JP2000138042A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JP2000138042A
JP2000138042A JP10311769A JP31176998A JP2000138042A JP 2000138042 A JP2000138042 A JP 2000138042A JP 10311769 A JP10311769 A JP 10311769A JP 31176998 A JP31176998 A JP 31176998A JP 2000138042 A JP2000138042 A JP 2000138042A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
negative electrode
sealant
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10311769A
Other languages
Japanese (ja)
Inventor
Shinichi Waki
新一 脇
Tatsuo Mori
辰男 森
忠義 ▲高▼橋
Tadayoshi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10311769A priority Critical patent/JP2000138042A/en
Priority to US09/357,225 priority patent/US6274277B1/en
Priority to EP99305821A priority patent/EP0975042A3/en
Publication of JP2000138042A publication Critical patent/JP2000138042A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a sealant from leaking liquid due to softening at heating by interposing a gasket between a positive electrode can and a negative electrode can that serve respective terminals of a coin-type battery, and by arranging, in the facing portion, the sealant composed of one or more kinds of fluororesin where a part of butyl rubber, styrene-butadiene rubber, and a side chain is substituted by silicone resin. SOLUTION: In a gasket 3 portion facing a positive electrode can 1 and a negative electrode can 2 in which a generating element of a positive electrode 4 and a negative electrode 5 that face to each other through a separator 6 and organic electrolyte is sealed, these rubber or resin are diluted with toluene or the like and is coated, and a sealant 8 is formed. When a battery is mounted to a circuit board, the sealant 8 is not softened at a temperature about 250 deg.C during passing through a reflow furnace and therefore, holds its sealing ability. As this organic electrolyte, a solvent containing at least one of sulfolane and 3-methyl sulfolane which have a boiling point not less than 250 deg.C is preferably used, and it prevents inner pressure from rising during passing of the reflow furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器の主電源
やメモリバックアップ用電源に使用される有機電解液電
池に関し、詳しくは電池構成部材に高温耐熱性を付与す
ることで高温保存時の信頼性を高めると共に、リフロー
法を用いた自動ソルダリングによる回路基板実装が可能
な耐高温特性を備えたコイン型の有機電解液電池に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery used for a main power supply of an electronic device and a power supply for memory backup, and more particularly, to a method of imparting high-temperature heat resistance to a battery component so as to improve reliability during high-temperature storage. The present invention relates to a coin-type organic electrolyte battery that has high temperature resistance and can be mounted on a circuit board by automatic soldering using a reflow method, while enhancing the performance.

【0002】[0002]

【従来の技術】一般に負極にリチウムもしくはその合金
を用いた有機電解液電池は、エネルギー密度が高く、機
器の小型化及び軽量化が可能であることに加え、保存特
性、耐漏液性等の信頼性に優れていることから、各種電
子機器の主電源やメモリバックアップ用電源として需要
は年々増加している。この種の電池は、充電ができない
一次電池が主流であるが、充電可能な二次電池として
は、負極にリチウムアルミニウム合金等を、正極に、五
酸化バナジウム、マンガン酸リチウム等をそれぞれ組み
合わせた電池が知られており、これらの発電要素を偏平
形の電池容器に収納したコイン型の有機電解液電池が広
く実用化されている。
2. Description of the Related Art In general, an organic electrolyte battery using lithium or an alloy thereof for a negative electrode has a high energy density, is capable of reducing the size and weight of equipment, and has high reliability such as storage characteristics and leakage resistance. Due to its excellent performance, demand for a main power supply for various electronic devices and a power supply for memory backup is increasing year by year. This type of battery is mainly a non-rechargeable primary battery, but as a rechargeable secondary battery, a battery in which a negative electrode is composed of a lithium aluminum alloy or the like, and a positive electrode is a combination of vanadium pentoxide, lithium manganate, etc. A coin-type organic electrolyte battery in which these power generating elements are housed in a flat battery container has been widely put into practical use.

【0003】コイン型の有機電解液電池は小型ポータブ
ル機器のメモリーバックアップ用の電源として好適に用
いられており、特に最近では、電池径が6mm以下に設
定された電池の開発が盛んに行われている。このような
電池の回路基板へ実装は、電池及び回路基板が小型化さ
れているために、手作業による実装方法を採用した場合
には、工数の大幅な増加を招いてしまう。そこで、効率
的な実装方法として、電池のリード端子をリフロー法を
用いた自動ソルダリングによって実装する試みがなされ
ている。
[0003] A coin-type organic electrolyte battery is suitably used as a power supply for memory backup of a small portable device. In particular, recently, a battery having a battery diameter of 6 mm or less has been actively developed. I have. In mounting such a battery on a circuit board, the size of the battery and the circuit board is reduced, so that if a manual mounting method is employed, the number of steps will be significantly increased. Therefore, as an efficient mounting method, an attempt has been made to mount the lead terminals of the battery by automatic soldering using a reflow method.

【0004】以下、図面を参照して上述したコイン型有
機電解液電池の構造について説明する。
Hereinafter, the structure of the above-described coin-type organic electrolyte battery will be described with reference to the drawings.

【0005】図1において、発電要素を収容する偏平型
の電池容器は、正極端子を兼ね、耐食性の優れたステン
レス鋼からなる正極缶1、同様に負極端子を兼ねる負極
缶2、及び正極缶1及び負極缶2との間にガスケット3
を介在させて発電要素を密閉している。発電要素は、セ
パレータ6を介して正極4、負極5を配置することで構
成される。
In FIG. 1, a flat battery container for accommodating a power generating element includes a positive electrode can 1 also serving as a positive electrode terminal and made of stainless steel having excellent corrosion resistance, a negative electrode can 2 also serving as a negative electrode terminal, and a positive electrode can 1. And a gasket 3 between the anode can 2
The power generation element is hermetically sealed with the interposition of The power generating element is configured by arranging the positive electrode 4 and the negative electrode 5 with the separator 6 interposed therebetween.

【0006】ガスケット3は、正極缶1と負極缶2とを
絶縁する機能に加え、発電要素を液密的に電池容器内に
密閉するための機能を有している。さらに液密性を向上
させるために、ガスケット3には、その正極缶及び負極
缶と接する面にシーラント8が配されている。このシー
ラント8には、アスファルト、コールタール等のピッチ
が使用されている。
The gasket 3 has a function of insulating the positive electrode can 1 and the negative electrode can 2 and a function of liquid-tightly sealing the power generating element in the battery container. In order to further improve the liquid tightness, the gasket 3 is provided with a sealant 8 on a surface in contact with the positive electrode can and the negative electrode can. As the sealant 8, a pitch such as asphalt or coal tar is used.

【0007】[0007]

【発明が解決しようとする課題】小型のコイン型電池に
対するリフロー法を用いた回路基板への実装は、リフロ
ー炉の内部に電池を通過させることによって行われる。
リフロー炉の内部は短時間ではあるが、高温状態とな
り、特にピーク時においては数十秒間程度は250℃も
の超高温状態となる。この時、電池容器の内部に収容さ
れた発電要素に比べて、電池容器は高温の雰囲気に直接
曝されることとなる。正極缶及び負極缶は、いずれもス
テンレス鋼からなるために、熱による影響は少ないが、
他の構成要素は熱による影響を受けてしまう。
The mounting of a small coin-type battery on a circuit board using the reflow method is performed by passing the battery through a reflow furnace.
The inside of the reflow furnace is in a high temperature state for a short period of time, and particularly in a peak time, it is in an extremely high temperature state of 250 ° C. for about several tens of seconds. At this time, the battery case is directly exposed to a high-temperature atmosphere as compared with the power generation element housed inside the battery case. Since both the positive and negative electrode cans are made of stainless steel, the effects of heat are small,
Other components are affected by heat.

【0008】特に、シーラントは、他の構成要素に比べ
て伝熱性が高くなる金属部分の正極缶及び負極缶との接
触面に塗布されるために、熱による影響が顕著であり、
容易に軟化してしまう。この軟化により、シーラントの
特性が悪化することに加え、塗布部分から流動すること
となり、正極缶及び負極缶とガスケットとの液密性が低
下してしまい、漏液の発生を招いてしまう。
In particular, since the sealant is applied to the contact surface between the metal part having higher heat conductivity than other components and the positive and negative electrode cans, the effect of the heat is remarkable.
It softens easily. Due to this softening, the properties of the sealant are deteriorated, and in addition, the sealant is caused to flow from the applied portion, so that the liquid tightness between the positive electrode can and the negative electrode can and the gasket is reduced, thereby causing leakage.

【0009】このようにコイン型有機電解液電池では、
リフロー炉通過時の熱によるシーラントの軟化に起因し
た漏液の発生を抑制するという課題を有している。
As described above, in the coin-type organic electrolyte battery,
There is a problem of suppressing generation of liquid leakage due to softening of the sealant due to heat during passage through a reflow furnace.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明の有機電解液電池は、正極端子を兼ねる正極缶
と、負極端子を兼ねる負極缶と、正極缶と負極缶との間
に介在したガスケットにより、セパレータを介して対向
配置された発電要素を密閉してなるコイン型有機電解液
電池であって、ガスケットが正極缶及び負極缶に対面す
る部位に、250℃程度の温度領域まで軟化が生じない
シーラントを配することを特徴とするものである。この
構成によれば、リフロー炉に電池を通過させた際にも、
シーラントの軟化を生じることがなく、漏液発生の確率
を大幅に低減したコイン型の有機電解液電池を得ること
ができる。
Means for Solving the Problems To solve the above problems, an organic electrolyte battery according to the present invention comprises a positive electrode can also serving as a positive electrode terminal, a negative electrode can also serving as a negative electrode terminal, and a structure between the positive electrode can and the negative electrode can. A coin-type organic electrolyte battery in which a power generation element disposed opposite to a separator is hermetically sealed by an interposed gasket, and a portion where the gasket faces the positive electrode can and the negative electrode can, to a temperature range of about 250 ° C. It is characterized by disposing a sealant which does not cause softening. According to this configuration, even when the battery is passed through the reflow furnace,
It is possible to obtain a coin-type organic electrolyte battery in which the sealant does not soften and the probability of liquid leakage is greatly reduced.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
Embodiments of the present invention will be described below.

【0012】請求項1に記載の発明は、正極端子を兼ね
る正極缶と、負極端子を兼ねる負極缶と、正極缶と負極
缶との間に介在したガスケットにより、セパレータを介
して対向配置された発電要素を密閉してなるコイン型の
有機電解液電池であって、ガスケットにおける正極缶及
び負極缶に対面する部位に、ブチルゴム、スチレンブタ
ジエンゴム、及び側鎖の一部がシリコン樹脂で置換され
たフッ素樹脂から選択されてなるシーラントを配するこ
とを特徴とするものである。
According to the first aspect of the present invention, a positive electrode can also serving as a positive electrode terminal, a negative electrode can also serve as a negative electrode terminal, and a gasket interposed between the positive electrode can and the negative electrode can are disposed to face each other with a separator interposed therebetween. In a coin-type organic electrolyte battery in which a power generation element is sealed, a portion of a gasket facing a positive electrode can and a negative electrode can has butyl rubber, styrene butadiene rubber, and a part of a side chain replaced with a silicone resin. It is characterized by disposing a sealant selected from a fluororesin.

【0013】シーラントとして適用されるこれらのゴム
及び樹脂は、いずれも耐熱性に優れており、リフロー炉
を通過させた時においても、軟化を生ずることがなく、
電池の密閉性が保持される。
These rubbers and resins applied as sealants are all excellent in heat resistance, and do not soften even when passed through a reflow furnace.
The tightness of the battery is maintained.

【0014】また、請求項2に記載の発明は、請求項1
に記載のコイン型の有機電解液電池において、スルホラ
ン、3―メチルスルホランの少なくともいずれか1種類
を含む溶媒を有機電解液として用いることを特徴とす
る。
[0014] The invention described in claim 2 is the first invention.
Wherein the solvent containing at least one of sulfolane and 3-methylsulfolane is used as the organic electrolyte.

【0015】ガスケットの表面に配されるシーラント
は、電池容器内に存在する有機電解液と接するため、有
機電解液に対して化学的な安定性を有することが必要と
なる。換言すれば、本発明に係るシーラントを溶解しな
い有機電解液を選択する必要がある。また、リフロー炉
を通過した際に、電解液の瞬間的な気化に伴う電池容器
の内圧上昇を防止するために、250℃以上の沸点を有
することが望まれる。有機電解液の溶媒として広く用い
られているプロピレンカーボネイト及びエチレンカーボ
ネイトは、いずれもその沸点が250℃以下であるため
に、耐高温特性が要求される有機電解液電池として採用
することにおいて望ましくない。そこで、スルホラン、
3―メチルスルホランの少なくともいずれか一方を含む
溶媒を有機電解液として用いるものである。
Since the sealant disposed on the surface of the gasket comes into contact with the organic electrolyte present in the battery container, the sealant must have chemical stability to the organic electrolyte. In other words, it is necessary to select an organic electrolyte that does not dissolve the sealant according to the present invention. Further, it is desired that the battery has a boiling point of 250 ° C. or higher in order to prevent the internal pressure of the battery container from rising due to the instantaneous vaporization of the electrolyte when passing through the reflow furnace. Propylene carbonate and ethylene carbonate, which are widely used as solvents for organic electrolytes, both have a boiling point of 250 ° C. or less, and therefore are not desirable for use as organic electrolyte batteries requiring high-temperature resistance. So, sulfolane,
A solvent containing at least one of 3-methylsulfolane is used as an organic electrolyte.

【0016】ここで、スルホランの沸点は約287℃、
3―メチルスルホランの沸点は約275℃であるから、
リフロー炉内部の温度より高く、リフロー炉通過時の高
温雰囲気に対しても安定な特性を有する。また、本発明
に係るシーラントを溶解することもないことから、漏液
を誘発することもない。
Here, the boiling point of sulfolane is about 287 ° C.
Since the boiling point of 3-methylsulfolane is about 275 ° C,
It is higher than the temperature inside the reflow furnace and has stable characteristics even in a high temperature atmosphere when passing through the reflow furnace. Further, since the sealant according to the present invention is not dissolved, liquid leakage is not induced.

【0017】以上のように、本発明に係るコイン型の有
機電解液電池は、耐高温特性を有するシーラント及び発
電要素を組み合わせることにより、250℃程度の耐熱
性を有することとなり、リフロー法による自動ソルダリ
ングを用いた電池の基板への実装に対応する事が可能と
なる。
As described above, the coin-type organic electrolyte battery according to the present invention has heat resistance of about 250 ° C. by combining a sealant having high temperature resistance and a power generation element, and has an automatic reflow method. It becomes possible to support mounting of a battery on a board using soldering.

【0018】[0018]

【実施例】以下、本発明の好ましい実施例について説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0019】(実施例1)本実施例では、図1に示す構
造を有するコイン型有機電解液電池を作成した。ステン
レス鋼からなる正極缶1と、負極缶2とを組み合わせる
ことで外形寸法が直径6.8mm、厚み2.1mmとした電
池容器を使用した。正極缶1と負極缶2との間に介在さ
れるガスケット3には、ポリフェニレンスルフィド(以
下、PPS)を使用した。このガスケット3と正極缶1
及び負極缶2とガスケット3との間に配されるシーラン
ト8には、トルエンで希釈したブチルゴムを使用し、予
めガスケットに塗布することで、所定位置に配される。
Example 1 In this example, a coin-type organic electrolyte battery having the structure shown in FIG. 1 was manufactured. A battery container having an outer dimension of 6.8 mm in diameter and 2.1 mm in thickness by combining a positive electrode can 1 made of stainless steel and a negative electrode can 2 was used. Polyphenylene sulfide (hereinafter, PPS) was used for the gasket 3 interposed between the positive electrode can 1 and the negative electrode can 2. This gasket 3 and positive electrode can 1
As the sealant 8 disposed between the negative electrode can 2 and the gasket 3, butyl rubber diluted with toluene is used, and is applied to a gasket in advance to be disposed at a predetermined position.

【0020】正極4は、活物質であるマンガン酸リチウ
ムに導電剤としてカーボンブラック及び結着剤としてフ
ッ素樹脂粉末を混合し、直径4mm、厚さ1.2mmのペレ
ット状に成型した後、250℃の雰囲気下で12時間乾
燥したものである。得られたペレット状の正極材料は、
正極缶1の内面にカーボン塗料を塗布することで形成さ
れた正極集電体7に、載置される。一方、負極5は、マ
ンガンを5重量%の割合にて添加されたアルミニウム−
マンガン合金を直径4mm、厚さ0.3mmの円盤状に打ち
抜き、負極缶2の内側にリチウム金属箔、アルミニウム
−マンガン合金の順で載置している。さらに電池組立時
に、アルミニウム合金をリチウム金属箔と合金化するた
めに、アルミニウム−マンガン合金にリチウム金属箔を
圧着し、電解液の存在下でアルミニウム合金中にリチウ
ムを吸蔵させ、電気化学的にリチウムアルミ合金が作成
される。作成された合金を負極5とした。
The positive electrode 4 is prepared by mixing carbon black as a conductive agent and a fluororesin powder as a binder with lithium manganate as an active material, forming a pellet having a diameter of 4 mm and a thickness of 1.2 mm. Was dried under an atmosphere of 12 hours. The obtained pellet-shaped positive electrode material is
The positive electrode can 1 is placed on a positive electrode current collector 7 formed by applying a carbon paint to the inner surface of the positive electrode can 1. On the other hand, the negative electrode 5 is made of aluminum-containing manganese added at a ratio of 5% by weight.
A manganese alloy is punched into a disk having a diameter of 4 mm and a thickness of 0.3 mm, and a lithium metal foil and an aluminum-manganese alloy are placed inside the negative electrode can 2 in this order. Furthermore, at the time of assembling the battery, in order to alloy the aluminum alloy with the lithium metal foil, a lithium metal foil is pressed against an aluminum-manganese alloy, and lithium is occluded in the aluminum alloy in the presence of an electrolytic solution to electrochemically form the lithium. An aluminum alloy is created. The prepared alloy was used as a negative electrode 5.

【0021】また、正極4と負極5との間に配されるセ
パレータ6には、ガスケットと同様にPPSを使用し
た。さらに電解液には、リチウム塩を溶質としこれを溶
解する有機溶媒としてスルホランを用いた。電池容器に
添付される体積で10μlが充填されている。このよう
にして得られた電池を、本実施例1に係る電池Aとし
た。
A PPS was used for the separator 6 disposed between the positive electrode 4 and the negative electrode 5 as in the case of the gasket. Further, as the electrolyte, sulfolane was used as an organic solvent for dissolving lithium salt as a solute. 10 μl is filled in the volume attached to the battery container. The battery obtained in this manner was referred to as Battery A according to Example 1.

【0022】(実施例2)実施例2として、ガスケット
3に塗布されるシーラント8としてトルエンで希釈した
スチレンブタジエンゴムを塗布し、他の構成は実施例1
における電池Aと同一の構成とした電池Bを作成した。
(Example 2) As Example 2, a styrene-butadiene rubber diluted with toluene was applied as a sealant 8 to be applied to the gasket 3, and the other structure was as in Example 1.
A battery B having the same configuration as that of the battery A was prepared.

【0023】(実施例3)実施例3として、ガスケット
3に塗布されるシーラント8として側鎖の一部がシリコ
ン樹脂で置換されたフッ素樹脂をトルエンで希釈して塗
布し、他の構成は実施例1における電池Aと同一の構成
とした電池Cを作成した。
(Embodiment 3) As Embodiment 3, as a sealant 8 applied to the gasket 3, a fluororesin in which a part of a side chain is replaced with a silicone resin is diluted with toluene and applied. Battery C having the same configuration as battery A in Example 1 was produced.

【0024】(比較例)比較例として、ガスケット3に
塗布されるシーラント8としてピッチを塗布し、他の構
成は実施例1における電池Aと同一の構成とした電池C
を作成した。
(Comparative Example) As a comparative example, a pitch was applied as the sealant 8 applied to the gasket 3, and the other configuration was the same as that of the battery A in the first embodiment.
It was created.

【0025】得られた電池A〜電池Dについて、高周波
加熱方式のリフロー炉を通過させ、耐高温環境特性試験
を行った。各電池が通過するリフロー炉の内部の温度プ
ロファイルは、余熱行程として180℃の環境下に2分
間曝され、引き続き加熱行程として180℃、245
℃、180℃の各温度雰囲気をそれぞれ30秒間で通過
した後、室温に至るまで自然冷却される。本実施例で
は、各電池50個づつについて、リフロー炉に挿入する
前に予め漏液の発生がないことを確認した後、リフロー
炉を通過させ、漏液の発生状況について検査を行った。
漏液の発生がない電池については、再度リフロー炉を通
過させ、発生状況を調べた。(表1)にリフロー炉通過
後の漏液の発生状況を示す。
The obtained batteries A to D were passed through a high-frequency heating type reflow furnace and subjected to a high-temperature environmental property test. The temperature profile inside the reflow furnace through which each battery passes is exposed to an environment of 180 ° C. for 2 minutes as a preheating step, and then is heated to 180 ° C. and 245 ° C. as a heating step.
After passing through each temperature atmosphere of 30 ° C. and 180 ° C. for 30 seconds, it is naturally cooled to room temperature. In this example, for each of the 50 batteries, after confirming in advance that there was no leakage before inserting the battery into the reflow furnace, the batteries were passed through the reflow furnace and inspected for the state of occurrence of the leakage.
The batteries that did not generate liquid leakage were passed through a reflow furnace again to check the generation status. (Table 1) shows the occurrence of liquid leakage after passing through the reflow furnace.

【0026】[0026]

【表1】 [Table 1]

【0027】(表1)より、本発明 による電池は、シ
ーラントにピッチを用いた比較品Dに比べ、リフロー通
過後における耐漏液性において優れる。
As shown in Table 1, the battery according to the present invention is superior in the liquid leakage resistance after passing through the reflow as compared with the comparative product D using the pitch as the sealant.

【0028】以上より、本発明品である電池A、B、C
は、いづれもリフロー炉を通過した後も漏液が生じてお
らず、耐漏液性に優れるという結果を見いだすことがで
きた。これは、シーラントに使用したブチルゴム、スチ
レンブタジエンゴム、及び側鎖の一部がシリコン樹脂で
置換されたフッ素樹脂が、耐熱性を有し、軟化が生じな
かったためである。
As described above, the batteries A, B, and C according to the present invention were obtained.
In any case, no liquid leakage occurred after passing through the reflow furnace, and it was found that the liquid was excellent in liquid leakage resistance. This is because butyl rubber, styrene butadiene rubber, and a fluororesin whose side chains are partially substituted with a silicone resin used for the sealant have heat resistance and did not soften.

【0029】尚、本実施例では、電解液にスルホランを
溶媒とした有機電解液を使用したが、3―メチルスルホ
ランを用いた場合でも同様の効果が得られるものであ
る。また、本実施例は、充電放電が可能な二次電池の場
合を例に述べたが、例えば、負極にリチウム金属を用
い、正極に二酸化マンガンあるいはフッ化黒鉛等を用い
た有機電解液一次電池に適用しても、同様の効果が得ら
れるものである。
In this embodiment, an organic electrolytic solution using sulfolane as a solvent is used as the electrolytic solution. However, the same effect can be obtained when 3-methylsulfolane is used. Further, in the present embodiment, the case of a secondary battery capable of charging and discharging has been described as an example, but for example, an organic electrolyte primary battery using lithium metal for the negative electrode and manganese dioxide or graphite fluoride for the positive electrode, for example. The same effect can be obtained by applying

【0030】[0030]

【発明の効果】以上のように本発明によれば、リフロー
法を用いた自動ソルダリングによる回路基板実装が可能
な耐高温特性を備えた有機電解液電池を提供することが
できる。さらに、自動ソルダリングによる実装が可能に
なることから、この種の電池が使用される小型携帯機器
の製造工程が簡素化できることは言うまでもない。ま
た、電池構成部材に高温耐熱性を付与することで高温保
存時の特性が改善され、高温環境下において使用される
有機電解液電池の信頼性が大幅に向上する。
As described above, according to the present invention, it is possible to provide an organic electrolyte battery having high temperature resistance, which can be mounted on a circuit board by automatic soldering using a reflow method. Furthermore, since mounting by automatic soldering becomes possible, it goes without saying that the manufacturing process of a small portable device using this type of battery can be simplified. In addition, by imparting high-temperature heat resistance to the battery components, characteristics during high-temperature storage are improved, and the reliability of an organic electrolyte battery used in a high-temperature environment is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コイン型有機電解液電池の構成を示す断面図FIG. 1 is a cross-sectional view showing a configuration of a coin-type organic electrolyte battery.

【符号の説明】[Explanation of symbols]

1 正極缶 2 負極缶 3 ガスケット 4 正極 5 負極 6 セパレータ 7 正極集電体 8 シーラント DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Negative electrode can 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator 7 Positive electrode current collector 8 Sealant

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z B (72)発明者 ▲高▼橋 忠義 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H011 AA02 AA17 CC06 FF03 GG02 GG05 HH02 HH03 5H024 AA02 AA11 CC03 DD02 DD04 DD14 EE09 FF11 FF14 FF36 5H029 AJ15 AK03 AL11 AL12 AM02 AM07 BJ03 DJ02 DJ03 DJ04 DJ06 EJ12 Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court (Reference) H01M 10/40 H01M 10/40 ZB (72) Inventor ▲ Takayoshi Hashihashi 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric F-term (reference) within Sangyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極端子を兼ねる正極缶と、負極端子を
兼ねる負極缶と、正極缶と負極缶との間に介在したガス
ケットにより、セパレータを介して対向配置された発電
要素を密閉してなるコイン型有機電解液電池であって該
ガスケットにおける正極缶及び負極缶に対面する部位
に、ブチルゴム、スチレンブタジエンゴム、及び側鎖の
一部がシリコン樹脂で置換されたフッ素樹脂から選択さ
れる少なくとも一つからなるシーラントを配することを
特徴とする有機電解液電池。
1. A power generating element which is disposed opposite to a separator via a separator is sealed by a positive electrode can also serving as a positive electrode terminal, a negative electrode can also serving as a negative electrode terminal, and a gasket interposed between the positive electrode can and the negative electrode can. At least one of butyl rubber, styrene-butadiene rubber, and a fluorine resin in which a part of a side chain is replaced by a silicone resin is provided in a portion of the coin-type organic electrolyte battery facing the positive electrode can and the negative electrode can in the gasket. An organic electrolyte battery comprising a sealant comprising:
【請求項2】 スルホラン、3―メチルスルホランの少
なくとも一方を含む溶媒からなる有機電解液を用いた請
求項1記載の有機電解液電池。
2. The organic electrolyte battery according to claim 1, wherein an organic electrolyte comprising a solvent containing at least one of sulfolane and 3-methylsulfolane is used.
JP10311769A 1998-07-23 1998-11-02 Organic electrolyte battery Pending JP2000138042A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10311769A JP2000138042A (en) 1998-11-02 1998-11-02 Organic electrolyte battery
US09/357,225 US6274277B1 (en) 1998-07-23 1999-07-20 Organic electrolyte battery
EP99305821A EP0975042A3 (en) 1998-07-23 1999-07-22 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311769A JP2000138042A (en) 1998-11-02 1998-11-02 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JP2000138042A true JP2000138042A (en) 2000-05-16

Family

ID=18021265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311769A Pending JP2000138042A (en) 1998-07-23 1998-11-02 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2000138042A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190427A (en) * 2000-10-11 2002-07-05 Sii Micro Parts Ltd Electric double-layer capacitor capable of being mounted by reflow soldering and its manufacturing method
JP2006040596A (en) * 2004-07-23 2006-02-09 Hitachi Maxell Ltd Flat battery and its manufacturing method
JP2006059705A (en) * 2004-08-20 2006-03-02 Sii Micro Parts Ltd Electrochemical cell and its manufacturing method
US7223496B2 (en) 2000-06-09 2007-05-29 Matsushita Electric Industrial Co., Ltd. Electrochemical element
JP2008091081A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Coin type battery
JP2009152031A (en) * 2007-12-20 2009-07-09 Panasonic Corp Cylindrical battery
WO2023186178A1 (en) * 2022-04-26 2023-10-05 湖北亿纬动力有限公司 Battery sealing structure and battery pack

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223496B2 (en) 2000-06-09 2007-05-29 Matsushita Electric Industrial Co., Ltd. Electrochemical element
JP2002190427A (en) * 2000-10-11 2002-07-05 Sii Micro Parts Ltd Electric double-layer capacitor capable of being mounted by reflow soldering and its manufacturing method
JP2006040596A (en) * 2004-07-23 2006-02-09 Hitachi Maxell Ltd Flat battery and its manufacturing method
JP2006059705A (en) * 2004-08-20 2006-03-02 Sii Micro Parts Ltd Electrochemical cell and its manufacturing method
JP2008091081A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Coin type battery
JP2009152031A (en) * 2007-12-20 2009-07-09 Panasonic Corp Cylindrical battery
WO2023186178A1 (en) * 2022-04-26 2023-10-05 湖北亿纬动力有限公司 Battery sealing structure and battery pack

Similar Documents

Publication Publication Date Title
US6713215B2 (en) Non-aqueous electrolyte rechargeable batteries
JP2003092149A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP5022035B2 (en) Secondary battery with surface mount terminals
US7742280B2 (en) Coin-shaped storage cell
JP4245933B2 (en) Non-aqueous electrolyte secondary battery for reflow soldering
JP2004273139A (en) Lithium secondary battery
JP2004014395A (en) Battery
JP2000138042A (en) Organic electrolyte battery
JPH09320568A (en) Nonaqueous electrolyte secondary battery
JP4195949B2 (en) Organic electrolyte battery that can be mounted automatically by reflow method
JP3966254B2 (en) Secondary battery with surface mount terminals
JP4578811B2 (en) Soldering method for non-aqueous electrolyte secondary battery
JP4765186B2 (en) Organic electrolyte battery
KR20170113772A (en) Current collector for Electrochemical energy storage device and Manufacturing method thereof
JP2008204839A (en) Sealing plate for cylindrical battery cell
JP2005332657A (en) Non-aqueous electrolyte secondary battery
JP4976623B2 (en) Reflow solderable electrochemical cell
JP4945074B2 (en) Nonaqueous electrolyte secondary battery
JP2004127556A (en) Nonaqueous electrolyte battery
JP2000040525A (en) Organic electrolyte secondary battery
JP4281428B2 (en) Electrochemical element
JP2007035431A (en) Nonaqueous electrolyte secondary battery
JP2000048859A (en) Organic electrolyte battery
JP2002056828A (en) Nonaqueous electrolyte secondary battery, and electric double layer capacitor
JP2000251935A (en) Organic electrolyte battery