント導入後に、炉による加熱、低速電子線照射やプ
ラズマ照射等によりアニールすることでp型化させるこ
とが好ましい。エッチングなどによりp型半導体及びn
型半導体の露出面を形成させた後、半導体層上にスパッ
タリング法や真空蒸着法などを用いて所望の形状の各電
極を形成させる。A gallium nitride-based compound semiconductor is hardly converted into a p-type by simply doping it with a p-type dopant. After the introduction of the p-type dopant, the gallium nitride-based compound semiconductor is annealed by heating in a furnace, low-speed electron beam irradiation, plasma irradiation, or the like. Is preferred. P-type semiconductor and n
After the exposed surface of the mold semiconductor is formed, each electrode having a desired shape is formed on the semiconductor layer by using a sputtering method, a vacuum evaporation method, or the like.
【0041】次に、形成された半導体ウエハー等をダイ
ヤモンド製の刃先を有するブレードが回転するダイシン
グソーにより直接フルカットするか、又は刃先幅よりも
広い幅の溝を切り込んだ後(ハーフカット)、外力によ
って半導体ウエハーを割る。あるいは、先端のダイヤモ
ンド針が往復直線運動するスクライバーにより半導体ウ
エハーに極めて細いスクライブライン(経線)を例えば
碁盤目状に引いた後、外力によってウエハーを割り半導
体ウエハーからチップ状にカットする。このようにして
窒化ガリウム系化合物半導体であるLEDチップを形成
させることができる。Next, the formed semiconductor wafer or the like is directly full-cut by a dicing saw in which a blade having a diamond blade is rotated, or after a groove having a width larger than the blade width is cut (half cut). The semiconductor wafer is broken by external force. Alternatively, an extremely thin scribe line (meridian) is drawn on the semiconductor wafer, for example, in a checkerboard pattern by a scriber in which a diamond needle at the tip reciprocates linearly, and then the wafer is cut by an external force and cut into chips from the semiconductor wafer. Thus, an LED chip that is a gallium nitride-based compound semiconductor can be formed.
【0042】本願発明の発光装置において白色系を発光
させる場合、蛍光物質との補色等を考慮して発光素子の
主発光波長は400nm以上530nm以下が好まし
く、420nm以上490nm以下がより好ましい。L
EDチップと蛍光物質との効率をそれぞれより向上させ
るためには、450nm以上475nm以下がさらに好
ましい。なお、本願発明に主として用いられるLEDチ
ップの他、蛍光物質を励起させない或いは、励起されて
も蛍光物質から可視光などが実質的に発光されない光の
みを発光するLEDチップを一緒に配置させることもで
きる。この場合、白色系と、赤色や黄色などが発光可能
な発光装置とすることもできる。In the case where white light is emitted in the light emitting device of the present invention, the main emission wavelength of the light emitting element is preferably 400 nm or more and 530 nm or less, more preferably 420 nm or more and 490 nm or less in consideration of the color complementary to the fluorescent substance. L
In order to further improve the efficiency of the ED chip and the efficiency of the fluorescent substance, respectively, the thickness is more preferably 450 nm or more and 475 nm or less. Note that, in addition to the LED chip mainly used in the present invention, an LED chip that does not excite a fluorescent substance or emits only light that does not substantially emit visible light or the like from the fluorescent substance even when excited may be disposed together. it can. In this case, a light emitting device capable of emitting white light, red light, yellow light, and the like can be provided.
【0043】(マウント・リード104)マウント・リ
ード104は、LEDチップ103を配置させると共に
蛍光物質を収容させるカップとを有することが好まし
い。このようなカップを本願発明における開口部として
機能させることもできる。LEDチップを複数設置しマ
ウント・リードをLEDチップの共通電極として利用す
る場合においては、十分な電気伝導性とボンディングワ
イヤー等との接続性を有することが好ましい。(Mount Lead 104) The mount lead 104 preferably has a cup on which the LED chip 103 is arranged and a fluorescent substance is accommodated. Such a cup can also function as an opening in the present invention. When a plurality of LED chips are provided and the mount leads are used as a common electrode of the LED chips, it is preferable that the LED chips have sufficient electrical conductivity and connectivity with a bonding wire or the like.
【0044】マウント・リードの具体的な電気抵抗とし
ては300μΩcm以下が好ましく、より好ましくは、
3μΩcm以下である。また、マウント・リード上に複
数のLEDチップを積置する場合は、LEDチップから
の発熱量が多くなるため熱伝導度がよいことが求められ
る。具体的には、0.01cal/cm2/cm/℃以
上が好ましくより好ましくは 0.5cal/cm2/c
m/℃以上である。これらの条件を満たす材料として
は、鉄、銅、鉄入り銅、錫入り銅、メタライズパターン
付きセラミック等が挙げられる。The specific electric resistance of the mount lead is preferably 300 μΩcm or less, more preferably,
It is 3 μΩcm or less. Also, when a plurality of LED chips are mounted on the mount leads, good heat conductivity is required because the amount of heat generated from the LED chips increases. Specifically, it is preferably at least 0.01 cal / cm 2 / cm / ° C., more preferably 0.5 cal / cm 2 / c
m / ° C. or more. Materials satisfying these conditions include iron, copper, copper with iron, copper with tin, and ceramics with metallized patterns.
【0045】(インナー・リード105)インナー・リ
ード105としては、マウント・リード104上に配置
されたLEDチップ103と接続された導電性ワイヤー
との接続を図るものである。マウント・リード上に複数
のLEDチップを設けた場合は、各導電性ワイヤー同士
が接触しないよう配置できる構成とする必要がある。具
体的には、マウント・リードから離れるに従って、イン
ナー・リードのワイヤーボンディングさせる端面の面積
を大きくすることなどによってマウント・リードからよ
り離れたインナー・リードと接続させる導電性ワイヤー
の接触を防ぐことができる。導電性ワイヤーとの接続端
面の粗さは、密着性を考慮して1.6S以上10S以下
が好ましい。(Inner Lead 105) The inner lead 105 is for connecting a conductive wire connected to the LED chip 103 disposed on the mount lead 104. In the case where a plurality of LED chips are provided on the mount lead, it is necessary to arrange the conductive wires so that the conductive wires do not contact each other. Specifically, as the distance from the mount lead increases, the area of the end face of the inner lead to which wire bonding is performed can be increased to prevent contact of the conductive wire connected to the inner lead further away from the mount lead. it can. The roughness of the connection end face with the conductive wire is preferably 1.6S or more and 10S or less in consideration of adhesion.
【0046】インナー・リードの先端部を種々の形状に
形成させるためには、あらかじめリード・フレームの形
状を型枠で決めて打ち抜き形成させてもよく、或いは全
てのインナー・リードを形成させた後にインナー・リー
ド上部の一部を削ることによって形成させても良い。さ
らには、インナー・リードを打ち抜き形成後、端面方向
から加圧することにより所望の端面の面積と端面高さを
同時に形成させることもできる。In order to form the tips of the inner leads into various shapes, the shape of the lead frame may be determined in advance with a mold and punched out, or after all the inner leads have been formed, It may be formed by cutting a part of the upper part of the inner lead. Further, after the inner lead is punched and formed, a desired end face area and end face height can be simultaneously formed by pressing from the end face direction.
【0047】インナー・リードは、導電性ワイヤーであ
るボンディングワイヤー等との接続性及び電気伝導性が
良いことが求められる。具体的な電気抵抗としては、3
00μΩcm以下が好ましく、より好ましくは3μΩc
m以下である。これらの条件を満たす材料としては、
鉄、銅、鉄入り銅、錫入り銅及び銅、金、銀をメッキし
たアルミニウム、鉄、銅等が挙げられる。The inner leads are required to have good connectivity with a conductive wire such as a bonding wire and good electrical conductivity. The specific electric resistance is 3
00 μΩcm or less, more preferably 3 μΩc
m or less. Materials meeting these conditions include:
Examples include iron, copper, copper with iron, copper with tin, and aluminum, iron, and copper plated with copper, gold, and silver.
【0048】(電気的接続部材106)電気的接続部材
である導電性ワイヤー106などとしては、LEDチッ
プ103の電極とのオーミック性、機械的接続性、電気
伝導性及び熱伝導性がよいものが求められる。熱伝導度
としては0.01cal/cm2/cm/℃以上が好ま
しく、より好ましくは0.5cal/cm2/cm/℃
以上である。また、作業性などを考慮して導電性ワイヤ
ーの場合、好ましくは、直径Φ10μm以上、Φ45μ
m以下である。このような導電性ワイヤーとして具体的
には、金、銅、白金、アルミニウム等の金属及びそれら
の合金を用いた導電性ワイヤーが挙げられる。このよう
な導電性ワイヤーは、各LEDチップの電極と、インナ
ー・リード及びマウント・リードなどと、をワイヤーボ
ンディング機器によって容易に接続させることができ
る。(Electrical Connection Member 106) As the conductive wire 106 or the like as the electrical connection member, one having good ohmic properties, mechanical connectivity, electrical conductivity, and thermal conductivity with the electrodes of the LED chip 103 is preferable. Desired. The thermal conductivity is preferably 0.01 cal / cm 2 / cm / ° C. or more, more preferably 0.5 cal / cm 2 / cm / ° C.
That is all. Further, in the case of a conductive wire in consideration of workability and the like, preferably, the diameter is Φ10 μm or more, and Φ45 μm.
m or less. Specific examples of such conductive wires include conductive wires using metals such as gold, copper, platinum, and aluminum and alloys thereof. Such a conductive wire can easily connect an electrode of each LED chip to an inner lead, a mount lead, and the like by a wire bonding device.
【0049】(モールド部材107)モールド部材10
7は、発光装置の使用用途に応じてLEDチップ10
3、導電性ワイヤー106、蛍光物質が含有されたコー
ティング部102などを外部から保護するために好適に
設けることができる。モールド部材107は、各種樹脂
や硝子などを用いて形成させることができる。モールド
部材を所望の形状にすることによってLEDチップから
の発光を集束させたり拡散させたりするレンズ効果を持
たせることができる。従って、モールド部材は複数積層
した構造としてもよい。具体的には、凸レンズ形状、凹
レンズ形状さらには、発光観測面から見て楕円形状や円
形などそれらを複数組み合わせた物などが挙げられる。
また、LEDチップからの光を集光させレンズ形状を採
る場合においては、発光観測面側から見て発光面が拡大
されるため光源の色調むらが特に顕著に現れる。従っ
て、本願発明の色むら抑制の効果が特に大きくなるもの
である。(Mold member 107) Mold member 10
7 is an LED chip 10 according to the usage of the light emitting device.
3. The conductive wire 106, the coating portion 102 containing the fluorescent material, and the like can be suitably provided to protect the coating from the outside. The mold member 107 can be formed using various resins, glass, or the like. By forming the mold member into a desired shape, it is possible to have a lens effect of converging or diffusing light emitted from the LED chip. Therefore, a structure in which a plurality of mold members are stacked may be employed. Specifically, a convex lens shape, a concave lens shape, and a combination of a plurality of shapes such as an elliptical shape and a circular shape when viewed from the light emission observation surface are exemplified.
In the case where the light from the LED chip is condensed to form a lens, the light emitting surface is enlarged when viewed from the light emission observing surface side, so that the color tone unevenness of the light source is particularly remarkable. Therefore, the effect of suppressing color unevenness of the present invention is particularly large.
【0050】モールド部材の具体的材料としては、主と
してエポキシ樹脂、ユリア樹脂、シリコーンなどの耐候
性に優れた透光性樹脂や硝子などが好適に用いられる。
また、モールド部材に拡散剤を含有させることによって
LEDチップからの指向性を緩和させ視野角を増やすこ
ともできる。拡散剤の具体的材料としては、チタン酸バ
リウム、酸化チタン、酸化アルミニウム、酸化珪素等が
好適に用いられる。さらに、モールド部材とコーティン
グ部とを異なる部材で形成させても良い。また、屈折率
を考慮してモールド部材とコーティング部とを同じ部材
を用いて形成させることもできる。As a specific material of the mold member, a translucent resin having excellent weather resistance, such as an epoxy resin, a urea resin, or silicone, or glass is preferably used.
Further, by including a diffusing agent in the mold member, the directivity from the LED chip can be reduced and the viewing angle can be increased. As a specific material of the diffusing agent, barium titanate, titanium oxide, aluminum oxide, silicon oxide, or the like is suitably used. Further, the mold member and the coating portion may be formed by different members. Further, the mold member and the coating portion can be formed using the same member in consideration of the refractive index.
【0051】(基板404)LEDチップ403が多数
配置される高精細、高視野角及び小型薄型LED表示器
用の基板403としては、LEDチップ403及び電気
的接続部材などと蛍光物質を含有させる複数の凹状開口
部を設けた導体配線層を有するものが好適に挙げられ
る。このような基板においては、複数のLEDチップを
直接同一基板上に高密度実装させるとLEDチップから
の放熱量が多くなる。LEDチップからの熱を十分放熱
できず、また蛍光物質を樹脂中に均一に分散させなけれ
ばコーティング部の部分的な亀裂や着色などの劣化を生
じさせる場合もある。(Substrate 404) As a substrate 403 for a high-definition, high-viewing-angle, small-sized and thin LED display on which a large number of LED chips 403 are arranged, a plurality of LED chips 403 and an electrical connection member and a plurality of fluorescent materials are contained. One having a conductor wiring layer provided with a concave opening is preferably mentioned. In such a substrate, when a plurality of LED chips are directly mounted on the same substrate at a high density, the amount of heat radiation from the LED chips increases. The heat from the LED chip cannot be sufficiently dissipated, and if the fluorescent substance is not uniformly dispersed in the resin, the coating may be partially degraded such as cracking or coloring.
【0052】したがって、凹状開口部を設けた導体配線
層を有する基板としては、放熱性の優れ蛍光物質を含有
させたコーティング部などとの密着性が良いことが望ま
れる。このような凹状開口部を有する配線基板材料とし
ては、セラミックス基板、金属をベースにし絶縁層を介
して導体配線層を有する金属基板、熱伝導性フィラー入
り耐熱性有機樹脂基板が好適に挙げられる。これらの基
板は、凹状開口部と配線部層とを一体的に形成すること
が可能である。セラミックス基板では孔開き基板の積
層、金属基板ではプレス加工、有機樹脂基板では樹脂成
型により凹状開口部と配線部が一体化したLED表示器
を簡易に形成させることができる。Therefore, it is desired that a substrate having a conductor wiring layer provided with a concave opening has good heat dissipation and good adhesion to a coating portion containing a fluorescent substance. Suitable examples of the wiring substrate material having such a concave opening include a ceramic substrate, a metal substrate having a conductive wiring layer based on a metal via an insulating layer, and a heat-resistant organic resin substrate containing a heat conductive filler. In these substrates, the concave opening and the wiring layer can be formed integrally. It is possible to easily form an LED display in which a concave opening and a wiring portion are integrated by laminating a perforated substrate on a ceramic substrate, press working on a metal substrate, and resin molding on an organic resin substrate.
【0053】特に、放熱性や耐候性の点においてアルミ
ナを主としたセラミックス基板がより好ましい。具体的
には、原料粉末の90〜96重量%がアルミナであり、
焼結助剤として粘度、タルク、マグネシア、カルシア及
びシリカ等が4〜10重量%添加され1500から17
00℃の温度範囲で焼結させたセラミックス基板、や原
料粉末の40〜60重量%がアルミナで焼結助剤として
60〜40重量%の硼珪酸硝子、コージュライト、フォ
ルステライト、ムライトなどが添加され800〜120
0℃の温度範囲で焼結させたセラミックス基板等であ
る。In particular, a ceramic substrate mainly composed of alumina is more preferable in terms of heat dissipation and weather resistance. Specifically, 90 to 96% by weight of the raw material powder is alumina,
Viscosity, talc, magnesia, calcia, silica, etc. are added as sintering aids in an amount of 4 to 10 wt%,
A ceramic substrate sintered at a temperature of 00 ° C., and 40 to 60% by weight of the raw material powder are alumina, and 60 to 40% by weight of borosilicate glass, cordierite, forsterite, mullite, etc. are added as a sintering aid. 800-120
A ceramic substrate or the like sintered in a temperature range of 0 ° C.
【0054】このような基板は、焼成前のグリーンシー
ト段階で種々の形状をとることができる。配線は、タン
グステンやモリブデンなど高融点金属を樹脂バインダー
に含有させたものを配線パターンとして、グリーンシー
ト上などで所望の形状にスクリーン印刷などさせること
によって構成させることができる。また、開口したグリ
ーンシートを多層に張り合わせることなどによりLED
チップや蛍光物質を含有させる開口部をも自由に形成さ
せることができる。したがって、円筒状や孔径の異なる
グリ−ンシ−トを積層することで階段状の開口部側壁な
どを形成することも可能である。このようなグリーンシ
ートを焼結させることによってセラミックス基板が得ら
れる。また、それぞれを焼結させた後、接着させて用い
てもよい。Such a substrate can take various shapes at the green sheet stage before firing. The wiring can be formed by screen printing or the like into a desired shape on a green sheet or the like using a wiring pattern made of a resin binder containing a high melting point metal such as tungsten or molybdenum. In addition, LED is achieved by bonding open green sheets in multiple layers.
An opening for containing a chip and a fluorescent substance can also be freely formed. Therefore, it is also possible to form a stepped side wall of an opening by stacking green sheets having different cylindrical or hole diameters. By sintering such a green sheet, a ceramic substrate is obtained. Further, after sintering, they may be bonded and used.
【0055】また、最表面のグリーンシートには、Cr
2O3、MnO2、TiO2、Fe2O3などをグリーンシー
ト自体に含有させることによって形成された基板表面だ
けを暗色系にさせることができる。このような最表面を
持った基板は、コントラストが向上しLEDチップや蛍
光物質の発光をより目立たせることにもなる。The green sheet on the outermost surface includes Cr
By including 2 O 3 , MnO 2 , TiO 2 , Fe 2 O 3, etc. in the green sheet itself, only the substrate surface formed can be made to have a dark color. The substrate having such an outermost surface improves the contrast and makes the light emission of the LED chip and the fluorescent substance more conspicuous.
【0056】開口部に向かって広がった側壁は、更なる
反射率を向上させることができる。凹状開口部の側壁形
状は、LEDチップからの発光の損失を避けるために光
学的に反射に適した直線上のテ−パ−角ないしは曲面、
又は階段状が挙げられる。また、凹状開口部の深さは第
1のコーティング部となるスリラーや第2のコーティン
グ部となる蛍光物質を分散したスラリーが流れ出るのを
防止すると共に、LEDチップからの直射光を遮蔽しな
い範囲での角度により決められる。したがって、凹状開
口部の深さは、0.3mm以上が好ましく、0.5mm
以上2.0mm以内がより好ましい。The side wall extending toward the opening can further improve the reflectance. The side wall shape of the concave opening is a taper angle or a curved surface on a straight line that is optically suitable for reflection in order to avoid loss of light emission from the LED chip.
Or a step shape is mentioned. In addition, the depth of the concave opening is within a range that does not prevent the chiller serving as the first coating portion or the slurry in which the fluorescent material serving as the second coating portion is dispersed from flowing out, and does not block the direct light from the LED chip. Is determined by the angle of Therefore, the depth of the concave opening is preferably 0.3 mm or more, and 0.5 mm or more.
It is more preferably not less than 2.0 mm.
【0057】基板の凹状開口部は、LEDチップ、電気
的接続部材や第1及び第2のコーティング部などを内部
に配置させるものである。したがって、LEDチップを
ダイボンド機器などで直接積載などすると共にLEDチ
ップとの電気的接続をワイヤーボンディングなどで採れ
るだけの十分な大きさがあれば良い。凹状開口部は、所
望に応じて複数設けることができ、16x16や24x
24のドットマトリックスや直線状など種々選択させる
ことができる。凹状開口部のドットピッチが4mm以下
の高細密の場合には、砲弾型発光ダイオードランプを搭
載する場合と比較して大幅にドットピッチが縮小したも
のとすることができる。また、このような基板を用いた
LED表示器は、LEDチップからの放熱性に関連する
種々の問題を解決できる高密度LEDディスプレイ装置
とすることができる。LEDチップと基板底部との接着
は熱硬化性樹脂などによって行うことができる。具体的
には、エポキシ樹脂、アクリル樹脂やイミド樹脂などが
挙げられる。また、フェースダウンLEDチップなどに
より基板に設けられた配線と接着させると共に電気的に
接続させるためにはAgペースト、ITOペースト、カ
ーボンペースト、金属バンプ等を用いることができる。The concave opening of the substrate is for disposing the LED chip, the electrical connection member, the first and second coating portions, and the like inside. Therefore, it is only necessary that the LED chip be large enough to be directly mounted on the die bonding device or the like, and be electrically connected to the LED chip by wire bonding or the like. A plurality of concave openings can be provided as desired, and 16x16 or 24x
Various selections such as 24 dot matrices and linear shapes can be made. When the dot pitch of the concave opening is 4 mm or less, the dot pitch can be significantly reduced as compared with the case where a shell type light emitting diode lamp is mounted. In addition, an LED display using such a substrate can be a high-density LED display device that can solve various problems related to heat dissipation from an LED chip. The bonding between the LED chip and the bottom of the substrate can be performed with a thermosetting resin or the like. Specifically, an epoxy resin, an acrylic resin, an imide resin, and the like can be given. In addition, an Ag paste, an ITO paste, a carbon paste, a metal bump, or the like can be used for bonding and electrically connecting a wiring provided on a substrate with a face-down LED chip or the like.
【0058】また、基板上に形成された配線には、導電
率、LEDチップや蛍光物質が配される基板底部の反射
率などを向上させるために銀、金、銅、白金、パラジウ
ムやこれらの合金を蒸着やメッキ処理などを施して形成
させることもできる。The wiring formed on the substrate may be formed of silver, gold, copper, platinum, palladium, or the like in order to improve the conductivity, the reflectance of the bottom of the substrate on which the LED chips and the fluorescent substance are arranged, and the like. The alloy can also be formed by performing vapor deposition, plating, or the like.
【0059】(LED表示装置)本願発明の発光ダイオ
ードを用いたLED表示器の一例を示す。本願発明にお
いては、白色系発光装置のみを用い白黒用のLED表示
装置とすることもできる。白黒用のLED表示器は、本
願発明の発光装置である発光ダイオードをマトリックス
状などに配置したものや所望に応じて配置された複数の
凹部を有する基板上にLEDチップ及びコーティング部
を有する構成することができる。各LEDチップを駆動
させる駆動回路とLED表示器とは、電気的に接続され
る。駆動回路からの出力パルスによって種々の画像が表
示可能なデイスプレイ等とすることができる。駆動回路
としては、入力される表示データを一時的に記憶させる
RAM(Random、Access、Memory)
と、RAMに記憶されるデータからLED表示器を所定
の明るさに点灯させるための階調信号を演算する階調制
御回路と、階調制御回路の出力信号でスイッチングされ
て、発光装置を点灯させるドライバーとを備える。階調
制御回路は、RAMに記憶されるデータから発光装置の
点灯時間を演算してパルス信号を出力する。(LED Display Device) An example of an LED display using the light emitting diode of the present invention will be described. In the present invention, an LED display device for black and white can be formed by using only the white light emitting device. The black-and-white LED display is configured such that the light-emitting diodes, which are the light-emitting devices of the present invention, are arranged in a matrix or the like, or have an LED chip and a coating portion on a substrate having a plurality of concave portions arranged as desired. be able to. A drive circuit for driving each LED chip and the LED display are electrically connected. A display or the like capable of displaying various images by an output pulse from the drive circuit can be provided. A RAM (Random, Access, Memory) for temporarily storing input display data as a drive circuit
A gradation control circuit for calculating a gradation signal for lighting the LED display to a predetermined brightness from data stored in the RAM; and a light emitting device which is switched by an output signal of the gradation control circuit to light the light emitting device And a driver to make it. The gradation control circuit calculates a lighting time of the light emitting device from data stored in the RAM and outputs a pulse signal.
【0060】このような、白黒用のLED表示器はRG
Bのフルカラー表示器と異なり当然回路構成を簡略化で
きると共に高精細化できる。そのため、RGBの発光装
置の特性に伴う色むらなどのないディスプレイとするこ
とができる。また、消費電力を3分の1程度に低減させ
ることができるため電池電源との接続の場合は、使用時
間を延ばすことができる。さらに、従来の赤色、緑色の
みを用いたLED表示器に比べ人間に対する刺激が少な
く長時間の使用に適している。以下、本願発明の実施例
について説明するが、本願発明は具体的実施例のみに限
定されるものではないことは言うまでもない。Such an LED display for black and white is RG
Unlike the B full-color display, the circuit configuration can be simplified and the definition can be increased. Therefore, a display without color unevenness due to the characteristics of the RGB light emitting device can be provided. In addition, since the power consumption can be reduced to about one third, the use time can be extended in the case of connection with a battery power supply. Furthermore, compared to the conventional LED display using only red and green, it is less irritating to humans and is suitable for long-time use. Hereinafter, embodiments of the present invention will be described, but it goes without saying that the present invention is not limited to only specific embodiments.
【0061】[0061]
【実施例】(実施例1)主発光ピークが460nmのI
n0.4Ga0.6N半導体を発光層としたLEDチップを用
いた。LEDチップは、洗浄させたサファイヤ基板上に
TMG(トリメチルガリウム)ガス、TMI(トリメチ
ルインジュウム)ガス、窒素ガス及びドーパントガスを
キャリアガスと共に流し、MOCVD法で窒化ガリウム
系化合物半導体を成膜させることにより形成させた。ド
ーパントガスとしてSiH4とCp2Mgと、を切り替え
ることによってn型導電性を有する窒化ガリウム系半導
体とP型導電性を有する窒化ガリウム系半導体とした。
サファイア基板上には、バッファー層であるGaNを介
して第1のコンタクト層であるn型導電性を有するGa
N、発光層であるInGaN、第1のクラッド層である
p型導電性を有するAlGaN、第2のコンタクト層で
あるp型導電性を有するGaNをそれぞれ形成させてあ
る。(なお、p型半導体は、成膜後400℃以上でアニ
ールさせてある。また、発光層の厚みは、量子効果が生
ずる程度の3nmとしてある。) エッチングによりpn各半導体表面を露出させた後、ス
パッタリング法により各電極をそれぞれ形成させた。こ
うして出来上がった半導体ウエハーをスクライブライン
を引いた後、外力により分割させ発光素子として350
μm角のLEDチップを形成させた。(Example 1) I having a main emission peak of 460 nm
An LED chip having a light emitting layer of an n 0.4 Ga 0.6 N semiconductor was used. In the LED chip, a TMG (trimethyl gallium) gas, a TMI (trimethyl indium) gas, a nitrogen gas, and a dopant gas are flowed together with a carrier gas on a cleaned sapphire substrate, and a gallium nitride-based compound semiconductor is formed by MOCVD. Formed. By switching between SiH 4 and Cp 2 Mg as the dopant gas, a gallium nitride-based semiconductor having n-type conductivity and a gallium nitride-based semiconductor having P-type conductivity were obtained.
On a sapphire substrate, Ga having n-type conductivity as a first contact layer is interposed via GaN as a buffer layer.
N, InGaN as a light emitting layer, AlGaN with p-type conductivity as a first cladding layer, and GaN with p-type conductivity as a second contact layer are formed. (Note that the p-type semiconductor is annealed at 400 ° C. or higher after film formation. The thickness of the light emitting layer is 3 nm, which is such that a quantum effect occurs.) After exposing each pn semiconductor surface by etching Each electrode was formed by a sputtering method. After a scribe line is drawn on the semiconductor wafer thus completed, the wafer is divided by an external force to obtain a light emitting element of 350 mm.
A μm square LED chip was formed.
【0062】一方、銀メッキした銅製リードフレームを
打ち抜きにより形成させた。形成されたリードフレーム
は、マウント・リードの先端にカップを有する。カップ
には、LEDチップをAgが含有されたエポキシ樹脂で
ダイボンディングした。LEDチップの各電極とマウン
ト・リード及びインナー・リードと、をそれぞれ金線で
ワイヤーボンディングし電気的導通を取った。LEDチ
ップ上にシリコーンゴムをLEDチップが積置されたカ
ップ上に注入した。注入後、125℃約1時間で硬化さ
せ第1のコーティング部を形成させた。On the other hand, a silver-plated copper lead frame was formed by punching. The formed lead frame has a cup at the tip of the mounting lead. The LED chip was die-bonded to the cup with an epoxy resin containing Ag. Each electrode of the LED chip, the mount lead and the inner lead were each wire-bonded with a gold wire to establish electrical continuity. Silicone rubber was injected onto the LED chip onto the cup on which the LED chip was placed. After the injection, the coating was cured at 125 ° C. for about 1 hour to form a first coating portion.
【0063】蛍光物質は、Y、Gd、Ceの希土類元素
を化学量論比で酸に溶解した溶解液を蓚酸で共沈させ
た。これを焼成して得られる共沈酸化物と、酸化アルミ
ニウムと混合して混合原料を得る。これにフラックスと
してフッ化アンモニウムを混合して坩堝に詰め、空気中
1400°Cの温度で3時間焼成して焼成品を得た。焼
成品を水中でボールミルして、洗浄、分離、乾燥、最後
に篩を通して形成させた。As a fluorescent substance, a solution obtained by dissolving rare earth elements of Y, Gd, and Ce in an stoichiometric ratio in an acid was coprecipitated with oxalic acid. This is mixed with a coprecipitated oxide obtained by calcination and aluminum oxide to obtain a mixed raw material. This was mixed with ammonium fluoride as a flux, packed in a crucible, and fired in air at a temperature of 1400 ° C. for 3 hours to obtain a fired product. The calcined product was ball milled in water, washed, separated, dried, and finally formed through a sieve.
【0064】形成された(Y0.4Gd0.6)3Al5O12:
Ce蛍光体40重量部、エポキシ樹脂100重量部をよ
く混合してスラリーとさせた。このスラリーをマウント
・リードのカップ内である第1のコーティング部上に注
入させた。注入後、蛍光物質が含有された樹脂を130
℃約1時間で硬化させた。こうして図5(B)の如く、
第1のコーティング部上に厚さ約0.4mmの蛍光物質
が含有された第2のコーティング部が形成させた。さら
に、LEDチップや蛍光物質を外部応力、水分及び塵芥
などから保護する目的でモールド部材として透光性エポ
キシ樹脂を形成させた。モールド部材は、砲弾型の型枠
の中に蛍光物質のコーティング部が形成されたリードフ
レームを挿入し透光性エポシキ樹脂を混入後、150℃
5時間にて硬化させた。こうして図1の如き発光装置で
ある発光ダイオードを形成させた。(Y 0.4 Gd 0.6 ) 3 Al 5 O 12 :
40 parts by weight of the Ce phosphor and 100 parts by weight of the epoxy resin were mixed well to form a slurry. The slurry was poured over the first coating in the cup of the mount lead. After the injection, the resin containing the fluorescent
Curing was performed at about 1 hour. Thus, as shown in FIG.
A second coating portion containing a fluorescent material having a thickness of about 0.4 mm was formed on the first coating portion. Further, a translucent epoxy resin was formed as a mold member for the purpose of protecting the LED chip and the fluorescent substance from external stress, moisture, dust and the like. The mold member was inserted into a shell frame having a fluorescent material coated portion and mixed with a translucent epoxy resin.
Cured in 5 hours. Thus, a light emitting diode as a light emitting device as shown in FIG. 1 was formed.
【0065】こうして得られた白色系が発光可能な発光
ダイオードの正面から色温度、演色性をそれぞれ測定し
た。色温度8080K、Ra(演色性指数)=87.4
を示した。さらに、測定点を0度から180度まで45
度づつ発光装置の中心上を通るように移動させ各地点に
おける色度点を測定した。また、If=60mA、Ta
=25℃での寿命試験を行った。The color temperature and the color rendering were measured from the front of the thus obtained light emitting diode capable of emitting white light. Color temperature 8080K, Ra (color rendering index) = 87.4
showed that. Furthermore, the measurement point is set to 45 degrees from 0 degrees to 180 degrees.
The light-emitting device was moved each time over the center of the light-emitting device, and the chromaticity points at each point were measured. Also, If = 60 mA, Ta
= 25 ° C.
【0066】(比較例1)第1のコーティング部を形成
させず、第2のコーティング部のみを用いてコーティン
グ部を形成した以外は、実施例1と同様にして窒化ガリ
ウム系化合物半導体であるLEDチップが配置されたカ
ップ内のみに蛍光物質として(Y0.4Gd0 .6)3Al5O
12:Ce蛍光体含有樹脂を注入し硬化させた。こうして
形成された発光ダイオードの色度点及び寿命試験結果を
実施例1と同様に測定した。測定結果を実施例1と共に
図6及び図7に示す。図7においては、実施例1を基準
にして表してある。Comparative Example 1 A gallium nitride-based compound semiconductor LED was formed in the same manner as in Example 1 except that the first coating portion was not formed and the coating portion was formed using only the second coating portion. only the cup chips are arranged as a fluorescent substance (Y 0.4 Gd 0 .6) 3 Al 5 O
12 : Ce phosphor-containing resin was injected and cured. The chromaticity point and the life test result of the light emitting diode thus formed were measured in the same manner as in Example 1. The measurement results are shown in FIGS. In FIG. 7, the values are shown based on the first embodiment.
【0067】(実施例2)ドットマトリクス状に凹状開
口部を有する配線基板としてセラミックス基板を使用し
た。凹状開口部はセラミックス基板製造時に配線層のな
い孔開きグリ−ンシ−トを積層することで形成させた。
16×16ドットマトリクスの凹状開口部のドットピッ
チを3.0mm、開口部径を2.0mmφ、開口部深さ
を0.8mmとした。全長は48mm角の基板とした。
配線層は、タングステン含有バインダーを所望の形状に
スクリーン印刷させることにより形成させた。各グリー
ンシートは、重ね合わせて形成させてある。なお、表面
層にあたるグリーンシートには、基板のコントラスト向
上のために酸化クロムを含有させてある。これを焼結さ
せることによってセラミックス基板を構成させた。配線
層はドットマトリクスに対応したコモン、信号線を敷設
し表面はNi/Agメッキを施している。セラミックス
基板からの信号線の取り出しは、金属コバ−ルによる接
続ピンを銀ロウ接続により形成した。なお、階段状の開
口部径は、下層は1.7mmφ、上層部開口部径は2.
3mmφである。(Example 2) A ceramic substrate was used as a wiring substrate having concave openings in a dot matrix. The concave opening was formed by laminating a perforated green sheet having no wiring layer during the production of the ceramic substrate.
The dot pitch of the concave opening of the 16 × 16 dot matrix was 3.0 mm, the diameter of the opening was 2.0 mmφ, and the depth of the opening was 0.8 mm. The total length was a 48 mm square substrate.
The wiring layer was formed by screen-printing a tungsten-containing binder into a desired shape. Each green sheet is formed by overlapping. In addition, the green sheet corresponding to the surface layer contains chromium oxide for improving the contrast of the substrate. This was sintered to form a ceramic substrate. Wiring layers are provided with common and signal lines corresponding to the dot matrix, and the surface is plated with Ni / Ag. For taking out signal lines from the ceramic substrate, connection pins made of metal cover were formed by silver brazing. The diameter of the stepped opening is 1.7 mmφ in the lower layer, and the opening diameter in the upper layer is 2.
3 mmφ.
【0068】一方、半導体発光素子であるLEDチップ
として、主発光ピークが450nmのIn0.05Ga0.95
N半導体を用いた。LEDチップは、洗浄させたサファ
イヤ基板上にTMG(トリメチルガリウム)ガス、TM
I(トリメチルインジュウム)ガス、窒素ガス及びドー
パントガスをキャリアガスと共に流し、MOCVD法で
窒化ガリウム系化合物半導体を成膜させることにより形
成させた。ドーパントガスとしてSiH4とCp2Mg
と、を切り替えることによってn型導電性を有する窒化
ガリウム半導体とP型導電性を有する窒化ガリウム半導
体を形成しpn接合を形成させた。(なお、p型半導体
は、成膜後400℃以上でアニールさせてある。) エッチングによりpn各半導体表面を露出させた後、ス
パッタリング法により各電極をそれぞれ形成させた。こ
うして出来上がった半導体ウエハーをスクライブライン
を引いた後、外力により分割させ発光素子としてLED
チップを形成させた。この青色系が発光可能なLEDチ
ップをエポキシ樹脂で基板開口部内の所定の場所にダイ
ボンディング後、熱硬化により固定させた。その後25
μmの金線をLEDチップの各電極と、基板上の配線と
にワイヤ−ボンディングさせることにより電気的接続を
とった。凹部内の下段には、第1のコーティング部とし
てシリコーン樹脂を注入させ130℃1時間で硬化させ
た。第1のコーティング部の厚みは略0.4mmであっ
た。On the other hand, as an LED chip as a semiconductor light emitting element, In 0.05 Ga 0.95 having a main emission peak of 450 nm was used.
An N semiconductor was used. The LED chip is made of TMG (trimethylgallium) gas, TM
An I (trimethyl indium) gas, a nitrogen gas and a dopant gas were flowed together with a carrier gas, and a gallium nitride-based compound semiconductor was formed by MOCVD. SiH 4 and Cp 2 Mg as dopant gas
By switching between the above, a gallium nitride semiconductor having n-type conductivity and a gallium nitride semiconductor having p-type conductivity were formed, and a pn junction was formed. (Note that the p-type semiconductor was annealed at 400 ° C. or higher after the film formation.) After exposing the surface of each pn semiconductor by etching, each electrode was formed by sputtering. After a scribe line is drawn on the semiconductor wafer thus completed, the wafer is divided by an external force and the LED is used as a light emitting element.
Chips were formed. The LED chip capable of emitting blue light was die-bonded to a predetermined location in the substrate opening with epoxy resin, and then fixed by thermosetting. Then 25
Electrical connection was established by wire bonding a gold wire of μm to each electrode of the LED chip and the wiring on the substrate. Silicone resin was injected as a first coating part in the lower part in the concave part and cured at 130 ° C. for one hour. The thickness of the first coating was about 0.4 mm.
【0069】また、蛍光物質は、Y、Gd、Ceの希土
類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈
させた。これを焼成して得られる共沈酸化物と、酸化ア
ルミニウムと、を混合させ混合原料を得る。これにフラ
ックスとしてフッ化アンモニウムを混合して坩堝に詰
め、空気中1400°Cの温度で3時間焼成して焼成品
を得た。焼成品を水中でボールミルして、洗浄、分離、
乾燥、最後に篩を通して形成させた。形成された(Y
0.5Gd0.5)3Al5O12:Ce蛍光物質10重量部、シ
リコーン樹脂90重量部をよく混合してスラリーとさせ
た。このスラリーを第1のコーティング部上の上段であ
る凹状開口部内にそれぞれ注入させた。注入後、蛍光物
質が含有された樹脂を130℃1時間で硬化させLED
表示器を形成させた。第2のコーティング部の厚みは
0.4mmであった。また、この時のLED表示器の厚
みはセラミックス基板の厚み2.0mmしかなく、砲弾
型LEDランプ使用のディスプレイ装置と比較して大幅
な薄型化が可能であった。As a fluorescent substance, a solution in which rare earth elements of Y, Gd, and Ce were dissolved in an acid at a stoichiometric ratio was coprecipitated with oxalic acid. A co-precipitated oxide obtained by calcining this and aluminum oxide are mixed to obtain a mixed raw material. This was mixed with ammonium fluoride as a flux, packed in a crucible, and fired in air at a temperature of 1400 ° C. for 3 hours to obtain a fired product. Ball-mill the baked product in water, wash, separate,
Dried and finally formed through a sieve. Formed (Y
0.5 Gd 0.5 ) 3 Al 5 O 12 : Ce fluorescent substance 10 parts by weight and silicone resin 90 parts by weight were mixed well to form a slurry. The slurry was injected into each of the upper concave portions on the first coating portion. After the injection, the resin containing the fluorescent substance is cured at 130 ° C for 1 hour, and the LED is
An indicator was formed. The thickness of the second coating was 0.4 mm. In addition, the thickness of the LED display at this time was only 2.0 mm of the thickness of the ceramic substrate, and it was possible to significantly reduce the thickness as compared with a display device using a shell-type LED lamp.
【0070】このLED表示器と、入力される表示デー
タを一時的に記憶させるRAM(Random、Acc
ess、Memory)及びRAMに記憶されるデータ
から発光ダイオードを所定の明るさに点灯させるための
階調信号を演算する階調制御回路と階調制御回路の出力
信号でスイッチングされて発光ダイオードを点灯させる
ドライバーとを備えたCPUの駆動手段と、を電気的に
接続させてLED表示装置を構成した。LED表示器近
傍においても各開口部における色調むらは確認されなか
った。The LED display and a RAM (Random, Acc) for temporarily storing input display data
ess, memory) and data stored in the RAM, a gradation control circuit for calculating a gradation signal for lighting the light emitting diode to a predetermined brightness, and a light emitting diode which is switched by an output signal of the gradation control circuit to light the light emitting diode An LED display device was constructed by electrically connecting a CPU driving means having a driver for driving the CPU. Even in the vicinity of the LED display, color tone unevenness in each opening was not confirmed.
【0071】[0071]
【発明の効果】本願発明の構成とすることにより、高視
野角においても混色に伴う色調むらが少なく、高輝度に
信頼性が高い発光ダイオードなどとすることができる。According to the constitution of the present invention, it is possible to obtain a light emitting diode having high luminance and high reliability with less color tone unevenness due to color mixture even at a high viewing angle.
【図1】 図1は、本願発明の発光ダイオードを示した
概略断面図である。FIG. 1 is a schematic sectional view showing a light emitting diode of the present invention.
【図2】 図2は、本願発明の別の発光ダイオードを示
した概略断面図である。FIG. 2 is a schematic sectional view showing another light emitting diode of the present invention.
【図3】 図3は、本願発明の発光装置を応用したLE
D表示器の概略模式図である。FIG. 3 shows an LE to which the light emitting device of the present invention is applied.
It is a schematic diagram of a D display.
【図4】 図4は、図3のA−A断面における部分的な
模式的断面図である。FIG. 4 is a partial schematic cross-sectional view taken along the line AA of FIG. 3;
【図5】 図5は、本願発明の作用を説明するための模
式的断面図であり、図5(A)は、比較のために示した
発光装置の断面図であり、図5(B)は、本願発明の模
式的断面図である。FIG. 5 is a schematic cross-sectional view for explaining the operation of the present invention, and FIG. 5A is a cross-sectional view of a light-emitting device shown for comparison, and FIG. FIG. 1 is a schematic sectional view of the present invention.
【図6】 図6は、実施例1と比較例1の色調むらを表
す図面であって、実線が実施例1であり、破線が比較例
1を示す。FIG. 6 is a drawing showing color tone unevenness of Example 1 and Comparative Example 1, wherein a solid line indicates Example 1 and a broken line indicates Comparative Example 1.
【図7】 図7は、実施例1と比較例1の寿命試験結果
を表すグラフであって、実線が実施例1であり、破線が
比較例1を示す。FIG. 7 is a graph showing life test results of Example 1 and Comparative Example 1, where a solid line indicates Example 1 and a broken line indicates Comparative Example 1.
101、201、401・・・第1のコーティング部 102、202、402・・・第2のコーティング部 103、203、403・・・LEDチップ 104・・・マウント・リード 105・・・インナー・リード 106、206・・・電気的接続部材 107・・・モールド部材 204・・・外部電極 207・・・パッケージ 404・・・基板 405・・・導体配線 101, 201, 401: first coating portion 102, 202, 402: second coating portion 103, 203, 403: LED chip 104: mount lead 105: inner lead 106, 206: Electrical connection member 107: Mold member 204: External electrode 207: Package 404: Substrate 405: Conductor wiring
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 勇人 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hayato Takeuchi 491 Kagaminakacho, Anan-shi, Tokushima Prefecture 100 Nichia Chemical Industry Co., Ltd.
Claims (11)
した青色系が発光可能なLEDチップと、該LEDチッ
プの各電極とそれぞれ接続させた一対の外部電極と、前
記LEDチップ上に設けられたコーティング部とを有す
る発光ダイオードであって、 前記コーティング部は、透光性の第1のコーティング部
と、該第1のコーティング部上に配置されると共に前記
LEDチップから放出された可視光で励起されて波長変
換した可視光を放出する蛍光物質が含有された透光性の
第2のコーティング部からなることを特徴とする発光ダ
イオード。1. An LED chip capable of emitting blue light using a gallium nitride-based compound semiconductor as a light emitting layer, a pair of external electrodes respectively connected to respective electrodes of the LED chip, and provided on the LED chip. A light emitting diode having a coating portion, wherein the coating portion is disposed on the first coating portion and is excited by visible light emitted from the LED chip while being disposed on the first coating portion. A light-emitting diode comprising a light-transmitting second coating portion containing a fluorescent substance that emits visible light whose wavelength has been converted.
と、前記蛍光物質からの波長変換された可視光との混色
表示により白色表示させる請求項1に記載の発光ダイオ
ード。2. The light emitting diode according to claim 1, wherein a white color is displayed by a mixed color display of the visible light emitted from the LED chip and the wavelength-converted visible light from the fluorescent substance.
部材が設けられている請求項1に記載の発光ダイオー
ド。3. The light emitting diode according to claim 1, wherein a mold member is provided on the second coating portion.
部を通過するLEDチップからの光の光路長差を実質的
に低減させることによって、色むらが低減するように第
2のコーティング部を介して前記第1のコーティング部
と前記LEDチップを配置してなる請求項1に記載の発
光ダイオード。4. The method according to claim 1, wherein a difference in optical path length of light from the LED chip passing through the coating portion containing the fluorescent material is substantially reduced, so that color unevenness is reduced through the second coating portion. The light emitting diode according to claim 1, wherein the first coating portion and the LED chip are arranged.
に形成された前記発光層がInGaNである請求項1に
記載の発光ダイオード。5. The light emitting diode according to claim 1, wherein in the LED chip, the light emitting layer formed on a sapphire substrate is made of InGaN.
3(Al1-yGay)5O12:Ceである請求項1に記載の
発光ダイオード。但し、0≦x<1、0≦y≦1であ
り、Reは、Y、Gd、La、Lu、Scからなる群よ
り選択される少なくとも一種の元素である。6. The fluorescent substance is (Re 1-x Sm x )
3 (Al 1-y Ga y ) 5 O 12: light emitting diode according to claim 1 is Ce. Here, 0 ≦ x <1, 0 ≦ y ≦ 1, and Re is at least one element selected from the group consisting of Y, Gd, La, Lu, and Sc.
は、透光性樹脂或いは硝子である請求項1に記載の発光
ダイオード。7. The light emitting diode according to claim 1, wherein the first and second coating members are made of a transparent resin or glass.
した青色系が発光可能なLEDチップと、該LEDチッ
プ上に設けられたコーティング部と、前記LEDチップ
の各電極とそれぞれ接続された一対の外部電極とを有す
る発光ダイオードであって、 前記コーティング部は、少なくとも一部にLEDチップ
からの可視光によって励起され波長変換された可視光を
発光する蛍光物質を含まれた薄膜をLEDチップ上に接
着させることによって形成させたことを特徴とする発光
ダイオード。8. An LED chip capable of emitting blue light using a gallium nitride-based compound semiconductor as a light emitting layer, a coating portion provided on the LED chip, and a pair of electrodes respectively connected to the electrodes of the LED chip. A light emitting diode having an external electrode, wherein the coating portion includes a thin film containing a fluorescent substance that emits visible light whose wavelength has been converted by being excited by visible light from the LED chip at least in part on the LED chip. A light-emitting diode formed by bonding.
させた発光層が窒化ガリウム系化合物半導体である青色
系が発光可能なLEDチップと、該LEDチップと導電
性ワイヤーを用いて電気的に接続させたインナー・リー
ドと、LEDチップ、導電性ワイヤー及びマウント・リ
ードとインナー・リードの一部を被覆するモールド部材
とを有する発光ダイオードであって、 前記反射カップ内にはLEDチップ上に設けられた透光
性の第1のコーティング部と、該第1のコーティング部
上に配置されると共に前記LEDチップから放出された
可視光で励起されて波長変換された可視光を放出する蛍
光物質が含有された透光性の第2のコーティング部とを
収容してなることを特徴とする発光ダイオード。9. An LED chip capable of emitting blue light, wherein the light emitting layer disposed in the reflection cup of the mount lead is a gallium nitride compound semiconductor, and electrically connected to the LED chip using a conductive wire. A light-emitting diode having an inner lead and an LED chip, a conductive wire, and a mold lead that covers a part of the mount lead and the inner lead, wherein the reflection cup is provided on the LED chip. A first coating portion having a light-transmitting property, and a fluorescent material disposed on the first coating portion and emitting visible light whose wavelength has been converted by being excited by visible light emitted from the LED chip. A light-emitting diode comprising: a light-transmitting second coating portion.
る請求項9に記載の発光ダイオード。10. The light emitting diode according to claim 9, wherein the mold member has a lens shape.
半導体からなる発光層を有する青色系が発光可能なLE
Dチップ上に透光性樹脂を注入して第1のコーティング
部を形成する工程と、 前記第1のコーティング部上に前記LEDチップから放
出された可視光で励起されて波長変換された可視光を放
出する蛍光物質が含有された透光性樹脂を注入して第2
のコーティング部を形成する工程とを有することを特徴
とする発光ダイオードの形成方法。11. An LE capable of emitting blue light having a light-emitting layer made of a nitride-based compound semiconductor disposed in a cup.
A step of injecting a translucent resin onto the D chip to form a first coating part; and a step of converting visible light excited by visible light emitted from the LED chip onto the first coating part and wavelength-converted. Injection of a translucent resin containing a fluorescent substance that emits
Forming a coating part of the light emitting diode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32193099A JP3729001B2 (en) | 1996-12-27 | 1999-11-12 | Light emitting device, bullet-type light emitting diode, chip type LED |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8350253A JP3065263B2 (en) | 1996-12-27 | 1996-12-27 | Light emitting device and LED display using the same |
JP32193099A JP3729001B2 (en) | 1996-12-27 | 1999-11-12 | Light emitting device, bullet-type light emitting diode, chip type LED |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8350253A Division JP3065263B2 (en) | 1996-12-27 | 1996-12-27 | Light emitting device and LED display using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000216434A true JP2000216434A (en) | 2000-08-04 |
JP2000216434A5 JP2000216434A5 (en) | 2005-01-06 |
JP3729001B2 JP3729001B2 (en) | 2005-12-21 |
Family
ID=18138015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32193099A Expired - Fee Related JP3729001B2 (en) | 1996-12-27 | 1999-11-12 | Light emitting device, bullet-type light emitting diode, chip type LED |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3729001B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003142737A (en) * | 2001-08-22 | 2003-05-16 | Nichia Chem Ind Ltd | Light emitting device |
JP2003163369A (en) * | 2001-11-27 | 2003-06-06 | Toyota Central Res & Dev Lab Inc | Semiconductor light emitting device and optical transmitter |
JP2003204083A (en) * | 2001-12-28 | 2003-07-18 | Toshiba Corp | Condensing lens, light emitting element incorporating lens, and lighting unit |
KR20040021951A (en) * | 2002-09-06 | 2004-03-11 | 럭스피아 주식회사 | White light emitted diode |
EP1418628A1 (en) * | 2001-07-26 | 2004-05-12 | Matsushita Electric Works, Ltd. | Light emitting device using led |
JP2004288760A (en) * | 2003-03-20 | 2004-10-14 | Stanley Electric Co Ltd | Multilayered led |
JP2005039104A (en) * | 2003-07-17 | 2005-02-10 | Sanyo Electric Co Ltd | Light emitting diode and its manufacturing method |
US6891203B2 (en) | 2001-01-10 | 2005-05-10 | Toyoda Gosei Co., Ltd. | Light emitting device |
JP2005191420A (en) * | 2003-12-26 | 2005-07-14 | Stanley Electric Co Ltd | Semiconductor light emitting device having wavelength converting layer and its manufacturing method |
WO2005091387A1 (en) * | 2004-03-24 | 2005-09-29 | Toshiba Lighting & Technology Corporation | Light-emitting device and illuminating device |
JP2006049814A (en) * | 2004-06-28 | 2006-02-16 | Kyocera Corp | Light emitting device and illumination system |
JP2006114854A (en) * | 2004-10-18 | 2006-04-27 | Sharp Corp | Semiconductor light emitting device, and backlight device for liquid crystal display |
US7586190B2 (en) | 2002-09-30 | 2009-09-08 | Osram Opto Semiconductors Gmbh | Optoelectronic component and a module based thereon |
JP2012054607A (en) * | 2011-11-28 | 2012-03-15 | Toshiba Corp | Manufacturing method of light-emitting device |
US8288787B2 (en) | 2002-06-26 | 2012-10-16 | Lg Electronics, Inc. | Thin film light emitting diode |
WO2013042401A1 (en) * | 2011-09-20 | 2013-03-28 | 沖電気工業株式会社 | Lens optical element and display device |
WO2014103021A1 (en) * | 2012-12-28 | 2014-07-03 | パイオニア株式会社 | Light emitting apparatus |
US9082938B2 (en) | 2013-09-19 | 2015-07-14 | Kabushiki Kaisha Toshiba | Light emitting device |
KR101785493B1 (en) * | 2016-04-27 | 2017-11-15 | 루미마이크로 주식회사 | Lighting device |
-
1999
- 1999-11-12 JP JP32193099A patent/JP3729001B2/en not_active Expired - Fee Related
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6891203B2 (en) | 2001-01-10 | 2005-05-10 | Toyoda Gosei Co., Ltd. | Light emitting device |
EP1418628A4 (en) * | 2001-07-26 | 2006-10-11 | Matsushita Electric Works Ltd | Light emitting device using led |
EP1418628A1 (en) * | 2001-07-26 | 2004-05-12 | Matsushita Electric Works, Ltd. | Light emitting device using led |
JP2003142737A (en) * | 2001-08-22 | 2003-05-16 | Nichia Chem Ind Ltd | Light emitting device |
JP2003163369A (en) * | 2001-11-27 | 2003-06-06 | Toyota Central Res & Dev Lab Inc | Semiconductor light emitting device and optical transmitter |
JP2003204083A (en) * | 2001-12-28 | 2003-07-18 | Toshiba Corp | Condensing lens, light emitting element incorporating lens, and lighting unit |
US10825962B2 (en) | 2002-06-26 | 2020-11-03 | Lg Innotek Co., Ltd. | Thin film light emitting diode |
US9281454B2 (en) | 2002-06-26 | 2016-03-08 | Lg Innotek Co., Ltd. | Thin film light emitting diode |
US8384091B2 (en) | 2002-06-26 | 2013-02-26 | Lg Electronics Inc. | Thin film light emitting diode |
US8288787B2 (en) | 2002-06-26 | 2012-10-16 | Lg Electronics, Inc. | Thin film light emitting diode |
US9716213B2 (en) | 2002-06-26 | 2017-07-25 | Lg Innotek Co., Ltd. | Thin film light emitting diode |
US10326059B2 (en) | 2002-06-26 | 2019-06-18 | Lg Innotek Co., Ltd. | Thin film light emitting diode |
US8445921B2 (en) | 2002-06-26 | 2013-05-21 | Lg Electronics, Inc. | Thin film light emitting diode |
KR20040021951A (en) * | 2002-09-06 | 2004-03-11 | 럭스피아 주식회사 | White light emitted diode |
US7586190B2 (en) | 2002-09-30 | 2009-09-08 | Osram Opto Semiconductors Gmbh | Optoelectronic component and a module based thereon |
JP2004288760A (en) * | 2003-03-20 | 2004-10-14 | Stanley Electric Co Ltd | Multilayered led |
JP4606000B2 (en) * | 2003-07-17 | 2011-01-05 | 三洋電機株式会社 | Light emitting diode and manufacturing method thereof |
JP2005039104A (en) * | 2003-07-17 | 2005-02-10 | Sanyo Electric Co Ltd | Light emitting diode and its manufacturing method |
JP2005191420A (en) * | 2003-12-26 | 2005-07-14 | Stanley Electric Co Ltd | Semiconductor light emitting device having wavelength converting layer and its manufacturing method |
JPWO2005091387A1 (en) * | 2004-03-24 | 2008-02-07 | 東芝ライテック株式会社 | Light emitting device and lighting device |
JP5083503B2 (en) * | 2004-03-24 | 2012-11-28 | 東芝ライテック株式会社 | Light emitting device and lighting device |
WO2005091387A1 (en) * | 2004-03-24 | 2005-09-29 | Toshiba Lighting & Technology Corporation | Light-emitting device and illuminating device |
JP2006049814A (en) * | 2004-06-28 | 2006-02-16 | Kyocera Corp | Light emitting device and illumination system |
US7977689B2 (en) | 2004-10-18 | 2011-07-12 | Sharp Kabushiki Kaisha | Backlight device for liquid crystal display including a plurality of light emitting diodes within their own concaves aligned in a straight line within a larger concave |
JP2006114854A (en) * | 2004-10-18 | 2006-04-27 | Sharp Corp | Semiconductor light emitting device, and backlight device for liquid crystal display |
JP2013064941A (en) * | 2011-09-20 | 2013-04-11 | Oki Electric Ind Co Ltd | Lens optical element and display device |
US9465143B2 (en) | 2011-09-20 | 2016-10-11 | Oki Data Corporation | Lens optical element and display apparatus |
WO2013042401A1 (en) * | 2011-09-20 | 2013-03-28 | 沖電気工業株式会社 | Lens optical element and display device |
JP2012054607A (en) * | 2011-11-28 | 2012-03-15 | Toshiba Corp | Manufacturing method of light-emitting device |
WO2014103021A1 (en) * | 2012-12-28 | 2014-07-03 | パイオニア株式会社 | Light emitting apparatus |
US9082938B2 (en) | 2013-09-19 | 2015-07-14 | Kabushiki Kaisha Toshiba | Light emitting device |
KR101785493B1 (en) * | 2016-04-27 | 2017-11-15 | 루미마이크로 주식회사 | Lighting device |
Also Published As
Publication number | Publication date |
---|---|
JP3729001B2 (en) | 2005-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3065263B2 (en) | Light emitting device and LED display using the same | |
JP3065258B2 (en) | Light emitting device and display device using the same | |
JP3546650B2 (en) | Method of forming light emitting diode | |
JP2927279B2 (en) | Light emitting diode | |
JP5214253B2 (en) | Light emitting device and display device | |
JP3316838B2 (en) | Light emitting device | |
JP3729001B2 (en) | Light emitting device, bullet-type light emitting diode, chip type LED | |
JP3617587B2 (en) | Light emitting diode and method for forming the same | |
JP3419280B2 (en) | Light emitting device | |
JP3407608B2 (en) | Light emitting diode and method for forming the same | |
JP2004111937A (en) | Light-emitting device | |
JPH10228249A (en) | Light emitting diode (led) and led display device using the diode | |
JP3772801B2 (en) | Light emitting diode | |
JP2000216434A5 (en) | ||
JP5077282B2 (en) | Light emitting element mounting package and light emitting device | |
JP3087828B2 (en) | LED display | |
JP2000315826A (en) | Light emitting device, formation thereof, gun type light emitting diode, chip type led | |
JP2000315826A5 (en) | ||
JPH10190066A (en) | Light emitting diode and led display using the same | |
JP3604298B2 (en) | Method of forming light emitting diode | |
JP3858829B2 (en) | Method for forming light emitting diode | |
JPH11243232A (en) | Led display device | |
JP2003224307A5 (en) | ||
JP2002151747A (en) | Light emitting diode and its forming method | |
JP2004080058A (en) | Light emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20031209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050408 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050926 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101014 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101014 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111014 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111014 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131014 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |