JP2000161804A - Refrigerating air conditioner - Google Patents
Refrigerating air conditionerInfo
- Publication number
- JP2000161804A JP2000161804A JP10335550A JP33555098A JP2000161804A JP 2000161804 A JP2000161804 A JP 2000161804A JP 10335550 A JP10335550 A JP 10335550A JP 33555098 A JP33555098 A JP 33555098A JP 2000161804 A JP2000161804 A JP 2000161804A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat source
- main
- heat exchanger
- source unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、複数の熱源機を組
み合わせて大容量の熱源機を構成する冷凍空調装置に関
し、特に、冷媒として非共沸混合冷媒を循環させる冷凍
空調装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration / air-conditioning system in which a plurality of heat source units are combined to form a large-capacity heat source unit, and more particularly to a refrigeration / air-conditioning system for circulating a non-azeotropic refrigerant mixture as a refrigerant. .
【0002】[0002]
【従来の技術】以下、従来の冷凍空調装置について説明
する。図16は、複数台の熱源機(ここでは、101a
および101bの2台)を組合わせて大容量の熱源機を
構成する従来の冷凍空調装置の冷媒回路図である。2. Description of the Related Art A conventional refrigerating air conditioner will be described below. FIG. 16 shows a plurality of heat source devices (here, 101a
And FIG. 101b) is a refrigerant circuit diagram of a conventional refrigeration and air-conditioning apparatus that constitutes a large-capacity heat source unit by combining the two units.
【0003】図16に示す従来の冷凍空調装置の冷媒回
路は、主圧縮機102a、主四方切換弁103a、主熱
交換器104a、主液溜部105aを備える主熱源機1
01aと、従圧縮機102b、従四方切換弁103b、
従熱交換器104b、従液溜部105bを備える従熱源
機101bと、利用側熱交換器121と、利用側流量制
御弁122とから構成され、主熱交換器104aからの
液冷媒の通路となる配管と従熱交換器104bからの液
冷媒の通路となる配管とを合流させる液合流部132
と、主圧縮機102aからのガス冷媒の通路となる配管
と従圧縮機102bからのガス冷媒の通路となる配管と
を合流させるガス合流部131によって、2台の熱源
機、すなわち、主熱源機101aと従熱源機101bが
並列に接続されている。[0003] The refrigerant circuit of the conventional refrigeration and air-conditioning apparatus shown in FIG. 16 is composed of a main heat source unit 1 having a main compressor 102a, a main four-way switching valve 103a, a main heat exchanger 104a, and a main liquid reservoir 105a.
01a, a slave compressor 102b, a slave four-way switching valve 103b,
The secondary heat exchanger 104b includes a secondary heat source unit 101b having a secondary liquid storage part 105b, a use side heat exchanger 121, and a use side flow control valve 122, and a passage of the liquid refrigerant from the main heat exchanger 104a. Merging section 132 that joins a pipe that forms a pipe with a pipe that serves as a passage for the liquid refrigerant from the sub heat exchanger 104b.
And a gas merging section 131 that merges a pipe serving as a passage of a gas refrigerant from the main compressor 102a with a pipe serving as a passage of a gas refrigerant from the sub-compressor 102b. 101a and the slave heat source device 101b are connected in parallel.
【0004】上記のように構成される冷媒回路では、内
部の配管に冷媒を流すことで、冷房運転および暖房運転
を行っている。以下、冷房運転時、および暖房運転時の
冷媒の流れについて簡単に説明する。なお、図16中の
実線矢印は冷房運転時の冷媒の流れを示し、点線矢印は
暖房運転時の冷媒の流れを示している。また、図示の各
四方切換弁103a、103bは、冷房運転時の設定で
ある。In the refrigerant circuit configured as described above, a cooling operation and a heating operation are performed by flowing a refrigerant through internal piping. Hereinafter, the flow of the refrigerant during the cooling operation and the heating operation will be briefly described. Note that the solid arrows in FIG. 16 indicate the flow of the refrigerant during the cooling operation, and the dotted arrows indicate the flow of the refrigerant during the heating operation. Each of the illustrated four-way switching valves 103a and 103b is set for the cooling operation.
【0005】例えば、冷房運転を行う場合、主圧縮機1
02aを出た高温、高圧のガス冷媒は、主四方切換弁1
03aを経て主熱交換器104aへ流れ、放熱して高圧
の液冷媒となる。その後、この液冷媒は、主熱源機10
1aの外部に流れ、液合流部132に至る。従熱源機1
01bにおいても同様に、従圧縮機102bをガス冷媒
は、従四方切換弁103b、従熱交換器104bを経て
液冷媒となり、液合流部132に至る。液合流部132
にて合流した冷媒は、利用側流量制御装置122でそれ
ぞれ減圧され、低温低圧の二相冷媒となる。さらに、利
用側熱交換器121にて吸熱することにより、この二相
冷媒はそのほとんどがガス状になる。For example, when performing a cooling operation, the main compressor 1
02a, the high-temperature, high-pressure gas refrigerant flows out of the main four-way switching valve 1
After flowing through the main heat exchanger 104a through the heat exchanger 03a, the heat is radiated to become a high-pressure liquid refrigerant. Thereafter, the liquid refrigerant is supplied to the main heat source unit 10
It flows out of 1a and reaches the liquid junction 132. Slave heat source unit 1
Similarly, in 01b, the gas refrigerant passes through the slave compressor 102b, turns into a liquid refrigerant via the slave four-way switching valve 103b and the slave heat exchanger 104b, and reaches the liquid junction 132. Liquid junction 132
Are decompressed by the usage-side flow control device 122 to become low-temperature and low-pressure two-phase refrigerants. Further, by absorbing heat in the use-side heat exchanger 121, most of the two-phase refrigerant becomes gaseous.
【0006】その後、この低圧ガス冷媒は、ガス合流部
131にて主熱源機101aと従熱源機101bに分か
れる。主熱源機101aに流れた冷媒は、主四方切換弁
103aを経て主液溜部105aに流れ、主液溜部10
5aでは、一部未蒸発であった液冷媒を分離してガス冷
媒だけを主圧縮機102aに戻す。従熱源機101bで
も同様に、従四方切換弁103b、従液溜部105bを
経てガス冷媒だけを従圧縮機102bに戻す。Thereafter, the low-pressure gas refrigerant is divided into a main heat source device 101a and a sub heat source device 101b at a gas junction 131. The refrigerant flowing to the main heat source unit 101a flows to the main liquid reservoir 105a via the main four-way switching valve 103a, and the main liquid reservoir 10a
In 5a, the liquid refrigerant which has not been evaporated partially is separated, and only the gas refrigerant is returned to the main compressor 102a. Similarly, in the slave heat source device 101b, only the gas refrigerant is returned to the slave compressor 102b via the slave four-way switching valve 103b and the slave liquid reservoir 105b.
【0007】一方、暖房運転を行う場合、主圧縮機10
2aを出た高温、高圧のガス冷媒は、主四方切換弁10
3aを経てガス合流部131に至る。ガス合流部131
では、このガス冷媒と、同様に従熱源機101bから流
れてくるガス冷媒とが合流する。合流したガス冷媒は、
利用側熱交換器121に入り、ここで放熱、凝縮が行わ
れ、高圧の液冷媒となる。利用側熱交換器121を出た
液冷媒は、利用側流量制御装置122で減圧され、低圧
の二相冷媒となる。On the other hand, when performing the heating operation, the main compressor 10
The high-temperature, high-pressure gas refrigerant exiting from the main four-way switching valve 10
The gas reaches the gas junction 131 via 3a. Gas junction 131
Then, the gas refrigerant and the gas refrigerant flowing from the subordinate heat source device 101b also merge. The combined gas refrigerant is
The heat enters the use-side heat exchanger 121, where heat is radiated and condensed to become a high-pressure liquid refrigerant. The liquid refrigerant that has exited the use side heat exchanger 121 is decompressed by the use side flow control device 122 and becomes a low-pressure two-phase refrigerant.
【0008】その後、この二相冷媒は、液合流部132
に流れ、主熱源機101aと従熱源機101bに分かれ
る。主熱源機101aに流れた液冷媒は、主熱交換器1
04aでその液部のほとんどが吸熱蒸発し、ガス冷媒と
なる。さらに、この冷媒は、主四方切換弁103aを経
て主液溜部105aに流れ、主液溜部105aでは、一
部未蒸発であった液冷媒を分離してガス冷媒だけを主圧
縮機102aに戻す。一方、従熱源機101bに流れた
液冷媒も、従熱源機101b内で同様に処理され、従液
溜部105bでは、ガス冷媒だけを従圧縮機102bに
戻す。Thereafter, the two-phase refrigerant is supplied to the liquid junction 132
And is divided into a main heat source unit 101a and a sub heat source unit 101b. The liquid refrigerant flowing into the main heat source unit 101a is supplied to the main heat exchanger 1
At 04a, most of the liquid part is endothermic and evaporated to become a gas refrigerant. Further, the refrigerant flows into the main liquid reservoir 105a via the main four-way switching valve 103a, and in the main liquid reservoir 105a, the liquid refrigerant that has been partially evaporated is separated and only the gas refrigerant is supplied to the main compressor 102a. return. On the other hand, the liquid refrigerant flowing to the sub heat source unit 101b is similarly processed in the sub heat source unit 101b, and only the gas refrigerant is returned to the sub compressor 102b in the sub liquid reservoir 105b.
【0009】このように、従来の冷凍空調装置では、冷
媒回路内部の配管に冷媒を流し、主熱交換器104a、
従熱交換器104b、および利用側熱交換器121にて
熱交換を行うことにより、冷房運転、暖房運転を行って
いる。As described above, in the conventional refrigeration and air-conditioning apparatus, the refrigerant flows through the piping inside the refrigerant circuit, and the main heat exchanger 104a,
The cooling operation and the heating operation are performed by exchanging heat in the slave heat exchanger 104b and the use-side heat exchanger 121.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、上記、
従来の冷凍空調装置では、冷媒として、沸点が異なる冷
媒を混合した非共沸混合冷媒を用いた場合に、例えば、
暖房運転時の室内機への冷媒寝込み(冷媒が溜まり込む
ことをいう)や、各熱源機への余剰冷媒寝込みなどが要
因となり、冷媒の偏在が発生することがある。これによ
り、冷媒回路内を循環する個々の冷媒の混合比(以下、
組成という)が変化し、伴って、圧縮機の信頼性が低下
し、冷凍空調装置の快適性を損なう、という問題があっ
た。SUMMARY OF THE INVENTION However,
In a conventional refrigeration air conditioner, when a non-azeotropic mixed refrigerant obtained by mixing refrigerants having different boiling points is used as a refrigerant, for example,
Due to factors such as refrigerant stagnation in the indoor unit during heating operation (meaning that refrigerant is accumulated) and excess refrigerant stagnation in each heat source unit, uneven distribution of refrigerant may occur. Thereby, the mixing ratio of the individual refrigerants circulating in the refrigerant circuit (hereinafter, referred to as the mixing ratio)
(Referred to as "composition"), and the reliability of the compressor is reduced, thereby compromising the comfort of the refrigeration and air conditioning system.
【0011】また、従来の冷凍空調装置は、冷媒漏れお
よび冷媒誤封入によっても、上記と同様に、冷媒回路内
を循環する非共沸混合冷媒の組成が変化し、伴って、圧
縮機の信頼性が低下し、冷凍空調装置の快適性を損って
いた。Further, in the conventional refrigeration / air-conditioning apparatus, the composition of the non-azeotropic mixed refrigerant circulating in the refrigerant circuit changes in the same manner as described above due to leakage of the refrigerant and erroneous charging of the refrigerant. And the comfort of the refrigeration and air-conditioning system was impaired.
【0012】また、従来の冷凍空調装置においては、冷
媒を除去して冷媒回路内の修復を行うような場合に、そ
の冷媒が単一冷媒であれば、単純にポンプダウンなどを
実施して冷媒を回収し、修復後、その冷媒を再利用する
ことが可能である。しかし、非共沸混合冷媒を用いた冷
凍空調装置では、単純に回収しても、その冷媒の組成が
変化しており、その冷媒を再利用すると、通常の運転特
性が確保できなくなるという問題があった。また、これ
が原因となって新しい冷媒を用いることから、コストア
ップにつながるという問題もあった。さらに、再利用不
可能な回収後の冷媒が地球温暖化など、環境問題に影響
を及ぼす可能性もあった。In the conventional refrigeration / air-conditioning apparatus, when the refrigerant is removed and the inside of the refrigerant circuit is repaired, if the refrigerant is a single refrigerant, the refrigerant is simply pumped down and the like. After recovery and restoration, the refrigerant can be reused. However, in a refrigerating air conditioner using a non-azeotropic mixed refrigerant, even if it is simply recovered, the composition of the refrigerant changes, and when the refrigerant is reused, a problem that normal operating characteristics cannot be ensured. there were. In addition, there is also a problem that a new refrigerant is used due to this, which leads to an increase in cost. Further, there is a possibility that the non-reusable recovered refrigerant may affect environmental problems such as global warming.
【0013】本発明は、上記に鑑みてなされたものであ
って、非共沸混合冷媒の組成変化を是正することにより
信頼性の向上を実現するとともに、回収した冷媒の再利
用を可能とすることによりコストダウンを実現する冷凍
空調装置を得ることを目的とする。The present invention has been made in view of the above, and realizes improvement of reliability by correcting a change in composition of a non-azeotropic mixed refrigerant, and enables reuse of a recovered refrigerant. It is an object of the present invention to obtain a refrigeration and air-conditioning system that realizes cost reduction.
【0014】[0014]
【課題を解決するための手段】上述した課題を解決し、
目的を達成するために、本発明にかかる冷凍空調装置に
あっては、少なくとも一つの主圧縮機(後述する実施の
形態の主圧縮機2aに相当)、主四方切換弁(後述する
実施の形態の主四方切換弁3aに相当)、主熱交換器
(後述する実施の形態の主熱交換器4aに相当)、およ
び第1の主液溜部(後述する実施の形態の主液溜部5a
に相当)を備えた主熱源機(後述する実施の形態の主熱
源機1aに相当)と、少なくとも一つの従圧縮機(後述
する実施の形態の従圧縮機2bに相当)、従四方切換弁
(後述する実施の形態の従四方切換弁3aに相当)、従
熱交換器(後述する実施の形態の従熱交換器4bに相
当)、および第1の従主液溜部(後述する実施の形態の
従液溜部5bに相当)を備えた少なくとも一つの従熱源
機(後述する実施の形態の従熱源機1bに相当)と、前
記主熱交換器から流出する液冷媒の通路となる配管と、
前記従熱交換器から流出する液冷媒の通路となる配管と
を合流させる液合流部(後述する実施の形態の液合流部
32に相当)と、前記主圧縮機から排出されるガス冷媒
の通路となる配管と、前記従圧縮機から排出されるガス
冷媒の通路となる配管とを合流させるガス合流部(後述
する実施の形態のガス合流部31に相当)と、非共沸混
合冷媒の循環組成を検出する循環組成検知装置(後述す
る実施の形態の組成検知部6に相当)と、を具備する冷
媒回路を有し、前記冷媒回路を循環する冷媒の流入によ
り、利用側熱交換器にて冷房運転または暖房運転を行う
ことを特徴とする。Means for Solving the Problems The above-mentioned problems are solved,
In order to achieve the object, in a refrigeration / air-conditioning apparatus according to the present invention, at least one main compressor (corresponding to a main compressor 2a of an embodiment described later) and a main four-way switching valve (embodiment described later) , A main heat exchanger (corresponding to a main heat exchanger 4a in an embodiment described later), and a first main liquid reservoir (a main liquid reservoir 5a in an embodiment described later).
), A main heat source unit (corresponding to a main heat source unit 1a according to an embodiment described later), at least one sub-compressor (corresponding to a sub-compressor 2b according to an embodiment described later), and a four-way switching valve (Corresponding to a slave four-way switching valve 3a according to an embodiment described later), a slave heat exchanger (corresponding to a slave heat exchanger 4b according to an embodiment described later), and a first slave main liquid reservoir (described below as an embodiment). At least one secondary heat source unit (corresponding to a secondary liquid storage unit 5b of the embodiment) (corresponding to a secondary heat source unit 1b of an embodiment to be described later) and a pipe serving as a passage for liquid refrigerant flowing out of the main heat exchanger When,
A liquid merging portion (corresponding to a liquid merging portion 32 in an embodiment described later) for merging with a pipe serving as a passage for the liquid refrigerant flowing out of the slave heat exchanger, and a passage for the gas refrigerant discharged from the main compressor (A gas merge portion corresponding to a gas merge portion 31 in an embodiment described later) for joining a pipe that becomes a gas pipe and a pipe that becomes a passage for a gas refrigerant discharged from the slave compressor, and circulation of a non-azeotropic mixed refrigerant And a circulating composition detecting device (corresponding to a composition detecting unit 6 in an embodiment described later) for detecting the composition. And performing a cooling operation or a heating operation.
【0015】この発明によれば、組成検知6を具備した
ことにより、常に真の冷媒循環組成を検知することがで
きる。これにより、例えば、暖房時の室内機への冷媒寝
込みや、各熱源機への余剰冷媒寝込みなどの要因により
冷媒の偏在が発生し、冷媒回路内を循環する冷媒の組成
が変化した場合でも、または、冷媒漏れ、冷媒誤封入な
どの要因により冷媒の組成が変化した場合でも、その変
化を検知して組成を是正することが可能となる。According to the present invention, the provision of the composition detector 6 makes it possible to always detect the true refrigerant circulation composition. Thereby, for example, even when the refrigerant stagnation into the indoor unit during heating, or due to factors such as excess refrigerant stagnation into each heat source unit, uneven distribution of the refrigerant occurs, even if the composition of the refrigerant circulating in the refrigerant circuit changes, Alternatively, even when the composition of the refrigerant changes due to factors such as refrigerant leakage and erroneous charging of the refrigerant, the change can be detected and the composition can be corrected.
【0016】つぎの発明にかかる冷凍空調装置にあって
は、少なくとも一つの熱源機の熱交換器と前記液合流部
との間に、冷媒の流量を調整するための流量制御弁(後
述する実施の形態の主流量制御弁8a、従流量制御弁8
bに相当)を具備することを特徴とする。In the refrigeration / air-conditioning apparatus according to the next invention, a flow control valve for adjusting the flow rate of the refrigerant (between the heat exchanger of at least one heat source unit and the liquid junction) is provided. Main flow control valve 8a, sub flow control valve 8
b).
【0017】この発明によれば、各熱源機にそれぞれ流
量制御弁(8a、8b)を具備したことにより、各熱源
機に流す冷媒の循環量を調整できるようになる。これに
より、余剰冷媒の偏在が解消される。According to the present invention, since each heat source unit is provided with the flow control valve (8a, 8b), the circulation amount of the refrigerant flowing through each heat source unit can be adjusted. Thereby, the uneven distribution of the surplus refrigerant is eliminated.
【0018】つぎの発明にかかる冷凍空調装置にあって
は、各熱源機毎に、冷媒の圧力を検出する低圧圧力検知
手段(後述する実施の形態の主低圧圧力検知部7a、従
低圧圧力検知部7bに相当)と、冷媒の温度を検出する
温度検知手段(後述する実施の形態の主温度検知部9
a、従温度検知部9bに相当)と、を具備し、検出され
た圧力および温度に基づいて前記流量制御弁を調整する
ことにより、各熱源機内に滞留する余剰冷媒の偏在を防
止することを特徴とする。In the refrigeration / air-conditioning apparatus according to the next invention, a low-pressure pressure detecting means for detecting the pressure of the refrigerant (a main low-pressure detecting section 7a and a sub-low-pressure detecting section in an embodiment described later) for each heat source unit. And a temperature detecting means for detecting the temperature of the refrigerant (a main temperature detecting section 9 in an embodiment described later).
a, corresponding to the auxiliary temperature detector 9b), and adjusting the flow rate control valve based on the detected pressure and temperature to prevent the uneven distribution of the surplus refrigerant stagnating in each heat source device. Features.
【0019】この発明によれば、検出された冷媒の圧力
および温度から各熱交換器の過熱度を演算する。ここ
で、主熱源機側よりも従熱源機側の過熱度が大きい場合
に、主流量制御弁を各熱源機の過熱度の差が予め設定さ
れた値よりも小さくなるまで閉弁し、従流量制御弁を開
弁する。一方、主熱源機側よりも従熱源機側の過熱度が
小さい場合には、主流量制御弁を各熱源機の過熱度の差
が予め設定された値よりも小さくなるまで開弁し、従流
量制御弁を閉弁する。これにより、自動的に余剰冷媒の
偏在が解消される。According to the present invention, the degree of superheat of each heat exchanger is calculated from the detected pressure and temperature of the refrigerant. Here, when the degree of superheat on the slave heat source unit side is larger than that on the main heat source unit side, the main flow control valve is closed until the difference between the superheat degrees of the respective heat source units becomes smaller than a preset value, and Open the flow control valve. On the other hand, when the degree of superheat on the slave heat source unit side is smaller than that on the main heat source unit side, the main flow control valve is opened until the difference in the degree of superheat between the respective heat source units becomes smaller than a preset value. Close the flow control valve. Thereby, the uneven distribution of the surplus refrigerant is automatically eliminated.
【0020】つぎの発明にかかる冷凍空調装置にあって
は、各熱源機内の熱交換器と、前記利用側熱交換器との
間に、少なくとも一つの第2の液溜部(後述する実施例
の形態の第2の主液溜部11a、第2の従液溜部11b
に相当)を具備し、前記流量制御弁を調整することによ
り、各熱源機内に滞留する余剰冷媒を第2の液溜部内に
冷媒を常に流動状態に保持しながら一定量確保させ、第
1の液溜部内に滞留する余剰冷媒を抑制することを特徴
とする。In the refrigeration / air-conditioning apparatus according to the next invention, at least one second liquid storage section (embodiment described later) is provided between the heat exchanger in each heat source unit and the use side heat exchanger. Second main liquid reservoir 11a, second sub liquid reservoir 11b
By adjusting the flow rate control valve, a certain amount of surplus refrigerant stagnating in each heat source unit is secured while constantly keeping the refrigerant in a fluid state in the second liquid reservoir, It is characterized in that surplus refrigerant staying in the liquid reservoir is suppressed.
【0021】この発明によれば、常に第2の液溜部にて
余剰冷媒を確保することで、第1の主液溜部および第1
の従液溜部内に余剰冷媒を滞留させない。これにより、
循環冷媒の組成変動を抑制でき、常時適正運転を行うこ
とが可能となる。According to the present invention, the surplus refrigerant is always ensured in the second liquid reservoir, so that the first main liquid reservoir and the first liquid reservoir can be maintained.
The excess refrigerant is not retained in the secondary liquid reservoir. This allows
Fluctuations in the composition of the circulating refrigerant can be suppressed, and proper operation can always be performed.
【0022】つぎの発明にかかる冷凍空調装置にあって
は、前記熱交換器と前記利用側熱交換器との間の配管に
冷媒回収口(後述する実施の形態の冷媒回収口14に相
当)を具備し、さらに、各熱源器毎に、前記利用側熱交
換器からの冷媒を制御するための第1の操作弁(後述す
る実施の形態の第1の主操作弁12a、第1の従操作弁
12bに相当)と、熱源機内の熱交換器からの冷媒を制
御するための第2の操作弁(後述する実施の形態の第2
の主操作弁13a、第2の従操作弁13bに相当)と、
を具備し、非共沸混合冷媒の組成を変えることなく、そ
の冷媒を冷媒回路系外へ回収し、その後、回収した冷媒
を再利用することを特徴とする。In the refrigeration / air-conditioning apparatus according to the next invention, a refrigerant recovery port (corresponding to a refrigerant recovery port 14 in an embodiment described later) is provided in a pipe between the heat exchanger and the use side heat exchanger. And a first operating valve (a first main operating valve 12a, a first slave operating valve, and a second auxiliary operating valve in an embodiment described later) for controlling the refrigerant from the use side heat exchanger for each heat source unit. A second operation valve (corresponding to an operation valve 12b) for controlling refrigerant from a heat exchanger in the heat source device (a second operation valve according to an embodiment described later).
Of the main operation valve 13a and the second sub-operation valve 13b), and
Wherein the refrigerant is recovered outside the refrigerant circuit system without changing the composition of the non-azeotropic mixed refrigerant, and thereafter, the recovered refrigerant is reused.
【0023】この発明によれば、冷媒組成を変化させる
ことなしに冷媒を回収することと、その回収した冷媒を
再利用することを可能とする。これにより、冷媒回路内
から冷媒を除去し、冷媒回路の修復を行うような場合で
も、修復後、新しい冷媒を必要としないため、コストダ
ウンを実現することができる。According to the present invention, it is possible to recover the refrigerant without changing the refrigerant composition and to reuse the recovered refrigerant. Accordingly, even when the refrigerant is removed from the refrigerant circuit and the refrigerant circuit is repaired, a new refrigerant is not required after the repair, so that the cost can be reduced.
【0024】つぎの発明にかかる冷凍空調装置にあって
は、前記利用側熱交換器に流入する冷媒の流量を制御す
る流量制御手段(後述する実施の形態の流量制御弁制御
部15に相当)を具備し、非共沸混合冷媒の組成を変え
ることなく、その冷媒を熱源機外へ回収し、その後、回
収した冷媒を再利用することを特徴とする。In the refrigeration / air-conditioning apparatus according to the next invention, a flow control means for controlling the flow rate of the refrigerant flowing into the use side heat exchanger (corresponding to a flow control valve control unit 15 in an embodiment described later). And recovering the refrigerant outside the heat source unit without changing the composition of the non-azeotropic mixed refrigerant, and then reusing the recovered refrigerant.
【0025】この発明によれば、熱源機内の冷媒組成を
変化させることなく、ほぼ全て冷媒を、液ライン、熱交
換器内、またはガスラインに回収することができる。ま
た、各熱源機の修復が完了し、真空引きを終えた後、第
1の操作弁と第2の操作弁を開弁することで、冷媒の再
チャージが可能となり、冷媒の再利用率も増大する。こ
れにより、冷媒回路内から冷媒を除去し、冷媒回路の修
復を行うような場合でも、修復後、新しい冷媒を必要と
しないため、コストダウンを実現するとともに、手軽に
冷媒の再チャージができることにより、サービス時間の
短縮化を実現することができる。According to the present invention, almost all of the refrigerant can be recovered to the liquid line, the heat exchanger, or the gas line without changing the refrigerant composition in the heat source device. Further, after the restoration of each heat source unit is completed and the evacuation is completed, the first operation valve and the second operation valve are opened, so that the refrigerant can be recharged, and the refrigerant recycling rate is also reduced. Increase. As a result, even when the refrigerant is removed from the refrigerant circuit and the refrigerant circuit is repaired, a new refrigerant is not required after the repair, so that the cost can be reduced and the refrigerant can be easily recharged. In addition, the service time can be shortened.
【0026】つぎの発明にかかる冷凍空調装置にあって
は、各熱源機毎に、他の熱源機に冷媒を移動させるため
のサービスポート(後述する実施の形態の第1の主サー
ビスポート16a、第2の主サービスポート17a、第
3の主サービスポート18a、第1の従サービスポート
16b、第2の従サービスポート17b、第3の従サー
ビスポート18bに相当)を具備し、非共沸混合冷媒の
組成を変えることなく、その冷媒を他の熱源機へ回収
し、その後、回収した冷媒を再利用することを特徴とす
る。In the refrigeration / air-conditioning apparatus according to the next invention, for each heat source unit, a service port (a first main service port 16a, an embodiment described later) for moving the refrigerant to another heat source unit is provided. A second main service port 17a, a third main service port 18a, a first sub service port 16b, a second sub service port 17b, and a third sub service port 18b). The refrigerant is recovered to another heat source without changing the composition of the refrigerant, and then the recovered refrigerant is reused.
【0027】この発明によれば、熱源機内の冷媒組成を
変化させることなく、ほぼ全て冷媒を、液ライン、熱交
換器内、またはガスラインに回収することができる。ま
た、各熱源機の修復が完了し、真空引きを終えた後、第
1の操作弁と第2の操作弁を開弁することで、冷媒の再
チャージが可能となり、冷媒の再利用率も増大する。こ
れにより、冷媒回路内から冷媒を除去し、冷媒回路の修
復を行うような場合でも、修復後、新しい冷媒を必要と
しないため、コストダウンを実現するとともに、手軽に
冷媒の再チャージができることにより、サービス時間の
短縮化を実現でき、さらに、サービス時の応急運転が可
能となる。According to the present invention, almost all of the refrigerant can be recovered to the liquid line, the heat exchanger, or the gas line without changing the refrigerant composition in the heat source device. Further, after the restoration of each heat source unit is completed and the evacuation is completed, the first operation valve and the second operation valve are opened, so that the refrigerant can be recharged, and the refrigerant recycling rate is also reduced. Increase. As a result, even when the refrigerant is removed from the refrigerant circuit and the refrigerant circuit is repaired, a new refrigerant is not required after the repair, so that the cost can be reduced and the refrigerant can be easily recharged. Thus, the service time can be shortened, and the emergency operation at the time of service can be performed.
【0028】[0028]
【発明の実施の形態】以下に、本発明にかかる冷凍空調
装置の実施の形態を図面に基づいて詳細に説明する。な
お、この実施の形態によりこの発明が限定されるもので
はない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a refrigeration / air-conditioning apparatus according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited by the embodiment.
【0029】実施の形態1.図1は、本発明にかかる冷
凍空調装置の冷媒回路図の実施の形態1を示す図であ
る。この冷媒回路は、非共沸混合冷媒を用いた複数台の
熱源機を組合わせて大容量の熱源機を構成するものであ
る。Embodiment 1 FIG. 1 is a diagram showing Embodiment 1 of a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to the present invention. This refrigerant circuit constitutes a large-capacity heat source device by combining a plurality of heat source devices using a non-azeotropic mixed refrigerant.
【0030】図1に示す冷媒回路は、主圧縮機2a、主
四方切換弁3a、主熱交換器4a、主液溜部5a、組成
検知部6、主低圧圧力検知部7を備える主熱源機1a
と、従圧縮機2b、従四方切換弁3b、従熱交換器4
b、従液溜部5bを備える従熱源機1bと、室内の冷房
および暖房を行う利用側熱交換器21と、冷媒の流量を
制御する利用側流量制御弁22とから構成される。The refrigerant circuit shown in FIG. 1 is a main heat source unit having a main compressor 2a, a main four-way switching valve 3a, a main heat exchanger 4a, a main liquid reservoir 5a, a composition detecting section 6, and a main low pressure detecting section 7. 1a
And the slave compressor 2b, the slave four-way switching valve 3b, and the slave heat exchanger 4.
b, a sub-heat source unit 1b having a sub-liquid reservoir 5b, a use-side heat exchanger 21 for cooling and heating the room, and a use-side flow control valve 22 for controlling the flow rate of the refrigerant.
【0031】また、この冷媒回路は、主熱交換器4aか
ら流れてくる液冷媒の通路となる配管と従熱交換器4b
から流れてくる液冷媒の通路となる配管とを合流させる
液合流部32と、主圧縮機2aからのガス冷媒の通路と
なる配管と従圧縮機2bからのガス冷媒の通路となる配
管とを合流させるガス合流部31によって、2台の熱源
機、すなわち、主熱源機1aと従熱源機1bが並列に接
続されている。The refrigerant circuit includes a pipe serving as a passage for the liquid refrigerant flowing from the main heat exchanger 4a and a secondary heat exchanger 4b.
A liquid joining portion 32 for joining a pipe serving as a passage for the liquid refrigerant flowing from the main compressor 2a, and a pipe serving as a passage for the gas refrigerant from the main compressor 2a and a pipe serving as a passage for the gas refrigerant from the sub-compressor 2b. Two heat source units, that is, the main heat source unit 1a and the auxiliary heat source unit 1b are connected in parallel by the gas joining unit 31 to be joined.
【0032】なお、主熱源機1a側の主圧縮機2a、お
よび従熱源機1b側の従圧縮機2bは、ともに1台の圧
縮機として図示しているが、これに限らず、例えば、各
熱源機には、少なくとも1台の容量制御型または定速型
の圧縮機があればよく、さらに、各熱源機に複数の圧縮
機が存在する場合、その組み合わせは、同容量、異容量
を問わない。また、本実施の形態では、便宜上、2台の
熱源機(1a、1b)の組み合わせの場合について説明
するが、2台以上の熱源機の組み合わせについても、同
様に動作し同様の効果が得られる。The main compressor 2a on the side of the main heat source unit 1a and the auxiliary compressor 2b on the side of the auxiliary heat source unit 1b are both shown as one compressor. However, the present invention is not limited to this. The heat source unit only needs to have at least one capacity control type or constant speed type compressor. Further, when a plurality of compressors exist in each heat source unit, the combination may be the same or different. Absent. Further, in the present embodiment, for convenience, a case of a combination of two heat source devices (1a, 1b) will be described. However, a combination of two or more heat source devices operates in the same manner and provides the same effect. .
【0033】つぎに、主熱源機1aを構成する各部の機
能について説明する。主圧縮機2aは、高温、高圧のガ
ス冷媒を出す。主四方切換弁3aは、冷房運転、暖房運
転に応じてガス冷媒の経路を設定する。主熱交換器4a
は、冷暖房運転に応じて各冷媒(ガス冷媒、液冷媒)の
熱交換を行う。主液溜部5a、ガス冷媒と液冷媒を分離
してガス冷媒だけを熱圧縮機1aに戻す。組成検知部6
は、熱圧縮機1aからの非共沸混合冷媒の組成、すなわ
ち、個々の冷媒の混合比を検知する。主低圧圧力検知部
7は、二相冷媒の圧力を検知する。Next, the function of each part constituting the main heat source unit 1a will be described. The main compressor 2a outputs a high-temperature, high-pressure gas refrigerant. The main four-way switching valve 3a sets the path of the gas refrigerant according to the cooling operation and the heating operation. Main heat exchanger 4a
Performs heat exchange of each refrigerant (gas refrigerant, liquid refrigerant) according to the cooling / heating operation. The main liquid reservoir 5a separates the gas refrigerant and the liquid refrigerant, and returns only the gas refrigerant to the heat compressor 1a. Composition detector 6
Detects the composition of the non-azeotropic mixed refrigerant from the heat compressor 1a, that is, the mixing ratio of the individual refrigerants. The main low-pressure detector 7 detects the pressure of the two-phase refrigerant.
【0034】なお、従熱源機1bを構成する各部につい
ては、上記の各部と同様のため説明を省略する。また、
本実施の形態において、主熱源機1aについては、主圧
縮機2a吐出側から主四方切換弁3aの間と、主液溜部
5aとを、バイパスさせる組成検知部6を備える点と、
主四方切換弁3aから主圧縮機2aまでの間に設けられ
た主低圧圧力検知部7を備える点が、従熱源機1bと異
なっている。The components of the slave heat source unit 1b are the same as those described above and will not be described. Also,
In the present embodiment, the main heat source unit 1a includes a composition detection unit 6 that bypasses the space between the main compressor 2a discharge side and the main four-way switching valve 3a and the main liquid reservoir 5a.
It is different from the slave heat source unit 1b in that a main low pressure detection unit 7 provided between the main four-way switching valve 3a and the main compressor 2a is provided.
【0035】また、図2は、組成検知部6の構成例を示
す図である。図2において、組成検知部6は、主圧縮機
1a吐出側と主四方切換弁3aとの間から、組成検知用
熱交換器41、減圧部42を介して、第1の主液溜部5
aへ冷媒を流すバイパス回路として構成され、減圧部4
2の出入り口に第1の温度検知部43、第2の温度検知
部44がそれぞれ設けられている。FIG. 2 is a diagram showing an example of the configuration of the composition detecting section 6. As shown in FIG. In FIG. 2, the composition detecting section 6 is provided between the discharge side of the main compressor 1 a and the main four-way switching valve 3 a via the composition detecting heat exchanger 41 and the pressure reducing section 42, and the first main liquid reservoir 5.
a, which is configured as a bypass circuit for flowing the refrigerant to
A first temperature detecting unit 43 and a second temperature detecting unit 44 are provided at the entrance and exit of the second unit, respectively.
【0036】上記、図1のように構成される冷媒回路で
は、内部の配管に冷媒を流すことで、冷房運転および暖
房運転を行っている。以下、図1に基づいて、冷房運転
時、および暖房運転時の冷媒の流れについて説明する。In the refrigerant circuit configured as shown in FIG. 1, the cooling operation and the heating operation are performed by flowing the refrigerant through the internal piping. Hereinafter, the flow of the refrigerant during the cooling operation and the heating operation will be described with reference to FIG.
【0037】なお、図1中の実線矢印は冷房運転時の冷
媒の流れを示し、点線矢印は暖房運転時の冷媒の流れを
示している。また、図示の各四方切換弁3a、3bは、
冷房運転時の設定を示したものであり、例えば、暖房運
転を行う場合、主四方切換弁3aは、主圧縮機2aと利
用側熱交換器21、および主熱交換器4aと主液溜部5
aがそれぞれ接続するように切り換えられる(従四方切
換弁3bも同様に切換られる)。The solid arrows in FIG. 1 indicate the flow of the refrigerant during the cooling operation, and the dotted arrows indicate the flow of the refrigerant during the heating operation. Each of the illustrated four-way switching valves 3a and 3b is
This shows settings during the cooling operation. For example, when performing the heating operation, the main four-way switching valve 3a includes the main compressor 2a and the use side heat exchanger 21, and the main heat exchanger 4a and the main liquid reservoir. 5
are switched so as to connect to each other (the four-way switching valve 3b is similarly switched).
【0038】例えば、冷房運転を行う場合、主圧縮機2
aを出た高温、高圧のガス冷媒は、主四方切換弁3aを
経て主熱交換器4aへ流れ、ここで放熱し、高圧の液冷
媒となる。その後、この高圧の液冷媒は、主熱源機1a
の外部に流れだし、液合流部32に至る。また、従熱源
機1bにおいても同様に、従圧縮機2bを出た高温、高
圧のガス冷媒は、従四方切換弁3b、従熱交換器4bを
経て高圧の液冷媒となり、その後、従熱源機1bの外部
に流れだし、液合流部32に至る。For example, when performing a cooling operation, the main compressor 2
The high-temperature, high-pressure gas refrigerant that has exited a flows through the main four-way switching valve 3a to the main heat exchanger 4a, where it radiates heat to become a high-pressure liquid refrigerant. Thereafter, the high-pressure liquid refrigerant is supplied to the main heat source unit 1a.
And flows to the liquid junction 32. Similarly, in the slave heat source unit 1b, the high-temperature, high-pressure gas refrigerant that has exited the slave compressor 2b becomes a high-pressure liquid refrigerant through the slave four-way switching valve 3b and the slave heat exchanger 4b. It flows out of 1b and reaches the liquid junction 32.
【0039】液合流部32にて合流した各熱源機1a、
1bからの液冷媒は、利用側流量制御装置22へと流
れ、そこでそれぞれ減圧され、低温、低圧の二相冷媒と
なる。さらに、その二相冷媒は、利用側熱交換器21で
吸熱することにより、そのほとんどがガス状(ガス冷
媒)になる。Each of the heat source devices 1a joined at the liquid joining section 32,
The liquid refrigerant from 1b flows to the use-side flow control device 22, where it is decompressed to a low-temperature, low-pressure two-phase refrigerant. Furthermore, most of the two-phase refrigerant becomes gaseous (gas refrigerant) by absorbing heat in the use-side heat exchanger 21.
【0040】その後、この低圧のガス冷媒は、ガス合流
部31へと流れ、そこで主熱源機1aと従熱源機1bに
分かれる。主熱源機1aに流れたガス冷媒は、主四方切
換弁3aを経て主液溜部5aに流れ、主液溜部5aで
は、ガス冷媒と一部未蒸発であった液冷媒とを分離し
て、ガス冷媒だけを主圧縮機2aに戻す。同様に、主熱
源機1bに流れたガス冷媒は、従四方切換弁3bを経て
主液溜部5bに流れ、主液溜部5bでは、ガス冷媒だけ
を従圧縮機2bに戻す。Thereafter, the low-pressure gas refrigerant flows to the gas junction 31 where it is split into a main heat source unit 1a and a sub heat source unit 1b. The gas refrigerant that has flowed into the main heat source unit 1a flows through the main four-way switching valve 3a to the main liquid reservoir 5a, where the gas refrigerant and the liquid refrigerant that has been partially evaporated are separated. Then, only the gas refrigerant is returned to the main compressor 2a. Similarly, the gas refrigerant flowing to the main heat source unit 1b flows to the main liquid reservoir 5b via the sub four-way switching valve 3b, and returns only the gas refrigerant to the sub compressor 2b in the main liquid reservoir 5b.
【0041】本実施の形態では、上記実線矢印のように
冷媒を循環させることで、主熱交換器4a、従熱交換器
4b、および利用側熱交換器21による熱交換が行わ
れ、これにより、冷房運転が行われている。In the present embodiment, by circulating the refrigerant as indicated by the solid line arrow, heat exchange is performed by the main heat exchanger 4a, the sub heat exchanger 4b, and the use side heat exchanger 21. , A cooling operation is being performed.
【0042】一方、暖房運転を行う場合、主圧縮機2a
を出た高温、高圧のガス冷媒は、主四方切換弁3aを経
て主熱源機1aの外部に流れだし、ガス合流部31に至
る。同様に、従圧縮機2bを出た高温、高圧のガス冷媒
は、従四方切換弁3bを経て従熱源機1bの外部に流れ
だし、ガス合流部31に至る。On the other hand, when performing the heating operation, the main compressor 2a
The high-temperature, high-pressure gas refrigerant that has flowed out flows out of the main heat source unit 1a through the main four-way switching valve 3a, and reaches the gas junction 31. Similarly, the high-temperature, high-pressure gas refrigerant that has exited the slave compressor 2b flows out of the slave heat source unit 1b via the slave four-way switching valve 3b, and reaches the gas junction 31.
【0043】ガス合流部31では、主熱源機1aから流
れてくるガス冷媒と、従熱源機1bから流れてくるガス
冷媒とが合流する。この合流したガス冷媒は、利用側熱
交換器21に入り、ここで放熱、凝縮が行われ、高圧の
液冷媒となる。利用側熱交換器21を出た高圧の液冷媒
は、利用側流量制御装置22で減圧され、低圧の二相冷
媒となる。In the gas merging section 31, the gas refrigerant flowing from the main heat source unit 1a and the gas refrigerant flowing from the sub heat source unit 1b merge. The merged gas refrigerant enters the use-side heat exchanger 21, where heat is released and condensed to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has exited the use-side heat exchanger 21 is decompressed by the use-side flow control device 22 and becomes a low-pressure two-phase refrigerant.
【0044】その後、この二相冷媒は、液合流部32に
流れ、主熱源機1aと従熱源機1bに分かれる。主熱源
機1aに流れた液冷媒は、主熱交換器4aでその液部の
ほとんどが吸熱蒸発し、ガス冷媒となる。さらに、この
ガス冷媒は、主四方切換弁3aを経て主液溜部5aに流
れ、主液溜部5aでは、ガス冷媒と一部未蒸発であった
液冷媒とを分離して、ガス冷媒だけを主圧縮機2aに戻
す。一方、従熱源機1bに流れた液冷媒も、従熱源機1
b内で同様に処理され、従液溜部5bでは、ガス冷媒だ
けを従圧縮機2bに戻す。Thereafter, the two-phase refrigerant flows into the liquid junction 32 and is split into the main heat source unit 1a and the sub heat source unit 1b. Most of the liquid part of the liquid refrigerant flowing into the main heat source unit 1a is absorbed and evaporated in the main heat exchanger 4a to become a gas refrigerant. Further, the gas refrigerant flows into the main liquid reservoir 5a via the main four-way switching valve 3a, and separates the gas refrigerant and the partially unevaporated liquid refrigerant in the main liquid reservoir 5a. Is returned to the main compressor 2a. On the other hand, the liquid refrigerant flowing to the subordinate heat source
b, and only the gas refrigerant is returned to the secondary compressor 2b in the secondary liquid reservoir 5b.
【0045】本実施の形態では、上記点線矢印のように
冷媒を循環させることで、主熱交換器4a、従熱交換器
4b、利用側熱交換器21による熱交換が行われ、これ
により、暖房が行われている。In the present embodiment, by circulating the refrigerant as indicated by the dotted arrow, heat exchange is performed by the main heat exchanger 4a, the sub heat exchanger 4b, and the use side heat exchanger 21. Heating is being done.
【0046】つぎに、組成検知部6における冷媒の流れ
について、図1および図2に基づいて詳細に説明する。
図2中の実線矢印で示すように、主熱源機1a内の主圧
縮機2aを出た高温、高圧のガス冷媒は、先に説明した
とおり主四方切換弁3へ流れるものと、分岐して組成検
知部6へ向かって流れるものがある。Next, the flow of the refrigerant in the composition detecting section 6 will be described in detail with reference to FIGS.
As shown by solid arrows in FIG. 2, the high-temperature, high-pressure gas refrigerant that has exited from the main compressor 2a in the main heat source unit 1a is branched off from the refrigerant flowing to the main four-way switching valve 3 as described above. Some components flow toward the composition detector 6.
【0047】組成検知部6へ流れるガス冷媒は、組成検
知用熱交換器41へ流入し、後述する減圧部42から流
れでてくる低温、低圧の二相冷媒と熱交換して、中温、
高圧の液冷媒となる。組成検知用熱交換器41を流れで
た中温、高圧の液冷媒は、減圧部42へと流入し、そこ
で減圧されて低温、低圧の二相冷媒となり、再度、組成
検知用熱交換器41へ流入し、前述の主圧縮機2aから
流れてきた高温、高圧のガス冷媒と熱交換して、低温、
低圧のガス冷媒となる。その後、組成検知用熱交換器4
1を出た低温、低圧のガス冷媒は、第1の主液溜部5a
へ向かって流れだす。The gas refrigerant flowing to the composition detecting section 6 flows into the composition detecting heat exchanger 41 and exchanges heat with a low-temperature, low-pressure two-phase refrigerant flowing from a pressure reducing section 42 to be described later.
It becomes a high-pressure liquid refrigerant. The medium-temperature, high-pressure liquid refrigerant flowing through the composition detecting heat exchanger 41 flows into the decompression unit 42, where it is decompressed to become a low-temperature, low-pressure two-phase refrigerant, and again to the composition detecting heat exchanger 41. Inflows, and exchanges heat with the high-temperature, high-pressure gas refrigerant flowing from the main compressor 2a described above.
It becomes a low-pressure gas refrigerant. Then, the composition detection heat exchanger 4
The low-temperature, low-pressure gas refrigerant that has exited the first main reservoir 5a
Start flowing towards.
【0048】本実施の形態では、上記のように冷媒を循
環させることで、非共沸混合冷媒の冷媒循環組成の検
知、すなわち、各冷媒の混合比の検知が行われている。
ここで、組成検知部6の冷媒循環組成の検知原理につい
て説明する。In the present embodiment, by circulating the refrigerant as described above, the detection of the refrigerant circulating composition of the non-azeotropic mixed refrigerant, that is, the detection of the mixture ratio of each refrigerant is performed.
Here, the principle of detecting the refrigerant circulation composition by the composition detection unit 6 will be described.
【0049】この組成検知部6では、上記のように冷媒
を循環させ、第1の温度検知部43にて減圧部42に流
入する前の液冷媒の温度を検出し、さらに、第2の温度
検知部44にて減圧部42から流れ出した液冷媒の温度
を検出する。非共沸混合冷媒の冷媒循環組成の検知は、
この二つの液冷媒の温度と、主低圧圧力検知部7にて検
出される二相冷媒の圧力に基づいて演算される。なお、
この冷媒循環組成の検知は、冷凍空調装置に電源が投入
されている間、常時行われるものとする。In the composition detecting section 6, the refrigerant is circulated as described above, the first temperature detecting section 43 detects the temperature of the liquid refrigerant before flowing into the pressure reducing section 42, and further detects the second temperature. The detecting section 44 detects the temperature of the liquid refrigerant flowing out of the pressure reducing section 42. Detection of refrigerant circulating composition of non-azeotropic mixed refrigerant is
The calculation is performed based on the temperatures of the two liquid refrigerants and the pressure of the two-phase refrigerant detected by the main low-pressure detector 7. In addition,
It is assumed that the detection of the refrigerant circulation composition is always performed while the power is turned on to the refrigeration / air-conditioning apparatus.
【0050】以下、具体的に冷媒循環組成の演算方法を
説明する。循環する冷媒として、例えば、R407Cと
呼ばれる非共沸三種混合冷媒を用いる場合、R32、R
125、R134aの三種類の組成が未知数であるた
め、三つの方程式を立てて、その方程式を解くことで未
知である冷媒循環組成を演算する。まず、一つ目の方定
式は、三種類の各冷媒循環組成の加算が‘1' となるこ
とを利用して決定することができる。このとき、R3
2、R125、およびR134aの組成を、それぞれα
32、α125、α134aと表すと、つぎの式が常に
成り立つ。Hereinafter, a method of calculating the refrigerant circulation composition will be specifically described. For example, when a non-azeotropic triple refrigerant mixture called R407C is used as the circulating refrigerant, R32, R32
Since the three types of compositions 125 and R134a are unknowns, three equations are established and the unknown refrigerant circulation composition is calculated by solving the equations. First, the first formula can be determined by utilizing the fact that the addition of each of the three types of refrigerant circulation composition becomes '1'. At this time, R3
2, the composition of R125 and R134a is α
When expressed as 32, α125 and α134a, the following equation always holds.
【0051】 α32+α125+α134a=1 ・・・(1)式Α32 + α125 + α134a = 1 (1)
【0052】つぎに、二つ目の方程式は、組成検知部6
から立てることができる。図3は、組成検知部6におけ
る冷媒の状態変化を表したモリエル線図である。この図
のなかでは主圧縮機2aを出た高圧のガス冷媒の状
態、は組成検知用熱交換器41で低圧の冷媒と熱交換
し、液化した状態、は減圧部42で減圧し、低圧の二
相冷媒となった状態、は組成検知用熱交換機41で高
圧の冷媒と熱交換して蒸発し、ガス化した状態を示す。Next, the second equation is as follows:
You can stand up from. FIG. 3 is a Mollier diagram showing a change in the state of the refrigerant in the composition detection unit 6. In this figure, the state of the high-pressure gas refrigerant that has exited the main compressor 2a is heat exchanged with the low-pressure refrigerant in the composition detection heat exchanger 41, and the liquefied state is the state in which the pressure is reduced in the decompression unit 42, The state in which the refrigerant has become a two-phase refrigerant indicates a state in which the refrigerant exchanges heat with a high-pressure refrigerant in the composition detection heat exchanger 41 to evaporate and gasify.
【0053】この図3のの状態及びの状態は、同じ
エンタルピであるため、α32とα125を未知数とす
るのエンタルピ及びのエンタルピが等しいとする方
程式を立てることができる。すなわち、のエンタルピ
をhl、のエンタルピをht、第1の温度検知部43
の温度をT11、第2の温度検知部44の温度をT1
2、主低圧圧力検知部7の圧力をP13とすると、つぎ
の式が成り立つ。Since the states of FIG. 3 and the state of FIG. 3 have the same enthalpy, it is possible to establish an equation that enthalpies when α32 and α125 are unknowns and enthalpy are equal. That is, the enthalpy of the first temperature detector 43 is hl, the enthalpy of the
Is T11, and the temperature of the second temperature detector 44 is T1.
2. Assuming that the pressure of the main low pressure detecting section 7 is P13, the following equation is established.
【0054】 hl(α32,α125,T11)= ht(α32,α125,T12,P13) ・・・(2)式Hl (α32, α125, T11) = ht (α32, α125, T12, P13) Expression (2)
【0055】最後に、三つ目の方程式は、冷凍空調装置
に最初に入れる充填組成がR407Cである限りにおい
ては、気液平衡が成り立ち、主液溜部5aでの液の滞
留、および冷媒漏れが発生した後でも、冷媒循環組成の
各組成成分間には一定の関係がある。すなわち、A及び
Bを定数とすると、つぎの気液平衡組成実験式が成り立
つ。Finally, the third equation states that as long as the filling composition initially charged into the refrigeration / air-conditioning system is R407C, a vapor-liquid equilibrium is established, the liquid stays in the main liquid reservoir 5a, and the refrigerant leaks. Even after the occurrence of, there is a certain relationship between the components of the refrigerant circulation composition. That is, assuming that A and B are constants, the following empirical formula for gas-liquid equilibrium composition is established.
【0056】 α32=A×α125+B ・・・(3)式Α32 = A × α125 + B (3)
【0057】以上、方程式である(1)式、(2)式、
および(3)式を解くことで、各冷媒の組成であるα3
2、α125及びα134aを求めることができる。As described above, the equations (1), (2),
And solving equation (3) yields α3
2, α125 and α134a can be obtained.
【0058】このように、本発明にかかる冷凍空調装置
において、非共沸混合冷媒を用いて複数台の熱源機を組
合わせて大容量の熱源機を構成する冷媒回路では、組成
検知部6を具備したことにより、常に真の冷媒循環組成
を検知することができる。これにより、例えば、暖房時
の室内機への冷媒寝込みや、各熱源機(4a、4b)へ
の余剰冷媒寝込みなどの要因により冷媒の偏在が発生
し、冷媒回路内を循環する冷媒の組成が変化した場合で
も、または、冷媒漏れ、冷媒誤封入などの要因により冷
媒の組成が変化した場合でも、その変化を検知して組成
を是正することが可能となるため、信頼性の高い冷凍空
調装置が得られる。As described above, in the refrigeration / air-conditioning apparatus according to the present invention, in the refrigerant circuit in which a large-capacity heat source unit is formed by combining a plurality of heat source units using a non-azeotropic mixed refrigerant, the composition detecting unit 6 is used. Due to the provision, the true refrigerant circulation composition can be always detected. Accordingly, for example, uneven distribution of the refrigerant occurs due to factors such as refrigerant stagnation in the indoor unit during heating and excess refrigerant stagnation in each of the heat source units (4a, 4b), and the composition of the refrigerant circulating in the refrigerant circuit is reduced. Even if it changes, or if the composition of the refrigerant changes due to factors such as refrigerant leakage or refrigerant mis-filling, it is possible to detect the change and correct the composition, so that a highly reliable refrigeration and air conditioning system Is obtained.
【0059】なお、実施の形態1においては、組成検知
部6を主熱源機1aだけに備える構成としているが、上
記信頼性の高い冷凍空調装置を得るための構成として
は、例えば、図4の応用例に示すように、主組成検知部
6a、従組成検知部6bを主熱源機5a、従熱源機5b
のそれぞれに備える構成としてもよい。In the first embodiment, the composition detecting section 6 is provided only in the main heat source unit 1a. However, in order to obtain the above-mentioned highly reliable refrigeration and air-conditioning apparatus, for example, FIG. As shown in the application example, the main composition detecting unit 6a and the auxiliary composition detecting unit 6b are connected to the main heat source unit 5a and the auxiliary heat source unit 5b.
It is good also as a structure provided for each of.
【0060】実施の形態2.図5は、本発明にかかる冷
凍空調装置の冷媒回路図の実施の形態1を示す図であ
る。この冷媒回路も、実施の形態1と同様に、非共沸混
合冷媒を用いた複数台の熱源機を組み合わせて大容量の
熱源機を構成するものである。Embodiment 2 FIG. 5 is a diagram showing Embodiment 1 of a refrigerant circuit diagram of the refrigeration / air-conditioning apparatus according to the present invention. This refrigerant circuit also constitutes a large-capacity heat source device by combining a plurality of heat source devices using a non-azeotropic mixed refrigerant similarly to the first embodiment.
【0061】図5において、冷凍空調装置内の冷媒回路
構成、および冷媒の流れ(動作)については、実施の形
態1にて説明した構成および動作と基本的に同様である
ため、同一の構成には同一の符号を付して説明を省略す
る。実施の形態2では、主熱源機1aの主熱交換器4a
から液合流部32までの経路に主流量制御弁8aを備
え、さらに、従熱源機1bの従熱交換器4bから液合流
部32までの経路に従流量制御弁8bを備えている点
で、実施の形態1と異なっている。In FIG. 5, the configuration and operation of the refrigerant circuit and the flow (operation) of the refrigerant in the refrigeration / air-conditioning apparatus are basically the same as those described in the first embodiment. Are denoted by the same reference numerals and description thereof is omitted. In the second embodiment, the main heat exchanger 4a of the main heat source unit 1a
In that a main flow control valve 8a is provided in the path from the liquid junction part 32 to the liquid junction part 32, and a flow control valve 8b is further provided in the path from the sub heat exchanger 4b of the sub heat source unit 1b to the liquid junction part 32. This is different from the first embodiment.
【0062】非共沸混合冷媒を用いる冷凍空調装置で
は、例えば、暖房運転時に余剰冷媒が発生すると、循環
する冷媒中には、低沸点冷媒の比率が高い状態となり、
滞留する余剰冷媒中には、高沸点冷媒の比率が高い状態
となる。このように、循環冷媒中の低沸点冷媒の比率が
高くなると、非共沸混合冷媒の特性上、高圧圧力が上昇
するなどの不具合が生じる。特に、本発明のような大容
量機種になると、封入冷媒量が増大することになり、さ
らに上記の不具合の発生する可能性が高くなるという傾
向がある。さらに、各熱源機に存在する余剰冷媒量に偏
在が生じると、すなわち、余剰冷媒が各熱源機に均等に
分布していないと、一方に高沸点冷媒が大量に存在する
こととなり、結果的に、全体として循環冷媒中の低沸点
冷媒の比率が高くなる。In a refrigerating air conditioner using a non-azeotropic refrigerant mixture, for example, when excess refrigerant is generated during a heating operation, the ratio of low-boiling refrigerant in the circulating refrigerant becomes high,
In the surplus refrigerant that stays, the ratio of the high-boiling refrigerant is high. As described above, when the ratio of the low-boiling-point refrigerant in the circulating refrigerant is high, problems such as an increase in high-pressure are caused due to the characteristics of the non-azeotropic refrigerant mixture. In particular, in the case of a large-capacity model as in the present invention, the amount of the charged refrigerant increases, and the possibility of occurrence of the above-described problems tends to increase. Furthermore, if the amount of surplus refrigerant present in each heat source unit is unevenly distributed, that is, if the surplus refrigerant is not evenly distributed to each heat source unit, a large amount of high boiling point refrigerant will be present on one side, and consequently As a whole, the ratio of the low-boiling refrigerant in the circulating refrigerant increases.
【0063】ここでは、冷媒回路内に余剰冷媒が発生す
る場合において、その余剰冷媒が各熱源機(1a、1
b)に均等に分布していない場合の例を、図5に基づい
て説明する。なお、図5中の実線矢印は冷房運転時の冷
媒の流れ、点線矢印は暖房運転時の冷媒の流れを示して
いる。Here, when surplus refrigerant is generated in the refrigerant circuit, the surplus refrigerant is supplied to each of the heat source units (1a, 1a, 1a, 1a).
An example in the case where the distribution is not uniform in b) will be described with reference to FIG. Note that the solid arrows in FIG. 5 indicate the flow of the refrigerant during the cooling operation, and the dotted arrows indicate the flow of the refrigerant during the heating operation.
【0064】例えば、暖房運転時に利用側熱交換器21
から戻る冷媒は、液合流部20で主熱源機1aと従熱源
機1bに分かれるが、理想としては、主圧縮機2aと従
圧縮機2bの吐出する冷媒吐出量に見合った割合で分流
することである。しかし、冷媒の流れやすさ、流れにく
さは、主に配管内の圧損に支配されやすく、これは各圧
縮機の冷媒流量、配管径、および配管長に大きく左右さ
れる。For example, during the heating operation, the use side heat exchanger 21
Is returned to the main heat source unit 1a and the sub heat source unit 1b at the liquid junction 20. Ideally, the refrigerant is divided at a ratio corresponding to the refrigerant discharge amount discharged from the main compressor 2a and the sub compressor 2b. It is. However, the easiness of the flow of the refrigerant and the difficulty of the flow are likely to be mainly governed by the pressure loss in the piping, which largely depends on the refrigerant flow rate, the piping diameter, and the piping length of each compressor.
【0065】図5において、例えば、液合流部32から
主熱交換器4aまでの配管径が、液合流部32から従熱
交換器4bまでの配管径より太い場合、それらの配管に
同じ冷媒流量が流れると、主熱源機1a側の圧損が小さ
くなり、主熱源機1a側に流れる流量が大きくなる。そ
のため、主熱交換器4aに流れる二相冷媒流量が大きく
なり、そこで蒸発しきれない液冷媒が増加し、主液溜部
5aに高沸点冷媒が大量に存在することになる。In FIG. 5, for example, when the pipe diameter from the liquid junction 32 to the main heat exchanger 4a is larger than the pipe diameter from the liquid junction 32 to the slave heat exchanger 4b, the same refrigerant flow rate is applied to those pipes. Flows, the pressure loss on the main heat source unit 1a side decreases, and the flow rate flowing on the main heat source unit 1a side increases. Therefore, the flow rate of the two-phase refrigerant flowing through the main heat exchanger 4a increases, and the amount of liquid refrigerant that cannot be evaporated there increases, and a large amount of high-boiling-point refrigerant is present in the main liquid reservoir 5a.
【0066】さらに、圧損の小さい主熱交換器4a側で
は、液合流部32の圧力に対して圧力低下が小さいた
め、蒸発器として作用する主熱交換器4aの蒸発温度も
高くなる。蒸発温度が高い場合は、被冷却流体(空冷式
では空気、水冷式では水)との温度差が小さくなるので
蒸発能力も低下する。伴って、二相冷媒の液蒸発量も少
なくなるので、主熱交換器4aを出る冷媒の乾き度も小
さくなりやすくなる。その結果、主圧縮機か2aから吐
出される冷媒量よりもこの未蒸発液冷媒量が上回り、主
液溜部5a内の余剰冷媒量が増加する。Further, on the side of the main heat exchanger 4a having a small pressure loss, since the pressure drop is small compared with the pressure of the liquid junction 32, the evaporation temperature of the main heat exchanger 4a acting as an evaporator also becomes high. When the evaporation temperature is high, the temperature difference with the fluid to be cooled (air in the air-cooled type, water in the water-cooled type) becomes small, so that the evaporation capacity also decreases. Accordingly, the liquid evaporation amount of the two-phase refrigerant also decreases, so that the dryness of the refrigerant exiting the main heat exchanger 4a tends to decrease. As a result, the unevaporated liquid refrigerant amount exceeds the refrigerant amount discharged from the main compressor or 2a, and the surplus refrigerant amount in the main liquid reservoir 5a increases.
【0067】一方、液合流部32から主熱交換器4aま
での配管径が、液合流部32から従熱交換器4bまでの
配管径より細い場合では、上記と逆のことがいえる。す
なわち、液合流部32から各熱交換器(4a、4b)ま
での配管径がそれぞれ異なる冷媒回路において、主圧縮
機2aと従圧縮機2bの吐出する冷媒吐出量に見合った
割合で分流するという理想に、より近づけるためには、
各圧縮機(2a、2b)の冷媒吐出量に対し、液合流部
32から各熱交換器(4a、4b)出口までの圧力損失
を同等とし、各熱交換器(4a、4b)における蒸発温
度を同等にする必要がある。On the other hand, when the pipe diameter from the liquid junction 32 to the main heat exchanger 4a is smaller than the pipe diameter from the liquid junction 32 to the slave heat exchanger 4b, the opposite is true. That is, in the refrigerant circuits having different pipe diameters from the liquid junction 32 to the heat exchangers (4a, 4b), the flow is divided at a ratio corresponding to the refrigerant discharge amount discharged from the main compressor 2a and the sub-compressor 2b. To get closer to the ideal,
The pressure loss from the liquid junction 32 to the outlet of each heat exchanger (4a, 4b) is made equal to the refrigerant discharge amount of each compressor (2a, 2b), and the evaporation temperature in each heat exchanger (4a, 4b) Need to be equivalent.
【0068】そこで、実施の形態2においては、主圧縮
機2aと従圧縮機2bの冷媒吐出量に見合った適切な量
で冷媒を分流するために、主流量制御弁8aと従流量制
御弁8bとを備えている。これらの主流量制御弁8a、
従流量制御弁8bを調整することで、実施の形態2にか
かる冷媒回路では、主圧縮機1aと従圧縮機1bの吐出
する冷媒吐出量に見合った割合での冷媒の分流、すなわ
ち、均液を実現している。Therefore, in the second embodiment, the main flow control valve 8a and the sub flow control valve 8b are used to divide the refrigerant in an appropriate amount corresponding to the refrigerant discharge amount of the main compressor 2a and the sub compressor 2b. And These main flow control valves 8a,
By adjusting the sub flow control valve 8b, in the refrigerant circuit according to the second embodiment, the refrigerant is divided at a ratio commensurate with the refrigerant discharge amount discharged from the main compressor 1a and the sub compressor 1b, that is, the liquid equalization. Has been realized.
【0069】このように、本発明にかかる冷凍空調装置
において、非共沸混合冷媒を用いた複数台の熱源機を組
合わせて大容量の熱源機を構成する冷媒回路では、各熱
源機(1a、1b)にそれぞれ流量制御弁(8a、8
b)を具備したことにより、各熱源機に流す冷媒の循環
量を調整できるようになる。これにより、余剰冷媒の偏
在が解消され、より信頼性の高い冷凍空調装置が得られ
る。As described above, in the refrigeration / air-conditioning apparatus according to the present invention, in the refrigerant circuit constituting a large-capacity heat source unit by combining a plurality of heat source units using a non-azeotropic mixed refrigerant, each heat source unit (1a , 1b) with flow control valves (8a, 8
By providing b), the amount of circulation of the refrigerant flowing through each heat source device can be adjusted. Thereby, the uneven distribution of the surplus refrigerant is eliminated, and a more reliable refrigeration / air-conditioning apparatus can be obtained.
【0070】なお、実施の形態2においては、主熱源機
1aに主流量制御弁8aを備え、従熱源機1bに従流量
制御弁8bを備える構成としているが、例えば、図6の
応用例に示すように、少なくともいずれか一方の熱源機
だけに、流量制御弁を備える構成としてもよい。また、
流量制御弁の大型化を抑止する目的で、流量制御弁と絞
り装置を並列に用いてもよい。また、組成検知部6は、
実施の形態1と同様に各熱源機(図1に対応)、または
一方の熱源機(図4に対応)に備える構成としてもよい
し、あるいは、従来のように、組成検知部6を備えてい
ない構成としてもよい。In the second embodiment, the main heat source unit 1a is provided with the main flow control valve 8a and the sub heat source unit 1b is provided with the flow control valve 8b. However, for example, in the application example of FIG. As shown, at least one of the heat source devices may be provided with a flow control valve. Also,
For the purpose of suppressing an increase in the size of the flow control valve, a flow control valve and a throttle device may be used in parallel. In addition, the composition detection unit 6
As in the first embodiment, each heat source unit (corresponding to FIG. 1) or one of the heat source units (corresponding to FIG. 4) may be provided, or a composition detecting unit 6 may be provided as in the related art. There may be no configuration.
【0071】実施の形態3.図7は、本発明にかかる冷
凍空調装置の冷媒回路図の実施の形態3を示す図であ
る。この冷媒回路も、実施の形態1および2と同様に、
非共沸混合冷媒を用いた複数台の熱源機を組み合わせて
大容量の熱源機を構成するものである。Embodiment 3 FIG. 7 is a diagram showing Embodiment 3 of the refrigerant circuit diagram of the refrigeration / air-conditioning apparatus according to the present invention. This refrigerant circuit is also similar to the first and second embodiments,
A large-capacity heat source unit is constituted by combining a plurality of heat source units using a non-azeotropic mixed refrigerant.
【0072】図7において、冷凍空調装置内の冷媒回路
構成、および冷媒の流れ(動作)については、実施の形
態1、および実施の形態2にて説明した構成および動作
と基本的に同様であるため、同一の構成には同一の符号
を付して説明を省略する。実施の形態3では、主熱源機
1aの主四方切換弁3aから主熱交換器4aの間に第3
の主温度検知部9aを備え、さらに、従熱源機1bの従
四方切換弁3bから従熱交換器4bの間に第3の従温度
検知部9bを備えている点で、実施の形態2と異なって
いる。In FIG. 7, the configuration of the refrigerant circuit and the flow (operation) of the refrigerant in the refrigeration / air-conditioning apparatus are basically the same as those described in the first and second embodiments. Therefore, the same components are denoted by the same reference numerals, and description thereof is omitted. In the third embodiment, the third heat exchanger 4a is provided between the main four-way switching valve 3a and the main heat exchanger 4a of the main heat source unit 1a.
The second embodiment differs from the second embodiment in that a third sub-temperature detector 9b is provided between the sub-four-way switching valve 3b and the sub-heat exchanger 4b of the sub-heat source unit 1b. Is different.
【0073】なお、図7において図示はしていないが、
主熱源機1a内の主低圧圧力検知部7aと第3の主温度
検知部9aをあわせて、主熱交換器過熱度演算装置10
aと呼び、同様に、従熱源機1b内の従低圧圧力検知部
7bと第3の従温度検知部9bをあわせて、従熱交換器
過熱度演算装置10bと呼ぶ。Although not shown in FIG. 7,
The main heat exchanger superheat degree calculating device 10 includes the main low-pressure pressure detecting section 7a and the third main temperature detecting section 9a in the main heat source unit 1a.
Similarly, the sub-low pressure detecting unit 7b and the third sub-temperature detecting unit 9b in the sub-heat source unit 1b are collectively referred to as a sub-heat exchanger superheat degree calculating device 10b.
【0074】ここでは、液合流部32から主熱交換器4
aまでの配管径が、液合流部20から従熱交換器4bま
での配管径より太い場合、すなわち、同じ冷媒循環量に
対して主熱源機1a側の方が圧損が小さく、主熱源機1
a側に余剰冷媒が多く遍在する場合を例として、各圧縮
機(1a、1b)の吐出する冷媒吐出量に見合った割合
で冷媒を分流する均液制御を説明する。Here, the main heat exchanger 4
is larger than the pipe diameter from the liquid junction 20 to the sub heat exchanger 4b, that is, the pressure loss on the main heat source unit 1a side is smaller for the same refrigerant circulation amount, and the main heat source unit 1
An example of a case where a large amount of surplus refrigerant is ubiquitous on the a side will be described as an example of liquid leveling control in which refrigerant is diverted at a ratio commensurate with the refrigerant discharge amount discharged from each compressor (1a, 1b).
【0075】図8は、実施の形態3による均液制御を示
す均液制御ブロック図の一例である。実施の形態2にお
いて説明したように、均液制御を行うためには、各圧縮
機(2a、2b)の冷媒循環量(吐出量)に対し、液合
流部32から各熱交換器(4a、4b)出口までの圧力
損失、すなわち、過熱度を同等とすればよい。そこで、
主熱交換器過熱度演算装置10aは、主低圧圧力検知部
7aにて検知した低圧圧力と、第3の主温度検知部9a
にて検知した温度とから、主熱交換器4aの過熱度SH
aを演算する。FIG. 8 is an example of a liquid level control block diagram showing liquid level control according to the third embodiment. As described in the second embodiment, in order to perform the liquid leveling control, the refrigerant circulating amount (discharge amount) of each compressor (2a, 2b) is changed from the liquid junction 32 to each of the heat exchangers (4a, 4b) The pressure loss to the outlet, that is, the degree of superheat may be made equal. Therefore,
The main heat exchanger superheat degree calculation device 10a is configured to detect the low pressure detected by the main low pressure detection unit 7a and the third main temperature detection unit 9a.
The superheat degree SH of the main heat exchanger 4a
a is calculated.
【0076】同様に、従熱交換器過熱度演算装置10b
は、従低圧圧力検知部7bにて検知した低圧圧力と、第
3の従温度検知部9bにて検知した温度とから、従熱交
換器4bの過熱度SHbを演算する。そして、この二つ
の過熱度SHa、SHbの絶対差が予め設定された値よ
りも小さい場合には(図8、S1、Yes)、このまま
運転を継続する(S2)が、大きい場合には(S1、N
o)、後述する均液制御を行う(S3)。Similarly, the subheat exchanger superheat degree calculating device 10b
Calculates the degree of superheat SHb of the sub heat exchanger 4b from the low pressure detected by the sub low pressure detector 7b and the temperature detected by the third sub temperature detector 9b. When the absolute difference between the two superheat degrees Sha and SHb is smaller than a preset value (FIG. 8, S1, Yes), the operation is continued as it is (S2), but when it is large (S1). , N
o), liquid leveling control described below is performed (S3).
【0077】図9は、各圧縮機(2a、2b)の冷媒循
環量と、圧力損失、蒸発温度、熱交換器過熱度、または
液溜内液量の関係図(それぞれ(a)、(b)、
(c)、(d)に相当)を示す。例えば、主熱交換器4
aの過熱度SHaと、従熱交換器4bの過熱度SHbと
の絶対差が予め設定された値よりも大きい場合、主熱源
機1aでは、それぞれの過熱度の差が小さくなるように
主流量制御弁8aを調整して(図9(c)のGra→G
ra´に相当)、主熱源1a側の圧損を増加させ(図9
(a)のGra→Gra´に相当)、蒸発温度を低下さ
せる(図9(b)のGra→Gra´に相当)。FIG. 9 is a diagram showing the relationship between the refrigerant circulation amount of each compressor (2a, 2b) and the pressure loss, the evaporation temperature, the degree of superheat of the heat exchanger, or the liquid amount in the liquid reservoir ((a), (b), respectively). ),
(Equivalent to (c) and (d)). For example, the main heat exchanger 4
When the absolute difference between the superheat degree SHa of the subheat exchanger a and the superheat degree SHb of the sub heat exchanger 4b is larger than a preset value, the main heat source unit 1a reduces the main flow rate so that the difference between the superheat degrees becomes smaller. Adjust the control valve 8a (Gra → G in FIG. 9C).
ra ′), and increases the pressure loss on the main heat source 1a side (FIG. 9).
(Equivalent to Gra → Gra ′), and the evaporation temperature is reduced (Equivalent to Gra → Gra ′ in FIG. 9B).
【0078】これにより、主熱源機1a側の過熱度、圧
損、および蒸発温度が、従熱源機1b側の過熱度、圧
損、および蒸発温度と、同等となり、均液制御が行われ
たことになる。すなわち、図9(d)に示すように、各
液溜部(5a、5b)内の液量が同等となり、各熱源機
に余剰冷媒の偏在がなくなることになる。As a result, the degree of superheat, pressure loss, and evaporation temperature of the main heat source unit 1a become equal to the degree of superheat, pressure loss, and evaporation temperature of the sub heat source unit 1b, and liquid leveling control is performed. Become. That is, as shown in FIG. 9D, the liquid amounts in the liquid reservoirs (5a, 5b) become equal, and the excess refrigerant is not unevenly distributed in each heat source unit.
【0079】このように、本実施の形態3にかかる冷凍
空調装置の冷媒回路では、主熱源機1a側よりも従熱源
機1b側の過熱度が大きい場合に、主流量制御弁8aを
各熱源機の過熱度の差が予め設定された値よりも小さく
なるまで閉弁し、従流量制御弁8bを開弁する。一方、
主熱源機1a側よりも従熱源機1b側の過熱度が小さい
場合には、主流量制御弁8aを各熱源機の過熱度の差が
予め設定された値よりも小さくなるまで開弁し、従流量
制御弁8bを閉弁する。これにより、余剰冷媒の偏在が
解消され、より信頼性の高い冷凍空調装置が得られる。As described above, in the refrigerant circuit of the refrigeration / air-conditioning apparatus according to the third embodiment, when the superheat degree of the sub heat source unit 1b is larger than that of the main heat source unit 1a, the main flow control valve 8a is connected to each heat source. The valve is closed until the difference in the degree of superheat of the machine becomes smaller than a preset value, and the dependent flow control valve 8b is opened. on the other hand,
When the superheat degree of the sub heat source unit 1b side is smaller than that of the main heat source unit 1a, the main flow control valve 8a is opened until the difference in superheat degree of each heat source unit becomes smaller than a preset value, The slave flow control valve 8b is closed. Thereby, the uneven distribution of the surplus refrigerant is eliminated, and a more reliable refrigeration / air-conditioning apparatus can be obtained.
【0080】なお、実施の形態3においては、主熱源機
1aに主流量制御弁8aを備え、従熱源機1bに従流量
制御弁8bを備える構成としているが、例えば、少なく
ともいずれか一方の熱源機だけに、流量制御弁を備える
構成としてもよい。In the third embodiment, the main heat source unit 1a is provided with the main flow control valve 8a and the sub heat source unit 1b is provided with the flow control valve 8b. For example, at least one of the heat sources It is good also as composition provided with a flow control valve only in a machine.
【0081】実施の形態4.図10は、本発明にかかる
冷凍空調装置の冷媒回路図の実施の形態4を示す図であ
る。この冷媒回路も、実施の形態1、2、および3と同
様に、非共沸混合冷媒を用いた複数台の熱源機を組み合
わせて大容量の熱源機を構成するものである。Embodiment 4 FIG. 10 is a diagram showing Embodiment 4 of a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to the present invention. This refrigerant circuit also constitutes a large-capacity heat source device by combining a plurality of heat source devices using a non-azeotropic mixed refrigerant similarly to the first, second, and third embodiments.
【0082】図10において、冷凍空調装置内の冷媒回
路構成、および冷媒の流れ(動作)については、実施の
形態1、2、および3にて説明した構成および動作と基
本的に同様であるため、同一の構成には同一の符号を付
して説明を省略する。実施の形態4では、主熱源機1a
の主熱交換機4aから液合流部32の間に第2の主液溜
部11aを備え、さらに、従熱源機1bの従熱交換機4
bから液合流部32の間に第2の従液溜部11bを備え
ている点で、実施の形態3の構成と異なっている。In FIG. 10, the refrigerant circuit configuration and the flow (operation) of the refrigerant in the refrigeration / air-conditioning apparatus are basically the same as those described in the first, second, and third embodiments. The same components are denoted by the same reference numerals and description thereof will be omitted. In the fourth embodiment, the main heat source unit 1a
A second main liquid reservoir 11a between the main heat exchanger 4a and the liquid junction 32, and further comprises a sub heat exchanger 4 of the sub heat source unit 1b.
The third embodiment is different from the third embodiment in that a second auxiliary liquid storage portion 11b is provided between the liquid junction portion 32 and the liquid junction portion 32b.
【0083】実施の形態3においては、先に説明したと
おり、主圧縮機2aと従圧縮機2bの冷媒吐出量に見合
った割合で冷媒を分流し、主熱源機1a内の主液溜部5
aおよび従熱源機1b内の従液溜部5bに、均等に余剰
冷媒を存在させ、冷媒の循環組成の変動を抑制してい
る。これに対し、実施の形態4は、第2の主液溜部11
aと第2の従液溜部11bを設けて、余剰冷媒が滞留し
がちな主液溜部5aおよび従液溜部5b内に余剰冷媒を
滞留させず、第2の主液溜部11aおよび第2の従液溜
部11b内に余剰冷媒を冷媒を常に流動状態に保持しな
がら一定量確保させることにより、冷媒の循環組成の変
動を抑制しようとするものである。これにより、適正な
運転状態を常時維持することが可能となる。In the third embodiment, as described above, the refrigerant is diverted at a ratio commensurate with the amount of refrigerant discharged from the main compressor 2a and the sub-compressor 2b, and the main liquid reservoir 5 in the main heat source unit 1a is divided.
The excess refrigerant is evenly present in the auxiliary liquid reservoir a and the auxiliary liquid reservoir 5b in the auxiliary heat source device 1b, thereby suppressing fluctuations in the circulation composition of the refrigerant. On the other hand, in the fourth embodiment, the second main liquid reservoir 11
a and the second auxiliary liquid reservoir 11b are provided so that the excess refrigerant does not accumulate in the main liquid reservoir 5a and the auxiliary liquid reservoir 5b where the excess refrigerant tends to accumulate. By keeping a certain amount of surplus refrigerant in the second auxiliary liquid reservoir 11b while always keeping the refrigerant in a fluidized state, it is intended to suppress fluctuations in the circulation composition of the refrigerant. This makes it possible to always maintain an appropriate operating state.
【0084】ここで、各液溜部(5a、5b)内に余剰
冷媒を滞留させず、第2の主液溜部11aおよび第2の
従液溜部11b内に常に流動状態である一定量の液冷媒
を確保することで、冷媒の循環組成の変動を抑制する制
御を、具体的に説明する。Here, the surplus refrigerant does not stay in each of the liquid reservoirs (5a, 5b), and a certain amount of fluid that is constantly flowing in the second main liquid reservoir 11a and the second auxiliary liquid reservoir 11b. The control for suppressing the fluctuation of the circulation composition of the refrigerant by securing the liquid refrigerant will be specifically described.
【0085】図11は、実施の形態4による均液制御、
すなわち、冷媒の循環組成の変動抑制制御を示す均液制
御ブロック図の一例である。実施の形態2および3にお
いて説明したように、均液制御を行うためには、各圧縮
機(2a、2b)の冷媒循環量(吐出量)に対し、液合
流部32から各熱交換器(4a、4b)出口までの圧力
損失、すなわち、過熱度を同等とすればよい。FIG. 11 shows liquid level control according to the fourth embodiment.
That is, it is an example of a liquid leveling control block diagram showing control for suppressing fluctuations in the circulation composition of the refrigerant. As described in the second and third embodiments, in order to perform liquid leveling control, the refrigerant circulating amount (discharge amount) of each of the compressors (2a, 2b) is changed from the liquid merging section 32 to each of the heat exchangers ( 4a, 4b) The pressure loss to the outlet, that is, the degree of superheat may be made equal.
【0086】そこで、主熱交換器過熱度演算装置10a
は、主低圧圧力検知部7aにて検知した低圧圧力と、第
3の主温度検知部9aにて検知した温度とから、主熱交
換器4aの過熱度SHaを演算する。同様に、従熱交換
器過熱度演算装置10bは、従低圧圧力検知部7bにて
検知した低圧圧力と、第3の従温度検知部9bにて検知
した温度とから、従熱交換器4bの過熱度SHbを演算
する。Therefore, the main heat exchanger superheat degree computing device 10a
Calculates the superheat degree SHA of the main heat exchanger 4a from the low pressure detected by the main low pressure detector 7a and the temperature detected by the third main temperature detector 9a. Similarly, the subheat exchanger superheat degree calculation device 10b calculates the temperature of the subheat exchanger 4b based on the low pressure detected by the sub low pressure detector 7b and the temperature detected by the third subtemperature detector 9b. The degree of superheat SHb is calculated.
【0087】そして、過熱度SHaが、予め設定してお
いた値Aよりも小さい場合には(図11、S11、N
o)、主流量制御弁8aを閉弁し(S12)、大きい場
合には(S11、Yes)、主流量制御弁8aを開弁す
る(S13)。同様に、過熱度SHbが、予め設定して
おいた値Aよりも小さい場合には(S14、No)、従
流量制御弁8bを閉弁し(S15)、大きい場合には
(S14、Yes)、従流量制御弁8bを開弁する(S
16)。When the superheat degree Sha is smaller than the preset value A (FIG. 11, S11, N
o), the main flow control valve 8a is closed (S12), and if larger (S11, Yes), the main flow control valve 8a is opened (S13). Similarly, when the superheat degree SHb is smaller than the preset value A (S14, No), the slave flow control valve 8b is closed (S15), and when it is larger (S14, Yes). Open the slave flow control valve 8b (S
16).
【0088】このように、本実施の形態4にかかる冷凍
空調装置の冷媒回路では、二つの過熱度SHa、SHb
が予め設定しておいた値Aよりも小さい場合でも、常に
各熱交換器(4a、4b)の出口において、過熱度(S
H)が確保され、主液溜部5aおよび従液溜部5b内に
余剰冷媒を滞留させない。これにより、循環冷媒の組成
変動を抑制でき、常時適正運転を行うことが可能とな
り、より信頼性の高い冷凍空調装置が得られる。As described above, in the refrigerant circuit of the refrigerating and air-conditioning apparatus according to the fourth embodiment, the two superheat degrees SHa and SHb
Is smaller than the preset value A, the degree of superheat (S) is always at the outlet of each heat exchanger (4a, 4b).
H) is secured, and the excess refrigerant does not stay in the main liquid reservoir 5a and the sub liquid reservoir 5b. As a result, the composition fluctuation of the circulating refrigerant can be suppressed, the proper operation can be performed at all times, and a more reliable refrigeration / air-conditioning apparatus can be obtained.
【0089】なお、実施の形態4においては、主熱交換
機4aと液合流部32の間に第2の主液溜部11aを備
え、従熱交換機4bと液合流部32の間に第2の従液溜
部11bを備える構成としているが、例えば、液合流部
32と利用側熱交換器21の間に第2の液溜部を備える
構成としてもよい。また、組成検知部6がない冷媒回路
においても実施可能である。In the fourth embodiment, a second main liquid reservoir 11a is provided between main heat exchanger 4a and liquid junction 32, and a second liquid reservoir 11a is provided between slave heat exchanger 4b and liquid junction 32. Although the configuration includes the subordinate liquid reservoir 11b, for example, a configuration in which a second liquid reservoir is provided between the liquid junction 32 and the use-side heat exchanger 21 may be used. Further, the present invention can also be implemented in a refrigerant circuit without the composition detection unit 6.
【0090】実施の形態5.図12は、本発明にかかる
冷凍空調装置の冷媒回路図の実施の形態5を示す図であ
る。この冷媒回路は、実施の形態1と同様に、非共沸混
合冷媒を用いた複数台の熱源機を組み合わせて大容量の
熱源機を構成するものである。Embodiment 5 FIG. 12 is a diagram showing Embodiment 5 of the refrigerant circuit diagram of the refrigeration / air-conditioning apparatus according to the present invention. As in the first embodiment, this refrigerant circuit combines a plurality of heat source devices using a non-azeotropic mixed refrigerant to constitute a large-capacity heat source device.
【0091】図12において、冷凍空調装置内の冷媒回
路構成、および冷媒の流れ(動作)については、実施の
形態1にて説明した構成および動作と基本的に同様であ
るため、同一の構成には同一の符号を付して説明を省略
する。実施の形態5では、主熱源機1aにおいて、主四
方切換弁3aと利用側熱交換器91との間に第1の主操
作弁12aを備え、さらに、主熱交換器4aと利用側熱
交換器91との間に第2の主操作弁13aを備えている
点と、従熱源機1bにおいて、従四方切換弁3bと利用
側熱交換器91との間に第1の従操作弁12bを備え、
さらに、従熱交換器4bと利用側熱交換器91との間に
第2の従操作弁13bを備えている点と、冷媒回収口1
4を備えている点で、実施の形態1の構成と異なってい
る。In FIG. 12, the configuration of the refrigerant circuit and the flow (operation) of the refrigerant in the refrigeration / air-conditioning apparatus are basically the same as those described in the first embodiment. Are denoted by the same reference numerals and description thereof is omitted. In the fifth embodiment, the main heat source unit 1a includes the first main operation valve 12a between the main four-way switching valve 3a and the use side heat exchanger 91, and further includes the main heat exchanger 4a and the use side heat exchange. A second main operating valve 13a between the second main operating valve 13a and the first sub-operating valve 12b between the four-way switching valve 3b and the use side heat exchanger 91 in the sub heat source unit 1b. Prepared,
Further, a point that a second slave valve 13b is provided between the slave heat exchanger 4b and the use side heat exchanger 91,
4 is different from the configuration of the first embodiment.
【0092】一般的に、冷媒回路内から冷媒を除去し、
冷媒回路の修復を行うような重サービスを行うような場
合、使用している冷媒がR22のような単一冷媒であれ
ば、冷凍空調装置では、単純にポンプダウンなどを実施
して、その冷媒を回収する。そして、冷媒回路の修復
後、その回収した冷媒を再利用する。しかし、使用して
いる冷媒がR407Cのような非共沸混合冷媒であれ
ば、それは、それぞれ沸点の異なる冷媒が混合されてい
るため、単純に回収しても再利用が困難である。Generally, the refrigerant is removed from the refrigerant circuit,
In the case of performing a heavy service such as repairing the refrigerant circuit, if the refrigerant used is a single refrigerant such as R22, the refrigeration air conditioner simply performs pump down or the like and executes the refrigerant. Collect. Then, after repairing the refrigerant circuit, the recovered refrigerant is reused. However, if the refrigerant used is a non-azeotropic mixed refrigerant such as R407C, it is difficult to reuse even if it is simply recovered because refrigerants having different boiling points are mixed.
【0093】再利用が困難となる理由としては、例え
ば、暖房運転時に余剰冷媒が発生すると、循環する冷媒
中には、低沸点冷媒の比率が高い状態となり、滞留する
余剰冷媒中には、高沸点冷媒の比率が高い状態となるこ
と、があげられる。この場合、低圧液ラインから循環冷
媒を回路系外へ回収しても、その回収した冷媒は、低沸
点冷媒の比率が高い状態の組成となっており、すなわ
ち、冷媒組成が変化しており、仮にその冷媒を再利用し
た場合、通常の運転特性が確保できなくなる。The reason that it is difficult to recycle is that, for example, when surplus refrigerant is generated during the heating operation, the ratio of the low-boiling refrigerant in the circulating refrigerant becomes high, and the excess refrigerant stagnating becomes high. A state in which the ratio of the boiling point refrigerant is high. In this case, even if the circulating refrigerant is recovered from the low-pressure liquid line to the outside of the circuit system, the recovered refrigerant has a composition in which the ratio of the low-boiling refrigerant is high, that is, the refrigerant composition has changed, If the refrigerant is reused, normal operating characteristics cannot be secured.
【0094】そこで、実施の形態5では、循環組成が変
化しない運転である、例えば、冷房運転(余剰冷媒が少
なく組成変化しにくい運転)などで、運転中の各熱源機
(1a、1b)の各熱交換器(4a、4b)と利用側熱
交換器21との間の液ラインに設けた冷媒回収口14か
ら、予め真空引きしておいた空タンクに冷媒を回収す
る。このようにすることで、組成変化することなしに冷
媒を回収できるため、冷媒回路の修復後、その回収した
冷媒を再利用することが可能となる。Therefore, in the fifth embodiment, the operation of each of the heat source units (1a, 1b) during the operation in which the circulation composition does not change, for example, the cooling operation (the operation in which the excess refrigerant is less likely to change the composition) is performed. Refrigerant is recovered from a refrigerant recovery port 14 provided in a liquid line between each heat exchanger (4a, 4b) and the use-side heat exchanger 21 to an empty tank that has been evacuated in advance. By doing so, the refrigerant can be recovered without a change in composition, and thus, after the refrigerant circuit is restored, the recovered refrigerant can be reused.
【0095】また、回収中、冷媒不足による運転不能状
態となり、十分に冷媒回収ができない場合でも、運転停
止後、前記第2の操作弁10a,10bを閉じることで
液配管中の組成変化していない再利用可能な冷媒を回収
することができる。Further, during the recovery, the operation becomes impossible due to the shortage of the refrigerant, and even if the refrigerant cannot be sufficiently recovered, the composition in the liquid pipe is changed by closing the second operation valves 10a and 10b after the operation is stopped. No reusable refrigerant can be recovered.
【0096】このように、本実施の形態5にかかる冷凍
空調装置の冷媒回路では、冷媒組成を変化させることな
しに冷媒を回収することと、その回収した冷媒を再利用
することを可能とする。これにより、冷媒回路内から冷
媒を除去し、冷媒回路の修復を行うような場合でも、修
復後、新しい冷媒を必要としないため、コストダウンを
実現する冷凍空調装置が得られる。さらに、回収した冷
媒を廃棄処理しないため、すなわち、再利用するため、
地球温暖化等の環境問題を解決することもできる。As described above, in the refrigerant circuit of the refrigeration / air-conditioning apparatus according to the fifth embodiment, it is possible to collect the refrigerant without changing the refrigerant composition and to reuse the collected refrigerant. . As a result, even when the refrigerant is removed from the refrigerant circuit and the refrigerant circuit is repaired, a new refrigerant is not required after the repair, so that a refrigeration / air-conditioning apparatus that realizes cost reduction can be obtained. Furthermore, in order not to dispose of the recovered refrigerant, that is, to reuse it,
It can also solve environmental problems such as global warming.
【0097】なお、本実施の形態5では、組成検知部6
がない冷媒回路においても、冷媒組成を変化させること
なしに冷媒を回収することと、その回収した冷媒を再利
用することを可能とする。また、複数の熱源機(本実施
の形態では、1a、1bに相当)ではなく単一の熱源機
にて構成される冷媒回路や、実施の形態2、3、4の構
成を有する冷媒回路においても、実施の形態5と同様の
構成を備えることにより、同様の効果が得られる。In the fifth embodiment, the composition detector 6
Even in a refrigerant circuit having no refrigerant, it is possible to recover the refrigerant without changing the refrigerant composition and to reuse the recovered refrigerant. Further, in a refrigerant circuit configured by a single heat source device instead of a plurality of heat source devices (corresponding to 1a and 1b in the present embodiment) or a refrigerant circuit having the configuration of the second, third, and fourth embodiments. Also, by providing the same configuration as in the fifth embodiment, the same effect can be obtained.
【0098】実施の形態6.図13は、本発明にかかる
冷凍空調装置の冷媒回路図の実施の形態6を示す図であ
る。この冷媒回路も、他の実施の形態と同様に、非共沸
混合冷媒を用いた複数台の熱源機を組み合わせて大容量
の熱源機を構成するものである。Embodiment 6 FIG. FIG. 13 is a diagram showing Embodiment 6 of the refrigerant circuit diagram of the refrigeration / air-conditioning apparatus according to the present invention. This refrigerant circuit also constitutes a large-capacity heat source device by combining a plurality of heat source devices using a non-azeotropic mixed refrigerant as in the other embodiments.
【0099】図13において、冷凍空調装置内の冷媒回
路構成、および冷媒の流れ(動作)については、実施の
形態1および5にて説明した構成および動作と基本的に
同様であるため、同一の構成には同一の符号を付して説
明を省略する。実施の形態6では、利用側流量制御弁2
2を調整可能な流量制御弁制御部15を備えている点
で、実施の形態5の構成と異なっている。In FIG. 13, the refrigerant circuit configuration and the flow (operation) of the refrigerant in the refrigeration / air-conditioning apparatus are basically the same as the configurations and operations described in the first and fifth embodiments. The configuration is denoted by the same reference numeral, and the description is omitted. In the sixth embodiment, the use side flow control valve 2
The second embodiment is different from the fifth embodiment in that a flow control valve control unit 15 capable of adjusting the pressure 2 is provided.
【0100】実施の形態6において、冷媒回路内から冷
媒を除去し、冷媒回路の修復を行うような重サービスを
行うような場合、先に説明した実施の形態5の回収方法
を実施すれば、非共沸混合冷媒の場合においても、修復
後、冷媒の再利用が可能となる。しかし、この回収方法
では、真空引きした空タンクの用意などが必要となり、
回収できる冷媒量に限界がある。一方、各熱源機(1
a、1b)の修復時は、熱源機内から冷媒を回収するだ
けでよいことから、回収する冷媒は、熱源機以外へ組成
変化させることなく移動させるだけでよい。In the sixth embodiment, when performing a heavy service such as removing the refrigerant from the refrigerant circuit and repairing the refrigerant circuit, if the recovery method of the fifth embodiment described above is implemented, Even in the case of a non-azeotropic mixed refrigerant, the refrigerant can be reused after repair. However, this collection method requires the preparation of an empty tank that has been evacuated,
There is a limit to the amount of refrigerant that can be recovered. On the other hand, each heat source unit (1
At the time of repairing a and 1b), it is only necessary to recover the refrigerant from inside the heat source device. Therefore, the recovered refrigerant only needs to be moved to other than the heat source device without changing the composition.
【0101】そこで、実施の形態6では、まず、循環組
成が変化しない運転である、例えば冷房運転(余剰冷媒
が少なく組成変化しにくい運転)を実施し、主操作弁1
2aおよび従操作弁12bを閉弁する。つぎに、流量制
御弁制御手段15の制御により、通常よりも利用側流量
制御弁22をゆるめに制御し、利用側熱交換器21の出
口にて湿り気味に制御を行う。最後に、回収運転時の低
圧圧力が真空近辺となるか、液ラインのサブクールが十
分につくか、または各液溜部(5a、5b)内の液量が
ないなどの情報により、各熱源機(1a、1b)から冷
媒回収が完了したということを検知したところで、第2
の主操作弁10aおよび第2の従操作弁10bを閉弁す
る。Therefore, in the sixth embodiment, first, an operation in which the circulation composition does not change, for example, a cooling operation (operation in which the amount of excess refrigerant is small and the composition does not easily change) is performed.
2a and the slave valve 12b are closed. Next, under the control of the flow control valve control means 15, the use side flow control valve 22 is controlled more loosely than usual, and the outlet of the use side heat exchanger 21 is controlled to be slightly wet. Finally, each heat source unit is determined based on information such as whether the low pressure during the recovery operation is near vacuum, whether the liquid line is sufficiently subcooled, or if there is no liquid amount in each of the liquid reservoirs (5a, 5b). When it is detected from (1a, 1b) that the refrigerant recovery has been completed, the second
The main operation valve 10a and the second slave operation valve 10b are closed.
【0102】このように、本実施の形態6にかかる冷凍
空調装置の冷媒回路では、上記の回収方法により、熱源
機内の冷媒組成を変化させることなく、ほぼ全て冷媒
を、液ライン、利用熱交換器21内、またはガスライン
に回収することができる。また、各熱源機の修復が完了
し、真空引きを終えた後、第1の主操作弁12a、第2
の主操作弁13a、第1の従操作弁12b、および第2
の従操作弁13aを開弁することで、冷媒の再チャージ
が可能となり、冷媒の再利用率も増大する。As described above, in the refrigerant circuit of the refrigeration / air-conditioning apparatus according to the sixth embodiment, almost all of the refrigerant is transferred to the liquid line and to the heat exchange using the above-described recovery method without changing the refrigerant composition in the heat source device. It can be collected in the vessel 21 or in a gas line. After the restoration of each heat source unit is completed and the evacuation is completed, the first main operation valve 12a and the second
Of the main operation valve 13a, the first slave operation valve 12b, and the second
, The refrigerant can be recharged, and the refrigerant recycling rate increases.
【0103】これにより、冷媒回路内から冷媒を除去
し、冷媒回路の修復を行うような場合でも、修復後、新
しい冷媒を必要としないため、コストダウンを実現する
とともに、手軽に冷媒の再チャージができることによ
り、サービス時間の短縮化を実現する冷凍空調装置が得
られる。さらに、回収した冷媒を廃棄処理しないため、
すなわち、再利用するため、地球温暖化等の環境問題を
解決することもできる。As a result, even when the refrigerant circuit is removed from the refrigerant circuit and the refrigerant circuit is repaired, a new refrigerant is not required after the repair, so that the cost can be reduced and the refrigerant can be easily recharged. By doing so, a refrigeration and air-conditioning system that can shorten service time can be obtained. Furthermore, since the collected refrigerant is not disposed of,
That is, environmental problems such as global warming can be solved by reuse.
【0104】なお、本実施の形態6では、組成検知部6
がない冷媒回路においても、冷媒組成を変化させること
なしに冷媒を回収することと、その回収した冷媒を再利
用することを可能とする。また、複数の熱源機(本実施
の形態では、1a、1bに相当)ではなく単一の熱源機
にて構成される冷媒回路や、実施の形態2、3、4の構
成を有する冷媒回路においても、実施の形態6と同様の
構成を備えることにより、同様の効果が得られる。In the sixth embodiment, the composition detector 6
Even in a refrigerant circuit having no refrigerant, it is possible to recover the refrigerant without changing the refrigerant composition and to reuse the recovered refrigerant. Further, in a refrigerant circuit configured by a single heat source device instead of a plurality of heat source devices (corresponding to 1a and 1b in the present embodiment) or a refrigerant circuit having the configuration of the second, third, and fourth embodiments. Also, by providing the same configuration as in the sixth embodiment, the same effect can be obtained.
【0105】実施の形態7.図14および図15は、本
発明にかかる冷凍空調装置の冷媒回路図の実施の形態7
を示す図である。この冷媒回路も、他の実施の形態と同
様に、非共沸混合冷媒を用いた複数台の熱源機を組み合
わせて大容量の熱源機を構成するものである。なお、図
14は、冷房運転時の冷媒の流れを示した冷媒回路図で
あり、図15は、暖房運転時の冷媒の流れを示した冷媒
回路図である。Embodiment 7 FIG. 14 and 15 show a refrigeration and air-conditioning apparatus according to a seventh embodiment of the present invention.
FIG. This refrigerant circuit also constitutes a large-capacity heat source device by combining a plurality of heat source devices using a non-azeotropic mixed refrigerant as in the other embodiments. FIG. 14 is a refrigerant circuit diagram showing the flow of the refrigerant during the cooling operation, and FIG. 15 is a refrigerant circuit diagram showing the flow of the refrigerant during the heating operation.
【0106】図14および図15において、冷凍空調装
置内の冷媒回路構成、および冷媒の流れ(動作)につい
ては、実施の形態1、5、および6にて説明した構成お
よび動作と基本的に同様であるため、同一の構成には同
一の符号を付して説明を省略する。14 and 15, the refrigerant circuit configuration and the flow (operation) of the refrigerant in the refrigerating air conditioner are basically the same as those described in the first, fifth and sixth embodiments. Therefore, the same components are denoted by the same reference numerals and description thereof will be omitted.
【0107】実施の形態7では、主熱源機1aにおい
て、主四方切換弁3aと利用側熱交換器21との間に第
1の主サービスポート16aを備え、主熱交換器4aと
利用側熱交換器21との間に第2の主サービスポート1
7aを備え、さらに、主液溜部5aの底部に第3の主サ
ービスポート18aを備えている点と、従四方切換弁3
bと利用側熱交換器21との間に第1の従サービスポー
ト16bを備え、従熱交換器4bと利用側熱交換器21
との間に第2の従サービスポート17bを備え、さら
に、従液溜部5bの底部に第3の従サービスポート18
bを備えている点で、実施の形態6の構成と異なってい
る。In the seventh embodiment, in the main heat source unit 1a, the first main service port 16a is provided between the main four-way switching valve 3a and the use side heat exchanger 21, and the main heat exchanger 4a and the use side heat The second main service port 1 with the exchange 21
7a, and a third main service port 18a at the bottom of the main liquid reservoir 5a.
b and a use side heat exchanger 21, a first sub service port 16 b is provided between the sub heat exchanger 4 b and the use side heat exchanger 21.
And a second sub service port 18b at the bottom of the sub liquid reservoir 5b.
b is different from the configuration of the sixth embodiment.
【0108】実施の形態7において、冷媒回路内から冷
媒を除去し、冷媒回路の修復を行うような重サービスを
行うような場合は、各熱源機(1a、1b)の修復時、
熱源機内から冷媒を回収するだけでよいことから、回収
する冷媒は、熱源機以外へ組成変化させることなく移動
させるだけでよい。In the seventh embodiment, when performing a heavy service such as removing the refrigerant from the refrigerant circuit and repairing the refrigerant circuit, when the heat source units (1a, 1b) are repaired,
Since it is only necessary to recover the refrigerant from the heat source device, the recovered refrigerant only needs to be moved to a device other than the heat source device without changing the composition.
【0109】この実施の形態7では、まず第1の回収方
法として、例えば、主熱源機1a側から冷媒を回収する
場合について説明する。なお、従熱源機1bから冷媒を
回収する場合においても同様である。まず、循環組成が
変化しない運転として、例えば、主熱源機1a側が運転
を停止し、従熱源側1bが冷房運転(余剰冷媒が少なく
組成変化しにくい運転)を実施し(図14参照)、第1
の主操作弁12aおよび第2の主操作弁13aを閉弁す
る。つぎに、第3のサービスポート18aと、第1の従
サービスポート16bとを耐圧用のチューブ、または銅
配管などの連結管19で連結する。In the seventh embodiment, as a first recovery method, for example, a case in which a refrigerant is recovered from the main heat source unit 1a will be described. The same applies to the case where the refrigerant is recovered from the subordinate heat source device 1b. First, as the operation in which the circulation composition does not change, for example, the main heat source unit 1a side stops the operation, and the sub heat source side 1b performs a cooling operation (operation in which the excess refrigerant is less likely to change in composition) (see FIG. 14). 1
The main operation valve 12a and the second main operation valve 13a are closed. Next, the third service port 18a and the first slave service port 16b are connected by a connection tube 19 such as a tube for pressure resistance or a copper pipe.
【0110】この状態で、被回収側の主熱源機1a内の
冷媒は、図14の実線矢印に示すように、液溜部5a底
部の第3の主サービスポート18aから連結管15を経
て冷媒回路の低圧ラインである、第1の従サービスポー
ト16bに吸引され、ほぼ全て、従熱源機1b内、液ラ
イン、または利用熱交換器21内に回収できる。回収完
了後は、第3の主サービスポート18aと第1の従サー
ビスポート16bとを連結していた連結管19を除去
し、主熱源機1aの修復を行う。修復中、主熱源機1a
側の第1の主操作弁12aと第2の主操作弁13aをそ
のまま閉弁しておけば、従熱源機1bのみで応急的に継
続運転が可能となる。最後に、主熱源機1aの修復が完
了し、真空引きを終えた後、第1の主操作弁12aおよ
び第2の主操作弁13aを開弁する。In this state, the refrigerant in the main heat source unit 1a on the recovery side flows from the third main service port 18a at the bottom of the liquid reservoir 5a through the connecting pipe 15 as shown by the solid arrow in FIG. It is sucked into the first sub service port 16b, which is a low pressure line of the circuit, and can be almost entirely recovered in the sub heat source unit 1b, the liquid line, or the utilization heat exchanger 21. After completion of the recovery, the connecting pipe 19 connecting the third main service port 18a and the first sub service port 16b is removed, and the main heat source unit 1a is repaired. During restoration, main heat source unit 1a
If the first main control valve 12a and the second main control valve 13a on the side are closed as they are, the continuous operation can be performed in an emergency only by the sub heat source unit 1b. Finally, after the restoration of the main heat source unit 1a is completed and the evacuation is completed, the first main operation valve 12a and the second main operation valve 13a are opened.
【0111】つぎに、余剰冷媒の発生によって循環組成
が変化しやすい暖房運転による第2の冷媒回収方法を説
明する(図15参照)。まず、主熱源1a側が運転を停
止し、従熱源側1bが暖房運転を実施し、第1の主操作
弁12aおよび第2の主操作弁13aを閉弁する。つぎ
に、第3のサービスポート18aと、第2の従サービス
ポート17bとを耐圧用のチューブ、または銅配管など
の連結管15で連結する。Next, a description will be given of a second refrigerant recovery method by a heating operation in which the circulation composition is likely to change due to the generation of surplus refrigerant (see FIG. 15). First, the main heat source 1a stops operating, the sub heat source 1b performs heating operation, and closes the first main operation valve 12a and the second main operation valve 13a. Next, the third service port 18a and the second slave service port 17b are connected by a connection tube 15 such as a tube for pressure resistance or a copper pipe.
【0112】この状態で、被回収側の主熱源機1a内の
冷媒は、図15の点線矢印に示すように、液溜部5a底
部の第3のサービスポート18aから連結管15を経て
冷媒回路の低圧ラインである第2の従サービスポート1
7bに吸引され、ほぼ全て、従熱源機1b内、液ライ
ン、または利用熱交換器21内に回収できる。回収完了
後は、第3のサービスポート18aと第2の従サービス
ポート17bとを連結していた連結管19を除去し、主
熱源機1aの修復を行う。修復中、主熱源機1a側の第
1の主操作弁12aと第2の主操作弁13aをそのまま
閉弁しておけば、従熱源機1bのみで応急的に継続運転
が可能となる。最後に、主熱源機1aの修復が完了し、
真空引きを終えた後、第1の主操作弁12aおよび第2
の主操作弁13aを開弁する。In this state, the refrigerant in the main heat source unit 1a on the recovery side flows from the third service port 18a at the bottom of the liquid reservoir 5a through the connecting pipe 15 to the refrigerant circuit as shown by the dotted arrow in FIG. Second service port 1 which is a low pressure line of
7b, and almost all can be collected in the subordinate heat source unit 1b, the liquid line, or the utilization heat exchanger 21. After the collection is completed, the connecting pipe 19 connecting the third service port 18a and the second slave service port 17b is removed, and the main heat source unit 1a is repaired. During the restoration, if the first main operation valve 12a and the second main operation valve 13a on the main heat source unit 1a side are closed as they are, the continuous operation can be performed with only the sub heat source unit 1b. Finally, the repair of the main heat source unit 1a is completed,
After the evacuation is completed, the first main operation valve 12a and the second
The main operation valve 13a is opened.
【0113】このように、本実施の形態7にかかる冷凍
空調装置の冷媒回路では、上記の第1および第2の回収
方法により、熱源機内の冷媒組成を変化させることな
く、ほぼ全て冷媒を、液ライン、利用熱交換器21内、
またはガスラインに回収することができる。また、各熱
源機の修復が完了し、真空引きを終えた後、第1の主操
作弁12a、第2の主操作弁13a、第1の従操作弁1
2b、および第2の従操作弁13aを開弁することで、
冷媒の再チャージが可能となり、冷媒の再利用率も増大
する。As described above, in the refrigerant circuit of the refrigeration / air-conditioning apparatus according to the seventh embodiment, almost all of the refrigerant can be removed by the first and second recovery methods without changing the refrigerant composition in the heat source unit. Liquid line, use heat exchanger 21,
Or it can be collected in a gas line. After the restoration of each heat source unit is completed and the evacuation is completed, the first main operation valve 12a, the second main operation valve 13a, and the first slave operation valve 1
By opening 2b and the second slave valve 13a,
The refrigerant can be recharged, and the recycling rate of the refrigerant increases.
【0114】これにより、冷媒回路内から冷媒を除去
し、冷媒回路の修復を行うような場合でも、修復後、新
しい冷媒を必要としないため、コストダウンを実現する
とともに、手軽に冷媒の再チャージができることによ
り、サービス時間の短縮化を実現でき、さらに、サービ
ス時の応急運転を可能とする冷凍空調装置が得られる。
さらに、回収した冷媒を廃棄処理しないため、すなわ
ち、再利用するため、地球温暖化等の環境問題を解決す
ることもできる。Thus, even when the refrigerant is removed from the refrigerant circuit and the refrigerant circuit is repaired, a new refrigerant is not required after the repair, so that the cost can be reduced and the refrigerant can be easily recharged. Thus, a refrigeration / air-conditioning apparatus that can shorten service time and can perform emergency operation during service can be obtained.
Further, since the collected refrigerant is not discarded, that is, reused, environmental problems such as global warming can be solved.
【0115】なお、本実施の形態7では、組成検知部6
がない冷媒回路においても、冷媒組成を変化させること
なしに冷媒を回収することと、その回収した冷媒を再利
用することを可能とする。また、複数の熱源機(本実施
の形態では、1a、1bに相当)ではなく単一の熱源機
にて構成される冷媒回路や、実施の形態2、3、4の構
成を有する冷媒回路においても、実施の形態6と同様の
構成を備えることにより、同様の効果が得られる。In the seventh embodiment, the composition detector 6
Even in a refrigerant circuit having no refrigerant, it is possible to recover the refrigerant without changing the refrigerant composition and to reuse the recovered refrigerant. Further, in a refrigerant circuit configured by a single heat source device instead of a plurality of heat source devices (corresponding to 1a and 1b in the present embodiment) or a refrigerant circuit having the configuration of the second, third, and fourth embodiments. Also, by providing the same configuration as in the sixth embodiment, the same effect can be obtained.
【0116】[0116]
【発明の効果】以上、説明したとおり、この発明によれ
ば、循環組成検知装置を具備したことにより、常に真の
冷媒循環組成を検知することができる。これにより、例
えば、暖房時の室内機への冷媒寝込みや、各熱源機への
余剰冷媒寝込みなどの要因により冷媒の偏在が発生し、
冷媒回路内を循環する冷媒の組成が変化した場合でも、
または、冷媒漏れ、冷媒誤封入などの要因により冷媒の
組成が変化した場合でも、その変化を検知して組成を是
正することができるという効果を奏する。As described above, according to the present invention, the provision of the circulating composition detecting device makes it possible to always detect the true refrigerant circulating composition. Thereby, for example, refrigerant stagnation in the indoor unit at the time of heating, or excess refrigerant stagnation in each heat source unit causes uneven distribution of the refrigerant,
Even if the composition of the refrigerant circulating in the refrigerant circuit changes,
Alternatively, even when the composition of the refrigerant changes due to factors such as refrigerant leakage and refrigerant mis-filling, the change can be detected and the composition can be corrected.
【0117】つぎの発明によれば、各熱源機にそれぞれ
流量制御弁を具備したことにより、各熱源機に流す冷媒
の循環量を調整できるようになる。これにより、余剰冷
媒の偏在を解消できるという効果を奏する。According to the next invention, since each heat source unit is provided with a flow control valve, the circulation amount of the refrigerant flowing through each heat source unit can be adjusted. Thereby, there is an effect that the uneven distribution of the surplus refrigerant can be eliminated.
【0118】つぎの発明によれば、主熱源機側よりも従
熱源機側の過熱度が大きい場合に、主流量制御弁を各熱
源機の過熱度の差が予め設定された値よりも小さくなる
まで閉弁し、従流量制御弁を開弁する。一方、主熱源機
側よりも従熱源機側の過熱度が小さい場合には、主流量
制御弁を各熱源機の過熱度の差が予め設定された値より
も小さくなるまで開弁し、従流量制御弁を閉弁する。こ
れにより、自動的に余剰冷媒の偏在を解消できるという
効果を奏する。According to the next invention, when the superheat degree of the slave heat source unit is larger than that of the main heat source unit, the difference of the superheat degree of each heat source unit is set smaller than the preset value. Close the valve and open the slave flow control valve. On the other hand, when the degree of superheat on the slave heat source unit side is smaller than that on the main heat source unit side, the main flow control valve is opened until the difference in the degree of superheat between the respective heat source units becomes smaller than a preset value. Close the flow control valve. Thereby, there is an effect that the uneven distribution of the surplus refrigerant can be automatically eliminated.
【0119】つぎの発明によれば、二つの過熱度SH
a、SHbが予め設定しておいた所定値Aよりも小さい
場合でも、常に各熱交換器の出口において、過熱度(S
H)が確保され、主液溜部および従液溜部内に余剰冷媒
を滞留させない。これにより、循環冷媒の組成変動を抑
制でき、常時適正運転を行うことができるという効果を
奏する。According to the next invention, the two degrees of superheat SH
Even if a and SHb are smaller than a predetermined value A set in advance, the degree of superheat (S
H) is ensured, and the excess refrigerant is not retained in the main liquid reservoir and the sub liquid reservoir. As a result, there is an effect that the composition fluctuation of the circulating refrigerant can be suppressed and the proper operation can always be performed.
【0120】つぎの発明によれば、冷媒組成を変化させ
ることなしに冷媒を回収することと、その回収した冷媒
を再利用することを可能とする。これにより、冷媒回路
内から冷媒を除去し、冷媒回路の修復を行うような場合
でも、修復後、新しい冷媒を必要としないため、コスト
ダウンを実現できるという効果を奏する。According to the next invention, it is possible to recover the refrigerant without changing the refrigerant composition and to reuse the recovered refrigerant. Accordingly, even in the case where the refrigerant is removed from the refrigerant circuit and the refrigerant circuit is repaired, a new refrigerant is not required after the repair, so that there is an effect that the cost can be reduced.
【0121】つぎの発明によれば、熱源機内の冷媒組成
を変化させることなく、ほぼ全て冷媒を、液ライン、室
内の熱交換器内、またはガスラインに回収することがで
きる。また、各熱源機の修復が完了し、真空引きを終え
た後、第1の操作弁と第2の操作弁を開弁することで、
冷媒の再チャージが可能となり、冷媒の再利用率も増大
する。これにより、冷媒回路内から冷媒を除去し、冷媒
回路の修復を行うような場合でも、修復後、新しい冷媒
を必要としないため、コストダウンを実現するととも
に、手軽に冷媒の再チャージができることにより、サー
ビス時間の短縮化を実現できるという効果を奏する。According to the next invention, almost all of the refrigerant can be recovered to the liquid line, the indoor heat exchanger, or the gas line without changing the refrigerant composition in the heat source device. After the restoration of each heat source unit is completed and the evacuation is completed, the first operation valve and the second operation valve are opened,
The refrigerant can be recharged, and the refrigerant recycling rate increases. As a result, even when the refrigerant is removed from the refrigerant circuit and the refrigerant circuit is repaired, a new refrigerant is not required after the repair, so that the cost can be reduced and the refrigerant can be easily recharged. This has the effect of shortening the service time.
【0122】つぎの発明によれば、熱源機内の冷媒組成
を変化させることなく、ほぼ全て冷媒を、液ライン、室
内の熱交換器内、またはガスラインに回収することがで
き、その際、運転を停止することなく継続可能である。
また、各熱源機の修復が完了し、真空引きを終えた後、
第1の操作弁と第2の操作弁を開弁することで、冷媒の
再チャージが可能となり、冷媒の再利用率も増大する。
これにより、冷媒回路内から冷媒を除去し、冷媒回路の
修復を行うような場合でも、修復後、新しい冷媒を必要
としないため、コストダウンを実現するとともに、手軽
に冷媒の再チャージができることにより、サービス時間
の短縮化を実現でき、さらに、サービス時の応急運転
(継続運転)を行うことができるという効果を奏する。According to the next invention, almost all of the refrigerant can be recovered to the liquid line, the indoor heat exchanger, or the gas line without changing the refrigerant composition in the heat source unit. Can be continued without stopping.
In addition, after the repair of each heat source unit is completed and the evacuation is completed,
By opening the first operation valve and the second operation valve, the refrigerant can be recharged, and the refrigerant recycling rate also increases.
As a result, even when the refrigerant is removed from the refrigerant circuit and the refrigerant circuit is repaired, a new refrigerant is not required after the repair, so that the cost can be reduced and the refrigerant can be easily recharged. In addition, the service time can be shortened, and an emergency operation (continuous operation) at the time of service can be performed.
【0123】したがって、本発明によれば、非共沸混合
冷媒の組成変化を是正することにより信頼性の向上を実
現し、さらに、回収した冷媒の再利用を可能とすること
によりコストダウンを実現する冷凍空調装置を提供する
ことができる。Therefore, according to the present invention, the reliability is improved by correcting the composition change of the non-azeotropic refrigerant mixture, and the cost is reduced by enabling the recovered refrigerant to be reused. Refrigeration and air-conditioning system can be provided.
【図1】 本発明にかかる冷凍空調装置の冷媒回路図の
実施の形態1を示す図である。FIG. 1 is a diagram showing a first embodiment of a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to the present invention.
【図2】 組成検知部の構成である。FIG. 2 is a configuration of a composition detection unit.
【図3】 組成検知部内のモリエル線図である。FIG. 3 is a Mollier diagram in a composition detection unit.
【図4】 実施の形態1の応用例である。FIG. 4 is an application example of the first embodiment.
【図5】 本発明にかかる冷凍空調装置の冷媒回路図の
実施の形態2を示す図である。FIG. 5 is a diagram showing Embodiment 2 of the refrigerant circuit diagram of the refrigeration / air-conditioning apparatus according to the present invention.
【図6】 実施の形態2の応用例である。FIG. 6 is an application example of the second embodiment.
【図7】 本発明にかかる冷凍空調装置の冷媒回路図の
実施の形態3を示す図である。FIG. 7 is a diagram showing Embodiment 3 of a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to the present invention.
【図8】 均液制御ブロック図である。FIG. 8 is a block diagram of a leveling control.
【図9】 圧縮機冷媒循環量と、圧力損失、蒸発温度、
熱交換器過熱度、または液溜内液量との関係図である。FIG. 9 shows the compressor refrigerant circulation amount, pressure loss, evaporation temperature,
It is a relation figure with a heat exchanger superheat degree or a liquid amount in a liquid reservoir.
【図10】 本発明にかかる冷凍空調装置の冷媒回路図
の実施の形態4を示す図である。FIG. 10 is a diagram showing Embodiment 4 of a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to the present invention.
【図11】 均液制御ブロック図である。FIG. 11 is a block diagram of a leveling control.
【図12】 本発明にかかる冷凍空調装置の冷媒回路図
の実施の形態5を示す図である。FIG. 12 is a diagram showing Embodiment 5 of a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to the present invention.
【図13】 本発明にかかる冷凍空調装置の冷媒回路図
の実施の形態6を示す図である。FIG. 13 is a diagram showing Embodiment 6 of a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to the present invention.
【図14】 本発明にかかる冷凍空調装置の冷媒回路図
の実施の形態7(冷房運転時の冷媒の流れ)を示す図で
ある。FIG. 14 is a diagram showing a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to Embodiment 7 of the present invention (refrigerant flow during cooling operation).
【図15】 本発明にかかる冷凍空調装置の冷媒回路図
の実施の形態7(暖房運転時の冷媒の流れ)を示す図で
ある。FIG. 15 is a diagram showing a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to Embodiment 7 of the present invention (flow of refrigerant during heating operation).
【図16】 従来における冷凍空調装置の冷媒回路図で
ある。FIG. 16 is a refrigerant circuit diagram of a conventional refrigeration / air-conditioning apparatus.
1a,101a 主熱源機、1b,101b 従熱源
機、2a,102a 主圧縮機、2b,102b 従圧
縮機、3a,103a 主四方切換弁、3b,103b
従四方切換弁、4a,104a 主熱交換器、4b,
104b 従熱交換器、5a,105a 主液溜部、5
b,105b 従液溜部、6,6a,6b組成検知部、
7,7a 主低圧圧力検知部、7b 従低圧圧力検知
部、8a主流量制御弁、8b 従流量制御弁、9a 主
温度検知部、9b 従温度検知部、10a 主熱交換器
過熱度演算装置、10b 従熱交換器過熱度演算装置、
11a 第2の主液溜部、11b 第2の従液溜部、1
2a 第1の主操作弁、12b 第1の従操作弁、13
a 第2の主操作弁、13b 第2の従操作弁、14
冷媒回収口、15 流量制御弁制御部、16a 第1の
主サービスポート、16b 第1の従サービスポート、
17a 第2の主サービスポート、17b第2の従サー
ビスポート、18a 第3の主サービスポート、18b
第3の従サービスポート、19 連結管、21,12
1 利用側熱交換器、22,122利用側流量制御装
置、31,131 液合流部、32,132 ガス合流
部、41 組成検知用熱交換器、42 減圧部、43
第1の温度検知部、44 第2の温度検知部。1a, 101a Main heat source unit, 1b, 101b Secondary heat source unit, 2a, 102a Main compressor, 2b, 102b Secondary compressor, 3a, 103a Main four-way switching valve, 3b, 103b
Slave four-way switching valve, 4a, 104a main heat exchanger, 4b,
104b Secondary heat exchanger, 5a, 105a Main liquid reservoir, 5
b, 105b Secondary liquid reservoir, 6, 6a, 6b composition detector,
7, 7a main low pressure detecting section, 7b sub low pressure detecting section, 8a main flow control valve, 8b sub flow control valve, 9a main temperature detecting section, 9b sub temperature detecting section, 10a superheat degree calculating device for main heat exchanger, 10b slave heat exchanger superheat degree calculating device,
11a second main reservoir, 11b second slave reservoir, 1
2a first main operating valve, 12b first slave operating valve, 13
a second main operating valve, 13b second sub operating valve, 14
Refrigerant recovery port, 15 flow control valve controller, 16a first main service port, 16b first sub service port,
17a second main service port, 17b second sub service port, 18a third main service port, 18b
Third slave service port, 19 connecting pipe, 21, 12
1 use side heat exchanger, 22, 122 use side flow control device, 31, 131 liquid junction, 32, 132 gas junction, 41 composition detection heat exchanger, 42 decompression section, 43
A first temperature detector, 44 a second temperature detector;
Claims (7)
源機を構成し、冷媒として非共沸混合冷媒を循環させる
冷凍空調装置において、 少なくとも一つの主圧縮機、主四方切換弁、主熱交換
器、および第1の主液溜部を備えた主熱源機と、 少なくとも一つの従圧縮機、従四方切換弁、従熱交換
器、および第1の従主液溜部を備えた少なくとも一つの
従熱源機と、 前記主熱交換器から流出する液冷媒の通路となる配管
と、前記従熱交換器から流出する液冷媒の通路となる配
管とを合流させる液合流部と、 前記主圧縮機から排出されるガス冷媒の通路となる配管
と、前記従圧縮機から排出されるガス冷媒の通路となる
配管とを合流させるガス合流部と、 非共沸混合冷媒の循環組成を検出する循環組成検知装置
と、 を具備する冷媒回路を有し、 前記冷媒回路を循環する冷媒の流入により、利用側熱交
換器にて冷房運転または暖房運転を行うことを特徴とす
る冷凍空調装置。1. A refrigeration and air-conditioning system comprising a large-capacity heat source unit comprising a plurality of heat source units and circulating a non-azeotropic mixed refrigerant as a refrigerant, wherein at least one main compressor, main four-way switching valve, main heat A main heat source unit having an exchanger and a first main reservoir; and at least one having at least one sub compressor, a sub four-way switching valve, a sub heat exchanger, and a first sub main reservoir. A liquid joining section that joins two auxiliary heat source units, a pipe serving as a passage for the liquid refrigerant flowing out of the main heat exchanger, and a pipe serving as a passage for the liquid refrigerant flowing out of the slave heat exchanger; and A gas merging section for joining a pipe serving as a passage for gas refrigerant discharged from the compressor, a pipe serving as a passage for gas refrigerant discharged from the slave compressor, and a circulation for detecting a circulating composition of the non-azeotropic mixed refrigerant A composition detection device, and a refrigerant circuit comprising: The inflow of the refrigerant circulating through the serial refrigerant circuit, the refrigeration air conditioning system which is characterized in that the cooling operation or heating operation at the use-side heat exchanger.
記液合流部との間に、冷媒の流量を調整するための流量
制御弁を具備することを特徴とする請求項1に記載の冷
凍空調装置。2. The refrigeration system according to claim 1, further comprising a flow control valve for adjusting a flow rate of the refrigerant between the heat exchanger of at least one heat source unit and the liquid junction. Air conditioner.
調整することにより、各熱源機内に滞留する余剰冷媒の
偏在を防止することを特徴とする請求項2に記載の冷凍
空調装置。3. Each of the heat source devices comprises: a low-pressure pressure detecting means for detecting a pressure of the refrigerant; and a temperature detecting means for detecting a temperature of the refrigerant, wherein the flow rate control is performed based on the detected pressure and temperature. The refrigeration / air-conditioning apparatus according to claim 2, wherein the valve is adjusted to prevent the excess refrigerant remaining in each heat source unit from being unevenly distributed.
交換器との間に、少なくとも一つの第2の液溜部を具備
し、 前記流量制御弁を調整することにより、各熱源機内に滞
留する余剰冷媒を第2の液溜部内に冷媒を常に流動状態
に保持しながら一定量確保させ、第1の液溜部内に滞留
する余剰冷媒を抑制することを特徴とする請求項2また
は3に記載の冷凍空調装置。4. At least one second liquid reservoir is provided between a heat exchanger in each heat source unit and the use side heat exchanger, and each heat source is adjusted by adjusting the flow control valve. 3. A method according to claim 2, wherein a predetermined amount of surplus refrigerant staying in the machine is secured in the second liquid reservoir while the refrigerant is always kept in a fluidized state, and the surplus refrigerant remaining in the first liquid reservoir is suppressed. Or the refrigeration / air-conditioning apparatus according to 3.
間の配管に冷媒回収口を具備し、 さらに、各熱源器毎に、 前記利用側熱交換器からの冷媒を制御するための第1の
操作弁と、 熱源機内の熱交換器からの冷媒を制御するための第2の
操作弁と、 を具備し、 非共沸混合冷媒の組成を変えることなく、その冷媒を冷
媒回路系外へ回収し、その後、回収した冷媒を再利用す
ることを特徴とする請求項1〜4のいずれか一つに記載
の冷凍空調装置。5. A refrigerant recovery port is provided in a pipe between the heat exchanger and the use side heat exchanger, and for controlling a refrigerant from the use side heat exchanger for each heat source unit. And a second operating valve for controlling the refrigerant from the heat exchanger in the heat source unit, wherein the refrigerant is supplied to the refrigerant circuit without changing the composition of the non-azeotropic mixed refrigerant. The refrigeration air conditioner according to any one of claims 1 to 4, wherein the refrigerant is collected outside the system, and then the collected refrigerant is reused.
量を制御する流量制御手段を具備し、 非共沸混合冷媒の組成を変えることなく、その冷媒を熱
源機外へ回収し、その後、回収した冷媒を再利用するこ
とを特徴とする請求項5に記載の冷凍空調装置。6. A flow control means for controlling a flow rate of a refrigerant flowing into the use side heat exchanger, wherein the refrigerant is recovered outside the heat source device without changing the composition of the non-azeotropic mixed refrigerant, and The refrigeration / air-conditioning apparatus according to claim 5, wherein the collected refrigerant is reused.
具備し、 非共沸混合冷媒の組成を変えることなく、その冷媒を他
の熱源機へ回収し、その後、回収した冷媒を再利用する
ことを特徴とする請求項5または6に記載の冷凍空調装
置。7. Each heat source unit is provided with a service port for moving the refrigerant to another heat source unit, and the refrigerant is recovered to another heat source unit without changing the composition of the non-azeotropic mixed refrigerant. 7. The refrigeration / air-conditioning apparatus according to claim 5, wherein the collected refrigerant is reused thereafter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33555098A JP4315503B2 (en) | 1998-11-26 | 1998-11-26 | Refrigeration air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33555098A JP4315503B2 (en) | 1998-11-26 | 1998-11-26 | Refrigeration air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000161804A true JP2000161804A (en) | 2000-06-16 |
JP4315503B2 JP4315503B2 (en) | 2009-08-19 |
Family
ID=18289844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33555098A Expired - Fee Related JP4315503B2 (en) | 1998-11-26 | 1998-11-26 | Refrigeration air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4315503B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002333227A (en) * | 2001-05-09 | 2002-11-22 | Mitsubishi Electric Corp | Heat-storing type air conditioner |
JP2007263444A (en) * | 2006-03-28 | 2007-10-11 | Mitsubishi Electric Corp | Air conditioning apparatus |
JP2007292407A (en) * | 2006-04-26 | 2007-11-08 | Aisin Seiki Co Ltd | Air conditioner |
JP2011027314A (en) * | 2009-07-24 | 2011-02-10 | Mitsubishi Electric Corp | Air conditioner |
WO2015114774A1 (en) * | 2014-01-30 | 2015-08-06 | 三菱電機株式会社 | Refrigeration cycle device, air conditioning device, and method for calculating circulation composition in refrigeration cycle device |
JP2019045002A (en) * | 2017-08-30 | 2019-03-22 | アイシン精機株式会社 | Control method of heat pump |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0658654A (en) * | 1992-04-10 | 1994-03-04 | Sanyo Electric Co Ltd | Air conditioner |
JPH06281281A (en) * | 1993-03-26 | 1994-10-07 | Sanyo Electric Co Ltd | Air conditioner |
JPH07318185A (en) * | 1994-05-26 | 1995-12-08 | Daikin Ind Ltd | Freezing apparatus |
JPH0894217A (en) * | 1994-09-28 | 1996-04-12 | Sanyo Electric Co Ltd | Refrigerant replenishing bomb for refrigerator |
JPH0914802A (en) * | 1995-06-27 | 1997-01-17 | Sanyo Electric Co Ltd | Air conditioner |
JPH0968356A (en) * | 1995-06-23 | 1997-03-11 | Mitsubishi Electric Corp | Refrigerant circulating system |
JPH1038393A (en) * | 1996-07-22 | 1998-02-13 | Yamaha Motor Co Ltd | Refrigerant circulation type heat transfer equipment |
-
1998
- 1998-11-26 JP JP33555098A patent/JP4315503B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0658654A (en) * | 1992-04-10 | 1994-03-04 | Sanyo Electric Co Ltd | Air conditioner |
JPH06281281A (en) * | 1993-03-26 | 1994-10-07 | Sanyo Electric Co Ltd | Air conditioner |
JPH07318185A (en) * | 1994-05-26 | 1995-12-08 | Daikin Ind Ltd | Freezing apparatus |
JPH0894217A (en) * | 1994-09-28 | 1996-04-12 | Sanyo Electric Co Ltd | Refrigerant replenishing bomb for refrigerator |
JPH0968356A (en) * | 1995-06-23 | 1997-03-11 | Mitsubishi Electric Corp | Refrigerant circulating system |
JPH0914802A (en) * | 1995-06-27 | 1997-01-17 | Sanyo Electric Co Ltd | Air conditioner |
JPH1038393A (en) * | 1996-07-22 | 1998-02-13 | Yamaha Motor Co Ltd | Refrigerant circulation type heat transfer equipment |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002333227A (en) * | 2001-05-09 | 2002-11-22 | Mitsubishi Electric Corp | Heat-storing type air conditioner |
JP2007263444A (en) * | 2006-03-28 | 2007-10-11 | Mitsubishi Electric Corp | Air conditioning apparatus |
JP4688711B2 (en) * | 2006-03-28 | 2011-05-25 | 三菱電機株式会社 | Air conditioner |
JP2007292407A (en) * | 2006-04-26 | 2007-11-08 | Aisin Seiki Co Ltd | Air conditioner |
JP2011027314A (en) * | 2009-07-24 | 2011-02-10 | Mitsubishi Electric Corp | Air conditioner |
WO2015114774A1 (en) * | 2014-01-30 | 2015-08-06 | 三菱電機株式会社 | Refrigeration cycle device, air conditioning device, and method for calculating circulation composition in refrigeration cycle device |
GB2534789A (en) * | 2014-01-30 | 2016-08-03 | Mitsubishi Electric Corp | Refrigeration cycle device, air conditioning device, and method for calculating circulation composition in refrigeration cycle device |
JP6072311B2 (en) * | 2014-01-30 | 2017-02-01 | 三菱電機株式会社 | Refrigeration cycle apparatus, air conditioner, and circulating composition calculation method in refrigeration cycle apparatus |
GB2534789B (en) * | 2014-01-30 | 2020-03-11 | Mitsubishi Electric Corp | Refrigeration cycle apparatus, air-conditioning apparatus, and method for calculating circulation composition in refrigeration cycle apparatus |
JP2019045002A (en) * | 2017-08-30 | 2019-03-22 | アイシン精機株式会社 | Control method of heat pump |
Also Published As
Publication number | Publication date |
---|---|
JP4315503B2 (en) | 2009-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6081033B1 (en) | Air conditioner | |
US9683768B2 (en) | Air-conditioning apparatus | |
US10845095B2 (en) | Air-conditioning apparatus | |
JP4120676B2 (en) | Air conditioner | |
EP2863148B1 (en) | Air conditioning device | |
WO2007069581A1 (en) | Air conditioner | |
JP2007240108A (en) | Air conditioner | |
JP2007255737A (en) | Air conditioning system | |
JP2011174672A (en) | Refrigerating cycle device and hot water heating apparatus | |
WO2012090579A1 (en) | Heat source system and control method therefor | |
US20130061622A1 (en) | Refrigerating and air-conditioning apparatus | |
JP2002310519A (en) | Heat pump water heater | |
KR101117032B1 (en) | Heat pump system having cascade heat exchange | |
EP3859241B1 (en) | Refrigerant filling method | |
JPH08254376A (en) | Air conditioner | |
JP2000161804A (en) | Refrigerating air conditioner | |
CN115264620A (en) | Multi-split air conditioning system | |
JP2948105B2 (en) | Refrigeration air conditioner using non-azeotropic mixed refrigerant | |
WO2007069583A1 (en) | Air conditioner | |
JPH10253203A (en) | Refrigerant recovering method | |
WO2013080497A1 (en) | Refrigeration cycle device and hot water generating apparatus comprising same | |
CN115264648A (en) | Multi-split air conditioning system | |
KR20100116891A (en) | Defrosting driving method of air conditioner | |
JP3168496B2 (en) | Air conditioner | |
JP4665748B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051004 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090519 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090519 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140529 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |