IL301656A - Compositions for reducing inflammation to improve or maintain mental or physical health - Google Patents
Compositions for reducing inflammation to improve or maintain mental or physical healthInfo
- Publication number
- IL301656A IL301656A IL301656A IL30165623A IL301656A IL 301656 A IL301656 A IL 301656A IL 301656 A IL301656 A IL 301656A IL 30165623 A IL30165623 A IL 30165623A IL 301656 A IL301656 A IL 301656A
- Authority
- IL
- Israel
- Prior art keywords
- agonist
- composition
- 5ht2a
- trp
- psilocybin
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims description 224
- 206010061218 Inflammation Diseases 0.000 title claims description 104
- 230000004054 inflammatory process Effects 0.000 title claims description 104
- 230000036541 health Effects 0.000 title description 14
- 230000003340 mental effect Effects 0.000 title description 7
- QVDSEJDULKLHCG-UHFFFAOYSA-N Psilocybine Natural products C1=CC(OP(O)(O)=O)=C2C(CCN(C)C)=CNC2=C1 QVDSEJDULKLHCG-UHFFFAOYSA-N 0.000 claims description 349
- 239000002399 serotonin 2A agonist Substances 0.000 claims description 177
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 claims description 155
- 150000001875 compounds Chemical class 0.000 claims description 138
- YKPUWZUDDOIDPM-SOFGYWHQSA-N capsaicin Natural products COC1=CC(CNC(=O)CCCC\C=C\C(C)C)=CC=C1O YKPUWZUDDOIDPM-SOFGYWHQSA-N 0.000 claims description 127
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 claims description 103
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 claims description 100
- 229940123416 TRP agonist Drugs 0.000 claims description 86
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 claims description 78
- 239000005770 Eugenol Substances 0.000 claims description 78
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 claims description 78
- 229960002217 eugenol Drugs 0.000 claims description 78
- APJYDQYYACXCRM-UHFFFAOYSA-N tryptamine Chemical compound C1=CC=C2C(CCN)=CNC2=C1 APJYDQYYACXCRM-UHFFFAOYSA-N 0.000 claims description 65
- 229940044601 receptor agonist Drugs 0.000 claims description 60
- 239000000018 receptor agonist Substances 0.000 claims description 60
- 235000017663 capsaicin Nutrition 0.000 claims description 59
- 229960002504 capsaicin Drugs 0.000 claims description 59
- NPNUFJAVOOONJE-ZIAGYGMSSA-N β-(E)-Caryophyllene Chemical compound C1CC(C)=CCCC(=C)[C@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-ZIAGYGMSSA-N 0.000 claims description 54
- SPCIYGNTAMCTRO-UHFFFAOYSA-N psilocin Chemical compound C1=CC(O)=C2C(CCN(C)C)=CNC2=C1 SPCIYGNTAMCTRO-UHFFFAOYSA-N 0.000 claims description 52
- 241000196324 Embryophyta Species 0.000 claims description 50
- 235000012754 curcumin Nutrition 0.000 claims description 50
- 239000004148 curcumin Substances 0.000 claims description 50
- 229940109262 curcumin Drugs 0.000 claims description 50
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 claims description 50
- 208000024891 symptom Diseases 0.000 claims description 47
- -1 DMT compound Chemical class 0.000 claims description 46
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 claims description 42
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 claims description 39
- 229940117916 cinnamic aldehyde Drugs 0.000 claims description 39
- 241000894007 species Species 0.000 claims description 39
- 229940076279 serotonin Drugs 0.000 claims description 36
- 230000004630 mental health Effects 0.000 claims description 34
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 claims description 32
- 235000009421 Myristica fragrans Nutrition 0.000 claims description 31
- 241000233866 Fungi Species 0.000 claims description 29
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 29
- 239000001702 nutmeg Substances 0.000 claims description 29
- 102000004889 Interleukin-6 Human genes 0.000 claims description 28
- 108090001005 Interleukin-6 Proteins 0.000 claims description 28
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 claims description 27
- 235000003392 Curcuma domestica Nutrition 0.000 claims description 25
- 108050003267 Prostaglandin G/H synthase 2 Proteins 0.000 claims description 25
- 235000003373 curcuma longa Nutrition 0.000 claims description 25
- 235000013976 turmeric Nutrition 0.000 claims description 25
- 230000009467 reduction Effects 0.000 claims description 24
- 229940117948 caryophyllene Drugs 0.000 claims description 23
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 23
- NVEQFIOZRFFVFW-UHFFFAOYSA-N 9-epi-beta-caryophyllene oxide Natural products C=C1CCC2OC2(C)CCC2C(C)(C)CC21 NVEQFIOZRFFVFW-UHFFFAOYSA-N 0.000 claims description 22
- 240000004160 Capsicum annuum Species 0.000 claims description 22
- BPLQKQKXWHCZSS-UHFFFAOYSA-N Elemicin Chemical compound COC1=CC(CC=C)=CC(OC)=C1OC BPLQKQKXWHCZSS-UHFFFAOYSA-N 0.000 claims description 22
- 244000179970 Monarda didyma Species 0.000 claims description 22
- 235000010672 Monarda didyma Nutrition 0.000 claims description 22
- FAMPSKZZVDUYOS-UHFFFAOYSA-N alpha-Caryophyllene Natural products CC1=CCC(C)(C)C=CCC(C)=CCC1 FAMPSKZZVDUYOS-UHFFFAOYSA-N 0.000 claims description 22
- NPNUFJAVOOONJE-UHFFFAOYSA-N beta-cariophyllene Natural products C1CC(C)=CCCC(=C)C2CC(C)(C)C21 NPNUFJAVOOONJE-UHFFFAOYSA-N 0.000 claims description 22
- NPNUFJAVOOONJE-UONOGXRCSA-N caryophyllene Natural products C1CC(C)=CCCC(=C)[C@@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-UONOGXRCSA-N 0.000 claims description 22
- 244000223760 Cinnamomum zeylanicum Species 0.000 claims description 21
- 235000017803 cinnamon Nutrition 0.000 claims description 21
- UAHWPYUMFXYFJY-UHFFFAOYSA-N beta-myrcene Chemical compound CC(C)=CCCC(=C)C=C UAHWPYUMFXYFJY-UHFFFAOYSA-N 0.000 claims description 20
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 claims description 20
- 229950002454 lysergide Drugs 0.000 claims description 20
- 229930015704 phenylpropanoid Natural products 0.000 claims description 20
- 244000008991 Curcuma longa Species 0.000 claims description 19
- 235000016639 Syzygium aromaticum Nutrition 0.000 claims description 19
- 239000003642 reactive oxygen metabolite Substances 0.000 claims description 19
- 235000002566 Capsicum Nutrition 0.000 claims description 18
- RHCSKNNOAZULRK-UHFFFAOYSA-N mescaline Chemical compound COC1=CC(CCN)=CC(OC)=C1OC RHCSKNNOAZULRK-UHFFFAOYSA-N 0.000 claims description 18
- WVWHRXVVAYXKDE-UHFFFAOYSA-N piperine Natural products O=C(C=CC=Cc1ccc2OCOc2c1)C3CCCCN3 WVWHRXVVAYXKDE-UHFFFAOYSA-N 0.000 claims description 18
- MXXWOMGUGJBKIW-YPCIICBESA-N piperine Chemical compound C=1C=C2OCOC2=CC=1/C=C/C=C/C(=O)N1CCCCC1 MXXWOMGUGJBKIW-YPCIICBESA-N 0.000 claims description 18
- 235000019100 piperine Nutrition 0.000 claims description 18
- 229940075559 piperine Drugs 0.000 claims description 18
- 239000006002 Pepper Substances 0.000 claims description 17
- 235000016761 Piper aduncum Nutrition 0.000 claims description 17
- 235000017804 Piper guineense Nutrition 0.000 claims description 17
- 235000008184 Piper nigrum Nutrition 0.000 claims description 17
- 244000223014 Syzygium aromaticum Species 0.000 claims description 17
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 claims description 17
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 claims description 17
- HHTWOMMSBMNRKP-UHFFFAOYSA-N carvacrol Natural products CC(=C)C1=CC=C(C)C(O)=C1 HHTWOMMSBMNRKP-UHFFFAOYSA-N 0.000 claims description 17
- RECUKUPTGUEGMW-UHFFFAOYSA-N carvacrol Chemical compound CC(C)C1=CC=C(C)C(O)=C1 RECUKUPTGUEGMW-UHFFFAOYSA-N 0.000 claims description 17
- 235000007746 carvacrol Nutrition 0.000 claims description 17
- WYXXLXHHWYNKJF-UHFFFAOYSA-N isocarvacrol Natural products CC(C)C1=CC=C(O)C(C)=C1 WYXXLXHHWYNKJF-UHFFFAOYSA-N 0.000 claims description 17
- 241001258934 Psilocybe tampanensis Species 0.000 claims description 16
- 239000005844 Thymol Substances 0.000 claims description 16
- 229960000790 thymol Drugs 0.000 claims description 16
- 208000019901 Anxiety disease Diseases 0.000 claims description 15
- 235000002568 Capsicum frutescens Nutrition 0.000 claims description 15
- 230000036506 anxiety Effects 0.000 claims description 15
- IQSYWEWTWDEVNO-ZIAGYGMSSA-N (6ar,10ar)-1-hydroxy-6,6,9-trimethyl-3-propyl-6a,7,8,10a-tetrahydrobenzo[c]chromene-2-carboxylic acid Chemical compound C([C@H]1C(C)(C)O2)CC(C)=C[C@H]1C1=C2C=C(CCC)C(C(O)=O)=C1O IQSYWEWTWDEVNO-ZIAGYGMSSA-N 0.000 claims description 14
- AWFDCTXCTHGORH-HGHGUNKESA-N 6-[4-[(6ar,9r,10ar)-5-bromo-7-methyl-6,6a,8,9,10,10a-hexahydro-4h-indolo[4,3-fg]quinoline-9-carbonyl]piperazin-1-yl]-1-methylpyridin-2-one Chemical compound O=C([C@H]1CN([C@H]2[C@@H](C=3C=CC=C4NC(Br)=C(C=34)C2)C1)C)N(CC1)CCN1C1=CC=CC(=O)N1C AWFDCTXCTHGORH-HGHGUNKESA-N 0.000 claims description 14
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 claims description 14
- 235000002283 Capsicum annuum var aviculare Nutrition 0.000 claims description 14
- 235000013303 Capsicum annuum var. frutescens Nutrition 0.000 claims description 14
- 235000002284 Capsicum baccatum var baccatum Nutrition 0.000 claims description 14
- 244000246386 Mentha pulegium Species 0.000 claims description 14
- 235000016257 Mentha pulegium Nutrition 0.000 claims description 14
- 235000004357 Mentha x piperita Nutrition 0.000 claims description 14
- 208000037976 chronic inflammation Diseases 0.000 claims description 14
- 201000010099 disease Diseases 0.000 claims description 14
- 235000001050 hortel pimenta Nutrition 0.000 claims description 14
- ZROLHBHDLIHEMS-HUUCEWRRSA-N (6ar,10ar)-6,6,9-trimethyl-3-propyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCC)=CC(O)=C3[C@@H]21 ZROLHBHDLIHEMS-HUUCEWRRSA-N 0.000 claims description 13
- ZROLHBHDLIHEMS-UHFFFAOYSA-N Delta9 tetrahydrocannabivarin Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCC)=CC(O)=C3C21 ZROLHBHDLIHEMS-UHFFFAOYSA-N 0.000 claims description 13
- 240000002943 Elettaria cardamomum Species 0.000 claims description 13
- 235000013628 Lantana involucrata Nutrition 0.000 claims description 13
- 235000006677 Monarda citriodora ssp. austromontana Nutrition 0.000 claims description 13
- SEEZIOZEUUMJME-FOWTUZBSSA-N cannabigerolic acid Chemical compound CCCCCC1=CC(O)=C(C\C=C(/C)CCC=C(C)C)C(O)=C1C(O)=O SEEZIOZEUUMJME-FOWTUZBSSA-N 0.000 claims description 13
- SEEZIOZEUUMJME-UHFFFAOYSA-N cannabinerolic acid Natural products CCCCCC1=CC(O)=C(CC=C(C)CCC=C(C)C)C(O)=C1C(O)=O SEEZIOZEUUMJME-UHFFFAOYSA-N 0.000 claims description 13
- 235000005300 cardamomo Nutrition 0.000 claims description 13
- 150000002995 phenylpropanoid derivatives Chemical class 0.000 claims description 13
- 241000383359 Inocybe corydalina Species 0.000 claims description 12
- 240000002836 Ipomoea tricolor Species 0.000 claims description 12
- 241000233748 Pholiotina cyanopus Species 0.000 claims description 12
- 241001061682 Psilocybe caerulescens Species 0.000 claims description 12
- 241000801619 Psilocybe fagicola Species 0.000 claims description 12
- 241001062351 Psilocybe liniformans Species 0.000 claims description 12
- IQSYWEWTWDEVNO-UHFFFAOYSA-N THCVA Natural products O1C(C)(C)C2CCC(C)=CC2C2=C1C=C(CCC)C(C(O)=O)=C2O IQSYWEWTWDEVNO-UHFFFAOYSA-N 0.000 claims description 12
- 235000007303 Thymus vulgaris Nutrition 0.000 claims description 12
- 240000002657 Thymus vulgaris Species 0.000 claims description 12
- YJYIDZLGVYOPGU-UHFFFAOYSA-N cannabigeroldivarin Natural products CCCC1=CC(O)=C(CC=C(C)CCC=C(C)C)C(O)=C1 YJYIDZLGVYOPGU-UHFFFAOYSA-N 0.000 claims description 12
- 208000037893 chronic inflammatory disorder Diseases 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 12
- 239000001585 thymus vulgaris Substances 0.000 claims description 12
- 206010028980 Neoplasm Diseases 0.000 claims description 11
- VTTONGPRPXSUTJ-UHFFFAOYSA-N bufotenin Chemical compound C1=C(O)C=C2C(CCN(C)C)=CNC2=C1 VTTONGPRPXSUTJ-UHFFFAOYSA-N 0.000 claims description 11
- 201000011510 cancer Diseases 0.000 claims description 11
- 229940117803 phenethylamine Drugs 0.000 claims description 11
- 230000001225 therapeutic effect Effects 0.000 claims description 11
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 claims description 10
- WVOLTBSCXRRQFR-SJORKVTESA-N Cannabidiolic acid Natural products OC1=C(C(O)=O)C(CCCCC)=CC(O)=C1[C@@H]1[C@@H](C(C)=C)CCC(C)=C1 WVOLTBSCXRRQFR-SJORKVTESA-N 0.000 claims description 10
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 claims description 10
- 244000270834 Myristica fragrans Species 0.000 claims description 10
- 102000011779 Nitric Oxide Synthase Type II Human genes 0.000 claims description 10
- 108010076864 Nitric Oxide Synthase Type II Proteins 0.000 claims description 10
- VYBREYKSZAROCT-UHFFFAOYSA-N alpha-myrcene Natural products CC(=C)CCCC(=C)C=C VYBREYKSZAROCT-UHFFFAOYSA-N 0.000 claims description 10
- 210000000988 bone and bone Anatomy 0.000 claims description 10
- WVOLTBSCXRRQFR-DLBZAZTESA-M cannabidiolate Chemical compound OC1=C(C([O-])=O)C(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 WVOLTBSCXRRQFR-DLBZAZTESA-M 0.000 claims description 10
- 229940041616 menthol Drugs 0.000 claims description 10
- 230000003387 muscular Effects 0.000 claims description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 claims description 9
- 241001062357 Psilocybe cubensis Species 0.000 claims description 9
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 9
- 239000000090 biomarker Substances 0.000 claims description 9
- 239000002775 capsule Substances 0.000 claims description 9
- 229960005233 cineole Drugs 0.000 claims description 9
- 206010012601 diabetes mellitus Diseases 0.000 claims description 9
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 claims description 9
- NTJQREUGJKIARY-UHFFFAOYSA-N 1-(2,5-dimethoxy-4-methylphenyl)propan-2-amine Chemical compound COC1=CC(CC(C)N)=C(OC)C=C1C NTJQREUGJKIARY-UHFFFAOYSA-N 0.000 claims description 8
- FXMWUTGUCAKGQL-UHFFFAOYSA-N 2,5-dimethoxy-4-bromoamphetamine Chemical compound COC1=CC(CC(C)N)=C(OC)C=C1Br FXMWUTGUCAKGQL-UHFFFAOYSA-N 0.000 claims description 8
- YMHOBZXQZVXHBM-UHFFFAOYSA-N 2,5-dimethoxy-4-bromophenethylamine Chemical compound COC1=CC(CCN)=C(OC)C=C1Br YMHOBZXQZVXHBM-UHFFFAOYSA-N 0.000 claims description 8
- MTJOWJUQGYWRHT-UHFFFAOYSA-N 3-[2-(methylamino)ethyl]-1h-indol-4-ol Chemical compound C1=CC(O)=C2C(CCNC)=CNC2=C1 MTJOWJUQGYWRHT-UHFFFAOYSA-N 0.000 claims description 8
- 240000002234 Allium sativum Species 0.000 claims description 8
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 8
- 241000997744 Chlorocystis Species 0.000 claims description 8
- 241001223877 Copelandia tropicalis Species 0.000 claims description 8
- 229930153442 Curcuminoid Natural products 0.000 claims description 8
- WVVSZNPYNCNODU-CJBNDPTMSA-N Ergometrine Natural products C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@@H](CO)C)C2)=C3C2=CNC3=C1 WVVSZNPYNCNODU-CJBNDPTMSA-N 0.000 claims description 8
- WEEGYLXZBRQIMU-UHFFFAOYSA-N Eucalyptol Chemical compound C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 claims description 8
- 244000004281 Eucalyptus maculata Species 0.000 claims description 8
- 241001606310 Inocybe aeruginascens Species 0.000 claims description 8
- ZAGRKAFMISFKIO-UHFFFAOYSA-N Isolysergic acid Natural products C1=CC(C2=CC(CN(C2C2)C)C(O)=O)=C3C2=CNC3=C1 ZAGRKAFMISFKIO-UHFFFAOYSA-N 0.000 claims description 8
- MZSGWZGPESCJAN-MOBFUUNNSA-N Melitric acid A Natural products O([C@@H](C(=O)O)Cc1cc(O)c(O)cc1)C(=O)/C=C/c1cc(O)c(O/C(/C(=O)O)=C/c2cc(O)c(O)cc2)cc1 MZSGWZGPESCJAN-MOBFUUNNSA-N 0.000 claims description 8
- 240000005373 Panax quinquefolius Species 0.000 claims description 8
- 240000005519 Prunus mexicana Species 0.000 claims description 8
- 241000332761 Psilocybe cyanescens Species 0.000 claims description 8
- 241000377764 Psilocybe ovoideocystidiata Species 0.000 claims description 8
- 241000919681 Psilocybe weraroa Species 0.000 claims description 8
- 235000006886 Zingiber officinale Nutrition 0.000 claims description 8
- WTPBXXCVZZZXKR-UHFFFAOYSA-N baeocystin Chemical compound C1=CC(OP(O)(O)=O)=C2C(CCNC)=CNC2=C1 WTPBXXCVZZZXKR-UHFFFAOYSA-N 0.000 claims description 8
- 230000001684 chronic effect Effects 0.000 claims description 8
- SBHXYTNGIZCORC-ZDUSSCGKSA-N eriodictyol Chemical compound C1([C@@H]2CC(=O)C3=C(O)C=C(C=C3O2)O)=CC=C(O)C(O)=C1 SBHXYTNGIZCORC-ZDUSSCGKSA-N 0.000 claims description 8
- TUJPOVKMHCLXEL-UHFFFAOYSA-N eriodictyol Natural products C1C(=O)C2=CC(O)=CC(O)=C2OC1C1=CC=C(O)C(O)=C1 TUJPOVKMHCLXEL-UHFFFAOYSA-N 0.000 claims description 8
- 235000011797 eriodictyol Nutrition 0.000 claims description 8
- SBHXYTNGIZCORC-UHFFFAOYSA-N eriodyctiol Natural products O1C2=CC(O)=CC(O)=C2C(=O)CC1C1=CC=C(O)C(O)=C1 SBHXYTNGIZCORC-UHFFFAOYSA-N 0.000 claims description 8
- 235000004611 garlic Nutrition 0.000 claims description 8
- 235000008397 ginger Nutrition 0.000 claims description 8
- 210000004962 mammalian cell Anatomy 0.000 claims description 8
- IKQGYCWFBVEAKF-UHFFFAOYSA-N norbaeocystin Chemical compound C1=CC(OP(O)(O)=O)=C2C(CCN)=CNC2=C1 IKQGYCWFBVEAKF-UHFFFAOYSA-N 0.000 claims description 8
- 208000028173 post-traumatic stress disease Diseases 0.000 claims description 8
- 102000003390 tumor necrosis factor Human genes 0.000 claims description 8
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-3',4',5,7-Tetrahydroxy-2,3-trans-flavan-3-ol Natural products C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 claims description 7
- 229930013783 (-)-epicatechin Natural products 0.000 claims description 7
- 235000007355 (-)-epicatechin Nutrition 0.000 claims description 7
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 claims description 7
- SHXWCVYOXRDMCX-UHFFFAOYSA-N 3,4-methylenedioxymethamphetamine Chemical compound CNC(C)CC1=CC=C2OCOC2=C1 SHXWCVYOXRDMCX-UHFFFAOYSA-N 0.000 claims description 7
- JDLKFOPOAOFWQN-VIFPVBQESA-N Allicin Natural products C=CCS[S@](=O)CC=C JDLKFOPOAOFWQN-VIFPVBQESA-N 0.000 claims description 7
- 235000002732 Allium cepa var. cepa Nutrition 0.000 claims description 7
- 241001502529 Echinopsis pachanoi Species 0.000 claims description 7
- 102000004890 Interleukin-8 Human genes 0.000 claims description 7
- 108090001007 Interleukin-8 Proteins 0.000 claims description 7
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 claims description 7
- 241000393932 Pimelia atlantis Species 0.000 claims description 7
- 241001660159 Trichocereus Species 0.000 claims description 7
- RTLRUOSYLFOFHV-UHFFFAOYSA-N [3-[2-(dimethylamino)ethyl]-1h-indol-4-yl] acetate Chemical compound C1=CC(OC(C)=O)=C2C(CCN(C)C)=CNC2=C1 RTLRUOSYLFOFHV-UHFFFAOYSA-N 0.000 claims description 7
- JDLKFOPOAOFWQN-UHFFFAOYSA-N allicin Chemical compound C=CCSS(=O)CC=C JDLKFOPOAOFWQN-UHFFFAOYSA-N 0.000 claims description 7
- 235000010081 allicin Nutrition 0.000 claims description 7
- 208000035475 disorder Diseases 0.000 claims description 7
- NLDDIKRKFXEWBK-AWEZNQCLSA-N gingerol Chemical compound CCCCC[C@H](O)CC(=O)CCC1=CC=C(O)C(OC)=C1 NLDDIKRKFXEWBK-AWEZNQCLSA-N 0.000 claims description 7
- JZLXEKNVCWMYHI-UHFFFAOYSA-N gingerol Natural products CCCCC(O)CC(=O)CCC1=CC=C(O)C(OC)=C1 JZLXEKNVCWMYHI-UHFFFAOYSA-N 0.000 claims description 7
- 235000002780 gingerol Nutrition 0.000 claims description 7
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 claims description 6
- SSBZLMMXFQMHDP-REDNKFHQSA-N (1r,2s,5e,9e,12s)-1,5,9-trimethyl-12-propan-2-yl-15-oxabicyclo[10.2.1]pentadeca-5,9-dien-2-ol Chemical compound O1[C@]2(C)CC[C@@]1(C(C)C)C/C=C(C)/CC/C=C(C)/CC[C@@H]2O SSBZLMMXFQMHDP-REDNKFHQSA-N 0.000 claims description 6
- UNBRKDKAWYKMIV-QWQRMKEZSA-N (6aR,9R)-N-[(2S)-1-hydroxybutan-2-yl]-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@H](CO)CC)C2)=C3C2=CNC3=C1 UNBRKDKAWYKMIV-QWQRMKEZSA-N 0.000 claims description 6
- UNQQFDCVEMVQHM-UHFFFAOYSA-N 2c-d Chemical compound COC1=CC(CCN)=C(OC)C=C1C UNQQFDCVEMVQHM-UHFFFAOYSA-N 0.000 claims description 6
- LDCYZAJDBXYCGN-UHFFFAOYSA-N 5-hydroxytryptophan Chemical compound C1=C(O)C=C2C(CC(N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-UHFFFAOYSA-N 0.000 claims description 6
- 241001074093 Echinopsis Species 0.000 claims description 6
- 230000001154 acute effect Effects 0.000 claims description 6
- RFFOTVCVTJUTAD-UHFFFAOYSA-N cineole Natural products C1CC2(C)CCC1(C(C)C)O2 RFFOTVCVTJUTAD-UHFFFAOYSA-N 0.000 claims description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 6
- ZJTDDBZRNWYHKQ-UHFFFAOYSA-N incensole Natural products CC(C)C12CC=C(/C)CCC=C(/C)CCCC(O)C(C)(C1)O2 ZJTDDBZRNWYHKQ-UHFFFAOYSA-N 0.000 claims description 6
- 229940100601 interleukin-6 Drugs 0.000 claims description 6
- ZAGRKAFMISFKIO-QMTHXVAHSA-N lysergic acid Chemical compound C1=CC(C2=C[C@H](CN([C@@H]2C2)C)C(O)=O)=C3C2=CNC3=C1 ZAGRKAFMISFKIO-QMTHXVAHSA-N 0.000 claims description 6
- 208000030159 metabolic disease Diseases 0.000 claims description 6
- 201000000980 schizophrenia Diseases 0.000 claims description 6
- ROICYBLUWUMJFF-RDTXWAMCSA-N (6aR,9R)-N,7-dimethyl-N-propan-2-yl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound CN(C(=O)[C@H]1CN(C)[C@@H]2CC3=CNC4=CC=CC(C2=C1)=C34)C(C)C ROICYBLUWUMJFF-RDTXWAMCSA-N 0.000 claims description 5
- 241000435110 Echinopsis lageniformis Species 0.000 claims description 5
- 241001669525 Gymnopilus Species 0.000 claims description 5
- 241001237927 Inocybe Species 0.000 claims description 5
- 208000012902 Nervous system disease Diseases 0.000 claims description 5
- 241001236144 Panaeolus Species 0.000 claims description 5
- 241001059392 Pholiotina Species 0.000 claims description 5
- 241000958500 Pluteus Species 0.000 claims description 5
- 241001237914 Psilocybe Species 0.000 claims description 5
- 241000576755 Sclerotia Species 0.000 claims description 5
- ZICNYIDDNJYKCP-SOFGYWHQSA-N capsiate Chemical compound COC1=CC(COC(=O)CCCC\C=C\C(C)C)=CC=C1O ZICNYIDDNJYKCP-SOFGYWHQSA-N 0.000 claims description 5
- 229960003987 melatonin Drugs 0.000 claims description 5
- MLOFCBXSOAYCIF-DYESRHJHSA-N (6aR,9R)-N,N,7-triethyl-4-propanoyl-6,6a,8,9-tetrahydroindolo[4,3-fg]quinoline-9-carboxamide Chemical compound CCN(CC)C(=O)[C@H]1CN(CC)[C@@H]2Cc3cn(C(=O)CC)c4cccc(C2=C1)c34 MLOFCBXSOAYCIF-DYESRHJHSA-N 0.000 claims description 4
- JSMQOVGXBIDBIE-OXQOHEQNSA-N (6aR,9R)-N,N-diethyl-7-methyl-4-propanoyl-6,6a,8,9-tetrahydroindolo[4,3-fg]quinoline-9-carboxamide Chemical compound C(C)N(C(=O)[C@H]1CN(C)[C@@H]2CC3=CN(C4=CC=CC(C2=C1)=C34)C(CC)=O)CC JSMQOVGXBIDBIE-OXQOHEQNSA-N 0.000 claims description 4
- BPJKJUFQSNRQCR-OXQOHEQNSA-N (6aR,9R)-N,N-diethyl-7-prop-2-ynyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound CCN(CC)C(=O)[C@H]1CN(CC#C)[C@@H]2Cc3c[nH]c4cccc(C2=C1)c34 BPJKJUFQSNRQCR-OXQOHEQNSA-N 0.000 claims description 4
- FWHSERNVTGTIJE-MLGOLLRUSA-N (6ar,9r)-n,n,7-trimethyl-6,6a,8,9-tetrahydro-4h-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(C)C)C2)=C3C2=CNC3=C1 FWHSERNVTGTIJE-MLGOLLRUSA-N 0.000 claims description 4
- HZKYLVLOBYNKKM-OXQOHEQNSA-N (6ar,9r)-n,n-diethyl-7-propyl-6,6a,8,9-tetrahydro-4h-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C2=C[C@H](CN([C@@H]2C2)CCC)C(=O)N(CC)CC)=C3C2=CNC3=C1 HZKYLVLOBYNKKM-OXQOHEQNSA-N 0.000 claims description 4
- NYFSQPDQLFFBRA-OLTOQGTGSA-N (6ar,9r)-n-butan-2-yl-7-methyl-6,6a,8,9-tetrahydro-4h-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)NC(C)CC)C2)=C3C2=CNC3=C1 NYFSQPDQLFFBRA-OLTOQGTGSA-N 0.000 claims description 4
- VEBWTGYUIBTVNR-MLGOLLRUSA-N (6ar,9r)-n-ethyl-7-methyl-6,6a,8,9-tetrahydro-4h-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)NCC)C2)=C3C2=CNC3=C1 VEBWTGYUIBTVNR-MLGOLLRUSA-N 0.000 claims description 4
- KDBZAQNCKQNPQB-UHFFFAOYSA-N 1,1,1-trimethoxy-3-phenylpropan-2-amine Chemical compound COC(C(N)CC1=CC=CC=C1)(OC)OC KDBZAQNCKQNPQB-UHFFFAOYSA-N 0.000 claims description 4
- NBGQZFQREPIKMG-UHFFFAOYSA-N 3beta-hydroxy-beta-boswellic acid Natural products C1CC(O)C(C)(C(O)=O)C2CCC3(C)C4(C)CCC5(C)CCC(C)C(C)C5C4=CCC3C21C NBGQZFQREPIKMG-UHFFFAOYSA-N 0.000 claims description 4
- FKIRTWDHOWAQGX-UHFFFAOYSA-N 4-hydroxytryptamine Chemical compound C1=CC(O)=C2C(CCN)=CNC2=C1 FKIRTWDHOWAQGX-UHFFFAOYSA-N 0.000 claims description 4
- 241000222519 Agaricus bisporus Species 0.000 claims description 4
- 240000000662 Anethum graveolens Species 0.000 claims description 4
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 claims description 4
- NBGQZFQREPIKMG-PONOSELZSA-N Boswellic acid Chemical compound C1C[C@@H](O)[C@](C)(C(O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C NBGQZFQREPIKMG-PONOSELZSA-N 0.000 claims description 4
- SVRFNPSJPIDUBC-DYESRHJHSA-N C(C)N(C(=O)[C@H]1CN(C)[C@@H]2CC3=CN(C4=CC=CC(C2=C1)=C34)C(CCC)=O)CC Chemical compound C(C)N(C(=O)[C@H]1CN(C)[C@@H]2CC3=CN(C4=CC=CC(C2=C1)=C34)C(CCC)=O)CC SVRFNPSJPIDUBC-DYESRHJHSA-N 0.000 claims description 4
- 241000475052 Calocera lutea Species 0.000 claims description 4
- 241000221751 Claviceps purpurea Species 0.000 claims description 4
- 241000234229 Conocybe bispora Species 0.000 claims description 4
- 241000958955 Conocybe velutipes Species 0.000 claims description 4
- 241000111158 Convolvulus nodiflorus Species 0.000 claims description 4
- 241001059394 Copelandia Species 0.000 claims description 4
- 241001427779 Cortinarius mairei Species 0.000 claims description 4
- 241000757218 Cortinarius moseri Species 0.000 claims description 4
- 241000801662 Deconica neorhombispora Species 0.000 claims description 4
- 241001062293 Gymnopilus aeruginosus Species 0.000 claims description 4
- 241001400160 Gymnopilus braendlei Species 0.000 claims description 4
- 241000684972 Gymnopilus cyanopalmicola Species 0.000 claims description 4
- 241001156635 Gymnopilus liquiritiae Species 0.000 claims description 4
- 241000413344 Gymnopilus luteofolius Species 0.000 claims description 4
- 241000598815 Gymnopilus purpuratus Species 0.000 claims description 4
- 241000693045 Gymnopilus spectabilis Species 0.000 claims description 4
- 241000972917 Gymnopilus subpurpuratus Species 0.000 claims description 4
- 241000480800 Gymnopilus thiersii Species 0.000 claims description 4
- 241000972921 Gymnopilus validipes Species 0.000 claims description 4
- 241000376404 Hyphopichia heimii Species 0.000 claims description 4
- 241001179831 Inocybe haemacta Species 0.000 claims description 4
- 102000000589 Interleukin-1 Human genes 0.000 claims description 4
- 108010002352 Interleukin-1 Proteins 0.000 claims description 4
- 102000003814 Interleukin-10 Human genes 0.000 claims description 4
- 108090000174 Interleukin-10 Proteins 0.000 claims description 4
- 102000000588 Interleukin-2 Human genes 0.000 claims description 4
- 108010002350 Interleukin-2 Proteins 0.000 claims description 4
- 240000002867 Ipomoea alba Species 0.000 claims description 4
- 229920006063 Lamide® Polymers 0.000 claims description 4
- 241001067181 Lecanora impudens Species 0.000 claims description 4
- 241000127278 Monoon tirunelveliense Species 0.000 claims description 4
- 241001290312 Ombrophila Species 0.000 claims description 4
- 241000539508 Panaeolus bisporus Species 0.000 claims description 4
- 241000021632 Panaeolus cambodginiensis Species 0.000 claims description 4
- 241001240051 Panaeolus castaneifolius Species 0.000 claims description 4
- 241001059395 Panaeolus cyanescens Species 0.000 claims description 4
- 241000596270 Panaeolus olivaceus Species 0.000 claims description 4
- 241000593938 Paragomphus nigroviridis Species 0.000 claims description 4
- 241000056921 Passiflora actinia Species 0.000 claims description 4
- 241001310183 Pectis portoricensis Species 0.000 claims description 4
- 241000614217 Pedicularis inconspicua Species 0.000 claims description 4
- 241001468888 Penidiella columbiana Species 0.000 claims description 4
- 244000056128 Pericampylus glaucus Species 0.000 claims description 4
- 241001006960 Periglandula Species 0.000 claims description 4
- 241000604700 Persea meridensis Species 0.000 claims description 4
- 241000893849 Pervillaea venenata Species 0.000 claims description 4
- 244000145345 Phaleria papuana Species 0.000 claims description 4
- 241000609654 Phallusia mammillata Species 0.000 claims description 4
- 241001321557 Phanerochaete brunneocystidiata Species 0.000 claims description 4
- 241000138778 Phialotubus microsporus Species 0.000 claims description 4
- 241001478086 Phylica callosa Species 0.000 claims description 4
- 241001538420 Phylloscopus laurae Species 0.000 claims description 4
- 240000000793 Pinus armandii Species 0.000 claims description 4
- 241001223353 Pinus caribaea Species 0.000 claims description 4
- 241000369911 Pinus herrerae Species 0.000 claims description 4
- 241001209059 Pinus jaliscana Species 0.000 claims description 4
- 241000954752 Platanus rzedowskii Species 0.000 claims description 4
- 241000219087 Platycarpum schultesii Species 0.000 claims description 4
- 241000156806 Plicaria anthracina Species 0.000 claims description 4
- 240000002904 Plumbago indica Species 0.000 claims description 4
- 241001458272 Pluteus albostipitatus Species 0.000 claims description 4
- 241001061528 Pluteus ephebeus Species 0.000 claims description 4
- 241000880334 Pluteus glaucotinctus Species 0.000 claims description 4
- 241001272507 Pluteus meridionalis Species 0.000 claims description 4
- 241001478582 Pluteus phaeocyanopus Species 0.000 claims description 4
- 241001061515 Pluteus salicinus Species 0.000 claims description 4
- 241000880683 Pluteus saupei Species 0.000 claims description 4
- 241001300080 Plutonia Species 0.000 claims description 4
- 241000163460 Podocarpus brasiliensis Species 0.000 claims description 4
- 241000932193 Podocarpus subtropicalis Species 0.000 claims description 4
- 241000134465 Pogonomyrmex uruguayensis Species 0.000 claims description 4
- 241001263205 Potentilla squamosa Species 0.000 claims description 4
- 244000063495 Pouzolzia rubricaulis Species 0.000 claims description 4
- 241000318190 Protomerulius africanus Species 0.000 claims description 4
- 241001587391 Psathyrella septentrionalis Species 0.000 claims description 4
- 241001411555 Psathyrella singeri Species 0.000 claims description 4
- 241000377771 Psilocybe allenii Species 0.000 claims description 4
- 241000332760 Psilocybe azurescens Species 0.000 claims description 4
- 241001373540 Psilocybe caeruleoannulata Species 0.000 claims description 4
- 241001156628 Psilocybe caerulipes Species 0.000 claims description 4
- 241001186613 Psilocybe chuxiongensis Species 0.000 claims description 4
- 241001062358 Psilocybe fimetaria Species 0.000 claims description 4
- 241000801620 Psilocybe hispanica Species 0.000 claims description 4
- 241001486246 Psilocybe makarorae Species 0.000 claims description 4
- 241000919656 Psilocybe medullosa Species 0.000 claims description 4
- 241000801659 Psilocybe neoxalapensis Species 0.000 claims description 4
- 241001156629 Psilocybe pelliculosa Species 0.000 claims description 4
- 241000482374 Psilocybe samuiensis Species 0.000 claims description 4
- 241001062330 Psilocybe semilanceata Species 0.000 claims description 4
- 241001418126 Psilocybe serbica Species 0.000 claims description 4
- 241001237913 Psilocybe silvatica Species 0.000 claims description 4
- 241000236307 Psilocybe strictipes Species 0.000 claims description 4
- 241001237928 Psilocybe stuntzii Species 0.000 claims description 4
- 241001261681 Psilocybe subaeruginascens Species 0.000 claims description 4
- 241001062322 Psilocybe subaeruginosa Species 0.000 claims description 4
- 241000263272 Psilocybe subcubensis Species 0.000 claims description 4
- 241000801655 Psilocybe thaiaerugineomaculans Species 0.000 claims description 4
- 241000801656 Psilocybe thaiduplicatocystidiata Species 0.000 claims description 4
- 241001373541 Psilocybe wrightii Species 0.000 claims description 4
- 241000801653 Psilocybe yungensis Species 0.000 claims description 4
- 241000801648 Psilocybe zapotecoantillarum Species 0.000 claims description 4
- 241000801641 Psilocybe zapotecorum Species 0.000 claims description 4
- 244000039510 Psychotria rostrata Species 0.000 claims description 4
- 241001047627 Rhyacornis fuliginosa Species 0.000 claims description 4
- URDULHYODQAQTM-DNVCBOLYSA-N [(6aR,9R)-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinolin-9-yl]-piperidin-1-ylmethanone Chemical compound C(=O)([C@H]1CN(C)[C@@H]2CC3=CNC4=CC=CC(C2=C1)=C34)N3CCCCC3 URDULHYODQAQTM-DNVCBOLYSA-N 0.000 claims description 4
- OTQWCDNEJVKXKG-RDTXWAMCSA-N [(6ar,9r)-7-methyl-6,6a,8,9-tetrahydro-4h-indolo[4,3-fg]quinoline-9-yl]-morpholin-4-ylmethanone Chemical compound O=C([C@H]1CN([C@H]2C(C=3C=CC=C4NC=C(C=34)C2)=C1)C)N1CCOCC1 OTQWCDNEJVKXKG-RDTXWAMCSA-N 0.000 claims description 4
- SETDYMMXQQXCRP-RDTXWAMCSA-N [(6ar,9r)-7-methyl-6,6a,8,9-tetrahydro-4h-indolo[4,3-fg]quinoline-9-yl]-pyrrolidin-1-ylmethanone Chemical compound O=C([C@H]1CN([C@H]2C(C=3C=CC=C4NC=C(C=34)C2)=C1)C)N1CCCC1 SETDYMMXQQXCRP-RDTXWAMCSA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- OIIPFLWAQQNCHA-UHFFFAOYSA-N aeruginascin Chemical compound C1=CC(OP(O)([O-])=O)=C2C(CC[N+](C)(C)C)=CNC2=C1 OIIPFLWAQQNCHA-UHFFFAOYSA-N 0.000 claims description 4
- FJOWXGYLIWJFCH-OXQOHEQNSA-N ald-52 Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CN(C(C)=O)C3=C1 FJOWXGYLIWJFCH-OXQOHEQNSA-N 0.000 claims description 4
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 claims description 4
- 229940088601 alpha-terpineol Drugs 0.000 claims description 4
- MYNOUXJLOHVSMQ-DNVCBOLYSA-N eth-lad Chemical compound C1=CC(C=2[C@H](N(CC)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 MYNOUXJLOHVSMQ-DNVCBOLYSA-N 0.000 claims description 4
- 229940076144 interleukin-10 Drugs 0.000 claims description 4
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 claims description 4
- 229940096397 interleukin-8 Drugs 0.000 claims description 4
- ZQONRMXCBQXYCK-AUUYWEPGSA-N lysergic acid 3-pentyl amide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)NC(CC)CC)C2)=C3C2=CNC3=C1 ZQONRMXCBQXYCK-AUUYWEPGSA-N 0.000 claims description 4
- KPJZHOPZRAFDTN-NQUBZZJWSA-N methysergide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)NC(CO)CC)C2)=C3C2=CN(C)C3=C1 KPJZHOPZRAFDTN-NQUBZZJWSA-N 0.000 claims description 4
- UTDLAEPMVCFGRJ-UHFFFAOYSA-N plutonium dihydrate Chemical compound O.O.[Pu] UTDLAEPMVCFGRJ-UHFFFAOYSA-N 0.000 claims description 4
- JCQLEPDZFXGHHQ-OXQOHEQNSA-N (6ar,9r)-n,n-diethyl-7-prop-2-enyl-6,6a,8,9-tetrahydro-4h-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C=2[C@H](N(CC=C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 JCQLEPDZFXGHHQ-OXQOHEQNSA-N 0.000 claims description 3
- 208000020925 Bipolar disease Diseases 0.000 claims description 3
- 241000883511 Lophophora williamsii Species 0.000 claims description 3
- 241001081833 Myristicaceae Species 0.000 claims description 3
- 241000955640 Panaeolus fimicola Species 0.000 claims description 3
- 241000801658 Psilocybe mescaleroensis Species 0.000 claims description 3
- 239000003085 diluting agent Substances 0.000 claims description 3
- 239000000945 filler Substances 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 3
- VTVHSIXDKKKTMT-DYESRHJHSA-N (6ar,9r)-7-butyl-n,n-diethyl-6,6a,8,9-tetrahydro-4h-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C2=C[C@H](CN([C@@H]2C2)CCCC)C(=O)N(CC)CC)=C3C2=CNC3=C1 VTVHSIXDKKKTMT-DYESRHJHSA-N 0.000 claims description 2
- WGTASENVNYJZBK-UHFFFAOYSA-N 3,4,5-trimethoxyamphetamine Chemical compound COC1=CC(CC(C)N)=CC(OC)=C1OC WGTASENVNYJZBK-UHFFFAOYSA-N 0.000 claims description 2
- NGBBVGZWCFBOGO-UHFFFAOYSA-N 3,4-Methylenedioxyamphetamine Chemical compound CC(N)CC1=CC=C2OCOC2=C1 NGBBVGZWCFBOGO-UHFFFAOYSA-N 0.000 claims description 2
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 claims description 2
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 claims description 2
- 241000153969 Pedomoecus sierra Species 0.000 claims description 2
- 208000027030 Premenstrual dysphoric disease Diseases 0.000 claims description 2
- 244000273928 Zingiber officinale Species 0.000 claims description 2
- 208000030963 borderline personality disease Diseases 0.000 claims description 2
- 229940002226 buccal film Drugs 0.000 claims description 2
- 238000000326 densiometry Methods 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- 208000035231 inattentive type attention deficit hyperactivity disease Diseases 0.000 claims description 2
- 208000012672 seasonal affective disease Diseases 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- QKTAAWLCLHMUTJ-UHFFFAOYSA-N psilocybin Chemical compound C1C=CC(OP(O)(O)=O)=C2C(CCN(C)C)=CN=C21 QKTAAWLCLHMUTJ-UHFFFAOYSA-N 0.000 claims 9
- 241000218236 Cannabis Species 0.000 claims 4
- 240000003889 Piper guineense Species 0.000 claims 4
- 240000005183 Lantana involucrata Species 0.000 claims 2
- 244000291564 Allium cepa Species 0.000 claims 1
- 241000016737 Cephaliophora tropica Species 0.000 claims 1
- 241001220630 Cleome anomala Species 0.000 claims 1
- 241000371654 Curvularia affinis Species 0.000 claims 1
- 241000778119 Phylica natalensis Species 0.000 claims 1
- 241000409997 Pimpinella puberula Species 0.000 claims 1
- 241000514392 Podocarpus smithii Species 0.000 claims 1
- 244000045488 Polyalthia affinis Species 0.000 claims 1
- 241000819654 Psilocybe antioquiensis Species 0.000 claims 1
- 230000000694 effects Effects 0.000 description 126
- 102000005962 receptors Human genes 0.000 description 58
- 108020003175 receptors Proteins 0.000 description 58
- 239000000556 agonist Substances 0.000 description 55
- 210000004027 cell Anatomy 0.000 description 55
- 102000009270 Tumour necrosis factor alpha Human genes 0.000 description 50
- 108050000101 Tumour necrosis factor alpha Proteins 0.000 description 50
- 230000011664 signaling Effects 0.000 description 45
- 208000002193 Pain Diseases 0.000 description 42
- 230000036407 pain Effects 0.000 description 37
- 210000004556 brain Anatomy 0.000 description 35
- BNWJOHGLIBDBOB-UHFFFAOYSA-N myristicin Chemical compound COC1=CC(CC=C)=CC2=C1OCO2 BNWJOHGLIBDBOB-UHFFFAOYSA-N 0.000 description 34
- 102000049773 5-HT2A Serotonin Receptor Human genes 0.000 description 32
- 230000002301 combined effect Effects 0.000 description 32
- 239000002028 Biomass Substances 0.000 description 29
- 235000000346 sugar Nutrition 0.000 description 29
- 108010072564 5-HT2A Serotonin Receptor Proteins 0.000 description 27
- 240000004308 marijuana Species 0.000 description 27
- 239000002552 dosage form Substances 0.000 description 26
- 239000003814 drug Substances 0.000 description 24
- 102000003566 TRPV1 Human genes 0.000 description 23
- 101150016206 Trpv1 gene Proteins 0.000 description 23
- 210000001035 gastrointestinal tract Anatomy 0.000 description 23
- 239000004615 ingredient Substances 0.000 description 23
- 238000009472 formulation Methods 0.000 description 22
- 230000001965 increasing effect Effects 0.000 description 22
- 241000498779 Myristica Species 0.000 description 21
- 230000002829 reductive effect Effects 0.000 description 21
- DMULVCHRPCFFGV-UHFFFAOYSA-N N,N-dimethyltryptamine Chemical compound C1=CC=C2C(CCN(C)C)=CNC2=C1 DMULVCHRPCFFGV-UHFFFAOYSA-N 0.000 description 18
- 230000037406 food intake Effects 0.000 description 18
- 230000002757 inflammatory effect Effects 0.000 description 18
- 210000000929 nociceptor Anatomy 0.000 description 18
- 102000004127 Cytokines Human genes 0.000 description 17
- 108090000695 Cytokines Proteins 0.000 description 17
- 229940079593 drug Drugs 0.000 description 17
- 230000036651 mood Effects 0.000 description 17
- 241000994292 Argyreia nervosa Species 0.000 description 16
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 16
- 229950011318 cannabidiol Drugs 0.000 description 16
- 229930195712 glutamate Natural products 0.000 description 16
- 102000003568 TRPV3 Human genes 0.000 description 15
- 101150043371 Trpv3 gene Proteins 0.000 description 15
- 230000008901 benefit Effects 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 240000001549 Ipomoea eriocarpa Species 0.000 description 14
- 235000005146 Ipomoea eriocarpa Nutrition 0.000 description 14
- 230000004913 activation Effects 0.000 description 14
- 210000004369 blood Anatomy 0.000 description 14
- 239000008280 blood Substances 0.000 description 14
- 230000014509 gene expression Effects 0.000 description 14
- 244000203593 Piper nigrum Species 0.000 description 13
- 238000013459 approach Methods 0.000 description 13
- 239000000284 extract Substances 0.000 description 13
- 210000003169 central nervous system Anatomy 0.000 description 12
- 230000013632 homeostatic process Effects 0.000 description 12
- 108091008700 nociceptors Proteins 0.000 description 12
- 108091006146 Channels Proteins 0.000 description 11
- 240000007673 Origanum vulgare Species 0.000 description 11
- QXACEHWTBCFNSA-SFQUDFHCSA-N cannabigerol Chemical compound CCCCCC1=CC(O)=C(C\C=C(/C)CCC=C(C)C)C(O)=C1 QXACEHWTBCFNSA-SFQUDFHCSA-N 0.000 description 11
- 230000002538 fungal effect Effects 0.000 description 11
- 230000002503 metabolic effect Effects 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 11
- 230000000770 proinflammatory effect Effects 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 10
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 10
- REOZWEGFPHTFEI-JKSUJKDBSA-N Cannabidivarin Chemical compound OC1=CC(CCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 REOZWEGFPHTFEI-JKSUJKDBSA-N 0.000 description 10
- 208000020401 Depressive disease Diseases 0.000 description 10
- 210000001015 abdomen Anatomy 0.000 description 10
- QXACEHWTBCFNSA-UHFFFAOYSA-N cannabigerol Natural products CCCCCC1=CC(O)=C(CC=C(C)CCC=C(C)C)C(O)=C1 QXACEHWTBCFNSA-UHFFFAOYSA-N 0.000 description 10
- 230000004060 metabolic process Effects 0.000 description 10
- 239000002858 neurotransmitter agent Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000019491 signal transduction Effects 0.000 description 10
- 235000002567 Capsicum annuum Nutrition 0.000 description 9
- 206010070834 Sensitisation Diseases 0.000 description 9
- 244000299461 Theobroma cacao Species 0.000 description 9
- REOZWEGFPHTFEI-UHFFFAOYSA-N cannabidivarine Natural products OC1=CC(CCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 REOZWEGFPHTFEI-UHFFFAOYSA-N 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 208000024714 major depressive disease Diseases 0.000 description 9
- 230000008313 sensitization Effects 0.000 description 9
- 230000008961 swelling Effects 0.000 description 9
- 240000007551 Boswellia serrata Species 0.000 description 8
- 241001471082 Colocasia bobone disease-associated cytorhabdovirus Species 0.000 description 8
- 206010011224 Cough Diseases 0.000 description 8
- 102000010909 Monoamine Oxidase Human genes 0.000 description 8
- 108010062431 Monoamine oxidase Proteins 0.000 description 8
- 102000003923 Protein Kinase C Human genes 0.000 description 8
- 108090000315 Protein Kinase C Proteins 0.000 description 8
- 208000006011 Stroke Diseases 0.000 description 8
- 230000003110 anti-inflammatory effect Effects 0.000 description 8
- 230000037396 body weight Effects 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- RHGUXDUPXYFCTE-ZWNOBZJWSA-N ergoline Chemical class C1=CC([C@@H]2[C@H](NCCC2)C2)=C3C2=CNC3=C1 RHGUXDUPXYFCTE-ZWNOBZJWSA-N 0.000 description 8
- 208000027866 inflammatory disease Diseases 0.000 description 8
- 230000000968 intestinal effect Effects 0.000 description 8
- 210000002414 leg Anatomy 0.000 description 8
- GENAHGKEFJLNJB-QMTHXVAHSA-N lysergamide Chemical compound C1=CC(C2=C[C@H](CN([C@@H]2C2)C)C(N)=O)=C3C2=CNC3=C1 GENAHGKEFJLNJB-QMTHXVAHSA-N 0.000 description 8
- 150000008511 lysergamides Chemical class 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 206010039073 rheumatoid arthritis Diseases 0.000 description 8
- 150000008163 sugars Chemical class 0.000 description 8
- 208000016261 weight loss Diseases 0.000 description 8
- 230000004580 weight loss Effects 0.000 description 8
- 206010000087 Abdominal pain upper Diseases 0.000 description 7
- 235000003717 Boswellia sacra Nutrition 0.000 description 7
- 235000012035 Boswellia serrata Nutrition 0.000 description 7
- 235000006965 Commiphora myrrha Nutrition 0.000 description 7
- 239000004863 Frankincense Substances 0.000 description 7
- 235000007265 Myrrhis odorata Nutrition 0.000 description 7
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 7
- 239000005557 antagonist Substances 0.000 description 7
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 7
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 7
- 230000001976 improved effect Effects 0.000 description 7
- 208000011736 mal de Debarquement Diseases 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 210000002569 neuron Anatomy 0.000 description 7
- 230000002085 persistent effect Effects 0.000 description 7
- 230000002195 synergetic effect Effects 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 241000234282 Allium Species 0.000 description 6
- 108091005462 Cation channels Proteins 0.000 description 6
- 244000163122 Curcuma domestica Species 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 229940080309 TRPM8 agonist Drugs 0.000 description 6
- 102000027544 TRPML Human genes 0.000 description 6
- 108091008846 TRPML Proteins 0.000 description 6
- 108091008849 TRPN Proteins 0.000 description 6
- 241000234314 Zingiber Species 0.000 description 6
- 230000004596 appetite loss Effects 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 6
- 235000021474 generally recognized As safe (food) Nutrition 0.000 description 6
- 235000021473 generally recognized as safe (food ingredients) Nutrition 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 210000000987 immune system Anatomy 0.000 description 6
- FPCCSQOGAWCVBH-UHFFFAOYSA-N ketanserin Chemical compound C1=CC(F)=CC=C1C(=O)C1CCN(CCN2C(C3=CC=CC=C3NC2=O)=O)CC1 FPCCSQOGAWCVBH-UHFFFAOYSA-N 0.000 description 6
- 229960005417 ketanserin Drugs 0.000 description 6
- 235000021266 loss of appetite Nutrition 0.000 description 6
- 208000019017 loss of appetite Diseases 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 230000000116 mitigating effect Effects 0.000 description 6
- 230000000926 neurological effect Effects 0.000 description 6
- 125000001474 phenylpropanoid group Chemical group 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 210000001044 sensory neuron Anatomy 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- 230000003867 tiredness Effects 0.000 description 6
- 208000016255 tiredness Diseases 0.000 description 6
- 230000001052 transient effect Effects 0.000 description 6
- 102000042565 transient receptor (TC 1.A.4) family Human genes 0.000 description 6
- 108091053409 transient receptor (TC 1.A.4) family Proteins 0.000 description 6
- 240000007311 Commiphora myrrha Species 0.000 description 5
- 102000005636 Cyclic AMP Response Element-Binding Protein Human genes 0.000 description 5
- 108010045171 Cyclic AMP Response Element-Binding Protein Proteins 0.000 description 5
- 206010013975 Dyspnoeas Diseases 0.000 description 5
- 101150104779 HTR2A gene Proteins 0.000 description 5
- 206010020772 Hypertension Diseases 0.000 description 5
- 102000003620 TRPM3 Human genes 0.000 description 5
- 108060008547 TRPM3 Proteins 0.000 description 5
- 102000003567 TRPV4 Human genes 0.000 description 5
- 101150098315 TRPV4 gene Proteins 0.000 description 5
- 230000008484 agonism Effects 0.000 description 5
- 239000000935 antidepressant agent Substances 0.000 description 5
- 229940005513 antidepressants Drugs 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 5
- 235000019219 chocolate Nutrition 0.000 description 5
- 229960004242 dronabinol Drugs 0.000 description 5
- 210000000105 enteric nervous system Anatomy 0.000 description 5
- 230000037353 metabolic pathway Effects 0.000 description 5
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 description 5
- 230000003389 potentiating effect Effects 0.000 description 5
- 208000020016 psychiatric disease Diseases 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- 230000007958 sleep Effects 0.000 description 5
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 4
- 208000023275 Autoimmune disease Diseases 0.000 description 4
- 208000002249 Diabetes Complications Diseases 0.000 description 4
- 206010012655 Diabetic complications Diseases 0.000 description 4
- 208000000059 Dyspnea Diseases 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 206010019233 Headaches Diseases 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 4
- 101000725401 Homo sapiens Cytochrome c oxidase subunit 2 Proteins 0.000 description 4
- 101000605127 Homo sapiens Prostaglandin G/H synthase 2 Proteins 0.000 description 4
- 108090000862 Ion Channels Proteins 0.000 description 4
- 102000004310 Ion Channels Human genes 0.000 description 4
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 4
- WVVSZNPYNCNODU-XTQGRXLLSA-N Lysergic acid propanolamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@H](CO)C)C2)=C3C2=CNC3=C1 WVVSZNPYNCNODU-XTQGRXLLSA-N 0.000 description 4
- GENAHGKEFJLNJB-UHFFFAOYSA-N Lysergsaeure-amid Natural products C1=CC(C2=CC(CN(C2C2)C)C(N)=O)=C3C2=CNC3=C1 GENAHGKEFJLNJB-UHFFFAOYSA-N 0.000 description 4
- 206010037660 Pyrexia Diseases 0.000 description 4
- 229940123223 TRPA1 agonist Drugs 0.000 description 4
- 102000027549 TRPC Human genes 0.000 description 4
- 108060008648 TRPC Proteins 0.000 description 4
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 4
- 230000000994 depressogenic effect Effects 0.000 description 4
- 208000002173 dizziness Diseases 0.000 description 4
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 4
- 229960001405 ergometrine Drugs 0.000 description 4
- 206010016256 fatigue Diseases 0.000 description 4
- 210000002683 foot Anatomy 0.000 description 4
- 230000004153 glucose metabolism Effects 0.000 description 4
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 4
- 231100000869 headache Toxicity 0.000 description 4
- 210000000936 intestine Anatomy 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 208000002551 irritable bowel syndrome Diseases 0.000 description 4
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000002483 medication Methods 0.000 description 4
- 229960000328 methylergometrine Drugs 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 description 4
- 229940124834 selective serotonin reuptake inhibitor Drugs 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 230000005062 synaptic transmission Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- PYIWUUCLMDCLQC-UHFFFAOYSA-N 3-benzyl-3-methyl-1,4,2-dioxazinane Chemical compound C=1C=CC=CC=1CC1(C)NOCCO1 PYIWUUCLMDCLQC-UHFFFAOYSA-N 0.000 description 3
- 238000013335 3D tissue model Methods 0.000 description 3
- LDCYZAJDBXYCGN-VIFPVBQESA-N 5-hydroxy-L-tryptophan Chemical compound C1=C(O)C=C2C(C[C@H](N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-VIFPVBQESA-N 0.000 description 3
- 102000040125 5-hydroxytryptamine receptor family Human genes 0.000 description 3
- 108091032151 5-hydroxytryptamine receptor family Proteins 0.000 description 3
- 229940000681 5-hydroxytryptophan Drugs 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 3
- 208000006820 Arthralgia Diseases 0.000 description 3
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- 208000031229 Cardiomyopathies Diseases 0.000 description 3
- 241000977227 Ceylonosticta tropica Species 0.000 description 3
- 240000007154 Coffea arabica Species 0.000 description 3
- 241000305729 Conocybe smithii Species 0.000 description 3
- 206010012289 Dementia Diseases 0.000 description 3
- 108010062677 Diacylglycerol Kinase Proteins 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 3
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 206010023232 Joint swelling Diseases 0.000 description 3
- 241000883508 Lophophora Species 0.000 description 3
- 206010024971 Lower respiratory tract infections Diseases 0.000 description 3
- 208000019022 Mood disease Diseases 0.000 description 3
- 102100030870 Mucolipin-2 Human genes 0.000 description 3
- 102100030868 Mucolipin-3 Human genes 0.000 description 3
- 206010028813 Nausea Diseases 0.000 description 3
- 208000025966 Neurological disease Diseases 0.000 description 3
- 244000248753 Passiflora van volxemii Species 0.000 description 3
- 241000619270 Potentilla pusilla Species 0.000 description 3
- 241000756285 Pseudochromis natalensis Species 0.000 description 3
- 241001156623 Psilocybe quebecensis Species 0.000 description 3
- 201000004681 Psoriasis Diseases 0.000 description 3
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 3
- 206010041349 Somnolence Diseases 0.000 description 3
- 108060009332 TRPP Proteins 0.000 description 3
- 208000034841 Thrombotic Microangiopathies Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 230000036626 alertness Effects 0.000 description 3
- 125000003368 amide group Chemical group 0.000 description 3
- 230000001430 anti-depressive effect Effects 0.000 description 3
- 230000036528 appetite Effects 0.000 description 3
- 235000019789 appetite Nutrition 0.000 description 3
- 208000006673 asthma Diseases 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229930003827 cannabinoid Natural products 0.000 description 3
- 239000003557 cannabinoid Substances 0.000 description 3
- 230000006690 co-activation Effects 0.000 description 3
- 235000016213 coffee Nutrition 0.000 description 3
- 235000013353 coffee beverage Nutrition 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 description 3
- 230000002526 effect on cardiovascular system Effects 0.000 description 3
- 239000002621 endocannabinoid Substances 0.000 description 3
- 230000004438 eyesight Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 244000005709 gut microbiome Species 0.000 description 3
- 208000019622 heart disease Diseases 0.000 description 3
- 208000014617 hemorrhoid Diseases 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- DUKNIHFTDAXJON-CTQRGLTFSA-N lysergic acid 2,4-dimethylazetidide Chemical compound C[C@H]1C[C@H](C)N1C(=O)[C@@H](CN(C)[C@@H]1C2)C=C1C1=C3C2=CNC3=CC=C1 DUKNIHFTDAXJON-CTQRGLTFSA-N 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 239000002899 monoamine oxidase inhibitor Substances 0.000 description 3
- 210000002445 nipple Anatomy 0.000 description 3
- 230000001473 noxious effect Effects 0.000 description 3
- 231100000862 numbness Toxicity 0.000 description 3
- 208000033808 peripheral neuropathy Diseases 0.000 description 3
- 230000008092 positive effect Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000003938 response to stress Effects 0.000 description 3
- 230000035807 sensation Effects 0.000 description 3
- 235000019615 sensations Nutrition 0.000 description 3
- 230000020341 sensory perception of pain Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 3
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 2
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 2
- KPJZHOPZRAFDTN-ZRGWGRIASA-N (6aR,9R)-N-[(2S)-1-hydroxybutan-2-yl]-4,7-dimethyl-6,6a,8,9-tetrahydroindolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@H](CO)CC)C2)=C3C2=CN(C)C3=C1 KPJZHOPZRAFDTN-ZRGWGRIASA-N 0.000 description 2
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 2
- 208000004998 Abdominal Pain Diseases 0.000 description 2
- 206010001497 Agitation Diseases 0.000 description 2
- 102100028116 Amine oxidase [flavin-containing] B Human genes 0.000 description 2
- 102000008102 Ankyrins Human genes 0.000 description 2
- 108010049777 Ankyrins Proteins 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 2
- 206010006002 Bone pain Diseases 0.000 description 2
- SEEZIOZEUUMJME-VBKFSLOCSA-N Cannabigerolic acid Natural products CCCCCC1=CC(O)=C(C\C=C(\C)CCC=C(C)C)C(O)=C1C(O)=O SEEZIOZEUUMJME-VBKFSLOCSA-N 0.000 description 2
- 206010008479 Chest Pain Diseases 0.000 description 2
- 206010008469 Chest discomfort Diseases 0.000 description 2
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 2
- 208000000668 Chronic Pancreatitis Diseases 0.000 description 2
- 241000221760 Claviceps Species 0.000 description 2
- 206010010144 Completed suicide Diseases 0.000 description 2
- 241001236189 Conocybe Species 0.000 description 2
- 241000673570 Crotalaria anomala Species 0.000 description 2
- XXGMIHXASFDFSM-UHFFFAOYSA-N Delta9-tetrahydrocannabinol Natural products CCCCCc1cc2OC(C)(C)C3CCC(=CC3c2c(O)c1O)C XXGMIHXASFDFSM-UHFFFAOYSA-N 0.000 description 2
- 241000586648 Deprea orinocensis Species 0.000 description 2
- 102100030221 Diacylglycerol kinase theta Human genes 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 206010013887 Dysarthria Diseases 0.000 description 2
- 244000061408 Eugenia caryophyllata Species 0.000 description 2
- 241001539473 Euphoria Species 0.000 description 2
- 206010015535 Euphoric mood Diseases 0.000 description 2
- 206010056465 Food craving Diseases 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 241001562190 Galerina Species 0.000 description 2
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 2
- 208000004547 Hallucinations Diseases 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 101000768078 Homo sapiens Amine oxidase [flavin-containing] B Proteins 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 206010065390 Inflammatory pain Diseases 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 208000001145 Metabolic Syndrome Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 208000003250 Mixed connective tissue disease Diseases 0.000 description 2
- 102100026502 Mucolipin-1 Human genes 0.000 description 2
- 208000010428 Muscle Weakness Diseases 0.000 description 2
- 206010028289 Muscle atrophy Diseases 0.000 description 2
- 206010028372 Muscular weakness Diseases 0.000 description 2
- 240000009023 Myrrhis odorata Species 0.000 description 2
- ROICYBLUWUMJFF-UHFFFAOYSA-N N,7-dimethyl-N-propan-2-yl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C=2C(N(C)CC(C=2)C(=O)N(C)C(C)C)C2)=C3C2=CNC3=C1 ROICYBLUWUMJFF-UHFFFAOYSA-N 0.000 description 2
- 150000001200 N-acyl ethanolamides Chemical class 0.000 description 2
- 208000029726 Neurodevelopmental disease Diseases 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 101100268917 Oryctolagus cuniculus ACOX2 gene Proteins 0.000 description 2
- 208000001132 Osteoporosis Diseases 0.000 description 2
- 206010033649 Pancreatitis chronic Diseases 0.000 description 2
- 241001282135 Poromitra oscitans Species 0.000 description 2
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 2
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 2
- 208000003251 Pruritus Diseases 0.000 description 2
- 241000882353 Pseudostellaria sierrae Species 0.000 description 2
- 208000001431 Psychomotor Agitation Diseases 0.000 description 2
- 208000001647 Renal Insufficiency Diseases 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 208000037656 Respiratory Sounds Diseases 0.000 description 2
- 206010038743 Restlessness Diseases 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- 201000001880 Sexual dysfunction Diseases 0.000 description 2
- 108060008646 TRPA Proteins 0.000 description 2
- 102000003629 TRPC3 Human genes 0.000 description 2
- 102000027545 TRPM Human genes 0.000 description 2
- 108091008847 TRPM Proteins 0.000 description 2
- 102000003563 TRPV Human genes 0.000 description 2
- 108060008564 TRPV Proteins 0.000 description 2
- 108010025083 TRPV1 receptor Proteins 0.000 description 2
- 102000003565 TRPV2 Human genes 0.000 description 2
- UCONUSSAWGCZMV-UHFFFAOYSA-N Tetrahydro-cannabinol-carbonsaeure Natural products O1C(C)(C)C2CCC(C)=CC2C2=C1C=C(CCCCC)C(C(O)=O)=C2O UCONUSSAWGCZMV-UHFFFAOYSA-N 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 235000009470 Theobroma cacao Nutrition 0.000 description 2
- 235000005764 Theobroma cacao ssp. cacao Nutrition 0.000 description 2
- 235000005767 Theobroma cacao ssp. sphaerocarpum Nutrition 0.000 description 2
- 208000032109 Transient ischaemic attack Diseases 0.000 description 2
- 208000030886 Traumatic Brain injury Diseases 0.000 description 2
- 101150037542 Trpc3 gene Proteins 0.000 description 2
- 101150077905 Trpv2 gene Proteins 0.000 description 2
- 101710136122 Tryptophan 2,3-dioxygenase Proteins 0.000 description 2
- 208000025865 Ulcer Diseases 0.000 description 2
- 206010047924 Wheezing Diseases 0.000 description 2
- 206010048232 Yawning Diseases 0.000 description 2
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940082992 antihypertensives mao inhibitors Drugs 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- YOYKJODLYXSQOO-DYESRHJHSA-N bu-lad Chemical compound C1=CC=C2C3=C[C@@H](C(=O)N(CC)CC)CN(CCCC)[C@@H]3CC3=CN=C1[C]32 YOYKJODLYXSQOO-DYESRHJHSA-N 0.000 description 2
- 235000001046 cacaotero Nutrition 0.000 description 2
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 2
- 229960001948 caffeine Drugs 0.000 description 2
- 230000009460 calcium influx Effects 0.000 description 2
- ORIYPICUSOGUOA-UHFFFAOYSA-N cannabidiol propyl analogue Natural products CCCc1cc(O)c(C2CC(=CCC2C(=C)C)C)c(O)c1 ORIYPICUSOGUOA-UHFFFAOYSA-N 0.000 description 2
- 229940065144 cannabinoids Drugs 0.000 description 2
- 230000005754 cellular signaling Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006020 chronic inflammation Effects 0.000 description 2
- 208000020832 chronic kidney disease Diseases 0.000 description 2
- 230000019771 cognition Effects 0.000 description 2
- 230000006854 communication Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 208000018631 connective tissue disease Diseases 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001079 digestive effect Effects 0.000 description 2
- 229960003638 dopamine Drugs 0.000 description 2
- 201000006549 dyspepsia Diseases 0.000 description 2
- 210000002322 enterochromaffin cell Anatomy 0.000 description 2
- 230000002964 excitative effect Effects 0.000 description 2
- 208000010706 fatty liver disease Diseases 0.000 description 2
- 230000008713 feedback mechanism Effects 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 235000009569 green tea Nutrition 0.000 description 2
- 210000004013 groin Anatomy 0.000 description 2
- 230000007149 gut brain axis pathway Effects 0.000 description 2
- 235000021070 high sugar diet Nutrition 0.000 description 2
- 230000009808 hippocampal neurogenesis Effects 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000013383 initial experiment Methods 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- 201000006370 kidney failure Diseases 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 229930007744 linalool Natural products 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 208000018883 loss of balance Diseases 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 210000000412 mechanoreceptor Anatomy 0.000 description 2
- 108091008704 mechanoreceptors Proteins 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229960001186 methysergide Drugs 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 206010063344 microscopic polyangiitis Diseases 0.000 description 2
- 230000003990 molecular pathway Effects 0.000 description 2
- 230000008450 motivation Effects 0.000 description 2
- 238000011228 multimodal treatment Methods 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 201000000585 muscular atrophy Diseases 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 208000004296 neuralgia Diseases 0.000 description 2
- 208000021722 neuropathic pain Diseases 0.000 description 2
- 201000001119 neuropathy Diseases 0.000 description 2
- 230000007823 neuropathy Effects 0.000 description 2
- 230000035771 neuroregeneration Effects 0.000 description 2
- 230000003040 nociceptive effect Effects 0.000 description 2
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 2
- 229960002748 norepinephrine Drugs 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 2
- 230000008058 pain sensation Effects 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 210000001428 peripheral nervous system Anatomy 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 150000003180 prostaglandins Chemical class 0.000 description 2
- 230000001337 psychedelic effect Effects 0.000 description 2
- 229940044551 receptor antagonist Drugs 0.000 description 2
- 239000002464 receptor antagonist Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000002400 serotonin 2A antagonist Substances 0.000 description 2
- 230000000697 serotonin reuptake Effects 0.000 description 2
- 230000035946 sexual desire Effects 0.000 description 2
- 208000013220 shortness of breath Diseases 0.000 description 2
- 201000002859 sleep apnea Diseases 0.000 description 2
- 208000026473 slurred speech Diseases 0.000 description 2
- 235000013599 spices Nutrition 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- 230000009747 swallowing Effects 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000009529 traumatic brain injury Effects 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 230000001515 vagal effect Effects 0.000 description 2
- 230000004393 visual impairment Effects 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- QDZOEBFLNHCSSF-PFFBOGFISA-N (2S)-2-[[(2R)-2-[[(2S)-1-[(2S)-6-amino-2-[[(2S)-1-[(2R)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-N-[(2R)-1-[[(2S)-1-[[(2R)-1-[[(2S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]pentanediamide Chemical compound C([C@@H](C(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(N)=O)NC(=O)[C@@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CCCNC(N)=N)C1=CC=CC=C1 QDZOEBFLNHCSSF-PFFBOGFISA-N 0.000 description 1
- GENAHGKEFJLNJB-IINYFYTJSA-N (6ar,9s)-7-methyl-6,6a,8,9-tetrahydro-4h-indolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C2=C[C@@H](CN([C@@H]2C2)C)C(N)=O)=C3C2=CNC3=C1 GENAHGKEFJLNJB-IINYFYTJSA-N 0.000 description 1
- ZAGRKAFMISFKIO-IINYFYTJSA-N (6ar,9s)-7-methyl-6,6a,8,9-tetrahydro-4h-indolo[4,3-fg]quinoline-9-carboxylic acid Chemical compound C1=CC(C2=C[C@@H](CN([C@@H]2C2)C)C(O)=O)=C3C2=CNC3=C1 ZAGRKAFMISFKIO-IINYFYTJSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- XQFCCTPWINMCQJ-UHFFFAOYSA-N 1-(1H-indol-3-yl)-N,N-dimethylpropan-2-amine Chemical compound CC(N(C)C)CC1=CNC2=CC=CC=C12 XQFCCTPWINMCQJ-UHFFFAOYSA-N 0.000 description 1
- 102000035038 5-HT1 receptors Human genes 0.000 description 1
- 108091005478 5-HT1 receptors Proteins 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 1
- 206010000060 Abdominal distension Diseases 0.000 description 1
- 206010000159 Abnormal loss of weight Diseases 0.000 description 1
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 1
- 244000045410 Aegopodium podagraria Species 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 101100208128 Arabidopsis thaliana TSA1 gene Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 208000008035 Back Pain Diseases 0.000 description 1
- 206010004074 Balanitis candida Diseases 0.000 description 1
- 235000018062 Boswellia Nutrition 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 206010006326 Breath odour Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000020167 Calcium release-activated calcium channel Human genes 0.000 description 1
- 108091022898 Calcium release-activated calcium channel Proteins 0.000 description 1
- 101710155556 Calcium-dependent protease Proteins 0.000 description 1
- VBGLYOIFKLUMQG-UHFFFAOYSA-N Cannabinol Chemical compound C1=C(C)C=C2C3=C(O)C=C(CCCCC)C=C3OC(C)(C)C2=C1 VBGLYOIFKLUMQG-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000008697 Cannabis sativa Nutrition 0.000 description 1
- 240000008384 Capsicum annuum var. annuum Species 0.000 description 1
- 240000008574 Capsicum frutescens Species 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 206010008399 Change of bowel habit Diseases 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 description 1
- 206010057645 Chronic Inflammatory Demyelinating Polyradiculoneuropathy Diseases 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 208000030939 Chronic inflammatory demyelinating polyneuropathy Diseases 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 208000028698 Cognitive impairment Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 241000159174 Commiphora Species 0.000 description 1
- 206010010254 Concussion Diseases 0.000 description 1
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- 206010011469 Crying Diseases 0.000 description 1
- 102000010831 Cytoskeletal Proteins Human genes 0.000 description 1
- 108010037414 Cytoskeletal Proteins Proteins 0.000 description 1
- 208000019505 Deglutition disease Diseases 0.000 description 1
- 206010012239 Delusion Diseases 0.000 description 1
- 206010012335 Dependence Diseases 0.000 description 1
- 206010012374 Depressed mood Diseases 0.000 description 1
- 206010054089 Depressive symptom Diseases 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 102000011107 Diacylglycerol Kinase Human genes 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010013496 Disturbance in attention Diseases 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- 206010015137 Eructation Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 244000166124 Eucalyptus globulus Species 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 206010015958 Eye pain Diseases 0.000 description 1
- 208000004930 Fatty Liver Diseases 0.000 description 1
- 206010016334 Feeling hot Diseases 0.000 description 1
- 102000005915 GABA Receptors Human genes 0.000 description 1
- 108010005551 GABA Receptors Proteins 0.000 description 1
- 208000003098 Ganglion Cysts Diseases 0.000 description 1
- 206010017999 Gastrointestinal pain Diseases 0.000 description 1
- 108090000079 Glucocorticoid Receptors Proteins 0.000 description 1
- 102100033417 Glucocorticoid receptor Human genes 0.000 description 1
- 102000018899 Glutamate Receptors Human genes 0.000 description 1
- 108010027915 Glutamate Receptors Proteins 0.000 description 1
- 241001191009 Gymnomyza Species 0.000 description 1
- 108010023302 HDL Cholesterol Proteins 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 206010019708 Hepatic steatosis Diseases 0.000 description 1
- 101000844510 Homo sapiens Transient receptor potential cation channel subfamily M member 1 Proteins 0.000 description 1
- 101000844504 Homo sapiens Transient receptor potential cation channel subfamily M member 4 Proteins 0.000 description 1
- 101000844521 Homo sapiens Transient receptor potential cation channel subfamily M member 5 Proteins 0.000 description 1
- 101000844518 Homo sapiens Transient receptor potential cation channel subfamily M member 7 Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 206010022562 Intermittent claudication Diseases 0.000 description 1
- 206010061246 Intervertebral disc degeneration Diseases 0.000 description 1
- 102000006541 Ionotropic Glutamate Receptors Human genes 0.000 description 1
- 108010008812 Ionotropic Glutamate Receptors Proteins 0.000 description 1
- 206010023126 Jaundice Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 206010024421 Libido increased Diseases 0.000 description 1
- 102000004086 Ligand-Gated Ion Channels Human genes 0.000 description 1
- 108090000543 Ligand-Gated Ion Channels Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 208000008930 Low Back Pain Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000008771 Lymphadenopathy Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 208000029725 Metabolic bone disease Diseases 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 229940123685 Monoamine oxidase inhibitor Drugs 0.000 description 1
- 206010027951 Mood swings Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 206010049816 Muscle tightness Diseases 0.000 description 1
- 206010028347 Muscle twitching Diseases 0.000 description 1
- 206010068871 Myotonic dystrophy Diseases 0.000 description 1
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 1
- ASUSBMNYRHGZIG-UHFFFAOYSA-N N-methylserotonin Chemical compound C1=C(O)C=C2C(CCNC)=CNC2=C1 ASUSBMNYRHGZIG-UHFFFAOYSA-N 0.000 description 1
- 206010028836 Neck pain Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 206010029216 Nervousness Diseases 0.000 description 1
- 208000036110 Neuroinflammatory disease Diseases 0.000 description 1
- 206010060860 Neurological symptom Diseases 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- 101100426589 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) trp-3 gene Proteins 0.000 description 1
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- HVBACKJYWZTKCA-XSLBTUIJSA-N O1[C@]2(C)CC[C@@]1(C(C)C)C/C=C(C)/CC/C=C(C)/CC[C@@H]2OC(C)=O Chemical compound O1[C@]2(C)CC[C@@]1(C(C)C)C/C=C(C)/CC/C=C(C)/CC[C@@H]2OC(C)=O HVBACKJYWZTKCA-XSLBTUIJSA-N 0.000 description 1
- 208000011623 Obstructive Lung disease Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010049088 Osteopenia Diseases 0.000 description 1
- 108090000417 Oxygenases Proteins 0.000 description 1
- 102000004020 Oxygenases Human genes 0.000 description 1
- 206010033557 Palpitations Diseases 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- 241000758706 Piperaceae Species 0.000 description 1
- 206010036653 Presyncope Diseases 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000031074 Reinjury Diseases 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101100426590 Schizosaccharomyces pombe (strain 972 / ATCC 24843) trp2 gene Proteins 0.000 description 1
- 101100100680 Schizosaccharomyces pombe (strain 972 / ATCC 24843) trp4 gene Proteins 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 102000019208 Serotonin Plasma Membrane Transport Proteins Human genes 0.000 description 1
- 108010012996 Serotonin Plasma Membrane Transport Proteins Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- 206010041235 Snoring Diseases 0.000 description 1
- 241001479493 Sousa Species 0.000 description 1
- 206010041541 Spinal compression fracture Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 208000032851 Subarachnoid Hemorrhage Diseases 0.000 description 1
- 102400000096 Substance P Human genes 0.000 description 1
- 101800003906 Substance P Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 208000005400 Synovial Cyst Diseases 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 108091008865 TRPA5 Proteins 0.000 description 1
- 102000003627 TRPC1 Human genes 0.000 description 1
- 101150017559 TRPC1 gene Proteins 0.000 description 1
- 102000003622 TRPC4 Human genes 0.000 description 1
- 102000003617 TRPM1 Human genes 0.000 description 1
- 102000003615 TRPM2 Human genes 0.000 description 1
- 101150095096 TRPM2 gene Proteins 0.000 description 1
- 102000003618 TRPM4 Human genes 0.000 description 1
- 102000003609 TRPM5 Human genes 0.000 description 1
- 102000003611 TRPM7 Human genes 0.000 description 1
- 102000003570 TRPV5 Human genes 0.000 description 1
- 102000003569 TRPV6 Human genes 0.000 description 1
- 101150096736 TRPV6 gene Proteins 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 108010037150 Transient Receptor Potential Channels Proteins 0.000 description 1
- 102000011753 Transient Receptor Potential Channels Human genes 0.000 description 1
- 101150099990 Trpc4 gene Proteins 0.000 description 1
- 101150034091 Trpv5 gene Proteins 0.000 description 1
- 102100040653 Tryptophan 2,3-dioxygenase Human genes 0.000 description 1
- 102000057288 Tryptophan 2,3-dioxygenases Human genes 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 208000025851 Undifferentiated connective tissue disease Diseases 0.000 description 1
- 201000004810 Vascular dementia Diseases 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 208000034699 Vitreous floaters Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 108091008852 Waterwitch Proteins 0.000 description 1
- DUKNIHFTDAXJON-SELLTNEASA-N [(6aR,9R)-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinolin-9-yl]-(2,4-dimethylazetidin-1-yl)methanone Chemical compound CC1CC(C)N1C(=O)[C@H]1CN(C)[C@@H]2Cc3c[nH]c4cccc(C2=C1)c34 DUKNIHFTDAXJON-SELLTNEASA-N 0.000 description 1
- BZFGYTBVFYYKOK-UHFFFAOYSA-N [3-[2-(dimethylamino)ethyl]-1h-indol-5-yl] acetate Chemical compound C1=C(OC(C)=O)C=C2C(CCN(C)C)=CNC2=C1 BZFGYTBVFYYKOK-UHFFFAOYSA-N 0.000 description 1
- 206010000059 abdominal discomfort Diseases 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000009056 active transport Effects 0.000 description 1
- 230000008649 adaptation response Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 208000008784 apnea Diseases 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 239000008122 artificial sweetener Substances 0.000 description 1
- 235000021311 artificial sweeteners Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000008236 biological pathway Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 208000024330 bloating Diseases 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000008993 bowel inflammation Effects 0.000 description 1
- 230000007177 brain activity Effects 0.000 description 1
- 230000004641 brain development Effects 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229960003453 cannabinol Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 210000002987 choroid plexus Anatomy 0.000 description 1
- 208000024980 claudication Diseases 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 206010009887 colitis Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000009514 concussion Effects 0.000 description 1
- 208000028831 congenital heart disease Diseases 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 229940125368 controlled substance Drugs 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 229940111134 coxibs Drugs 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 208000018180 degenerative disc disease Diseases 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 231100000868 delusion Toxicity 0.000 description 1
- 230000003210 demyelinating effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 230000003001 depressive effect Effects 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 206010013781 dry mouth Diseases 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 210000001513 elbow Anatomy 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000004090 etiopathogenesis Effects 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 208000028327 extreme fatigue Diseases 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 210000001097 facial muscle Anatomy 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000027950 fever generation Effects 0.000 description 1
- 210000004905 finger nail Anatomy 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- HVQAJTFOCKOKIN-UHFFFAOYSA-N flavonol Natural products O1C2=CC=CC=C2C(=O)C(O)=C1C1=CC=CC=C1 HVQAJTFOCKOKIN-UHFFFAOYSA-N 0.000 description 1
- 150000007946 flavonol Chemical class 0.000 description 1
- 235000011957 flavonols Nutrition 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001156 gastric mucosa Anatomy 0.000 description 1
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 208000007565 gingivitis Diseases 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 230000009229 glucose formation Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000007240 gut brain communication Effects 0.000 description 1
- 230000003400 hallucinatory effect Effects 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 201000010235 heart cancer Diseases 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 208000024348 heart neoplasm Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000004179 hypothalamic–pituitary–adrenal axis Effects 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 239000002117 illicit drug Substances 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- HVBACKJYWZTKCA-FSSWDIPSSA-N incensole acetate Natural products CC(C)[C@]12CC[C@](C)(O1)[C@@H](CCC(C)=CCCC(C)=CC2)OC(C)=O HVBACKJYWZTKCA-FSSWDIPSSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- 102000006639 indoleamine 2,3-dioxygenase Human genes 0.000 description 1
- 108020004201 indoleamine 2,3-dioxygenase Proteins 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 208000021600 intervertebral disc degenerative disease Diseases 0.000 description 1
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 1
- 210000004347 intestinal mucosa Anatomy 0.000 description 1
- 230000035987 intoxication Effects 0.000 description 1
- 231100000566 intoxication Toxicity 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 201000010901 lateral sclerosis Diseases 0.000 description 1
- 208000013433 lightheadedness Diseases 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 208000028755 loss of height Diseases 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 208000018555 lymphatic system disease Diseases 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 230000003923 mental ability Effects 0.000 description 1
- 230000002025 microglial effect Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- YQYUWUKDEVZFDB-UHFFFAOYSA-N mmda Chemical compound COC1=CC(CC(C)N)=CC2=C1OCO2 YQYUWUKDEVZFDB-UHFFFAOYSA-N 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 210000001640 nerve ending Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000001123 neurodevelopmental effect Effects 0.000 description 1
- 230000000955 neuroendocrine Effects 0.000 description 1
- 230000004766 neurogenesis Effects 0.000 description 1
- 230000003959 neuroinflammation Effects 0.000 description 1
- 230000004112 neuroprotection Effects 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 206010029410 night sweats Diseases 0.000 description 1
- 230000036565 night sweats Effects 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 1
- 230000003119 painkilling effect Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- QROGIFZRVHSFLM-UHFFFAOYSA-N phenylpropene group Chemical class C1(=CC=CC=C1)C=CC QROGIFZRVHSFLM-UHFFFAOYSA-N 0.000 description 1
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 1
- 239000002644 phorbol ester Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 231100000760 phototoxic Toxicity 0.000 description 1
- 208000024335 physical disease Diseases 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 210000004560 pineal gland Anatomy 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 208000030761 polycystic kidney disease Diseases 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 208000000813 polyradiculoneuropathy Diseases 0.000 description 1
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 210000002442 prefrontal cortex Anatomy 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000019525 primary metabolic process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000009023 proprioceptive sensation Effects 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 238000001671 psychotherapy Methods 0.000 description 1
- 230000000506 psychotropic effect Effects 0.000 description 1
- 210000004915 pus Anatomy 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000024155 regulation of cell adhesion Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 239000012896 selective serotonin reuptake inhibitor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000952 serotonin receptor agonist Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000009329 sexual behaviour Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000009131 signaling function Effects 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 206010040882 skin lesion Diseases 0.000 description 1
- 231100000444 skin lesion Toxicity 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 235000013403 specialized food Nutrition 0.000 description 1
- 235000021259 spicy food Nutrition 0.000 description 1
- 206010041569 spinal fracture Diseases 0.000 description 1
- 210000003594 spinal ganglia Anatomy 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 231100000240 steatosis hepatitis Toxicity 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 239000002438 stress hormone Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000021234 sugar-rich diet Nutrition 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000024587 synaptic transmission, glutamatergic Effects 0.000 description 1
- 206010042772 syncope Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 101150026818 trp3 gene Proteins 0.000 description 1
- 101150079396 trpC2 gene Proteins 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 210000001170 unmyelinated nerve fiber Anatomy 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
- 208000009935 visceral pain Diseases 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 210000004916 vomit Anatomy 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/01—Hydrocarbons
- A61K31/015—Hydrocarbons carbocyclic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/05—Phenols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/075—Ethers or acetals
- A61K31/085—Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/11—Aldehydes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/12—Ketones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/137—Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/357—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
- A61K31/36—Compounds containing methylenedioxyphenyl groups, e.g. sesamin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
- A61K31/4045—Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/4525—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/48—Ergoline derivatives, e.g. lysergic acid, ergotamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/517—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
- A61K31/675—Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/06—Fungi, e.g. yeasts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/06—Fungi, e.g. yeasts
- A61K36/07—Basidiomycota, e.g. Cryptococcus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/39—Convolvulaceae (Morning-glory family), e.g. bindweed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/553—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
- C07F9/572—Five-membered rings
- C07F9/5728—Five-membered rings condensed with carbocyclic rings or carbocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Mycology (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Microbiology (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Alternative & Traditional Medicine (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Rheumatology (AREA)
- Emergency Medicine (AREA)
- Nutrition Science (AREA)
- Pain & Pain Management (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Plant Substances (AREA)
Description
WO 2022/079574 PCT/IB2021/059301 - 1 - COMPOSITIONS FOR REDUCING INFLAMMATION TO IMPROVE OR MAINTAIN MENTAL OR PHYSICAL HEALTH BACKGROUND OF THE INVENTION FIELD OF THE INVENTION id="p-1" id="p-1" id="p-1" id="p-1" id="p-1" id="p-1" id="p-1" id="p-1" id="p-1" id="p-1" id="p-1"
id="p-1"
[0001]The present disclosure relates to compositions for reducing inflammation to improve or maintain mental or physical health.
BACKGROUND id="p-2" id="p-2" id="p-2" id="p-2" id="p-2" id="p-2" id="p-2" id="p-2" id="p-2" id="p-2" id="p-2"
id="p-2"
[0002]Depression has become an epidemic in the United States and is only projected to get worse. The NIMH lists clinical depression is diagnosed in 7% of U.S. adults and there are growing numbers of children and teenagers in recent years. Depression and mental illness are the leading cause of disability in the world, costing the economy trillions a year in lost productivity, missed days of work and care for the many physical and mental illnesses related to depression, like anxiety, posttraumatic stress disorder, migraines and sleep disorders. Depressive episodes are periods of two weeks or longer experiencing low mood, coupled with other symptoms such as poor self-image, sleep difficulty, loss of appetite, poor concentration, and low energy. Among U.S. adolescents, a disturbingly high rate has reported having experienced either major depression or low-grade depression. According to the World Health Organization, about five percent of the world’s population is depressed. Though psychotherapy is available to some individuals, a common strategy for dealing with depression increasingly includes pharmaceuticals and often more than one is prescribed in combination. Pharmaceutical antidepressants work by indirect methods through alter the signaling of stress hormones such as norepinephrine and neurotransmitters serotonin and dopamine that influence mood, energy, focus, and motivation. These drugs were designed based on the assumption that depression is due to biochemical imbalance in the brain. The most common antidepressants are serotonin re- uptake inhibitors ("SSRIs") which act to prevent re-uptake and subsequent breakdown of 5-hydroxy-tryptamine ("5-HT"), commonly referred to as serotonin, an important neurotransmitter. Increasing the pool of serotonin in the brain through breakdown WO 2022/079574 PCT/IB2021/059301 -2- inhibition improves mood in many individuals after three to four weeks of regularly taking an SSRI medication. [0003]There has been little innovation in the antidepressant field since SSRIs were first introduced. Current medications have limited efficacy in controlling the symptoms of major depressive disorder ("MDD").SSRIs often take four to eight weeks to show efficacy and are associated with adverse events on long-term use. Side effects of antidepressants are common and include nausea, vomiting or diarrhea, headache, drowsiness, dry mouth, insomnia, nervousness, agitation or restlessness, dizziness, blurred vision, sexual problems, such as reduced sexual desire, difficulty reaching orgasm or inability to maintain an erection (erectile dysfunction), impact on appetite, leading to weight loss or weight gain and increased risk if suicide. With suicides in the U.S. at their highest number in thirty years, there is need for rapid solutions and for more effective solutions. [0004]In addition to diagnosed chronic and clinical depressions, some depression arises for no apparent reason and persists chronically. Such depression sometimes goes undiagnosed. Similarly, situational depression may follow a significant loss or life event, such as the death of a loved one, chronic illness, separation or divorce. To an extent, depression is a normal and necessary adaptive response to the inevitable changes and phases of life. Current medications do little to deal with the chronic depression and the acute depression described in this paragraph in the general population. With depression diagnosis going up and increased prescriptions given for long periods of time, there is need for alternative solutions for dealing with both acute and chronic depression. Furthermore, there is no solution for those who have not been medically diagnosed as "depressed" and/or those who are not depressed (medically diagnosed or not), but are looking to enhance aspects of creativity, mindfulness/awareness, sexual desire and other natural feelings that may enhance the human experience.
SUMMARY id="p-5" id="p-5" id="p-5" id="p-5" id="p-5" id="p-5" id="p-5" id="p-5" id="p-5" id="p-5" id="p-5"
id="p-5"
[0005]Compositions disclosed may be used to reduce inflammation for improving or maintaining mental or physical health, including to mitigate, eliminate or otherwise correct depression, anxiety, PTSD, mood disorders, pain and digestive problems, and to also reduce the use of other substances including pharmaceutical and illicit drugs. The WO 2022/079574 PCT/IB2021/059301 -3 - compositions include at least one 5HT2A serotonin receptor agonist and one TRP receptor agonist, and may include at least one TRP receptor antagonist. The compositions may be applied to multimodal treatment of inflammation and of conditions associated with inflammation, including depression. The interaction of the compositions with the 5HT2A and TRP receptors results in altered activity of nociceptor cells and may also influence the endocannabinoid signaling system. [0006]A 5HT2A agonist in combination with a TRP agonist provides a multimodal effect and shows improved efficacy over a 5HT2A agonist alone at an equivalent dose. Some examples of 5HT2A agonists used in the compositions provided herein include 4AcO-DMT (psilacetin), psilocybin, serotonin, lysergic acid amide, lysergic acid a- hydroxyethylamide, myristicin and elemicin. These compounds may be found in psilocybin-containing fungi, morning glory seeds, Hawaiian baby woodrose seeds and nutmeg. Some examples of TRP agonists used in the compositions provided herein include capsaicin, carvacrol, cinnamaldehyde, curcumin, eugenol, and piperine, and myristicin. These compounds may be sourced from materials that are generally regarded as safe ("GRAS"),such as cayenne peppers, turmeric, oregano, cloves, cinnamon and nutmeg. Other examples of TRP receptor agonists used in the compositions provided herein include P־caryophyllene, a-terpineol, cannabidiol ("CBD"), cannabidivarin ( CBDV), cannabigerol ( CBG), cannabigerolic acid ( "CBGA"),delta-9- tetrahydrocannabinol ("THC"),delta-9-tetrahydrocannabivarin ("THCV"),delta-9- tetrahydrocannabivarinic acid ("THCVA"),cannabigevarin ("CBGV"),myrcene, eriodictyol, carvacrol, myrcene, thymol, carvacrol, menthol, 1-8 cineole, piperine, gingerol, allicin, myrhhanol, boswellic acid and derivatives. These compounds may be sourced from materials that are GRAS, such as cannabis, coffee, chocolate, peppermint, thyme, ginger, garlic, onion, myrrh, frankincense and cardamom. [0007]Each of these 5HT2A receptor agonists and TRP receptor agonists may be prepared synthetically, or extracted, purified or otherwise obtained from biomass of plants, fungi or microorganisms, including the GRAS materials described above. In contrast with standard pharmaceutical approaches of increased activity and activation potential at a single receptor target, the compositions provided herein provide therapeutic effects through a multi-modal action at 5HT2A and at least one TRP receptor, which supports dosing at lower concentrations of the 5HT2A agonist than would be observed WO 2022/079574 PCT/IB2021/059301 -4- using only the 5HT2A agonist, and similarly dosing at lower concentrations of TRP receptor agonist that would be observed using only the TRP receptor agonist. [0008]Through targeting the 5HT2A and TRP receptors together, inflammation markers and reactive oxygen species ("ROS") may be reduced; as such, glutamate metabolism may be regulated to reduce the severity or prevalence of mental health conditions that may be associated with or result from improper sugar signaling in the gut. The compositions may be formulated for use by individuals suffering from conditions including pain, mood disorders (anger/bipolar), inflammation, depression, anxiety, bowel inflammation, peripheral pain, neuropathic pain, traumatic brain injury ("TBI"), headaches, Alzheimer’s disease, dementia, concussion, diabetes, arthritis, heart disease and cancer. The compositions may be formulated for use by individuals seeking to maintain or improve mental health, maintain or improve physical health, facilitate relaxation, facilitate focus, facilitate creativity, facilitate digestion, improve euphoria, improve libido and sex drive, and facilitate sleep, including for individuals suffering from pain and inflammation related conditions. Different TRPs influence different genes downstream, allowing the compositions to be adjusted for specific metabolic conditions or benefits. [0009]Through agonism at both the 5HT2A receptor and one or more TRP receptors together, the amount of 5HT2A agonist used may be lowered relative to the amount that would be required to elicit a comparable response without the TRP receptor agonist. This may be advantageous where the 5HT2A receptor is psychoactive or otherwise produces effects that may be uncomfortable and/or inconvenient for an individual taking the 5HT2A agonist. For example, psilocybin is strongly psychoactive. Benefits of psilocybin can be obtained at lower doses of psilocybin when a TRP receptor agonist is taken along with, preceding or shortly after the psilocybin. [0010]Combining multiple 5HT2A agonists with multiple TRP agonists may further enhance the activity or alter the effects of the formulation. Psilocybin mushrooms themselves may have multiple 5HT2A agonists present. The seeds of Hawaiian Baby woodrose and Morning glory also contain multiple 5HT2As. Spices or essential oils from medical plants often contain multiple TRP agonists. Furthermore, the addition of various ingredients from different sources allowed for a reduced dose of each individual ingredient while still achieving medically relevant results.
WO 2022/079574 PCT/IB2021/059301 - 5 - id="p-11" id="p-11" id="p-11" id="p-11" id="p-11" id="p-11" id="p-11" id="p-11" id="p-11" id="p-11" id="p-11"
id="p-11"
[0011]Some TRP receptor agonists, such as myristicin present in nutmeg, may themselves be 5HT2A agonists and may enhance the effects of another 5HT2A agonist. Compositions including psilocybin and nutmeg show greater psychoactive effects resulting from psilocybin than would be expected at the doses being applied, because myristicin may influence both 5HT2A and GABA receptors, and is thought to be processing into MMDA. As a result, including nutmeg in the compositions may allow for a reduced dose of psilocybin or other 5HT2A agonist. For example, about 0.5 grams of nutmeg taken with 0.5 grams of psilocybin produced a more extensive level of euphoria and other psychoactive effects than psilocybin alone, indicating synergy between psilocybin and nutmeg. Bergamot, which includes myrcene, eriodictyol, carvacrol, linalool and other compounds, also intensifies the psychoactive effects of psilocybin, especially in compositions that also include nutmeg. [0012]Combining cayenne with psilocybin improved painkilling and anti-inflammatory effects of psilocybin, providing pain relief with about 0.2 g of dried fruiting bodies that include psilocybin and 0.2 g of crushed cayenne peppers. Cayenne may decrease the onset time of psilocybin, but may also result in greater anxiety being experienced that with psilocybin alone. [0013]Combining turmeric with psilocybin may prolong the effects of psilocybin and increase antidepressant qualities by improving mood without appreciable negative side effects at the doses assessed. Turmeric may also increase analgesic effects from psilocybin, and may calm the anxiety that may result from consuming psilocybin, or from a combination of cayenne and psilocybin. Turmeric allowed for reduced amounts of both cayenne and psilocybin in the compositions while maintaining efficacy. Reduction of the amount of psilocybin and cayenne in the compositions may facilitated mitigation of stomach cramps, intestinal indigestion and anxiety that may result from consumption of psilocybin and cayenne. [0014]Combining clove with psilocybin may reduce inflammation, as well as improve mood and digestion, and may mitigate anxiety associated with psilocybin use (including in combination with cayenne). Black Pepper had a similar effect, particularly the mental effects around mood and anxiety, but an equivalent amount of clove may be more palatable and may mix better with other ingredients of the composition. [0015]Combining cinnamon with psilocybin may result in improved positive impacts on mood from the psilocybin and may also help with diet, reducing sugar cravings. The WO 2022/079574 PCT/IB2021/059301 -6- calm that results from consuming cinnamon may reduce impulses such as fidgeting and may support increased focus. [0016]Combining bergamot with psilocybin may enhance the effects of psilocybin and in some cases resulted in what was described as a "glow" or "light" feeling. Pure limonene or extract of orange flower did not result in the same effects as bergamot, indicating specific molecules in bergamot were essential to achieve this effect. [0017]Combining chocolate or cocoa with psilocybin provides a TRP agonist that is synergistic with psilocybin the TRP3 receptor agonist (-)-epicatechin, a flavonol present in cocoa. Cacao may also provide stimulating effects through theophylline and other molecules present in chocolate. Chocolate may help mask strong flavours of other ingredients when the composition is formulated as a chew or other edible product. [0018]Green tea also contains (-)-epicatechin and may be used as a means of administration of the formulations. (Uchida, 2018) Caffeine in green tea also does enhances the stimulant properties of psilocybin, mitigating side effects of psilocybin including yawning and drowsiness. [0019]Combining coffee with psilocybin did not appear to be synergistic in terms of TRPreceptor agonism or reduced dosage of psilocybin. Caffeine in coffee enhances the stimulant properties of psilocybin, mitigating side effects of psilocybin including yawning and drowsiness. [0020]Combining peppermint or other plants high in menthol with psilocybin may improve mood enhancement and uplifting effects of psilocybin, increasing motivation and activity. Enhanced energy and concentration may also be reported. Peppermint also helped with stomach pain and digestion issues, particularly those resulting from psilocybin, and particularly stomach pain that may result from capsaicin. [0021]Combining ginger which has gingerol, as well as garlic or onion which contain allicin with psilocybin may support correction of digestion issues and though there did not appear to be any effect with respect to mental health related issues such as mood, there does appear to be a synergistic effect with psilocybin with respect to inflammation which facilitates benefits at a lower dose of psilocybin. [0022]Combining myrrh with psilocybin may result in stronger psychoactive effects from the psilocybin, and also enhance benefits in terms of neuroplasticity and neuroregeneration (Premkumar, 2014). Myrrh is a resin from the species of the genus WO 2022/079574 PCT/IB2021/059301 -7- commiphora. The active ingredient in myrrh and similar resins is incensole, which has psychoactive properties and is a potent activator of TRPV3 (Moussaieff, 2008). [0023]Combining frankincense with psilocybin may result in stronger psychoactive effects from the psilocybin, and also enhance benefits in terms of neuroplasticity and neuroregeneration. Frankincense is a resin obtained from the frankincense tree (Boswellia thurifera which belongs to the family Buseraceae. The active ingredient is boswellic acid (Premkumar, 2014). Formulations including myrrh or frankincense may provide benefits to individuals suffering from post-traumatic stress disorder ("PTSD") and traumatic brain injury ("TBI"),and may help with libido. [0024]Combining cardamom with psilocybin may amplify anti-inflammatory properties especially with respect to the digestive tracts. Cardamom may be phototoxic and may also carry contraindications for some medications. [0025]Combining oregano with psilocybin may amplify anti-inflammatory properties especially with respect to the digestive tract issues. [0026]Cannabis may also be included in the compositions, and may have effects on both the body and the mind depending on the dose and variety consumed. The variety of phytocannabinoids, terpenoids, flavonoids, phenylpropanoids and other secondary metabolites in Cannabis sativa complicate work with cannabis as an active ingredient. In addition, the consumption of two strongly psychoactive substances - psilocybin and delta-9-tetrahydrocannabinol ("THC") - may result in much stronger psychoactive effects. Other phytocannabinoids, such as cannabigerol ("CBG"),cannabidiol ("CBD"), and degradation products such as cannabinol ("CBN") may enhance specific compositions, including those directed to neuroprotection for CBD and sleep for CBN. In addition to broad-spectrum cannabis extracts or other preparations, individual phytocannabinoids may modulate the effect of specific formulations. [0027]Combining psilocybin with TRP receptor agonists from preparations of cayenne pepper, turmeric, clove, cinnamon and nutmeg, and optionally chocolate, may provide effective enhancement of the 5HT2A activity resulting from psilocybin. In addition, optional additives such as bergamot, oregano, myrrh and frankincense further extend the duration of perceived effects resulting from the TRP receptor agonists. Addition of bergamot to compositions that also include cayenne pepper, turmeric, clove, cinnamon and nutmeg may improve focus of the individual taking a formulation of the composition, but may also result in some psychoactive effects remaining between 12 and 24 hours after WO 2022/079574 PCT/IB2021/059301 - 8 - the dose was taken. As a result, bergamot may be avoided in compositions that are being formulated for use cases where a long return to baseline is unacceptable, and where there is a strong potential for overconsumption. [0028]In a first aspect, herein disclosed is a composition for reducing inflammation to improve or maintain mental health or physical health in an individual. The composition includes at least on 5HT2A agonist and at least one TRP agonist. The 5HT2A agonist may include a tryptamine, ergoline, phenethylamine, phenylpropanoid or other 5HT2A agonist. The TRP agonist may include an agonist for one or more of the TRP VI, TRP Al, TRPM3, TRPM8, TRPV3 and TRPV4 receptors. The TRP agonist may include capsaicin, eugenol, curcumin, P־caryophyllene, myristicin or other TRP agonists. The 5HT2A agonist may include extracts from psilocybin-containing fungi, morning glory seeds, Hawaiian baby woodrose seeds or other fungi and plants. In some aspects, the 5HT2A agonist has a purity of at least about 99%. The TRP agonist may include extracts from cayenne pepper, clove, turmeric, nutmeg and other plants. In some aspects, the TRP agonist has a purity of at least about 99%. The compositions may be formulated for any suitable ingestion mode, including gastrointestinal, transmucosal and parenteral. [0029]In a further aspect, herein disclosed is a composition for reducing inflammation to improve or maintain mental health or physical health in an individual comprising an effective amount of a 5HT2A agonist compound and an effective amount of a TRP agonist compound, wherein the therapeutically effective amount of the 5HT2A agonist is between about 1 pg and about 300 mg; and the therapeutically effective amount of the at least one TRP receptor agonist is between about 0.01 mg and about 300 mg. In some aspects, the therapeutically effective amount is per dose. In some aspects, the dose is administered 1 to 10 times per day. [0030]In some aspects and embodiments, the therapeutically effective amount of the 5HT2A agonist is between about 10 pg and about 195 mg, about 50 pg and about 1mg, about 100 pg and about 185 mg, about 200 pg and about 180 mg, about 300 pg and about 175 mg, about 400 pg and about 170 mg, about 500 pg and about 165 mg, about 600 pg and about 160 mg, about 700 pg and about 155 mg, about 800 pg and about 1mg, about 900 pg and about 145 mg, about 1 mg and about 140 mg, about 5 mg and about 135 mg, about 10 mg and about 130 mg, about 15 mg and about 125 mg, about mg and about 120 mg, about 25 mg and about 115 mg, about 30 mg and about 110 mg, about 35 mg and about 105 mg, about 40 mg and about 100 mg, about 45 mg and about WO 2022/079574 PCT/IB2021/059301 -9- 95 mg, about 50 mg and about 90 mg, about 55 mg and about 85 mg, about 60 mg and about 80 mg, or about 65 mg and about 75 mg. In some aspects, the therapeutically effective amount is per dose. In some aspects, the dose is administered 1 to 10 times per day. [0031]In some aspects and embodiments, the therapeutically effective amount of the at least one TRP receptor agonist is between about 0.1 mg and about 24 mg, about 0.5 mg and about 23 mg, about 1 mg and about 22 mg, about 2 mg and about 21 mg, about 3 mgand about 20 mg, about 4 mg and about 19 mg, about 5 mg and about 18 mg, about 6 mgand about 17 mg, about 7 mg and about 16 mg, about 8 mg and about 15 mg, about 9 mgand about 14 mg, about 10 mg and about 13 mg, or about 11 mg and about 12 mg. In some aspects, the therapeutically effective amount is per dose. In some aspects, the dose is administered 1 to 10 times per day. [0032]In some aspects and embodiments, the therapeutically effective amount of the 5HT2A agonist is between about 10 pg and about 195 mg, about 50 pg and about 1mg, about 100 pg and about 185 mg, about 200 pg and about 180 mg, about 300 pg and about 175 mg, about 400 pg and about 170 mg, about 500 pg and about 165 mg, about 600 pg and about 160 mg, about 700 pg and about 155 mg, about 800 pg and about 1mg, about 900 pg and about 145 mg, about 1 mg and about 140 mg, about 5 mg and about 135 mg, about 10 mg and about 130 mg, about 15 mg and about 125 mg, about mg and about 120 mg, about 25 mg and about 115 mg, about 30 mg and about 110 mg, about 35 mg and about 105 mg, about 40 mg and about 100 mg, about 45 mg and about mg, about 50 mg and about 90 mg, about 55 mg and about 85 mg, about 60 mg and about 80 mg, or about 65 mg and about 75 mg, and wherein the therapeutically effective amount of the at least one TRP receptor agonist is between about 0.1 mg and about mg, about 0.5 mg and about 23 mg, about 1 mg and about 22 mg, about 2 mg and about mg, about 3 mg and about 20 mg, about 4 mg and about 19 mg, about 5 mg and about mg, about 6 mg and about 17 mg, about 7 mg and about 16 mg, about 8 mg and about mg, about 9 mg and about 14 mg, about 10 mg and about 13 mg, or about 11 mg and about 12 mg. In some aspects, the therapeutically effective amount is per dose. In some aspects, the dose is administered 1 to 10 times per day. [0033]In some aspects and embodiments, the 5HT2A agonist comprises a tryptamine. In some aspects and embodiments, the tryptamine comprises a 4-substituted tryptamine. In some aspects and embodiments, the 4-substituted tryptamine comprises a 4-substituted WO 2022/079574 PCT/IB2021/059301 - 10 - DMT compound. In some aspects and embodiments, the 4-substituted DMT compound comprises a compound selected from the group consisting of 3-[2-(dimethylamino)ethyl]- 4-phosphoryloxyindole (psilocybin), 3-[2-(dimethylamino)ethyl]-4-hydroxyindole (psilocin), 3-[2-(dimethylamino)ethyl]-4-acetoxyindole (4-acetyl-DMT; also known as 4- ACO-DMT)) and any suitable salt of any of the foregoing. In some aspects and embodiments, the effective amount of the 4-substituted DMT compound comprises between 0.001 mg/kg and 0.30 mg/kg, with reference to the body weight of the individual. Average adult body weight is about 70 kg. In some aspects and embodiments, the 4-substituted tryptamine comprises a compound selected from the group consisting of 3-[2-(trimethylamino)ethyl]-4-phosphoryloxyindole (aeruginascin), 3-[2- (methylamino)ethyl]-4-phosphoryloxyindole (baeocystin), 3-[2-(methylamino)ethyl]-4- hydroxyindole, 3-[2-(amino)ethyl]-4-hydroxyindole (norpsilocin), 3-[2-(amino)ethyl]-4- phosphoryloxyindole (called norbaeocystin) and any suitable salt of any of the foregoing. In some aspects and embodiments, the 4-substituted tryptamine comprises a 4-substituted tryptamine sourced from fungi that biosynthesize the 4-substituted tryptamine. In some aspects and embodiments, the fungi includes a species selected from the group consisting of Conocybe species including C. cyanopus, C. siligineoides and C. kuehneriana;Copelandia species including C. affmis, C. anomala, C. bispora, C. cambodginiensis, C. chlorocystis, C. cyanescens, C. lentisporus, C. tirunelveliensis, C. tropica, C. tropicalis and C. westii; Galerina species including G. steglichii; Gymnopilus species including G. thiersii, G. aeruginosus, G. braendlei, G. cyanopalmicola, G. intermedins, G. junonius, G. lateritius, G. liquiritiae, G. luteofolius, G. luteoviridis, G. luteus, G. purpuratus, G. subpur puratus, G. validipes and G. viridans; Inocybe species including I. aeruginascens, I. aeruginascens, I. coelestium, I. corydalina, I. corydalina var. corydalina, I. corydalina var. erinaceomorpha, I. haemacta and I. tricolor; Panaeolus species including P. cinctulus, P. affmis, P. africanus, P. bisporus, P. cambodginiensis, P. castaneifolius, P. chlorocystis, P. cinctulus, P. cyanescens, P. fimicola, P. lentisporus, P. microsporus, P. moellerianus, P. olivaceus, P. rubricaulis, P. tirunelveliensis, P. tropicalis and P. venezolanus; Pholiotina species including P. cyanopus and P. smithii; Pluteus species including P. americanus, P. albostipitatus, P. americanus, P. cyanopus, P. glaucus, P. glaucotinctus, P. nigroviridis, P. phaeocyanopus, P. salicinus, P. saupei and P. villosus; and Psilocybe species including P. tampanensis, P. acutipilea, P. allenii, P. angustipleurocystidiata, P. antioquiensis, P. atlantis, P. aquamarina, P. armandii, P.
WO 2022/079574 PCT/IB2021/059301 - 11 - aucklandii, P. atlantis, P. aztecorum, P. aztecorum var. aztecorum, P. aztecorum var. bonelii. P. azurescens, P. baeocystis, P. banderillensis. P. bispora, P. brasiliensis, P. brunneocystidiata, P. cubensis, P. caeruleoannulata, P. caerulescens, P. caerulescens var. caerulescens, P. caerulescens var. ombrophila, P. caerulipes, P. callosa, P. carbonaria, P. caribaea, P. chuxiongensis, P. collybioides, P. Columbiana, P. cordispora, P. cubensis, P. cyanescens, P. cyanofibrillosa, P. dumontii, P. egonii, P. fagicola, P. fagicola var. fagicola, P. fagicola var. mesocystidiata, P. farinacea, P. fimetaria, P. fuliginosa, P. furtadoana, P. tampanensis, P. galindoi, P. gallaeciae, P. graveolens, P. guatapensis, P. guilartensis, P. heimii Guzman, P. herrerae Guzman, P.hispanica Guzman, P. hoogshagenii, P. hoogshagenii var. hoogshagenii, P. hoogshagenii var. convexa, P. inconspicua, P. indica, P. isabelae, P. jacobsii, P. jaliscana, P.kumaenorum, P. laurae, P. lazoi, P. liniformans, P. liniformans var. liniformans, P. liniformans var. americana, P. mexicana, P. mairei, P. makarorae, P. mammillata, P. medullosa, P. meridensis, P. meridionalis, P. me scaler oensis, P. mexicana, P. moseri, P. muliercula, P. naematoliformis, P. natalensis, P. natarajanii, P. neorhombispora, P. neoxalapensis, P. ovoideocystidiata, P. ovoideocystidiata, P. papuana, P. paulensis, P. pelliculosa, P. pintonii, P. pleurocystidiosa, P. plutonia, P. portoricensis, P. pseudoaztecorum, P. puberula, P. quebecensis, P. ricki, P. rostrata, P. rzedowskii, P. samuiensis, P. schultesii, P. semilanceata, P. septentrionalis, P. serbica, P. sierrae , P. silvatica, P. singeri, P. squamosa, P. strictipes, P. stuntzii, P. subacutipilea, P. subaeruginascens, P. subaeruginosa, P. subbrunneocystidiata, P. subcaerulipes, P. subcubensis, P. subpsilocybioides, P. subtropicalis, P. tampanensis, P. tampanensis, P. thaicordispora, P. thaiaerugineomaculans, P. thaiduplicatocystidiata, P. uruguayensis, P. uxpanapensis, P. venenata , P. villarrealiae, P. weraroa, P. wassoniorum, P. weilii, P. weldenii, P. weraroa, P. wrightii, P. xalapensis, P. yungensis, P. zapotecorum, P. zapotecoantillarum, P. zapote cocar ibaea andP. zapotecorum. In some aspects and embodiments, the composition includes dried fungal matter selected from the group consisting of fruiting bodies, mycelia, sclerotia and hyphae. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist compound comprises capsaicin, and wherein the composition includes between 0.1 and 20 mg of the 4-substituted DMT compound and between 0.1 mg and 1 mg of capsaicin in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist WO 2022/079574 PCT/IB2021/059301 - 12 - compound comprises capsaicin, and wherein the composition includes a ratio (w/w) of between 22:1 and 270,000:1 of the 4-substituted DMT compound:capsaicin in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist compound comprises eugenol, and wherein the composition includes between 0.1 and 20 mg of the 4-substituted DMT compound and between 1 mg and 300 mg of eugenol in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist compound comprises eugenol, and wherein the composition includes a ratio (w/w) of between 0.6:1 and 270,000:1 of the 4-substituted DMT compound :eugenol in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist compound comprises curcumin, and the composition includes between 0.5 and 20 mg of the 4-substituted DMT compound and between 1.00 mg and 15 mg of curcumin in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist compound comprises curcumin, and wherein the composition includes a ratio (w/w) of between 0.04:1 and 10:1 of the 4- substituted DMT compound:curcumin in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist compound comprises P־caryophyllene, and the composition includes between 0.5 and 20 mg of the 4-substituted DMT compound and between 0.and 1.50 mg of P־caryophyllene in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist compound comprises P־caryophyllene, and wherein the composition includes a ratio (w/w) of between 0.33:1 and 36:1 of the 4-substituted DMT compound:- caryophyllene in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist compound comprises cinnamaldehyde, and the composition includes between 0.5 and 20 mg of the 4-substituted DMT compound and between 0.25 and 1.0 mg of cinnamaldehyde in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist compound comprises cinnamaldehyde, and wherein the composition includes a ratio (w/w) of between 0.5:and 36:1 of the 4-substituted DMT compound:cinnamaldehyde in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral WO 2022/079574 PCT/IB2021/059301 - 13 - ingestion wherein the TRP agonist compound comprises myristicin, and the composition includes between 0.5 and 20 mg of the 4-substituted DMT compound and between 0.and 3.0 mg of myristicin in the dosage form. In some aspects and embodiments, the composition is formulated into a dosage form for oral ingestion wherein the TRP agonist compound comprises myristicin, and wherein the composition includes a ratio (w/w) of 0.2:1 and 20:1 of the 4-substituted DMT compound: myristicin in the dosage form. In some aspects and embodiments, the tryptamine comprises a 5-substituted tryptamine. In some aspects and embodiments, the 5-substituted tryptamine comprises a compound selected from the group consisting of 5-methoxy-DMT (bufotenin), N-acetyl-5-methoxy tryptamine (melatonin), 5-hydroxy tryptamine (serotonin), 5-hydroxy-tryptophan (5-HTP) and any suitable salt of any of the foregoing. In some aspects and embodiments, the 5HT2A agonist compound comprises an ergoline. In some aspects and embodiments, the ergoline comprises a compound selected from the group consisting of D-lysergic acid ethylamide ("LAE"),D-lysergic acid beta-propanolamide, also called ergometrine or ergonovine, D-lysergic acid 2-butyl amide ("LSB"), D-lysergic acid 1-butanolamide, also called methylergometrine or methylergonovine, 1-methyl-D-lysergic acid butanolamide, also called methysergide, D-lysergic acid 3-pentyl amide ("LSP"),D-N- morpholinyllysergamide ("LSM-775"), D-N-pyrrolidyllysergamide ("LPD-824"),(8p)- 6-methyl-8-(piperidin-l-ylcarbonyl)-9,10-didehydroergoline ("LSD-Pip"), N,N- dimethyllysergamide ("DAM"),D-lysergic acid methylisopropyl amide ("LAMIDE") also called methylisopropyllysergamide ("MIPLA"),D-lysergic acid 2,4- dimethylazetidide ("LSZ"),LSD, D-l-acetyl-lysergic acid diethylamide ("ALD-52"),D- 1-propionyl-lysergic acid diethylamide ("1P-LSD"),D-Nl-butyryl-lysergic acid diethylamide ("1B-LSD"),D-Nl-(cyclopropylmethanoyl)-lysergic acid diethylamide ("IcP-LSD"),D-Nl-methyl-lysergic acid diethylamide ("MLD"),D-6-ethyl-6-nor- lysergic acid diethylamide ("ETH-LAD"),D-l-propionyl-6-ethyl-6-nor-lysergic acid diethyamide ("1P-ETH-LAD"),D-6-allyl-6-nor-lysergic acid diethylamide ("AL- LAD"),D-6-propyl-6-nor-lysergic acid diethylamide ("PRO-LAD"),D-6-isopropyl-6- nor-lysergic acid diethylamide ("IP-LAD"),D-6-propynyl-6-nor-lysergic acid diethylamide ("PARGY-LAD"),D-6-butyl-6-nor-lysergic acid diethylamide ("BU- LAD"),N,N-diallyllysergamide ("DAL")and D-N-ethyl-N-cyclopropyllysergamide ("ECPLA").In some aspects and embodiments, the ergoline comprises an ergoline sourced from a fungus or plant that biosynthesizes the ergoline. In some aspects and WO 2022/079574 PCT/IB2021/059301 - 14 - embodiments, the fungi or plant includes a species selected from the group consisting of Clavicepspurpurea, other species of Claviceps, Rivea corymbosa, Ipomoea violacea, I. tricolor, I. purpurae, I. alba, Periglandula spp. other species of morning glory, Argeyreia nervosa or other species of Hawaiian baby woodrose. In some aspects and embodiments, the 5HT2A agonist compound comprises a phenethylamine. In some aspects and embodiments, the phenethylamine comprises a compound selected from the group consisting of 3,4,5-trimethoxyphenethylamine (mescaline), trimethoxyamphetamine ("TMA"),4-bromo-2,5-dimethoxybenzeneethanamine ("2C-B"),4-bromo-2,5- dimethoxyamphetamine ("DOB"),4-methyl-2,5-dimethoxyamphetamine ("DOM"),4- methyl-2,5-dimethoxybenzeneethanamine ("2C-D"),3,4-m ethylenedi oxyamphetamine ("MD A"),N-methyl-3,4-m ethylenedi oxyamphetamine ("MDMA").In some aspects and embodiments, the phenethylamine comprises a phenethylamine sourced from a plant that biosynthesizes the phenethyl amine. In some aspects and embodiments, the plant includes a species selected from the group consisting of Lophophora williamsii, other Lophophora species, Trichocereuspachanoi, and other Trichocereus species. In some aspects and embodiments, the 5HT2A agonist compound comprises a phenylpropanoid. In some aspects and embodiments, the phenylpropanoid comprises a compound selected from the group consisting of 5-methoxy-3,4-methylenedioxy-allylbenzene (myristicin) and 1,2,3- timethoxy-5-(prop-2-en-l-yl)benzene (elemicin). In some aspects and embodiments, the phenylpropanoid comprises a phenylpropanoid sourced from a plant that biosynthesizes the phenylpropanoid. In some aspects and embodiments, the plant includes a species selected from the group consisting of Myristica fragrans or other species in the Myristicaceae family. In some aspects and embodiments, the TRP agonist compound comprises a TRPV1 agonist compound. In some aspects and embodiments, the TRPVagonist compound comprises a capsiate. In some aspects and embodiments, the TRPVagonist compound comprises eugenol. In some aspects and embodiments, the TRPVagonist compound comprises a compound selected from the group consisting of capsaicin, eugenol, myristicin, elemicin, CBD, CBDA, CBDV, CBG, CBGA, CBGV, THCV, THCVA, myrcene, piperine and gingerol. In some aspects and embodiments, the TRPV1 agonist compound is sourced from biomass of a plant that biosynthesizes the TRPV1 agonist compound. In some aspects and embodiments, the plant includes one or more species selected from the group consisting of cayenne pepper, turmeric, clove, cinnamon, nutmeg, pepper, cannabis, bergamot and ginger. In some aspects and WO 2022/079574 PCT/IB2021/059301 - 15 - embodiments, the TRP agonist compound comprises a TRPA1 agonist compound. In some aspects and embodiments, the TRP agonist compound comprises a curcuminoid. In some aspects and embodiments, the curcuminoid comprises curcumin. In some aspects and embodiments, the TRPA1 agonist compound comprises a compound selected from the group consisting of curcumin, cinnamaldehyde, alpha terpineol, CBD, CBDA, CBDV, CBG, CBGA, CBGV, THCV, THCVA, thymol, piperine and allicin. In some aspects and embodiments, the TRPA1 agonist compound is sourced from biomass of a plant that biosynthesizes the TRPA1 agonist compound. In some aspects and embodiments, the plant includes one or more species selected from the group consisting of curcumin, cinnamon, turmeric, nutmeg, cannabis, thyme, pepper, garlic and onion. In some aspects and embodiments, the TRP agonist compound comprises a TRPM8 agonist compound. In some aspects and embodimentsects, the TRPM8 agonist compound comprises a compound selected from the group consisting of eugenol, cinnamaldehyde, CBD, CBDA, CBDV, CBG, CBGA, CBGV, THC, THCA, THCV, THCVA, carvacrol, thymol, menthol and 1-8 cineole. In some aspects and embodiments, the TRPM8 agonist compound is sourced from biomass of a plant that biosynthesizes the TRPM8 agonist compound. In some aspects and embodiments, the plant includes one or more species selected from the group consisting of turmeric, clove, cinnamon, pepper, nutmeg, cannabis, bergamot, oregano, thyme, cardamom, peppermint and eucalyptus. In some aspects and embodiments, the TRP agonist compound comprises a TRPV3 agonist compound. In some aspects and embodiments, the TRPV3 agonist compound comprises B-caryophyllene. In some aspects and embodiments, the TRPV3 compound comprises a compound selected from the group consisting of eugenol, P־caryophyllene, (-)- epicatechin, CBD, CBDA, CBGA, CBGV, THCV, THCVA, eriodictyol, cinnamaldehyde, incensole, boswellic acid, thymol. In some aspects and embodiments, the TRPM8 agonist compound is sourced from biomass of a plant that biosynthesizes the TRPM8 agonist compound. In some aspects and embodiments, the plant includes one or more species selected from the group consisting of turmeric, clove, cinnamon, pepper, nutmeg, cannabis, bergamot, oregano, thyme, cardamom, peppermint and eucalyptus. In some aspects and embodiments, the composition is formulated into an oral formulation for ingestion. In some aspects and embodiments, the composition comprises a pharmaceutically acceptable excipient, diluent or filler material.
WO 2022/079574 PCT/IB2021/059301 - 16 - id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34"
id="p-34"
[0034]In a further aspect, herein disclosed is a method of treating a health condition comprising administering a composition as described herein to an individual suffering from the condition. In some aspects and embodiments, the condition comprises a condition selected from the group consisting of cancer, neurological disorders, diabetic complications, mental health disorders, bone, muscular and skeletal disease, metabolic disorders, chronic or acute inflammatory disorders and cardiovascular disease. In some aspects and embodiments, the 5HT2A agonist compound comprises a 4-substituted DMT compound, and the effective amount of the 4-substituted DMT compound comprises between 0.015 mg/kg and 0.30 mg/kg, with reference to the body weight of the individual. In some aspects and embodiments, the TRP agonist compound comprises capsaicin, and the effective amount of capsaicin comprises between 0.0005 ug/kg and 1.ug/kg per day, with reference to the body weight of the individual. In some aspects and embodiments, the TRP agonist compound comprises eugenol, and the effective amount of eugenol comprises between 0.005 ug/kg and 400 ug/kg per day, with reference to the body weight of the individual. In some aspects and embodiments, the TRP agonist compound comprises curcumin, and the effective amount of curcumin comprises between 0.014 mg/kg and 0.55 mg/kg per day, with reference to the body weight of the individual. In some aspects and embodiments, the TRP agonist compound comprises P־ caryophyllene, and the effective amount of P-caryophyllene comprises between 0.0mg/kg and 0.064 mg/kg per day, with reference to the body weight of the individual. In some aspects and embodiments, the TRP agonist compound comprises myristicin, and the effective amount of myristicin comprises between 0.007 mg/kg and 0.130 mg/kg per day, with reference to the body weight of the individual. [0035]In a further aspect, herein disclosed is use of a composition as described herein in the treatment of an individual suffering from a mental illness condition or physically debilitating condition. In some aspects and embodiments, the condition comprises a condition selected from the group consisting of cancer, neurological disorders, diabetic complications, mental health disorders, bone, muscular and skeletal disease, metabolic disorders, chronic inflammatory disorders and cardiovascular disease, and post-traumatic stress disorder. [0036]In further aspects and embodiments, herein disclosed is a composition for reducing inflammation to improve or maintain mental health or physical health in an individual comprising an effective amount of a 5HT2A agonist compound, an effective WO 2022/079574 PCT/IB2021/059301 - 17 - amount of a capsaicinoid, an effective amount of a curcuminoid and an effective amount of eugenol. In some aspects and embodiments, the 5HT2A agonist compound comprises a compound as described herein. In some aspects and embodiments, the capsaicinoid comprises capsaicin. In some aspects and embodiments, the curcuminoid comprises curcumin. [0037]In one aspect and embodiment, a composition comprises a therapeutic combination of a 5HT2A agonist compound and at least one TRP agonist compound, wherein the therapeutically effective amount of the 5HT2A agonist is between about 1 pg and about 200 mg; and the therapeutically effective amount of the at least one TRP receptor agonist is between about 0.1 mg and about 25 mg. [0038]In some aspects and embodiments, the 5HT2A agonist compound is selected from the group consisting of a tryptamine, an ergoline, a phenethylamine, and a phenylpropanoid. [0039] In some aspects and embodiments, the tryptamine is a 4-substituted tryptamine. [0040] In some aspects and embodiments, the 4-substituted tryptamine is a 4-substitutedDMT compound. [0041]In some aspects and embodiments, the 4-substituted DMT compound is selected from the group consisting of 3-[2-(dimethylamino)ethyl]-4-phosphoryloxyindole (psilocybin), 3-[2-(dimethylamino)ethyl]- 4-hydroxyindole (psilocin), 3-[2- (dimethylamino)ethyl]-4-acetoxyindole (psilacetin), and any suitable salt of any of the foregoing. [0042]In some aspects and embodiments, the 4-substituted tryptamine is selected from the group consisting of 3-[2(trimethylamino)ethyl]-4-phosphoryloxyindole (aeruginascin), 3-[2-(methylamino)ethyl]-4-phosphoryloxyindole (baeocystin), 3-[2- (methylamino)ethyl]-4-hydroxyindole, 3-[2-(amino)ethyl]-4-hydroxyindole (norpsilocin), 3-[2-(amino)ethyl]-4-phosphoryloxyindole (norbaeocystin), and any suitable salt of any of the foregoing. [0043]In some aspects and embodiments, the 4-substituted tryptamine is derived from fungi. [0044]In some aspects and embodiments, the fungi is a species of a genus selected from the group consisting of Gymnopilus, Inocybe, Panaeolus, Pholiotina, Pluteus, and Psilocybe.
WO 2022/079574 PCT/IB2021/059301 - 18 - id="p-45" id="p-45" id="p-45" id="p-45" id="p-45" id="p-45" id="p-45" id="p-45" id="p-45" id="p-45" id="p-45"
id="p-45"
[0045]In some aspects and embodiments, the fungi is a species of a genus selected from the group consisting of Gymnopilus, Inocybe, Panaeolus, Pholiotina, Pluteus, and Psilocybe. [0046]In some aspects and embodiments, the fungi is selected from the group consisting of C. cyanopus, C. siligineoides and C. kuehneriana; Copelandia species including C. affmis, C. anomala, C. bispora, C. cambodginiensis, C. chlorocystis, C. cyanescens, C. lentisporus, C. tirunelveliensis, C. tropica, C. tropicalis and C. westii; G. steglichii; G. thiersii, G. aeruginosus, G. braendlei, G. cyanopalmicola, G. intermedins, G. junonius, G. lateritius, G. liquiritiae, G. luteofolius, G. luteoviridis, G. luteus, G. purpuratus, G. subpur puratus, G. validipes and G. viridans; I. aeruginascens, I. aeruginascens, I. coelestium, I. corydalina, I. corydalina var. corydalina, I. corydalina var. erinaceomorpha, I. haemacta and I. tricolor; P. cinctulus, P. affmis, P. africanus, P. bisporus, P. cambodginiensis, P. castaneifolius, P. chlorocystis, P. cinctulus, P. cyanescens, P. fimicola, P. lentisporus, P. microsporus, P. moellerianus, P. olivaceus, P. rubricaulis, P. tirunelveliensis, P. tropicalis and P. venezolanus; P. cyanopus and P. smithii; P. americanus, P. albostipitatus, P. americanus, P. cyanopus, P. glaucus, P. glaucotinctus, P. nigroviridis, P. phaeocyanopus, P. salicinus, P. saupei and P. villosus; P. tampanensis, P. acutipilea, P. allenii, P. angustipleurocystidiata, P. antioquiensis, P. atlantis, P. aquamarina, P. armandii, P. aucklandii, P. atlantis, P. aztecorum, P. aztecorum var. aztecorum, P. aztecorum var. bonetii, P. azurescens, P. baeocystis, P. banderillensis, P. bispora, P. brasiliensis, P. brunneocystidiata, P. cubensis, P. caeruleoannulata, P. caerulescens, P. caerulescens var. caerulescens, P. caerulescens var. ombrophila, P. caerulipes, P. callosa, P. carbonaria, P. caribaea, P. chuxiongensis, P. collybioides, P. Columbiana, P. cordispora, P. cubensis, P. cyanescens, P. cyanofibrillosa, P. dumontii, P. egonii, P. fagicola, P. fagicola var. fagicola, P. fagicola var. mesocystidiata, P. farinacea, P. fimetaria, P. fuliginosa, P. furtadoana, P. tampanensis, P. galindoi, P. gallaeciae, P. graveolens, P. guatapensis, P. guilartensis, P. heimii Guzman, P. herrerae Guzman, P. hispanica Guzman, P. hoogshagenii, P. hoogshagenii var. hoogshagenii, P. hoogshagenii var. convexa, P. inconspicua, P. indica, P. isabelae, P. jacobsii, P. jaliscana, P. kumaenorum, P. laurae, P. lazoi, P. liniformans, P. liniformans var. liniformans, P. liniformans var. americana, P. mexicana, P. mairei, P. makarorae, P. mammillata, P. medullosa, P. meridensis, P. meridionalis, P.mescaleroensis, P. mexicana, P. moseri, P. muliercula, P. naematoliformis, P. natalensis, WO 2022/079574 PCT/IB2021/059301 - 19 - P. natarajanii, P. neorhombispora, P. neoxalapensis, P. ovoideocystidiata, P. ovoideocystidiata, P. papuana, P. paulensis, P. pelliculosa, P. pintonii, P. pleurocystidiosa, P. plutonia, P. portoricensis, P. pseudoaztecorum, P. puberula, P. quebecensis, P. ricki, P. rostrata, P. rzedowskii, P. samuiensis, P. schultesii, P. semilanceata, P. septentrionalis, P. serbica, P. sierras , P. silvatica, P. singeri, P. squamosa, P. strictipes, P. stuntzii, P. subacutipilea, P. subaeruginascens, P. subaeruginosa, P. subbrunneocystidiata, P. subcaerulipes, P. subcubensis, P. subpsilocybioides, P. subtropicalis, P. tampanensis, P. tampanensis, P. thaicordispora, P. thaiaerugineomaculans, P. thaiduplicatocystidiata, P. uruguayensis, P. uxpanapensis, P. venenata, P. villarrealiae, P. weraroa, P. wassoniorum, P. weilii, P. weldenii, P. weraroa, P. wrightii, P. xalapensis, P. yungensis, P. zapotecorum, P. zapotecoantillarum, P. zapotecocaribaea, andP. zapotecorum. [0047]In some aspects and embodiments, the composition further comprises dried matter of the fungi, wherein the dried matter is selected from the group consisting of fruiting bodies, mycelia, sclerotia, and hyphae, or combinations thereof. [0048] In some aspects and embodiments, the tryptamine is a 5-substituted tryptamine. [0049] In some aspects and embodiments, the 5-substituted tryptamine is selected fromthe group consisting of 5-methoxy-DMT (bufotenin), N-acetyl-5-methoxy tryptamine (melatonin), 5-hydroxy tryptamine (serotonin), 5-hydroxy-tryptophan (5-HTP), and any suitable salt of any of the foregoing. [0050] In some aspects and embodiments, the 5HT2A agonist compound is an ergoline. [0051] In some aspects and embodiments, the ergoline is selected from the groupconsisting of D-lysergic acid ethylamide ("LAE"),D-lysergic acid beta-propanolamide, D-lysergic acid 2-butyl amide ("LSB"), D-lysergic acid 1-butanol ami de, 1-methyl-D- lysergic acid butanolamide, D-lysergic acid 3-pentyl amide ("LSP"), D-N- morpholinyllysergamide ("LSM-775"). D-N-pyrrolidyllysergamide ("LPD-824"). (8p)-6- methyl-8-(piperidin-l-ylcarbonyl)-9,10-didehydroergoline ("LSD-Pip"), N,N- dimethyllysergamide ("DAM"), D-lysergic acid methylisopropyl amide ("LAMIDE"), D- lysergic acid 2,4-dimethylazetidide ("LSZ"), LSD, D-l-acetyl-lysergic acid diethylamide ("ALD-52"), D-l-propionyl-lysergic acid diethylamide ("1P-LSD"), D-Nl-butyryl- lysergic acid diethylamide ("1B-LSD"), D-Nl-(cyclopropylmethanoyl)-lysergic acid diethylamide ("1 cP-LSD"), D-N 1-methyl-lysergic acid diethylamide ("MLD"), D-6- ethyl-6-nor-lysergic acid diethylamide ("ETH-LAD"), D-l-propionyl-6-ethyl-6-nor- WO 2022/079574 PCT/IB2021/059301 -20 - lysergic acid diethyamide ("1P-ETH-LAD"), D-6-allyl-6-nor-lysergic acid diethylamide ("AL-LAD"). D-6-propyl-6-nor-lysergic acid diethylamide ("PRO-LAD"), D-6- isopropyl-6-nor-lysergic acid diethylamide ("IP-LAD"), D-6-propynyl-6-nor-lysergic acid diethylamide ("PARGY-LAD"), D-6-butyl-6-norlysergic acid diethylamide ("BU- LAD"), N,N-diallyllysergamide ("DAL") and D-N-ethyl-N-cyclopropyllysergamide ("ECPLA"). [0052] In some aspects and embodiments, the ergoline is derived from fungi or a plant. [0053] In some aspects and embodiments, the fungi or plant is a species selected from thegroup consisting of Claviceps purpurea, Rivea corymbosa. Ipomoea violacea, I. tricolor, I. purpurae, I. alba, Argeyreia nervosa, and a Periglandula species. [0054]In some aspects and embodiments, the 5HT2A agonist compound is a phenethylamine. [0055]In some aspects and embodiments, the phenethylamine is selected from the group consisting of 3,4,5-trimethoxyphenethylamine (mescaline), trimethoxyamphetamine ("TMA"), 4-bromo-2,5-dimethoxybenzeneethanamine ("2C-B"), 4-bromo-2,5- dimethoxyamphetamine ("DOB"), 4-methyl-2,5-dimethoxyamphetamine ("DOM"), 4- methyl-2,5-dimethoxybenzeneethanamine ("2C-D"), 3,4-methylenedioxyamphetamine ("MDA"), N-methyl-3,4-methylenedioxyamphetamine ("MDMA"). [0056] In some aspects and embodiments, the phenethylamine is plant-derived. [0057] In some aspects and embodiments, the plant includes a species selected from thegroup consisting Lophophora williamsii, Trichocereuspachanoi, Echinopsispachanoi, Trichocereus peruvianus, Echinopsis peruviana, Trichocereus bridgesii, Echinopsis lageniformis, and Trichocereus/Echinopsis scopulicola. [0058]In some aspects and embodiments, the 5HT2A agonist compound is a phenylpropanoid. [0059]In some aspects and embodiments, the phenylpropanoid is l,2,3-timethoxy-5- (prop-2-en-l-yl)benzene (elemicin). [0060] In some aspects and embodiments, the phenylpropanoid is plant-derived. [0061] In some aspects and embodiments, the plant is a species in the Myristicaceaefamily. [0062]In some aspects and embodiments, the TRP agonist compound is selected from the group consisting of a capsiate, eugenol, elemicin, myrcene, piperine and gingerol. [0063]In some aspects and embodiments, the capsiate is capsaicin.
WO 2022/079574 PCT/IB2021/059301 -21 - id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64"
id="p-64"
[0064] In some aspects and embodiments, the TRP agonist compound is plant-derived. [0065] In some aspects and embodiments, the plant includes one or more species selectedfrom the group consisting of cayenne pepper, turmeric, clove, cinnamon, nutmeg, pepper, cannabis, bergamot and ginger. [0066]In some aspects and embodiments, the TRP agonist compound is selected from the group consisting of a curcuminoid, cinnamaldehyde, alpha terpineol, thymol, piperine and allicin. [0067] In some aspects and embodiments, the curcuminoid is curcumin. [0068] In some aspects and embodiments, the plant includes one or more species selectedfrom the group consisting of curcumin, cinnamon, turmeric, nutmeg, cannabis, thyme, pepper, garlic, and onion. [0069]In some aspects and embodiments, the TRP agonist compound is selected from the group consisting of eugenol, cinnamaldehyde, carvacrol, thymol, menthol, and 1-cineole. [0070]In some aspects and embodiments, the plant includes one or more species selected from the group consisting of turmeric, clove, cinnamon, pepper, nutmeg, cannabis, bergamot, oregano, thyme, cardamom, peppermint, and eucalyptus. [0071]In some aspects and embodiments, the TRP agonist compound is selected from the group consisting of eugenol, P־caryophyllene, (-)-epicatechin, CBD, CBDA, CBGA, CBGV, THCV, THCVA, eriodictyol, cinnamaldehyde, incensole, eucalyptol, and thymol. [0072]!aspects and embodiments, the plant includes one or more species selected from the group consisting of turmeric, clove, cinnamon, pepper, nutmeg, cannabis, bergamot, oregano, thyme, cardamom, peppermint, and eucalyptus. [0073]In some aspects and embodiments, the 5HT2A agonist compound is psilocybin, and wherein the therapeutically effective amount of psilocybin is between about 100 mg and about 300 mg, or between about 0.5 mg and about 20 mg. [0074]In some aspects and embodiments, the 5HT2A agonist is psilocybin, in an amount of between about 110 mg and about 290 mg, about 120 mg and about 280 mg, about 1mg and about 270 mg, about 140 mg and about 260 mg, about 150 mg and about 250 mg, about 160 mg and about 240 mg, about 170 mg and about 230 mg, about 180 mg and about 220 mg, about 190 mg and about 210 mg, or about 195 mg and about 205 mg. [0075]In some aspects and embodiments, the at least one TRP agonist compound is capsaicin in an amount of about 0.1 mg and about 1 mg, about 0.2 mg and about 0.9 mg, WO 2022/079574 PCT/IB2021/059301 -22 - about 0.3 mg and about 0.8 mg, about 0.4 and about 0.7 mg, or about 0.5 mg and about 0.6 mg [0076]In some aspects and embodiments, the at least one TRP agonist compound is capsaicin, and wherein the composition comprises a ratio (w/w) of between about 22:and about 270,000:1 of the 5HT2A agonist to capsaicin, about 50:1 and about 200,000:of the 5HT2A agonist to capsaicin, about 100:1 and about 150,000:1 of the 5HT2A agonist to capsaicin, about 500:1 and about 100,000:1 of the 5HT2A agonist to capsaicin, about 1,000:1 and about 50,000:1 of the 5HT2A agonist to capsaicin, about 5,000:1 and about 40,000:1 of the 5HT2A agonist to capsaicin, about 10,000:1 and about 30,000:1 of the 5HT2A agonist to capsaicin, or about 15,000:1 and about 25,000:1 of the 5HT2A agonist to capsaicin. [0077]In some aspects and embodiments, the at least one TRPagonist compound is eugenol in an amount of about 1 mg and about 300 mg, about 5 mg and about 290 mg, about 10 mg and about 280 mg, about 15 mg and about 270 mg, about 20 mg and about 260 mg, about 25 mg and about 250 mg, about 30 mg and about 240 mg, about 35 mg and about 230 mg, about 40 mg and about 220 mg, about 40 mg and about 210 mg, about 50 mg and about 210 mg, about 55 mg and about 200 mg, about 60 mg and about 190 mg, about 65 mg and about 180 mg, about 70 mg and about 170 mg, about 75 mg and about 160 mg, about 80 mg and about 150 mg, about 85 mg and about 140 mg, about mg and about 130 mg, about 95 mg and about 120 mg, or about 100 mg and about 1mg. [0078]In some aspects and embodiments, the at least one TRP agonist compound is eugenol, and wherein the composition comprises a ratio (w/w) of between about 0.6:1 and about 270,000:1 of the 5HT2A agonist to eugenol, about 1:1 and about 250,000:1 of the 5HT2A agonist to eugenol, about 5:1 and about 225,000:1 of the 5HT2A agonist to eugenol, about 10:1 and about 200,000:1 of the 5HT2A agonist to eugenol, about 50:and about 175,000:1 of the 5HT2A agonist to eugenol, about 100:1 and about 150,000:of the 5HT2A agonist to eugenol, about 150:1 and about 125,000:1 of the 5HT2A agonist to eugenol, about 300:1 and about 100,000:1 of the 5HT2A agonist to eugenol, about 500:1 and about 75,000:1 of the 5HT2A agonist to eugenol, about 1,000:1 and about 50,000:1 of the 5HT2A agonist to eugenol, about 5,000:1 and about 45,000:1 of the 5HT2A agonist to eugenol, about 10,000:1 and about 40,000:1 of the 5HT2A agonist to WO 2022/079574 PCT/IB2021/059301 -23 - eugenol, about 15,000:1 and about 35,000:1 of the 5HT2A agonist to eugenol, or about 20,000:1 and about 30,000:1 of the 5HT2A agonist to eugenol. [0079]In some aspects and embodiments, the at least one TRP agonist compound is curcumin in an amount of about 0.1 mg to about 10 mg, about 0.5 mg to about 9 mg, about 1 mg to about 8 mg, about 2 mg to about 7 mg, about 3 mg to about 6 mg, or about mg to about 5 mg. [0080]In some aspects and embodiments, the at least one TRP agonist compound is curcumin, and wherein the composition comprises a ratio (w/w) of between about 0.04:and about 10:1 of the 5HT2A agonist to curcumin, about 0.1:1 and about 9.5:1 of the 5HT2A agonist to curcumin, about 0.5:1 and about 9:1 of the 5HT2A agonist to curcumin, about 1:1 and about 8.5:1 of the 5HT2A agonist to curcumin, about 1.5:1 and about 8:1 of the 5HT2A agonist to curcumin, about 2:1 and about 7.5:1 of the 5HT2A agonist to curcumin, about 2.5:1 and about 7:1 of the 5HT2A agonist to curcumin, about 3:1 and about 6.5:1 of the 5HT2A agonist to curcumin, about 3.5:1 and about 6:1 of the 5HT2A agonist to curcumin, about 4:1 and about 5.5:1 of the 5HT2A agonist to curcumin, or about 4.5:1 and about 5:1 of the 5HT2A agonist to curcumin. [0081]In some aspects and embodiments, the at least one TRP agonist compound is P־ caryophyllene, and wherein the composition comprises a ratio (w/w) of between about 0.33:1 and about 36:1 of the 5HT2A agonist to P־caryophyllene, about 1:1 and about 33:of the 5HT2A agonist to P־caryophyllene, about 3:1 and about 30:1 of the 5HT2A agonist to B-caryophyllene, about 5:1 and about 27:1 of the 5HT2A agonist to B-caryophyllene, about 7:1 and about 25:1 of the 5HT2A agonist to B-caryophyllene, about 10:1 and about 22:1 of the 5HT2A agonist to P־caryophyllene, about 15:1 and about 20:1 of the 5HT2A agonist to B-caryophyllene, or about 17:1 and about 18:1 of the 5HT2A agonist to P־ caryophyllene. [0082]In some apsects and embodiments, the at least one TRP agonist compound is cinnamaldehyde in an amount of between about 0.1 mg and about 10 mg, about 0.5 mg and about 9.5 mg, about 1 mg and about 9 mg, about 1.5 mg and about 8.5 mg, about mg and about 8 mg, about 2.5 mg and about 7.5 mg, about 3 mg and about 7 mg, about 3.5 mg and about 6.5 mg, about 4 mg and about 6 mg, or about 4.5 mg and about 5.5 mg. [0083]In some aspects and embodiments, the at least one TRP agonist compound is cinnamaldehyde, and wherein the composition comprises a ratio (w/w) of between about 0.5:1 and about 36:1 of the 5HT2A agonist to cinnamaldehyde, about 1:1 and about 33:1 WO 2022/079574 PCT/IB2021/059301 -24 - of the 5HT2A agonist to cinnamaldehyde, about 3:1 and about 30:1 of the 5HT2A agonist to cinnamaldehyde, about 5:1 and about 27:1 of the 5HT2A agonist to cinnamaldehyde, about 7:1 and about 25:1 of the 5HT2A agonist to cinnamaldehyde, about 10:1 and about 22:1 of the 5HT2A agonist to cinnamaldehyde, about 15:1 and about 20:1 of the 5HT2A agonist to cinnamaldehyde, or about 17:1 and about 18:1 of the 5HT2A agonist to cinnamaldehyde. [0084]In some aspects and embodiments, the composition is formulated for oral administration. [0085]In some aspects and embodiments, the composition further comprises at least one pharmaceutically acceptable excipient, diluent, or filler. [0086]In some aspects and embodiments, the composition is selected from the group consisting of a tablet, capsule, sachets, granules, sublingual film, buccal film, and a suspension. [0087]In another aspect and embodiments, a method for reducing inflammation in a subject, comprising administering any of the compositions described herein to the subject. [0088] In some aspects and embodiments, the inflammation is acute or chronic. [0089] In some aspects and embodiments, the method comprises administering thecomposition from 1-10 times per day. [0090]In some aspects and embodiments, the reduction in inflammation is measured by a 40-60% or a 50% reduction of at least one biomarker selected from the group consisting of COX-2, interferon-y, interleukin 1, interleukin-2, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor (TNF), and reactive oxygen species (ROS) when measured via densitometry. [0091]In some aspects and embodiments, the ROS is inducible nitric oxide synthase (iNOS). [0092]In some aspects and embodiments, the subject is suffering from a condition selected from the group consisting of cancer, neurological disorder, diabetic complications, mental health disorder (MHD), bone, muscular and skeletal disease, metabolic disorder, chronic inflammatory disorder and cardiovascular disease. [0093]In some aspects and embodiments, the MHD is selected from depression, anxiety, post-traumatic stress disorder, schizophrenia, bipolar disorder, ADD, ADHD, borderline personality disorder, seasonal affective disorder, and premenstrual dysphoric disorder.
WO 2022/079574 PCT/IB2021/059301 -25 - id="p-94" id="p-94" id="p-94" id="p-94" id="p-94" id="p-94" id="p-94" id="p-94" id="p-94" id="p-94" id="p-94"
id="p-94"
[0094]In some aspects and embodiments, the MHD is depression, and the reduction in inflammation is accompanied by a reduction in at least one symptom of depression. [0095]In some apsects and embodiments, the MHD is anxiety, and the reduction in inflammation is accompanied by a reduction in at least one symptom of anxiety. [0096]In another aspect and embodiment, a method for reducing at least one biomarker in a mammalian cell, wherein the biomarker is selected from the group consisting of COX-2, interferon-Y, interleukin 1, interleukin-2, interleukin-6, interleukin-8, interleukin- 10, tumor necrosis factor (TNF), and reactive oxygen species (ROS), comprises administering the composition of any one of claims X to X to a subject, wherein administering the composition reduces the biomarker in the mammalian cell between about X% and about Y%. [0097]In some aspects and embodiments, the 5HT2A agonist is psilocybin in an amount of about 100 mg to about 300 mg, and wherein the TRP agonist is eugenol in an amount of about 100 mg to about 300 mg. In some aspects, the amount of psilocybin and eugenol is per dose. In some aspects, the dose is administered 1 to 10 times per day. [0098]In some aspect and embodiments, the 5HT2A agonist is psilocybin in an amount of about 100 mg to about 300 mg, about 110 mg to about 290 mg, about 120 mg to about 280 mg, about 130 mg to about 270 mg, about 140 mg to about 260 mg, about 150 mg to about 250 mg, about 160 mg to about 240 mg, about 170 mg to about 230 mg, about 1mg to about 220 mg, about 190 mg to about 210 mg, or about 195 mg to about 205 mg, and wherein TRP agonist is eugenol in an amount of about 100 mg to about 300 mg, about 110 mg to about 290 mg, about 120 mg to about 280 mg, about 130 mg to about 270 mg, about 140 mg to about 260 mg, about 150 mg to about 250 mg, about 160 mg to about 240 mg, about 170 mg to about 230 mg, about 180 mg to about 220 mg, about 1mg to about 210 mg, or about 195 mg to about 205 mg. In some aspects, the amount of psilocybin is per dose. In some aspects, the dose is administered 1 to 10 times per day. [0099]In some aspects and embodiments, administering the composition reduces IL-6 in the mammalian cell by about an additional 20% relative to administering the therapeutically effective amount of psilocybin alone. [0100]In some aspects and embodiments, administering the composition reduces IL-6 in the mammalian cell by about an additional 25% relative to administering the therapeutically effective amount of psilocybin alone.
WO 2022/079574 PCT/IB2021/059301 -26 - id="p-101" id="p-101" id="p-101" id="p-101" id="p-101" id="p-101" id="p-101" id="p-101" id="p-101" id="p-101" id="p-101"
id="p-101"
[0101]Other aspects and features of the present disclosure will become apparent to those ordinarily skilled in the art upon review of the following description of specific aspects and embodiments in conjunction with the accompanying figures.
BRIEF DESCRIPTION OF THE DRAWINGS id="p-102" id="p-102" id="p-102" id="p-102" id="p-102" id="p-102" id="p-102" id="p-102" id="p-102" id="p-102" id="p-102"
id="p-102"
[0102]Embodiments of the present disclosure will now be described, by way of example only, with reference to the attached figures. [0103]Fig. 1 shows a schematic of a generalized single-molecule approach, as is used in most traditional pharmaceutical therapeutics. [0104]Fig. 2 shows a schematic of a generalized multi-modal approach, providing a therapeutic that accounts for multiple portions of a metabolic pathway. [0105]Fig. 3 shows a schematic illustrating the relationship between energy, sugar metabolism, homeostasis and depression. [0106] Fig. 4 shows interactions between the gut and the brain related to sugar signaling. [0107] Fig. 5 shows a schematic for the mechanism of action and effects of thecompositions on 5HT2A receptors and TRP receptors together for reducing inflammation and improving mood. [0108]Fig. 6 shows data used to establish MED50 with psilocybin alone and with a formulation of the 07 Base. A complete composition is described in Table 8 with psilocybin. [0109]Fig. 7 shows data used to establish MED50 with morning glory seeds alone and with a formulation of the 07 Base. A complete composition is described in Table 8 with morning glory seeds. [0110]Fig. 8 shows data used to establish MED50 with Hawaiian baby woodrose seeds alone and with a formulation of the 07 Base. A complete composition is described in Table 8 with Hawaiian baby woodrose seeds. [0111]Fig. 9 shows data used to establish a timepoint post-TNF-a/IFN-Y treatment to evaluate the anti-inflammatory effects of the compositions described herein on human primary small intestinal epithelial cells (HSIEC). [0112] Fig. 10 shows the structures of TRP agonists eugenol, capsaicin, and curcumin. [0113] Fig. 11 shows the effects of escalating doses of eugenol on COX-2 in the HSIECcells treated with TNF-a/IFN-y.
WO 2022/079574 PCT/IB2021/059301 -27 - id="p-114" id="p-114" id="p-114" id="p-114" id="p-114" id="p-114" id="p-114" id="p-114" id="p-114" id="p-114" id="p-114"
id="p-114"
[0114]Fig. 12 shows the effects of escalating doses of capsaicin on COX-2 in the HSIEC cells treated with TNF-a/IFN-y [0115]Fig. 13 shows the effects of escalating doses of curcumin on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0116]Fig. 14 shows the structures of 5HT2A agonists psilocybin, 4-ACO-DMT, psilocin, and serotonin and 5HT2A antagonist ketanserin. [0117]Fig. 15 shows the effects of escalating doses of psilocybin on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0118]Fig. 16 shows the effects of escalating doses of 4-ACO-DMT on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0119]Fig. 17 shows the effects of escalating doses of ketanserin on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0120]Fig. 18 shows the separate and combined effects of psilocybin and eugenol on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0121]Fig. 19 shows the separate and combined effects of psilocybin and eugenol on IL- in the HSIEC cells treated with TNF-a/IFN-y. [0122]Fig. 20 shows the separate and combined effects of psilocybin and eugenol on IL- in the HSIEC cells treated with TNF-a/IFN-y. [0123]Fig. 21 shows the separate and combined effects of psilocybin and eugenol on TNF receptor 2 (TNF-R2) in the HSIEC cells treated with TNF-a/IFN-y. [0124]Fig. 22 shows the separate and combined effects of 4-ACO-DMT and eugenol on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0125]Fig. 23 shows the separate and combined effects of 4-ACO-DMT and eugenol on IL-6 in the HSIEC cells treated with TNF-a/IFN-y. [0126]Fig. 24 shows the separate and combined effects of ketanserin and eugenol on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0127]Fig. 25 shows the separate and combined effects of psilocybin and capsaicin on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0128]Fig. 26 shows the separate and combined effects of psilocybin and capsaicin on IL-6 in the HSIEC cells treated with TNF-a/IFN-y. [0129]Fig. 27 shows the separate and combined effects of 4-ACO-DMT and capsaicin on IL-6 in the HSIEC cells treated with TNF-a/IFN-y.
WO 2022/079574 PCT/IB2021/059301 -28 - id="p-130" id="p-130" id="p-130" id="p-130" id="p-130" id="p-130" id="p-130" id="p-130" id="p-130" id="p-130" id="p-130"
id="p-130"
[0130]Fig. 28 shows the separate and combined effects of 4-ACO-DMT and capsaicin on COX-2 in the HSIEC cells treated with TNF-a/IFN-y [0131]Figs. 29A and 29B show the separate and combined effects of ketanserin and capsaicin on COX-2 and IL-6 in the HSIEC cells treated with TNF-a/IFN-y. [0132]Fig. 30 shows the separate and combined effects of psilocybin and curcumin on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0133]Fig. 31 shows the separate and combined effects of psilocybin and curcumin on IL-6 in the HSIEC cells treated with TNF-a/IFN-y. [0134]Fig. 32 shows the separate and combined effects of 4-ACO-DMT and curcumin on IL-6 in the HSIEC cells treated with TNF-a/IFN-y. [0135] Figs. 33 A and 33B show the separate and combined effects of ketanserin andcurcumin on COX-2 and IL-6 in the HSIEC cells treated with TNF-a/IFN-y. [0136]Fig. 34 shows the effects of psilocybin on iNOS in the HSIEC cells treated with TNF-a/IFN-y. [0137]Fig. 35 shows the separate and combined effects of psilocybin and eugenol on iNOS in the HSIEC cells treated with TNF-a/IFN-y. [0138]Fig. 36 shows the effects of 4-ACO-DMT on iNOS in the HSIEC cells treated with TNF-a/IFN-y. [0139]Fig. 37 shows the separate and combined effects of 4-ACO-DMT and eugenol on iNOS in the HSIEC cells treated with TNF-a/IFN-y. [0140]Fig. 38 shows the separate and combined effects of ketanserin and eugenol on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0141]Fig. 39 shows the structures of TRP agonists carvacrol, piperine, and cinnemaldehyde. [0142]Fig. 40 shows the effects of carvacrol on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0143]Fig. 41 shows the separate and combined effects of psilocybin and carvacrol on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0144]Figs. 42A and 42B respectively show the effects of psilocybin on IL-6 and IL-8 in the HSIEC cells treated with TNF-a/IFN-y. [0145] Figs. 43 A and 43B respectively show the effects of carvacrol on IL-6 and IL-8 inthe HSIEC cells treated with TNF-a/IFN-y.
WO 2022/079574 PCT/IB2021/059301 -29 - id="p-146" id="p-146" id="p-146" id="p-146" id="p-146" id="p-146" id="p-146" id="p-146" id="p-146" id="p-146" id="p-146"
id="p-146"
[0146]Fig. 44 shows the separate and combined effects of psilocybin and carvacrol on IL-6 in the HSIEC cells treated with TNF-a/IFN-y. [0147]Fig. 45 shows the separate and combined effects of psilocybin and carvacrol on IL-6 in the HSIEC cells treated with TNF-a/IFN-y. [0148]Fig. 46 shows the effects of piperine on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0149]Fig. 47 shows the separate and combined effects of psilocybin and piperine on COX-2 in the HSIEC cells treated with TNF-a/IFN-y. [0150]Figs. 48A and 48B respectively show the effects of piperine on IL-6 and IL-8 in the HSIEC cells treated with TNF-a/IFN-y. [0151]Fig. 49 shows the separate and combined effects of psilocybin and piperine on IL- in the HSIEC cells treated with TNF-a/IFN-y. [0152]Fig. 50 shows the separate and combined effects of psilocybin and piperine on IL- in the HSIEC cells treated with TNF-a/IFN-y. [0153]Fig. 51 shows the effects of cinnemaldehyde on IL-6 in the HSIEC cells treated with TNF-a/IFN-y. [0154]Fig. 52 shows the separate and combined effects of psilocybin and cinnemaldehyde on IL-6 in the HSIEC cells treated with TNF-a/IFN-y. [0155]Fig. 53 shows data used to establish a timepoint post-TNF-a/IFN-y treatment to evaluate the anti-inflammatory effects of the compositions described herein on in vitro 3D tissue models. [0156]Fig. 54 shows the separate and combined effects of psilocybin and capsaicin on COX-2in the 3D tissue models treated with TNF-a/IFN-y. [0157]Fig. 55 shows the separate and combined effects of psilocybin and capsaicin on IL-6 in the 3D tissue models treated with TNF-a/IFN-y. [0158]Figs. 56A and 56B show the separate effects of psilocybin and eugenol on GABA in A-172 cells. [0159]Figs. 57A and 57B show the separate effects of psilocybin and eugenol on BDNF in the A-172 cells. [0160]Fig. 58A shows the separate and combined effects of psilocybin and eugenol on COX-2 in the A-172 cells. [0161]Fig. 58B shows the separate and combined effects of psilocybin and eugenol on GABA in the A-172 cells.
WO 2022/079574 PCT/IB2021/059301 -30- id="p-162" id="p-162" id="p-162" id="p-162" id="p-162" id="p-162" id="p-162" id="p-162" id="p-162" id="p-162" id="p-162"
id="p-162"
[0162]Fig. 58C shows the separate and combined effects of psilocybin and eugenol on IL-6 in the A-172 cells. [0163]Fig. 58D shows the separate and combined effects of psilocybin and eugenol on BDNF in the A-172 cells.
DETAILED DESCRIPTION id="p-164" id="p-164" id="p-164" id="p-164" id="p-164" id="p-164" id="p-164" id="p-164" id="p-164" id="p-164" id="p-164"
id="p-164"
[0164]Generally, the present disclosure provides compositions useful for reducing inflammation through agonism of both 5HT2A signalling receptors and transient receptor potential ("TRP")nociceptors, thereby promoting and/or maintaining health and wellness in an individual. The compositions disclosed herein include at least two active compounds. A first compound is a serotonin 5HT2A receptor agonist. A second compound is an agonist for one or more TRP receptors. The second compound or additional compounds may also be an antagonist for one or more TRP receptors. The combination of molecules in the compositions shows enhanced effects over 5HT2A agonists alone for combined multimodal action providing benefits at lower doses of both the 5HT2A agonist and the TRP agonist. The interaction of the compositions with the 5HT2A and TRP receptors results in altered activity of nociceptors and may also influence the endocannabinoid signaling system (the "ECS") and/or glucose metabolism. The compositions may be prepared from medicinal plant and fungi, pure compounds or combinations of both. [0165]The compositions disclosed herein may promote mental health and wellness in healthy individuals, and have applications as a therapeutic for promoting mental health and wellness in individuals suffering from addiction, depression or other mental health conditions. The compositions may reduce the need for other drugs, including pharmaceuticals taken at the direction of a health care practitioner ("HCP"), substances take under self-directed care and abused substances. The compositions may have application in broad harm reduction programs. The compositions may also mitigate inflammation issues unrelated to mental health, including inflammation of gut, inflammation of the bowels and pain associated with inflammation. The composition may also promote the enhancement of cognition, creativity, focus, concentration, sex drive and/or other functions in those considered to be part of the ‘healthy normal’ population.
WO 2022/079574 PCT/IB2021/059301 -31 - Serotonin Receptors id="p-166" id="p-166" id="p-166" id="p-166" id="p-166" id="p-166" id="p-166" id="p-166" id="p-166" id="p-166" id="p-166"
id="p-166"
[0166] 5-hydroxy-tryptamine ("5-HT"),commonly referred to as serotonin and itsbiosynthetic precursor tryptophan, play an important role in regulating many biological processes. Tryptophan is converted to serotonin in both the intestine and the brain. Serotonin is released by the cell to trigger receptors and cause signaling cascades. Serotonin is typically reabsorbed and broken down by monoamine oxygenase ("MAO") enzyme. Serotonin affects sleep, appetite, temperature, sexual behavior, and pain sensation. While serotonin an important neurotransmitter, the majority of serotonin is produced the intestine. Brain-gut abnormalities in serotonin signaling have recently been implicated to play a role in several disease processes. Serotonin is primarily synthesized in the intestinal epithelium by enterochromaffin ("EC")cells from tryptophan. This production then regulates aspects of gut-brain communication. Lower levels of serotonin in the brain elicit sugar craving, while ingestion of sugar rich diet generally improves mood and alleviates anxiety in the short term. However, high sugar diets also disrupt glucose metabolism and feed microbial populations that may produce toxic byproducts, resulting in inflammation. Neuromodulators that influence nociceptor activity are released in the periphery during the inflammation (Loyd, 2012). Serotonin is one such proinflammatory mediator that has been shown to acts as an inflammatory mediator that contributes to inflammatory pain. The presence of multiple 5-HT subtype receptors on peripheral and central nociceptors is relevant to the role of 5-HT in sugar metabolism, mood, pain and inflammation. [0167]The 5HT2A Receptor is is a G protein-coupled receptor ("GPCR")5HT2A is the main excitatory serotonin GPCR subtype. Stimulation of 5HT serotonin receptors, and specifically the 5HT2A receptor, by molecules has been shown to be primarily responsible for the psychedelic response in humans including illusions, hallucinations, delusions and altered states of perception, often at relatively low concentrations of micrograms to milligrams. 5HT2A receptor agonists may include tryptamines, ergolines, phenethylamines, amphetamines, phenylpropanoids or other families of compounds.
TRP Receptors id="p-168" id="p-168" id="p-168" id="p-168" id="p-168" id="p-168" id="p-168" id="p-168" id="p-168" id="p-168" id="p-168"
id="p-168"
[0168]The TRP receptor superfamily is divided into seven subfamilies, including the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN and TRPA) and two group 2 subfamilies WO 2022/079574 PCT/IB2021/059301 - 32 - (TRPP and TRPML). Many TRP receptors are activated by a variety of stimuli, providing the function of a signal integrator. TRP receptors are ion channel receptors and are a family of non-selective cation channels that play important roles in cellular signaling. TRP receptors have six transmembrane segments, varying degrees of sequence homology and permeability to various cations. [0169]Transient receptor potential subfamily V member 1 ("TRPV1")has six members divided into two groups. A first group includes TRPV1, TRPV2, TRPV3, and TRPV4. TRPV1, TRPV2, TRPV3 and TRPV4 include thermo-TRPs that are activated by heat. TRPV1 is a non-selective cation channel involved primarily in in pain sensation. TRPVmay affect mood and neuroplasticity in the brain, and there is a clear molecular link between TRPV1 activity and stress responses. TRPV3 mediates a weakly Ca2+-selective cationic conductance in response to non-noxious heat, camphor and other molecules. TRPV3 is widely expressed in humans, with an important role in thermosensation. TRPV4 is a constitutively active Ca2+-permeable cation channel displaying a response to moderate heating, hypotonic challenge, or the phorbol ester 4a-PDD. TRPV4 is involved in pressure and osmotic sensitivity, thermal selection and hearing. A second group of TRPV receptors includes TRPV5 and TRPV6, which are selective Ca2+ transporters but do not respond to heat. [0170]Transient receptor potential canonical ("TRPC")channels represent a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. Seven mammalian TRPC members can be divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) are involved in a range of cellular and physiological functions. TRPC channels have been implicated in calcium release activated channels in many cell types and have been suspected to be involved in Alzheimer’s disease and various cardiomyopathies. [0171]Transient receptor potential subfamily ‘A’ ion channels ("TRPA")is a family of receptors made up of 7 subfamilies: TRPA1, TRPA- or TRPAl-like, TRPA5, painless, pyrexia, waterwitch, and HsTRPA. These channels have been identified as mechanical stress, temperature, and chemical sensors. TRPA1 was initially described as a cold sensitive nonselective cation channel, there is evidence that it functions as a ligand-gated channel in expression systems and sensory neurons. TRPA1 appears to be regulated by PLC-coupled receptors, exhibiting many functional characteristics of other TRP channels. TRPA1 also has been tentatively identified as a hearing transduction channel, while the WO 2022/079574 PCT/IB2021/059301 -33 - multiple ankyrin repeats in TRPA1 have been suggested to function as a mechanical spring, linking TRPA1 to cytoskeletal proteins. [0172]Transient receptor potential subfamily M (M is shorthand for melastatin) subfamily comprises eight members divided into three groups. A first group includes TRPM1, TRPM2 and TRPM3. A second group includes TRPM4, TRPM5 and TRPM8. A third group includes TPRM6 and TRPM7. TRPM receptors have been implicated in various processes including regulation of calcium, modulation of insulin secretion and cold and heat sensation, inflammatory pain, magnesium reabsorption and regulation of cell adhesion. [0173]TRPM3 has alternate functional splice variants. Mouse TRPM3al is monovalent- selective, while TRPM3a2 is divalent selective, suggesting that in vivo TRPM3 function may depend on the relative abundance of these variants. TRPM3al and TRPM3a2 both display constitutively active rectifying currents which are blocked by intracellular Mg2+. TRPM3 has been implicated in microglial and choroid plexus functions. [0174]TRPM8 has been mostly described as a cold- and menthol-activated nonselective cation channel displaying voltage dependent gating properties. TRPM8 is expressed in sensory neurons, potentially acting as a cold thermosensor. Channel agonists such as cold or menthol may shift the voltage dependence of TRPM8 to more negative potentials. [0175]TRPN is a member of the transient receptor potential channel family of ion channels. The TRPN gene was named no mechanoreceptor potential CQiompC) when first discovered in ^Drosophila species. TRPN receptors are mechanoreceptors. Studies of TRPN indicate that null mutants in fruit flies have difficulty moving, suggesting a role in proprioception. Studies in worms have shown null mutants to have various locomotion defects while electrophysiological studies of single channels in worms have shown that TRPN responds to mechanical stimuli and has a preference for sodium ions. [0176]TRPP (transient receptor potential polycystic) is a family of transient receptor potential ion channels named for mutations that can cause polycystic kidney disease.[0177] TRPML (transient receptor potential cation channel, mucolipin subfamily) represent a group of three related proteins. The three proteins TRPML 1, TRPML2 and TRPML3 are encoded by the mucolipin-1 (MC0LN1), mucolipin-2 (MCOLN2) and mucolipin-3 (MC0LN3) genes. The three members of the TRPML sub-family are not well characterized, while TRPML 1 is known to be localized in late endosomes. This subunit also contains a lipase domain between its SI and S2 segments, with the domain WO 2022/079574 PCT/IB2021/059301 -34- hypothesized to be involved in channel regulation. Studies have described TRPMLchannels as proton leak channels in lysosomes responsible for preventing these organelles from becoming too acidic, with deficiencies leading to enlarged vesicles.
Multi-modal Treatment of Health Conditions id="p-178" id="p-178" id="p-178" id="p-178" id="p-178" id="p-178" id="p-178" id="p-178" id="p-178" id="p-178" id="p-178"
id="p-178"
[0178]Fig. 1 shows a schematic of a generalized single-molecule approach, as is used in most traditional pharmaceutical therapeutics. Traditional pharmaceuticals target a single receptor with a single molecule to produce a predicted result of complete or partial activation or deactivation. Most commonly a receptor agonist or antagonist may be applied at a specific concentration to reduce the symptoms of a disease for a period of time. The single-molecule approach, particularly with strong agonists and strong antagonists, rarely restores balance to a system or cures a disease. This linear approach does not account for or otherwise leverage the complicated feedback mechanisms that may upregulate or downregulate the process itself. Furthermore, single molecule approaches have often focused on molecules with increased potency or pharmacodynamic properties under the assumption that increased activation is more efficacious in treating disease. As a result, these approaches often result in imbalanced biological systems rather than restoration of balance to cellular processes and other biological systems. The imbalances that often result from single-molecule pharmaceutical medications often lead to side effects that are commonly dealt with by a second medication, which may result in further imbalance. [0179]Fig. 2 shows a schematic of a generalized multi-modal approach, providing a therapeutic that accounts for multiple portions of a metabolic pathway, accounting for stimulation and feedback loops that may result in imbalance or toxicity. A drug may have a single target or multiple receptor targets, and interaction with the targets of the drug will be affected by other features of the system. Endogenous molecules may interact with the same receptor and compete for receptor sites. Introduction of strong agonists or strong antagonists may amplify, reduce, prevent or otherwise perturb signaling within endogenous pathways. The extent and distribution of expression of receptors in the body may be heterogeneous. Interaction with any given receptor may have downstream changes in gene expression and signaling to other parts of the body. Multiple signaling pathways may converge within a cell to regulate one another and maintain homeostasis between many processes. Interaction of a drug with a given receptor may influence WO 2022/079574 PCT/IB2021/059301 -35 - homeostasis through downstream effects, in some cases drastically. Degradation of the drug may have result in byproducts that have further signaling consequences and potential side effects, including by modulating metabolites or other byproducts of endogenous processes. Natural molecules often have clear metabolic breakdown pathways and may a lack some of toxic bi-products resulting from synthetic drugs. As seen through traditional medicine approaches (Chinese medicine, Aruvedic formulas, etc), combinations of multiple natural molecules shows potential for treating disease with little to no side effects. [0180]Restoring homeostasis to metabolic pathways requires attention to the production, reception, signaling and breakdown of each neurotransmitter or other signaling molecule entering the system, present in the system and exiting the system. Biological and molecular pathways are cycles with multiple inputs, convergence points and branch points resulting in different products or effects. Multiple enzymes are involved in most biological processes, including those that signal events in the nucleus and trigger gene expression. Such signals may result in positive or negative feedback at different parts of a metabolic pathway. If a metabolic system has been downregulated, stimulation at multiple points may facilitate restoration of homeostasis. If a metabolic system has been upregulated, attenuation at multiple points may facilitate restoration of homeostasis. Molecular pathways may be downregulated in one part and upregulated in another through interaction with one or multiple chemicals. Blocking or overstimulating any one part of the cycle may create imbalances resulting in side effects. For example, while serotonin does not cause intoxication, psilocin and other 5HT2A agonists may overstimulate the 5HT2A receptor causing hallucinations and other psychoactive effects. The compositions include ingredients in addition to a 5HT2A agonist that provide a multimodal molecular approach, combining both agonists and antagonists for other receptors that converge with 5HT2A signaling to provide benefits while mitigating psychoactive effects of 5HT2A agonists.
Mental Health and Gut Health id="p-181" id="p-181" id="p-181" id="p-181" id="p-181" id="p-181" id="p-181" id="p-181" id="p-181" id="p-181" id="p-181"
id="p-181"
[0181]Many components found in food show antidepressant effects. Many of these same ingredients have also been associated with a reduction in inflammation and play a role in sugar metabolism. Relatively low doses of certain natural molecules including a 5HT2A agonist and a TRP receptor agonist may facilitate balance to inflammatory WO 2022/079574 PCT/IB2021/059301 -36- mediators and use of compositions including a 5HT2A agonist and a TRP receptor agonist may present an option for treatment and prevention of inflammatory disease, mental illness and sugar metabolism issues. [0182]Fig. 3 shows a schematic illustrating the relationship between energy, sugar metabolism, homeostasis and depression. Inflammation may result from an energetic imbalance. Where energy enters a cell or other system and is not converted by the system to something useful, and subsequently removed from the system, inflammation ensues. Inflammation, if left unchecked, will lead to a multitude of negative consequences that can be additive and exacerbate one another, compounding into much larger events. Correlative links between consumption of excess sugar and inflammation have long been suspected (Corte, 2018). [0183]In humans, energy is primarily provided to the body as sugars (e.g. glucose, fructose, sucrose, etc.). Glucose is converted into energy in cells. Excess sugars, particularly those from high-fructose com syrup or other processed sources, have been shown to influence inflammatory markers and result in inflammation. Inflammation associated with excess sugar intake may partially be a result of microbial metabolites from flora feeding on sugars in the intestine. Inflammation associated with excess sugar intake may also be due to excess energy that the body has no means to deal with and therefore results in the energy being stored as fats, subsequently altering glucose metabolism and leading to conditions including diabetes. [0184] MDDhas not been specifically defined or characterized as an inflammatory disease. However, there is evidence is to show crosstalk between depression and inflammation (Patel, 2013; Krishnadas, 2012; Lee, 2019; Slavich, 2014). Many metabolic pathways in the body may be influenced simultaneously in disease conditions and may also be influenced simultaneously by therapies. Individuals with inflammatory diseases are more likely to show increased rates of depression and individuals with depression are more likely to show increased rates of inflammatory diseases. Over 30% of people with MDD show elevated peripheral inflammatory biomarkers even in the absence of a diagnosed illness associated with inflammation (Slavich, 2014). Inflammation plays a role in the pathogenesis of a number of immune system, neurological and behavioral disorders, including depression, cognitive impairment, metabolic and autoimmune diseases. With respect to depression and inflammation, neither appears to be absolutely necessary or sufficient for the other. Each may occur in WO 2022/079574 PCT/IB2021/059301 -37- the absence of the other, but depression and inflammation are often comorbid. In a significant subset of individuals, inflammation may precipitate or prolong depression or may significantly contribute to the inflammatory response, the course and the outcome of a comorbid disease. Biofeedback mechanisms between these inflammation and depression may exacerbate each condition. [0185]Metabolism of sugar is vitally important for the body the primary source of energy. Glucose is normally broken down to pyruvate in the cytosol of cells. Pyruvate enters mitochondria to create adenosine triphosphate and other energy useful to the body. Pyruvate is also a direct metabolic precursor to alanine, to aspartate and asparagine through oxaloacetate, and to glutamate and glutamine through a-ketoglutarate. Glucose that is not used in this manner may enter other biosynthetic process or can be stored. [0186]Glutamine is the most abundant amino acid in the human body and is involved in many metabolic processes, including glucose metabolism and biosynthesis of other amino acids. Some cells can directly transform glutamine into glucose through a series of chemical reactions. When glucose is then released into the blood, blood sugar level rises causing a cascade of changes throughout the body. [0187]In addition to regulation of primary metabolism, glutamine and glutamate signaling appear to be intrinsically linked to brain activity and inflammation. Inflammatory mediators have been found to alter glutamate and monoamine neurotransmission, glucocorticoid receptor resistance and hippocampal neurogenesis. Inflammation can alter brain signaling patterns, altering cognition and contributing to the production of a pattern of symptoms, closely related to depression. Inflammation may exacerbate the complexity and severity of many illnesses, and influence treatment response. As such, inflammatory responses may lead to depression and depression may lead to inflammation in a way that each exacerbate each other. [0188]The connection between consumption of processed sugar and diabetes is well known. There appears to also be direct correlations between excess consumption of processed sugar in a population and prevalence of mental health issues in the population. Specifically, high fructose com symp and artificial sweeteners can interfere with intestinal sugar signaling and brain signaling functions (de Sousa, 2017). A significant number of depression and mood disorder diagnoses may be a result of intestinal inflammation, which may be correlated to high sugar diets. Correction or mitigation of the intestinal inflammation may correct or mitigate the depression connected with the WO 2022/079574 PCT/IB2021/059301 -38 - intestinal inflammation. Compositions that include both a 5HT2A receptor agonist and a TRP receptor agonist may mitigate or correct the intestinal inflammation. [0189]As individuals consume and process food, communication between the enteric nervous system (the "ENS")and the central nervous systems (the "CNS")is vital for maintaining homeostasis, particularly around sugars. The ENS is a portion of the peripheral nervous system (the "PNS").The pathway between the ENS and the CNS is known as the gut-brain axis. [0190]Fig. 4 shows interactions between the gut and the brain and sugar signaling progressing from the gut to the brain. Glutamate is key in sugar and energy signaling, but is also an important excitatory neurotransmitter in the nervous system. Glutamate plays an important role in nociception by transmission of signals from the PNR to the CNS following stimulation of specialized sensory TRP nociceptors. As such, glutamate is directly involved in the sensitization of inflammation pain and neuropathic pain. [0191]Glutamate levels elevate and expression of ionotropic glutamate receptors ("iGluRs")is upregulated during cutaneous inflammation and during deep tissue inflammation. Peripheral inflammation increases the proportions of both unmyelinated and myelinated nerves expressing iGluRs. Nociceptor cells are found in any area of the body that can sense stimuli and are prevalent in the digestive tract. The peripheral terminal of a mature nociceptor is where the stimuli are detected and transduced into electrical energy. When the electrical energy reaches a threshold value, an action potential is induced and driven towards the CNS, where specific changes in metabolic activity result in production of neurotransmitters. Glutamate signaling in the brain and TRP signaling from the gut alters brain chemistry in at least the manner described in this paragraph, and shown in Figs. 4 and 5. [0192]Nociceptor neuron sensitivity is modulated by a large variety of mediators in the extracellular space (Woolf, 2007). Peripheral sensitization represents a form of functional plasticity of the nociceptor. The nociceptor can change from being simply a noxious stimulus detector to a detector of non-noxious stimuli. The result is that low intensity stimuli from regular activity, initiates a painful sensation. Inflammation results in the sensitization of nociceptors. Normally problems cease when inflammation goes down; however, sometimes genetic defect or repeated injury, including from chronic exposure to excess energy from processed sugars, can result in aberrant issues and lead to chronic issues in this pathway.
WO 2022/079574 PCT/IB2021/059301 -39- id="p-193" id="p-193" id="p-193" id="p-193" id="p-193" id="p-193" id="p-193" id="p-193" id="p-193" id="p-193" id="p-193"
id="p-193"
[0193]Glutamate plays an important role in transmitting the nociceptive signals from the PNS to the spinal cord. Glutamate injections provoked nociceptive responses mediated by neuropeptides (substance P) released from C fibers by activation of glutamate receptors that stimulate the production of a variety of intracellular secondary messengers. These include nitric oxide, pro-inflammatory cytokines, such as tumor necrosis factor alpha ("TNF-a")and interleukins such as interleukin- ip ("IL-1p"),which act synergistically in the excitation of the neurons (Goldstein, 2009). [0194]Several studies have pointed to the presence of increased inflammatory cytokines in individuals with MDD. Inflammatory cytokines are cell-signaling protein molecules that are released during inflammation and launch signaling cascades able to activate the immune system. Type 1 cytokines include TNF-a, interferon-y, interleukin-ip. Type cytokines enhance cellular immune responses. Pro-inflammatory cytokines may be produced in the brain itself or reach the brain from the PNS through active transport or "leaky" regions across the blood-brain barrier. Cytokines may signal the brain through the afferent vagal pathway or via the entry of activated monocytes into the brain from periphery. The compositions with both 5HT2A and TRP agonists reduce gut inflammation markers, which results in improved mental health. [0195]Meta-analyses have compared individuals suffering from MDD to a control group, and shown differences in proinflammatory cytokines such as TNF-a (Liu, 2012, Ma, 2016). The meta-analyses showed that individuals with MDD had significantly higher concentrations of TNF-a compared with controls. Interleukin 6 ("IL-6")has also been linked to depression especially when comorbid with physical disorders. Both animal and clinical studies demonstrate increased peripheral or central cytokine interleukin-6 levels play an important role in stress reactions and depressive disorders. Ting, E. et at, "Role of Interleukin-6 in Depressive Disorder," Int. J. Mol. Sci. 21 (6):2194 (March 2020). The majority of researches indicate that individuals suffering from depression have shown elevations in the proinflammatory cytokines. [0196]Cyclooxygenase ("COX"),officially known as prostaglandin-endoperoxide synthase ("PTGS")is a protein that is responsible for the synthesis of prostaglandins. Prostaglandins are bioactive lipids that have potent actions in inflammation, fever and pain as well as provide protection of gastric mucosa and platelet aggregation. COXspecifically is another proinflammatory regulator of inflammation and has been linked depression. COX-2 inhibition directly effects the CNS and some components of the WO 2022/079574 PCT/IB2021/059301 -40 - inflammatory system, kynurenine-metabolism and glutamatergic neurotransmission. COX-2 inhibitors have been tested in animal models of depression and in preliminary clinical trials, the latter showing favorable effects compared to placebo, both, in schizophrenia and in MDD. The compositions are effective at reducing COX2. [0197]Subsets of vagal afferent nerves have activation properties indicative of specialization to detect potentially harmful stimuli. A cascade of events occurs in the brain including regulation of inflammation markers and the perception of pain. When a high threshold is reached by either chemical, thermal, or mechanical environments, the nociceptors are triggered under normal conditions. TRP receptors are responsible for whether and how specific nerve endings respond to stimuli, providing for a variety of potential responses. Inclusion of different TRP agonists that may interact with different TRP receptors can differentially influence downstream gene expression as well as the over-perception of the effects of combined 5HT2A formulation. [0198]Studies investigating the gut-brain axis demonstrate that the gut microbiota is an important regulator of interactions relevant to brain development, behavior and the immune system. Microbes influence the activation of peripheral immune cells, which regulates responses to neuroinflammation, brain injury, autoimmunity and neurogenesis. Both the gut microbiota and immune system are implicated in the etiopathogenesis or manifestation of neurodevelopmental, psychiatric and neurodegenerative diseases. Compositions with both 5HT2A and TRP agonists may influence gut microbiota in various ways. [0199]Stress causes changes in neurotransmission in the brain and influences stress- induced behaviors. However, it is unclear how neurotransmission systems orchestrate stress responses at the molecular and cellular levels. Although the extent to which inflammation contributes to depression onset and relapse is unknown, studies have shown that elevated serum cytokine levels of inflammatory markers often precede, and therefore potentially cause depressive symptoms (Karlovic, 2012; Krishnadas 2012) Many illnesses show difference in inflammation markers including diabetes, metabolic syndrome, rheumatoid arthritis, asthma, multiple sclerosis, cardiovascular disease, chronic pain, and psoriasis, which are also characterized by increased risk for depression (Gan, 2004; Stenvinkel 2002). For instance, nearly 20% of individuals with cardiovascular disease experience MDD (O’Neil, 2013), individuals suffering from diabetes are twice as likely to develop depression (Mezuk, 2008) and up to 70% of individuals suffering from WO 2022/079574 PCT/IB2021/059301 -41 - autoimmune diseases, such as systemic lupus erythematosus (Palagini, 2013) or rheumatoid arthritis (Dickens, 2002) all experience higher rates of depression.Compositions with both 5HT2A and TRP agonists may also help with disease states found to be comorbid with depression due to treatment of the underlying inflammation. [0200]Conditions associated with chronic inflammation are listed in Table 1.
Table 1:Conditions Associated with Chronic Inflammation Disease Type Signs and Symptoms Arthritis Bone, Muscular, Skeletal Joint pain, tenderness, stiffness, inflammation in and around the joints, restricted movements of the joints, warm red skin over the affected joint, weakness and muscle wasting.Osteoporosis Bone, Muscular, Skeletal Back pain (caused by a fractured or collapsed vertebra), loss of height over time, stooped posture, a bone that breaks much more easily than expected.Osteoarthritis Bone, Muscular, Skeletal Pain and stiffness in joints, joint tenderness, increased pain and stiffness when immobile for long periods, joints swelling, grating/crackling sound or sensation in joints, limited range of movement in joints, weakness and muscle wasting (loss of muscle bulk).Degenerative Disc Disease (DDD) Bone, Muscular, Skeletal Range from mild to severe pain, neck and lower back pain, pain extending to the arms and hands, pain extends through buttocks and thighs, pain amplifies when sitting/bending/lifting/twisting, weakness in leg muscles or foot dropMuscularDystrophyBone, Muscular, Skeletal MD can include the following types; duchenne MD, myotonic dystrophy, facioscapulohumeral MD, becker MD, limb-girdle MD, oculopharyngeal MD and emery- dreifuss MD. All types of MD cause muscle weakness, but the areas affected and the severity of the symptoms differ by type.Breast Cancer Cancer A change in the size or shape of one or both breasts, discharge from either of your nipples, which may be streaked with blood, a lump or swelling in either of your armpits, dimpling on the skin of your breasts, a rash on or around your nipple and a change in the appearance of your nipple (such as becoming sunken into your breast).Colon Cancer Cancer Persistent change in bowel habit - pooing more often, with looser, runnier poos and sometimes tummy (abdominal) pain, blood in the poo without other symptoms of piles (haemorrhoids) - this makes it unlikely the cause is haemorrhoids, abdominal pain, WO 2022/079574 PCT/IB2021/059301 -42 - discomfort or bloating always brought on by eating - sometimes resulting in a reduction in the amount of food eaten and weight loss.Lung Cancer Cancer A cough that doesn’t go away after 2 or 3 weeks, a long- standing cough that gets worse, chest infections that keep coming back, coughing up blood, an ache or pain when breathing or coughing, persistent breathlessness, persistent tiredness or lack of energy, loss of appetite or unexplained weight loss.Kidney Cancer Cancer blood in your pee - you may notice your pee is darker than usual or reddish in colour, a persistent pain in your lower back or side, just below your ribs, a lump or swelling in your side (although kidney cancer is often too small to feel), extreme tiredness, loss of appetite and unintentional weight loss, persistent high blood pressure (hypertension), a high temperature, night sweats, swelling of the veins in the testicles (for men), swollen glands in your neck, bone pain and coughing up blood.Gastric Cancer Cancer heartbum or acid reflux, having problems swallowing (dysphagia), feeling or being sick, symptoms of indigestion, such as burping a lotfeeling full very quickly when eating, loss of appetite or losing weight without trying to, a lump at the top of your tummy, pain at the top of your tummy and feeling tired or having no energy.Pancreatic CancerCancer The whites of your eyes or your skin turn yellow (jaundice), you may also have itchy skin, darker pee and paler poo than usual, loss of appetite or losing weight without trying to, feeling tired or having no energy, a high temperature, or feeling hot or shivery.Lymphoma Cancer The two most common types of lymphoma are Hodgkin and non-Hodgkin lymphoma. The most common symptom of Hodgkin lymphoma is a swelling in the neck, armpit or groin. The swelling is usually painless, although some people find that it aches. The most common symptom of non-Hodgkin lymphoma is a painless swelling in a lymph node, usually in the neck, armpit or groin. Lymph nodes, also known as lymph glands, are pea-sized lumps of tissue found throughout the body.Atherosclerosis Cardiovascular + DiabeticChest pain, numbness, weakness in arms/legs, difficulty speaking, slurred speech, temporary loss of vision in one eye, drooping facial muscles, claudication, high blood pressure and kidney failure.
WO 2022/079574 PCT/IB2021/059301 -43 - Cardiomyopathy Cardiovascular+ DiabeticShortness of breath, on exertion or at rest, recurrent chest infections, coughing up sputum or blood, palpitations, and an awareness of your heart beating faster or in an irregular way, chest pains, and/or angina pain, abnormal heart rhythms - called arrhythmias, fainting or near fainting, dizziness, swelling to the face, abdomen or extremities, undue tiredness and reduced exercise tolerance.Cerebrovascular disorderCardiovascular DiseaseThere are a number of different types of cerebrovascular disease. The four most common types are; Stroke - a serious medical condition where one part of the brain is damaged by a lack of blood supply or bleeding into the brain from a burst blood vessel, Transient Ischaemic Attack (TIA) - a temporary fall in the blood supply to one part of the brain, resulting in brief symptoms similar to stroke, Subarachnoid Haemorrhage - a type of stroke where blood leaks out of the brain's blood vessels on to the surface of the brain, Vascular Dementia - persistent impairment in mental ability resulting from stroke or other problems with blood circulation to the brain.Heart Failure CardiovascularDiseaseBreathlessness - this may occur after activity or at rest; it may be worse when you're lying down, and you may wake up at night needing to catch your breath, Fatigue - you may feel tired most of the time and find exercise exhausting, Swollen ankles and legs - this is caused by a build-up of fluid (oedema); it may be better in the morning and get worse later in the day.Stroke Cardiovascular DiseaseThe main stroke symptoms can be remembered with the word FAST; Face -the face may have dropped on 1 side, the person may not be able to smile, or their mouth or eye may have drooped. Arms -the person may not be able to lift both arms and keep them there because of weakness or numbness in arm. Speech -their speech may be slurred or garbled, or the person may not be able to talk at all despite appearing to be awake; they may also have problems understanding what you're saying to them. Time -it's time to dial 999 immediately if you notice any of these signs or symptoms.Leaky Gut Chronic Inflammatory Disorder Proponents of "leaky gut syndrome" claim that many symptoms and conditions are caused by the immune system reacting to germs, toxins or other substances that have been absorbed into the bloodstream via a porous ("leaky") bowel.
WO 2022/079574 PCT/IB2021/059301 -44 - Ulcerative ColitisChronic Inflammatory Disorder The main symptoms of UC are: recurring diarrhoea, which may contain blood, mucus or pus, tummy pain, needing to empty your bowels frequently. You may also experience extreme fatigue, loss of appetite and weight loss.Irritable BowelSyndrome (IBD)Chronic Inflammatory Disorder The main symptoms of IBS are:stomach pain or cramps - usually worse after eating andbetter after doing a poobloating - your tummy may feel uncomfortably full and swollendiarrhoea - you may have watery poo and sometimesneed to poo suddenlyconstipation - you may strain when pooing and feel like you cannot empty your bowels fullyChronic Obstructive Pulmonary Disease (COPD) Chronic Inflammatory Disorder ongoing cough (wet/dry), shortness of breath, wheezing, whistling/squeaky sound when breathing, chest tightness, hard time catching your breath, lips/fingernails turn blue or gray, lack of mental alertness, very fast heartbeat.RheumatoidArthritis (RA)Chronic Inflammatory Disorder Pain or aching in more than one joint, stiffness in more than one joint, tenderness and swelling in more than one joint, the same symptoms on both sides of the body (such as in both hands or both knees), weight loss, fever, fatigue, tiredness, weakness.Psoriasis Chronic Inflammatory Disorder Symptoms are dry red skin lesions, known as plaques, covered in silver scales. They normally appear on your elbows, knees, scalp and lower back, but can appear anywhere on your body. The plaques can be itchy or sore, or both. In severe cases, the skin around your joints may crack and bleed.ChronicPancreatitisChronic Inflammatory Disorder Chronic pancreatitis is a condition where the pancreas has become permanently damaged from inflammation and stops working properly. The most common symptom of chronic pancreatitis is repeated episodes of severe pain in your tummy (abdomen). The pain usually develops in the middle or left side of your tummy and can move along your back. It's been described as a burning or shooting pain that comes and goes, but may last for several hours or days. Although the pain sometimes comes on after eating a meal, there's often no trigger. Some people might feel sick and vomit.Chronic Inflammatory Demyelinating Chronic Inflammatory Disorder Tingling in arms and legs, gradual weakening of arms and legs, loss of reflexes, loss of balance and your ability to walk, loss of feeling in your arms and legs, which often starts with your inability to feel a pin prick.
WO 2022/079574 PCT/IB2021/059301 -45 - Polyradiculoneu ropathy (CIDP)Chronic Inflammatory Connective Tissue Diseases (CICTD) Chronic Inflammatory Disorder More than 200 different types of connective tissue diseases including rheumatoid arthritis (RA), scleroderma, granulomatosis with polyangiitis (GPA), churf-strauss syndrome, systemic lupus erythematosus (SLE), microscopic polyangiitis (MPA), polymyositis/dermatomyositis, mixed connective tissue disease (MCTD) and undifferentiated connective tissue diseases.Gingivitis Dental Swollen gums, dark red gums, gums that bleed easily, bad breath, receding gum line, tender/sensitive gums.Retinopathy Diabetic ComplicationsSymptoms include gradually worsening vision, sudden vision loss, shapes floating in your field of vision (floaters), blurred or patchy vision and eye pain or redness.Sepsis Diabetic ComplicationsSepsis can be hard to spot. There are lots of possible symptoms. Symptoms can be vague. They can be like symptoms of other conditions, including flu or a chest infection.Neuropathy Diabetic ComplicationsThe main symptoms of peripheral neuropathy can include; numbness and tingling in the feet or hands, burning, stabbing or shooting pain in affected areas, loss of balance and co-ordination and muscle weakness, especially in the feet.Chronic Kidney Disease (CKD)Metabolic DisorderSymptoms include tiredness, swollen ankles, feet or hands (due to water retention), shortness of breath, nausea and blood in the urine.Fatty Liver DiseaseMetabolic DisorderThere aren't usually any prevalent symptoms in the early stages. Some symptoms in more serious cases may include; a dull or aching pain in the top right of the tummy (over the lower right side of the ribs), fatigue (extreme tiredness), unexplained weight loss and weakness.Heart Disease Metabolic DisorderSymptoms of a heart attack can include;- pain in other parts of the body - it can feel as if the pain is travelling from your chest to your arms, jaw, neck, back or stomach- light-headedness- sweating- nausea- breathlessnessSleep Apnea Metabolic DisorderSymptoms of sleep apnea during sleep: breathing stopping and starting, making gasping, snorting or WO 2022/079574 PCT/IB2021/059301 -46 - choking noises, waking up frequently, loud snoring.
Symptoms of sleep apnea during the day: feel very tired, find it hard to concentrate, have mood swings, have a headache when you wake up.Type 2 Diabetes Metabolic DisorderTypical symptoms include: - feeling very thirsty- passing urine more often than usual, particularly at night- feeling very tired- weight loss and loss of muscle bulk- slow to heal cuts or ulcers- frequent vaginal or penile thrush- blurred visionMetabolic SyndromeMetabolic DisordersHigh blood sugar, hypertension, high triglycerides, low HDL-cholesterol, Visceral ObesityAutoimmune DiseasesMetabolic DisordersDespite the varying types of autoimmune disease, many of them share similar symptoms. Common symptoms of autoimmune disease include: - Fatigue- Joint pain and swelling- Skin problems- Abdominal pain or digestive issues- Recurring fever- Swollen glandsAmyotrophic Lateral Sclerosis(ALS) Neurological Early symptoms can include: - weakness in your ankle or leg - you might trip, or find it harder to climb stairs- slurred speech, which may develop into difficulty swallowing some foods- a weak grip - you might drop things, or find it hard to open jars or do up buttons- muscle cramps and twitches- weight loss - your arms or leg muscles may have become thinner over time- difficulty stopping yourself from crying or laughing in inappropriate situationsAlzheimer's Neurological The symptoms of Alzheimer's disease progress slowly over several years. Sometimes these symptoms are confused with other conditions and may initially be put down to old age.
The rate at which the symptoms progress is different for WO 2022/079574 PCT/IB2021/059301 -47 - each individual.
In some cases, other conditions can be responsible for symptoms getting worse.
These conditions include: - infections- stroke- deliriumAnxiety Neurological Symptoms can include: - restlessness- a sense of dread- feeling constantly "on edge"- difficulty concentrating- irritabilityDementia Neurological Some common early symptoms that may appear some time before a diagnosis of dementia. These include: - memory loss- difficulty concentrating- finding it hard to carry out familiar daily tasks, such as getting confused over the correct change when shopping- struggling to follow a conversation or find the right word- being confused about time and place- mood changesDepression Neurological The symptoms of depression can be complex and vary widely between people. If you're depressed, you may feel sad, hopeless and lose interest in things you used to enjoy.Stress Neurological Physical symptoms: headaches or dizziness muscle tension or pain stomach problems chest pain or a faster heartbeat sexual problems Mental symptoms: difficulty concentrating struggling to make decisions feeling overwhelmed constantly worrying being forgetful WO 2022/079574 PCT/IB2021/059301 -48 - Improving Mental Health by Mitigating Gut Inflammation Asthma AllergiesRespiratory The most common symptoms of asthma are: - wheezing (a whistling sound when breathing)- breathlessness- a tight chest - it may feel like a band is tightening around it- coughing id="p-201" id="p-201" id="p-201" id="p-201" id="p-201" id="p-201" id="p-201" id="p-201" id="p-201" id="p-201" id="p-201"
id="p-201"
[0201]Mental health issues may be treated in many individuals by reducing inflammation in the intestines, specifically nociception of the enterochromaffin cells where the majority of serotonin is produced in the gut. Natural sources from plant and fungal medicines may be utilized to reduce gut inflammation through targeting specific receptors that regulate pain sensitization and inflammation thereby transmitting signals to the brain. [0202]While serotonin is well known for its central nervous system regulation of mood, appetite, and vasoconstriction, it is becoming increasingly clear that 5-HT also plays a modulatory role in various acute and persistent pain states (Stiedl, 2015; (Loyd 2013; Sommer, 2004). The vast majority of 5-HT in the mammalian body is located in peripheral tissues with significant production in the intestinal enterochromaffin cells where 5-HT is actively taken up by the gut and released with other chemical messengers to interact with the PNS at other parts of the body. For example, serotonin acts as a neuromodulator of nociception by altering TRPV1 activity during inflammation (Loyd 2013). In sensory neurons 5-HT increases excitability to thermal stimuli and enhances capsaicin and heat evoked currents (Sugiuar, 2004; Ohta 2006). Depleting 5-HT attenuates visceral pain and reduces TRPV1 activation. 5-HT receptors regulate the stimulus threshold for sensory neurons by changing the properties of TRP receptor channels (Loyd, 2013). [0203]Fig. 5 illustrates the mechanism of action of the compositions on 5HT2A receptors and TRP receptors together for reducing inflammation and improving mental health. Crossover with cannabinoid signaling is also illustrated. Simultaneous activation of these signaling pathways result in communication between the nociceptor cells of the gut (lower) and neurons in the brain (upper). The arrows demonstrate where the 5HT2A receptor agonists, the TRP agonists and CB receptor agonists included in the compositions bind with the 5HT2A, TPR and CB receptors. The arrows also show WO 2022/079574 PCT/IB2021/059301 -49 - convergence of signaling pathways including sugars and on microbiomes that flourish in the presence of sugars, and that result in inflammation and ROS. [0204]Coactivation of 5HT2A and TRP receptors reduces the intensity of negative signals resulting from sugars and from microbiome changes resulting from altered sugar signaling. One approach to treating depression is to increase serotonin signaling while also allowing serotonin breakdown in turn balances output signaling molecules such as diacylglycerol ("DAG").DAG acts as a secondary messenger that is a physiological activator of protein kinase C ("PKC").DAG facilitates translocation of PKC from the cytosol to the plasma membrane and is linked to many processes such as sugar metabolism. Phosphorylation of TRP channels, involving Protein Kinase C (PKC) appears to be the predominant mechanism for channel sensitization. For example, Ca2+ influx through TRPV1 activates PKC and diacylglycerol kinase ("DAGK") enzymes. DAGK limits formation of DAG, providing a feedback mechanism to maintain homeostasis by inhibiting Ca2+ influx. Convergence of 5HT2A and TRP signaling pathways and the involvement of DAG and PKC results in an enhanced effect on the expression of inflammatory mediators and ROS. [0205]The change in brain signaling may be affected through both altered signals from the gut and direct activity of the 5HT2A and TRP agonists in the brain. 5HT2A and TRP agonist activity in the brain, including glutamate signaling resulting from 5HT2A agonist activity, activates cAMP -response element binding protein ("CREB").CREB increases expression of brain derived neurotrophic factor ("BDNF")expression, which in turn increases GABA production and signaling. Taken together, this results in increased neuroplasticity and improved mood. [0206]Endocannabinoid receptor signaling also converges on this pathway involving PKC through arachidonic acid ("AA")metabolism and may further enhance the anti- inflammatory effects. While some cannabinoids may have direct psychoactive effects in the brain, some are thought to directly interact with TRP receptors as well. The corresponding reduction in inflammatory markers and ROS in the gut due to simultaneous signaling from 5HT2A and TRP in turn alters signaling cascades from the gut and subsequently improves brain chemistry. [0207] Stimulation of the 5HT2A receptor with stimulation of one or more TRP receptorsmodulate key molecular signaling pathways that converge to reduce inflammation signaling from the gut to the brain and the developed compositions for regulating these WO 2022/079574 PCT/IB2021/059301 - 50 - signals show enhanced activity. Nociceptor cells have TRP channels that respond to a wide variety of spices due to the presence of specific agonist molecules they contain. The compositions include combinations of substances, including natural substances from plants and fungi or extracted from plants and fungi, in ratios that show synergistic effects, which may be due to multimodal activity at numerous receptor sites, specifically 5HT2A and at least one TRP receptor. Synergy between the 5HT2A agonist and the TRP receptor agonist allows a reduced effective amount of each compound when the composition is used, while still achieving a medicinal, therapeutic or other positive effect. The lowered amount of the 5HT2A agonist and of the TRP receptor agonist mitigates side effects of either agonist. A multimodal approach of mixed TRP agonists and TRP antagonists allow for modulation of these pathways to treat a variety of medicinal diagnosis resulting from inflammation. Inflammation associated medical conditions that the compositions may be used to treat include cancer, neurological disorders (e.g. Alzheimer's, Huntington's chorea, dementia, Parkinson’s, neurodevel opmental disorders, ALS, multiple sclerosis, etc.), diabetic complications (e.g. cardiovascular disease, neuropathy, nephropathy, sepsis, hypertension, retinopathy, atherosclerosis, etc.), mental health disorders (clinical depression, post-traumatic stress disorder, bipolar disorder, schizophrenia ,etc.), bone, muscular and skeletal disease (e.g. osteoporosis, osteoarthritis, muscular dystrophy, rheumatoid arthritis, osteopenia, etc.), metabolic disorders (e.g. fatty liver disease, heart disease, diabetes, metabolic syndrome, chronic fatigue syndrome, renal failure, etc.), chronic inflammatory disorders (e.g. irritable bowel disease, chronic obstructive pulmonary disease, pancreatitis, psoriasis, rheumatoid arthritis, colitis, lupus, etc.), cardiovascular disease (e.g. stroke, heart failure, congenital heart disease, atherosclerosis, cardiomyopathy, etc.). [0208]TNF-a and COX2 are common markers for inflammatory disease and have been the targets of many drugs. TNF-a mediated inflammation was utilized in tissue cultures treated with ingredients from many of the compositions to assess anti-inflammatory potential. Many of the ingredients of the compositions reduce the prevalence of COXand interleukins, and may also reduce ROS, restoring homeostasis in terms of these biological signaling messengers. For each composition, there is a reduction in inflammation markers, with synergy demonstrated between the 5HT2A receptor agonist and the TRP receptor agonists.
WO 2022/079574 PCT/IB2021/059301 - 51 - id="p-209" id="p-209" id="p-209" id="p-209" id="p-209" id="p-209" id="p-209" id="p-209" id="p-209" id="p-209" id="p-209"
id="p-209"
[0209]Inflammatory cytokines COX2 and TNF-a, and ROS (e.g., inducible nitric oxide synthase ("iNOS") are increased within the cell in response to inflammation. The inflammatory state alters sensitization of the TRP channels and results in a lower threshold signal. Inflammatory markers are key in the process also play a role in cancer development. Intracellular Ca2+ buffering capacity by extracellular Ca2+ entering through TRP receptor channels and being released from intracellular stores, along with subsequent activation of calcium-dependent proteases is vital to maintenance of homeostasis. Dysregulation of this process results in disease progression. [0210]TRPV1 and other TRP proteins regulate cell-environment crosstalk, thereby influencing cell behavior. Importantly, inflammatory sensitization leads to dramatically reduced activation thresholds of TRP channels (TRPV1, TRP ankyrin type 1 (TRPA1), and TRP melastatin type 8 (TRPM8). Reduced activation thresholds in turn contribute to establishing a systemic response of energy expenditure, energy allocation, and water retention which directly modulates the immune system in chronic inflammatory diseases (Straub, 2014). [0211]5HT2A and TRPV1 are expressed in nociceptors cells of both the ENS and the CNS. Cell bodies of sensory neurons for peripheral nociceptors are located in dorsal root ganglia alongside the spinal cord and in the trigeminal (V) ganglion for cranial nociceptors. These sensory neurons show a high expression of 5-HT receptors, including 5HT2A. Many of these same neurons co-express TRPV1. As such, compositions were developed to specifically activate the 5HT2A and TRP signaling pathways to reduce inflammation signaling. Reducing inflammation signaling may improve mental health and other conditions. [0212]Inflammation and sugar signaling can lead to activation of TRP receptors at reduced threshold potential, leading to an influx of Ca2+ and upregulation of proinflammatory cytokines. High glutamate signaling suppresses serotonin signaling. 5HT2A receptor agonists including psilocin bind to 5HT2A receptors present in deep cortical layers, increasing extracellular glutamate levels in the prefrontal cortex. [0213]The glutamate release activates AMP A and N-methyl-D-aspartate acid ("NMD A")receptors, leading to increased expression BDNF. BDNF acts on neurons of the CNS and helps to support the survival of existing neurons and to stimulate growth and differentiation of new neurons and synapses. CREB is one of the major regulators of neurotrophin responses since phosphorylated CREB binds to a specific sequence in the WO 2022/079574 PCT/IB2021/059301 - 52 - promoter of BDNF and regulates its transcription. Coactivation of 5HT2A and TRP receptor channels leads to a synergistic effect from increased expression of BDNF and reactivation of pathways modulated by BDNF including an increase in GABA signaling. As a result, some balance is restored to this system, inflammation markers are downregulated, and significant mental health effects are observed. [0214]Inflammatory cytokines can change brain function and structure through mechanisms including effects on neurotransmission. Proinflammatory cytokines increase the activity of serotonin transporter ("SERT")proteins, resulting in an increase of serotonin reuptake and a reduction of extracellular serotonin. Moreover, proinflammatory cytokines are able to up-regulate enzymes such as tryptophan 2,3-dioxygenase ("TDO") and indoleamine 2,3-dioxygenase ("IDO"), with a resulting decrease in tryptophan availability for serotonin synthesis, an increase in glutamate induced neurotoxicity and effects on the hypothalamic-pituitary-adrenal axis (the "HPA")or on hippocampal neurogenesis have been observed (Lu, 2018). The HP A is an interactive neuroendocrine unit comprising of the hypothalamus, the pituitary gland, and the adrenal glands. The HP A plays a key roles in basal homeostasis and in the body's response to stress. This overall reduction in serotonin signaling also has downstream effects on gamma- aminobutyric acid, ("GABA")signaling, which is the chief inhibitory neurotransmitter in the developmentally mature mammalian CNS. Co-Activation of TRP and 5HT2A regulates inflammation signaling pathways, leading to manipulation of these process and reduced symptoms of many diseases based on the ingredients included and which TRP channels are being influenced. [0215]The combination of a 5HT2A agonist with a TRP agonist provides a multi-modal composition for reducing inflammation in the digestive tracts and simultaneously stimulate positive brain signalling processes. The reduced inflammation achieved through this mechanism may be useful for improving or maintaining mental health. Improving or maintaining mental health maybe useful for healthy individuals and for individuals suffering from a mental health condition or other conditions that result from inflammation. The combination a 5HT2A agonist with a TRP agonist is effective for reducing inflammation markers, which may provide benefits including a positive impact on certain mental health conditions, at lower doses (i.e. lower relative concentrations) of the 5HT2A agonist compound than would be expected through administration of the 5HT2A agonist without the TRP agonist.
WO 2022/079574 PCT/IB2021/059301 - 53 - id="p-216" id="p-216" id="p-216" id="p-216" id="p-216" id="p-216" id="p-216" id="p-216" id="p-216" id="p-216" id="p-216"
id="p-216"
[0216]Serotonin breakdown has also been a focus of treatment for depression. Monoamine oxidases ("MAO")play an important role in the central and peripheral nervous system (CNS and PNS) by modulating the levels of monoamine neurotransmitters MAOs exist as two isoforms, MAO A and MAOB where MAO A predominantly oxidizes norepinephrine and serotonin and MAOB predominantly oxidizes dopamine. MAO inhibitors mitigate symptoms of depression through blocking breakdown of serotonin. Some ingredients have been shown to have effects on MAO, though these could be indirect though TRP signaling. MAO inhibitors are known to increase psychedelic effects. Inclusion of ingredients that may influence the activity of MAO is likely to further alter the effects of the formulations.
Minimal Effective Dose id="p-217" id="p-217" id="p-217" id="p-217" id="p-217" id="p-217" id="p-217" id="p-217" id="p-217" id="p-217" id="p-217"
id="p-217"
[0217]A therapeutically effective amount of the 5HT2A agonist may be lower in the presence of the TRP receptor agonist. By co-administering separate formulations or simultaneously administering the 5HT2A receptor agonist with the TRP receptor agonist in a single formulation, the therapeutically effective amount of the 5HT2A agonist required to achieve a therapeutic result may be lowered. Similarly, in the absence of a specific therapeutic indication but to maintain or improve wellness, co-administering the 5HT2A receptor agonist with the TRP receptor agonist, the amount of the 5HT2A receptor agonist needed to achieve the result is lowered. In the case of either a therapeutic indication or maintenance of wellness, a "minimum effective dose" or "MED"of the 5HT2A receptor agonist may be used when the 5HT2A receptor agonist is co-administered with a TRP receptor agonist. MED is defined as the least amount of a substance required to produce a given result, which in this case is perceptible effects and/or benefits from consumption of the 5HT2A agonist. With strongly psychoactive 5HT2A receptor agonists, such as some 4-substituted tryptamines, some ergolines and some phenethylamines, a therapeutic effect may be observed without inducing profound psychoactive effects in the user. [0218]Use of a 5HT2A receptor agonist in combination with a TRP receptor agonist facilitates use of a lowered dose of the 5HT2A agonist for a defined benefit or other effect than would be necessary using the 5HT2A agonist alone. Many 5HT2A receptor agonists may be used in the compositions described here, including as detailed below. A low-cost, safe and simple 5HT2A agonist is psilocybin, which is found in fungi that biosynthesize WO 2022/079574 PCT/IB2021/059301 - 54 - psilocybin. Fresh sclerotia including psilocybin are available in a regulated specialty foods market in the Netherlands. Dried fruiting bodies of fungi including psilocybin are readily available in unregulated and illicit markets worldwide. Psilocybin is listed in Schedule I of the Convention on Psychotropic Substances, 21 February 1971, 1019 UNTS 14956 (entered into force 8 August 1975). As a result, possession of psilocybin is prohibited in many jurisdictions. However, in Jamaica and a few other jurisdictions, psilocybin is simply not scheduled in domestic controlled substance legislation and as a consequence is unregulated. [0219]With access to Jamaica and to dried fruiting bodies that contain psilocybin, experiments with dried fruiting bodies combined with TRP receptor agonists were undertaken to qualitatively measure any change in the effects of psilocybin observed from relatively low doses of the fruiting bodies. A standardized batch of a single genetic isolate of P.cubensis was selected. Because psilocybin is psychoactive and ingestion of larger amounts of the mushroom resulted in psychoactivity, the effects were discernable in a qualitative way that supported initial experiments to identify promising TRP receptor agonists. [0220]Microdosing psilocybin by eating dried fruiting bodies is typically done with approximately 0.3 g of dried fruiting bodies, with a general range of between 0.1 and 1.g, 0.2 and 0.9 g, 0.3 and 0.8g, 0.4 and 0.7g, 0.5 and 0.5 g of dried fruiting bodies depending on the individual and the active metabolite profile of mushroom being consumed. The effects that were observed using the selected dried psilocybin mushroom combined with one or more of the TRP receptor agonists used in the compositions. At least one published study suggests subjective effects that are less pronounced at about 0.g of dried fruiting bodies than through using 0.3 g of dried fruiting bodies along with at least one TRP receptor agonist (Polito, 2019). [0221]A baseline amount of psilocybin for a MED was selected as being 0.3 g of dried fruiting bodies of the fungal species used in the formulations. This dose was consumed regularly to establish and familiarize individuals with baseline psilocybin effects resulting from consuming 0.3 g of dried fruiting bodies. For each of the initial experiments using one or more additional herbal medicinal ingredients, the same batch of ground fruiting bodies was used as a source of psilocybin. [0222]Additional herbal medicinal ingredient were added at a 1:1 ratio of dried fruiting bodies to herbal ingredient to assess the potential for any enhancement of the medical WO 2022/079574 PCT/IB2021/059301 - 55 - effect of the psilocybin. Each ingredient was selected due to its reported medicinal benefits and agonist activity at least one TRP receptor. When a potential synergy was observed at 0.3 grams, the dose of both psilocybin and the additional herbal medicinal ingredient was reduced incrementally by 0.1 g, to 0.05 g from 0.1 g, of each ingredient. Incremental reductions of both ingredients were made to a point at which the effects were no longer felt. When no synergy was observed, the TRP agonist was increased incrementally in amounts of 0.3, 0.6, 0.9, 1.2 and 1.5, up to 5x the amount of psilocybin to determine whether the synergy at higher doses of TRP agonist or at different ratios of 5HT2A agonist to TRP agonist. [0223] Combination of the 5HT2A receptor agonist (psilocybin) with additional herbalmedicinal ingredients, including those with only mild effects, enhanced and altered the effects of psilocybin. The TRP agonists assessed produced synergistic effects with the psilocybin, resulting in a noticeable change in the effect of the psilocybin. In each case, the MED of psilocybin was reduced by inclusion of a TRP agonist, and the particular effects observed of a given formulation were variable depending on which TRP agonists were included with the psilocybin. The TRP agonists with the greatest effect, and particularly those resulting in a prolonged effect or in reduced side effects were considered for further compositions. The side effects that were reduced by lowering the MED were psychoactive effects from psilocybin and stomach issues from psilocybin. [0224]An equivalent dose of amount of dried fruiting bodies and the additional herbal medicinal ingredient was taken to determine the medicinal effect or synergistic effect. A formulation including a composition of 0.3 gram of fruiting bodies and 0.3 gram of the additional herbal medicinal ingredient was consumed typically in gel capsules to reduce the difficulty of ingesting hundreds of milligrams of the additional herbal medicinal ingredients. For example, directly consuming cayenne pepper is difficult and painful. Alternatively, for oil extracts such as bergamot, peppermint and oregano, the recommended internal dose recommended on the package was consumed, which ranged from a few drops to about 1 ml depending on the liquid’s concentration and the formulation. [0225]The MED was defined as the dose required for 100% of individuals to report feeling a psychoactive effect of psilocybin, as defined subjectively by the individual. MED50 was set at the dosage where 50% of individuals report feeling the effects. Formulations of the composition were prepared based on the lowest MED50 value WO 2022/079574 PCT/IB2021/059301 - 56 - observed and not the average. A microdose is considered a subperceptual dose, and since MED was pegged at the lowest perceptual dose, MED50 was selected for medical benefits. For psilocybin, or for a combination of psilocybin and other 4-substituted tryptamines, between 0.1 g and 1.0 g of dried fruiting bodies is between about 1 mg and mg of psilocybin, or of psilocybin and other 4-substituted tryptamines. [0226]Psilocybin was taken at doses of 0.0 to 1.0 g dried fruiting body, estimated to be equivalent to between 1 and 10 mg of psilocybin, suggesting a dose of 1 to 10 mg of psilocybin as 5HT2A agonist, with some of those doses being well above the microdosing range and well above the MED. For psilocybin alone, the MED was generally found to be over 0.3 g of dried fruiting bodies. For the compositions including the additional herbal medicinal ingredient, the MED was generally found to be between 0.90 and 0.12 g of dried fruiting bodies for a 70 kg individual. [0227]Fig. 6 shows results of MED50 determination in individuals consuming a capsule including psilocybin formulated in the 07 Base - Complete Composition (diagonal lines in bar graphs and dashed regression line) compared with capsules including psilocybin alone (white bar graphs and solid regression line). MED50 is the Dose at which 50% of participants report feeling the effect of psilocybin. Data from microdosing different amounts of psilocybin compared to the complete recipe demonstrates a reduced amount of psilocybin required to achieve an effective perceptual dose in 50% of individuals. The MED50 was about 0.240 g of dried fruiting bodies alone but about 0.125 g of dried fruiting bodies with the 07 Base - Complete Composition. Most compositions used about 0.12 g of dried fruiting bodies, representing approximately 1 mg of psilocybin. [0228]Fig. 7 shows results of MED50 determination in individuals consuming a capsule including morning glory seeds formulated in the 07 Base - Complete Composition (diagonal lines in bar graphs and dashed regression line) compared with capsules including morning glory seeds alone (white bar graphs and solid regression line). MEDis the Dose at which 50% of participants report feeling the effect of the ESA, ESH and other ergolines present in morning glory. Data from microdosing different amounts of morning glory seeds compared to the complete recipe demonstrates a reduced amount of morning glory seeds required to achieve an effective perceptual dose in 50% of individuals. The MED50 was about 1.1 g of morning glory seeds alone but about 0.5 g of dried fruiting bodies with the 07 Base - Complete Composition. Most compositions used WO 2022/079574 PCT/IB2021/059301 - 57 - about 0.4 g of dried morning glory seeds, representing between approximately 260 pg and 300 pg LSA per dosage unit and between 130 pg and 525 pg LSH. [0229]Fig. 8 shows results of MED50 determination in individuals consuming a capsule including Hawaiian baby woodrose seeds formulated in the 07 Base - Complete Composition (diagonal lines in bar graphs and dashed regression line) compared with capsules including Hawaiian baby woodrose seeds alone (white bar graphs and solid regression line). MED50 is the Dose at which 50% of participants report feeling the effect of the LSA, LSH and other ergolines present in Hawaiian baby woodrose. Data from microdosing different amounts of Hawaiian baby woodrose seeds compared to the complete recipe demonstrates a reduced amount of Hawaiian baby woodrose seeds required to achieve an effective perceptual dose in 50% of individuals. The MED50 was about 0.280 g of Hawaiian baby woodrose seeds alone but about 0.125 g of Hawaiian baby woodrose seeds with the 07 Base - Complete Composition. Most compositions used about 0.15 g of dried Hawaiian baby woodrose seeds, representing approximately 220 pg LSA, 290 pg iso-LSA, 60 pg LSH and 40 pg iso-LSH. [0230]As detailed below in the Examples, a positive effect on mental health observed rapidly after taking the compositions. Adjustment of inflammation signalling alters signals to the brain to reduce depressive effects. Reduction in TNF-a pro-inflammatory cytokine signalling, COX2 pro-inflammatory cytokine signalling, and reduction in ROS as well as increased BDNF may all result in this positive effect on mental health. 5HT2A Receptor Agonist Tryptamines id="p-231" id="p-231" id="p-231" id="p-231" id="p-231" id="p-231" id="p-231" id="p-231" id="p-231" id="p-231" id="p-231"
id="p-231"
[0231]The at least one 5HT2A agonist may include a tryptamine that binds the 5HT2A receptor. N,N-dimethyltryptamine or (3-[(2-dimethylamino) ethyl]indole) ("DMT")is a hallucinogenic tryptamine drug that occurs naturally in many plants and animals. DMT is produced in the pineal gland of rats (Dean, 2019). When used orally in the absence of a monoamine oxidase inhibitor, DMT is rapidly metabolized and inactivated in the blood of most individuals. 4-substituted DMT compounds are not metabolized and inactivated in the blood to the same extent as DMT. Orally-active 4-substituted DMT compounds display psychoactive effects associated with binding at 5HT2A receptors in the human brain.
WO 2022/079574 PCT/IB2021/059301 - 58 - id="p-232" id="p-232" id="p-232" id="p-232" id="p-232" id="p-232" id="p-232" id="p-232" id="p-232" id="p-232" id="p-232"
id="p-232"
[0232]A large number of 4-substituted DMT compounds show 5HT2A agonist activity. 4-substituted DMT compounds are potent 5HT2A agonists. Many 4-substituted DMT compounds show strong psychoactive effects at doses ranging between 20 mg and above. Microdoses of 4-substituted DMT compounds may be in the range of between 5 and 50% of a flood dose of the 4-substituted DMT compounds. Using 3-[2-(dimethylamino)ethyl]- 4-phosphoryloxyindole, also called psilocybin, the best known 4-substituted DMT compounds, as a reference point, a typical flood dose may be between 20 mg and 50 mg. A typical microdose of psilocybin may be between 1 and 10 mg. [0233]The at least one 5HT2A agonist may include a 4-substituted DMT compound or where applicable, suitable salt thereof. Examples of orally-active 4-substituted DMT compounds include 3-[2-(dimethylamino)ethyl]-4-hydroxyindole, also called psilocin, any suitable salt of psilocin, psilocybin, 3-[2-(dimethylamino)ethyl]-4-acetoxyindole, also called 4-acetyl-DMT and any suitable salt of 4-acteyl-DMT. [0234]The at least one 5HT2A agonist may include 4-substituted tryptamines that are not dimethyltryptamines. Examples of orally active 4-substituted tryptamines that are not dimethylated include the trimethyltryptamine 3-[2-(trimethylamino)ethyl]-4- phosphoryloxyindole, also called aeruginascin, the monomethyltryptamine 3-[2- (methylamino)ethyl]-4-phosphoryloxyindole, also called baeocystin, 3-[2- (methylamino)ethyl]-4-hydroxyindole, and the unmethylated tryptamines 3-[2- (amino)ethyl]-4-hydroxyindole, also called norpsilocin, and 3-[2-(amino)ethyl]-4- phosphoryloxyindole, also called norbaeocystin. Tri-methylated, monomethylated, or unmethylated tryptamines alone shows each show some 5HT2A agonism and may be preferable to psilocybin, psilocin or 4-substituted DMT compounds for use minors, those with mental health contraindications (e.g. schizophrenia, etc.) or those averse to strongly psychoactive effects. [0235]The compositions may be formulated from fungal biomass, extracts from fungal biomass, plant biomass, plant extracts from biomass, extracts from yeast or bacterial culture systems, synthetic compounds or combinations thereof. For example, any of the 5HT2A agonists (e.g. any of the 4-substituted tryptamines) or TRP agonists described herein may be synthesized in bacterial culture systems such as E. coli. Such biomass may be sourced from fruiting bodies, mycelia, sclerotia or other biomass of fungi. Psilocin and psilocybin are 4-substituted DMT compounds found in nature. Psilocybin is more chemically stable than psilocin and is a prodrug of psilocin.
WO 2022/079574 PCT/IB2021/059301 - 59 - id="p-236" id="p-236" id="p-236" id="p-236" id="p-236" id="p-236" id="p-236" id="p-236" id="p-236" id="p-236" id="p-236"
id="p-236"
[0236]Species of fungi containing psilocybin and psilocin have been studied extensively. Psilocybin is a name based on the use of "psilocybienne" as described by the French mycologist, Roger Heim (Heim, 1958). Psilocybin shows promise for treating mental health disorder, and high dose therapies using flood doses of psilocybin have been granted breakthrough status by the FDA. Despite being regulated in many countries, consumption of psilocybin is generally considered safe in that there is little if any evidence long term negative physical consequences from ingestion of large amounts of this substance. Some studies have shown psilocybin to be one of the least damaging psychoactive substances in terms of harm to society, far behind tobacco and alcohol (Nutt, 2007). Psilocin and psilocybin are found in many genera and species of fungi, as listed below. [0237]Psilocin and psilocybin may be found in Conocybe species including C. cyanopus, C. siligineoides and C. kuehneriana. [0238]Psilocin and psilocybin may be found in Copelandia species including C. affmis, C. anomakt. C. bispora, C. cambodginiensis, C. chlorocystis, C. cyanescens, C. lentisporus, C. tirunelveliensis, C. tropica, C. tropicalis and C. westii. [0239] Psilocin and psilocybin may be found in Galerina species including G. steglichii. [0240] Psilocin and psilocybin may be found in Gymnopilus species including G. thiersii,G. aeruginosus, G. braendlei, G. cyanopalmicola, G. intermedins, G. junonius, G. lateritius, G. liquiritiae, G. luteofolius, G. luteoviridis, G. luteus, G. purpuratus, G. subpur puratus, G. validipes and G. viridans. [0241]Psilocin and psilocybin may be found in Inocybe species including I. aeruginascens, I. aeruginascens, I. coelestium, I. corydalina, I. corydalina var. corydalina, I. corydalina var. er inace omorpha, I. haemacta and I. tricolor. [0242]Psilocin and psilocybin may be found in Panaeolus species including P. cinctulus, P. affmis, P. africanus, P. bisporus, P. cambodginiensis, P. castaneifolius, P. chlorocystis, P. cinctulus, P. cyanescens, P. fimicoki, P. lentisporus, P. microsporus, P. moellerianus, P. olivaceus, P. rubricaulis, P. tirunelveliensis, P. tropicalis and P. venezolanus. [0243]Psilocin and psilocybin may be found in Pholiotina species including P. cyanopus and P. smithii.
WO 2022/079574 PCT/IB2021/059301 -60- id="p-244" id="p-244" id="p-244" id="p-244" id="p-244" id="p-244" id="p-244" id="p-244" id="p-244" id="p-244" id="p-244"
id="p-244"
[0244]Psilocin and psilocybin may be found in Pluteus species including P. americanus, P. albostipitatus, P. americanus, P. cyanopus, P. glaucus, P. glaucotinctus, P. nigroviridis, P. phaeocyanopus, P. salicinus, P. saupei and P. villosus. [0245]Psilocin and psilocybin may be found in Psilocybe species including P. tampanensis, P. aculipHea, P. allenii, P. angustipleurocystidiata, P. antioquiensis, P. adanlis, P. aquamarina, P. armandii, P. aucklandii, P. atlantis, P. aztecorum, P. aztecorum var. aztecorum, P. aztecorum var. bonetii, P. azurescens, P. baeocystis, P. banderillensis, P. bispora, P. brasiliensis, P. brunneocystidiata, P. cubensis, P. caeruleoannulata, P. caerulescens, P. caerulescens var. caerulescens, P. caerulescens var. ombrophila, P. caerulipes, P. callosa, P. carbonaria, P. caribaea, P. chuxiongensis, P. collybioides, P. Columbiana, P. cordispora, P. cubensis, P. cyanescens, P. cyanofibrillosa, P. dumontii, P. egonii, P. fagicola, P. fagicola var. fagicola, P. fagicola var. mesocystidiata, P. farinacea, P. fimetaria, P. fuliginosa, P. furtadoana, P. tampanensis, P. galindoi, P. gallaeciae, P. graveolens, P. guatapensis, P. guilartensis, P. heimii Guzman, P. herrerae Guzman, P. hispanica Guzman, P. hoogshagenii, P. hoogshagenii var. hoogshagenii, P. hoogshagenii var. convexa, P. inconspicua, P. indica, P. isabelae, P. jacobsii, P. jaliscana, P. kumaenorum, P. laurae, P. lazoi, P. liniformans, P. liniformans var. liniformans, P. liniformans var. americana, P. mexicana, P. mairei, P. makarorae, P. mammillata, P. medullosa, P. meridensis, P. meridionalis, P. mescaleroensis, P. mexicana, P. moseri, P. muliercula, P. naematoliformis, P. natalensis, P. natarajanii, P. neorhombispora, P. neoxalapensis, P. ovoideocystidiata, P. ovoideocystidiata, P. papuana, P. paulensis, P. pelliculosa, P. pintonii, P. pleurocystidiosa, P. plutonia, P. portoricensis, P. pseudoaztecorum, P. puberula, P. quebecensis, P. ricki, P. rostrata, P. rzedowskii, P. samuiensis, P. schultesii, P. semilanceata, P. septentrionalis, P. serbica, P. sierrae , P. silvatica, P. singeri, P. squamosa, P. strictipes, P. stuntzii, P. subacutipilea, P. subaeruginascens, P. subaeruginosa, P. subbrunneocystidiata, P. subcaerulipes, P. subcubensis, P. subpsilocybioides, P. subtropicalis, P. tampanensis, P. tampanensis, P. thaicordispora, P. thaiaerugineomaculans, P. thaiduplicatocystidiata, P. uruguayensis, P. uxpanapensis, P. venenata , P. villarrealiae, P. weraroa, P. wassoniorum, P. weilii, P. weldenii, P. weraroa, P. wrightii, P. xalapensis, P. yungensis, P. zapotecorum, P. zapotecoantillarum, P. zapotecocaribaea andP. zapotecorum.
WO 2022/079574 PCT/IB2021/059301 -61 - id="p-246" id="p-246" id="p-246" id="p-246" id="p-246" id="p-246" id="p-246" id="p-246" id="p-246" id="p-246" id="p-246"
id="p-246"
[0246]The at least one 5HT2A agonist may include 5-substituted tryptamines. Examples of 5-substituted tryptamines include 5-methoxy-DMT, also called bufotenin, N-acetyl-5- methoxy tryptamine, also called melatonin, 5-hydroxy tryptamine, also called serotonin, 5-hydroxy-tryptophan, also called 5-HTP, 5-hydroxyl-DMT, 3-[2-(dimethylamino)ethyl]- 5-phosphoryloxyindole, 3-[2-(dimethylamino)ethyl]-5-hydroxyindole, 3-[2- (dimethylamino)ethyl]-5-acetoxyindole, also called 5-acetyl-DMT, 3-[2- (trimethylamino)ethyl]-5-phosphoryloxyindole, 3-[2-(methylamino)ethyl]-5- phosphoryloxyindole, 3-[2-(methylamino)ethyl]-5-hydroxyindole, 3-[2-(amino)ethyl]-5- hydroxyindole and 3-[2-(amino)ethyl]-5-phosphoryloxyindole. Serotonin, melatonin and 5-HTP alone each some efficacy and may be preferable to bufotenine, other 5-substituted tryptamines, psilocybin, psilocin, 4-substituted-DMT compounds or other 4-substituted tryptamine compounds for use minors, those with mental health contraindications (e.g. schizophrenia, etc.) or those averse to strongly psychoactive effects.
Ergolines id="p-247" id="p-247" id="p-247" id="p-247" id="p-247" id="p-247" id="p-247" id="p-247" id="p-247" id="p-247" id="p-247"
id="p-247"
[0247]The at least one 5HT2A agonist may include ergolines. Examples of ergolines that are 5HT2A receptor agonists include lysergamides. [0248]D-lysergic acid amide ("LSA"),also called d-lysergamide or ergine and its epimer isoergine ("iso-LSA"),is a 5HT2A agonist. A large number of lysergamides and other analogs of LSA show potent 5HT2A agonist activity. Many lysergamides show strong psychoactive effects at doses ranging between 50 pg and 5 mg, 100 pg and 4.5 mg, 2pg and 4 mg, 300 pg and 3.5 mg, 400 pg and 3 mg, 500 pg and 2.5 mg, 600 pg and 2 mg, 700 pg and 1.5 mg, and 800 pg and 1 mg. Microdoses of lysergamides may be in the range of between 5 and 25%, 7.5 and 22.5%, 10 and 20%, and 12.5 and 17.5% of a flood dose of the lysergamide. Using D-lysergic acid diethylamide ("LSD"),the best known lysergamide, as a reference point, a typical flood dose may be between 100 pg and 3pg, 150 pg and 300 pg, and 200 pg and 250 pg. A typical microdose of LSD may be between 10 and 25 pg, 12.5 and 22.5 pg, and 15 and 20 pg. [0249]Lysergamides that are 5TH2A agonists with single substitutions at the amide group include D-lysergic acid ethylamide ("LAE"), lysergic acid a-hydroxy ethylamide ("LSH")and its epimer iso lysergic acid a-hydroxyethylamide ("iso-LSH"),D-lysergic acid beta-propanolamide, also called ergometrine or ergonovine, D-lysergic acid 2-butyl amide ("LSB"), D-lysergic acid 1-butanolamide, also called methylergometrine or WO 2022/079574 PCT/IB2021/059301 -62- methylergonovine, 1-methyl-D-lysergic acid butanolamide, also called methysergide, D- lysergic acid 3-pentyl amide ("LSP"), D-N-morpholinyllysergamide ("LSM-775"), D-N- pyrrolidyllysergamide ("LPD-824"), (8p)-6-methyl-8-(piperidin-l-ylcarbonyl)-9,10- didehydroergoline ("LSD-Pip").Lysergamides that are 5TH2A agonists with single substitutions at the amide group include N,N-dimethyllysergamide ("DAM"). [0250]Lysergamides that are 5TH2A agonists with double substitutions at the amide group include D-lysergic acid methylisopropyl amide ("LAMIDE"),also called methylisopropyllysergamide ("MIPLA"),D-lysergic acid 2,4-dimethylazetidide ("LSZ"), LSD, D-l-acetyl-lysergic acid diethylamide ("ALD-52"),D-l -propionyl-lysergic acid diethylamide ("1P-LSD"),D-Nl-butyryl-lysergic acid diethylamide ("1B-LSD"),D-Nl- (cyclopropylmethanoyl)-lysergic acid diethylamide ("IcP-LSD"),D-Nl-methyl-lysergic acid diethylamide ("MLD"),D-6-ethyl-6-nor-lysergic acid diethylamide ("ETH-LAD"), D-l-propionyl-6-ethyl-6-nor-lysergic acid diethyamide ("1P-ETH-LAD"),D-6-allyl-6- nor-lysergic acid diethylamide ("AL-LAD"), D-6-propyl-6-nor-lysergic acid diethylamide ("PRO-LAD"),D-6-isopropyl-6-nor-lysergic acid diethylamide ("IP- LAD"),D-6-propynyl-6-nor-lysergic acid diethylamide ("PARGY-LAD").D-6-butyl-6- nor-lysergic acid diethylamide ("BU-LAD"),N,N-diallyllysergamide ("DAL")and D-N- ethyl-N-cyclopropyllysergamide ("ECPLA"). [0251]The compositions may be formulated from fungal biomass, extracts from fungal biomass, plant biomass, microorganism biomass, extracts from biomass, synthetic compounds or combinations thereof. Such biomass may be sourced from organisms including Lysergamides or other ergolines, such as Clavicepspurpurea, other species of Claviceps, some species of morning glory, including Rivea corymbosa, Ipomoea violacea, I. tricolor, I. purpurae, I. alba,Hawaiian baby woodrose species (also called elephant creeper), including Argeyreia nervosa, and Periglandula species.
Phenethylamines id="p-252" id="p-252" id="p-252" id="p-252" id="p-252" id="p-252" id="p-252" id="p-252" id="p-252" id="p-252" id="p-252"
id="p-252"
[0252]The at least one 5HT2A agonist may include phenethylamines, including amphetamines. Examples of phenethylamines that are 5HT2A receptor agonists include 3,4,5-trimethoxyphenethylamine, also known as mescaline, trimethoxyamphetamine ("TMA"),4-bromo-2,5-dimethoxybenzeneethanamine ("2C-B"),4-bromo-2,5- dimethoxyamphetamine ("DOB"),4-methyl-2,5-dimethoxyamphetamine ("DOM"),4- WO 2022/079574 PCT/IB2021/059301 -63 - methyl-2,5-dimethoxybenzeneethanamine ("2C-D"),3,4-m ethylenedi oxyamphetamine ("MDA"),N-methyl-3,4-methylenedioxyamphetamine ("MDMA").' [0253]The compositions may be formulated from fungal biomass, extracts from fungal biomass, plant biomass, microorganism biomass, extracts from biomass, synthetic compounds or combinations thereof. Such biomass may be sourced from organisms including mescaline and other phenethyl amines, such as Lophophora wiHiamsii. other Lophophora species, Trichocereuspachanoi, Trichocereusperuvianus, Trichocereus bridgesii, and other Trichocereus species, Echinopsis pachanoi, Echinopsis peruviana, and Trichocereus/Echinopsis scopulicola.
Phenylpropanoids id="p-254" id="p-254" id="p-254" id="p-254" id="p-254" id="p-254" id="p-254" id="p-254" id="p-254" id="p-254" id="p-254"
id="p-254"
[0254]The at least one 5HT2A agonist may include phenylpropanoids. Examples of phenylpropenes and other phenylpropanoids that are 5HT2A agonists include 5-methoxy- 3,4-methylenedioxy-allylbenzene, also called myristicin, l,2,3-timethoxy-5-(prop-2-en-l- yl)benzene, also called elemicin. [0255]The compositions may be formulated from fungal biomass, extracts from fungal biomass, plant biomass, microorganism biomass, extracts from biomass, synthetic compounds or combinations thereof. Such biomass may be sourced from organisms including myristicin, elemicin or other phenylpropanoids, including Myristicafragrans or other species in the Myristicaceae family.
TRP Receptor Agonist id="p-256" id="p-256" id="p-256" id="p-256" id="p-256" id="p-256" id="p-256" id="p-256" id="p-256" id="p-256" id="p-256"
id="p-256"
[0256]The at least one TRP agonist compound is an agonist for a TRP receptor, and may also be an antagonist for a TRP receptor. Agonists for various TRP receptors may be applied in the compositions. TRP receptor expression is variable in different neurons as well, and the effects of 5HT2A agonists in the presence of TRP receptor agonists, including at different dosage ranges and in different ratios, allows the compositions to be targeted to various specific indications that are caused by inflammation. The at least one TRP agonist compound may include a compound that is generally regarded as safe ("GRAS")The at least one TRP agonist compound may be sourced from cayenne, turmeric, clove, cinnamon or nutmeg. The at least one TRP agonist compound may include capsaicin or other capsiates, curcumin or other curcuminoids, eugenol, P־ caryophyllene, cinnamaldehyde, myristicin, elemicin, a-terpineol or 8-0-4’-neolignans.
WO 2022/079574 PCT/IB2021/059301 -64- id="p-257" id="p-257" id="p-257" id="p-257" id="p-257" id="p-257" id="p-257" id="p-257" id="p-257" id="p-257" id="p-257"
id="p-257"
[0257]The at least one TRP agonist compound may include a compound that is GRAS. The at least one TRP agonist compound may be sourced from cannabis, bergamot, oregano, thyme, cardamom, peppermint, eucalyptus, pepper, ginger, garlic or onion. The at least one TRP agonist compound may include B-caryophyllene, a-terpineol, cannabidiol ("CBD"),cannabidivarin ("CBDV"),cannabigerol ("CBG"),cannabigerolic acid ("CBGA"),delta-9-tetrahydrocannabivarin ("THCV"),delta-9- tetrahydrocannabivarinic acid ("THCVA"),cannabigevarin ("CBGV"),myrcene, eriodictyol, carvacrol, myrcene, thymol, carvacrol, menthol, 1-8 cineole, piperine, gingerol, allicin, thymol and combinations thereof. Cacao also seemed to show some effect both with onset and duration though not as pronounced. [0258]The specific compounds sourced from cayenne, turmeric, clove, cinnamon, nutmeg, cannabis, bergamot, oregano, thyme, cardamom, peppermint, eucalyptus, pepper, ginger, garlic and onion listed above have activity at the TRPV1, TRPA1, TRPM8 and TRPV3 receptors as illustrated in Table 2.
Table 2:Agonism and antagonism of TRPV1, TRPA1, TRPM8 and TRPV3 Active GRAS Substance TRPV1 TRPA1 TRPM8 TRPV3 capsaicin Cayenne Pepper+++n/a n/a n/acurcumin Turmeric)־(++n/a n/aeugenol Turmeric Clove Cinnamon Pepper +n/a++ ++ B-caryophyllene Turmeric Clove Cinnamon Cannabis Pepper n/a n/a n/a+ cinnamaldehyde Cinnamon n/a++ +n/amyristicin Nutmeg+n/a n/a n/aelemicin Nutmeg+n/a n/a n/aalpha terpineol Turmeric Nutmeg Cannabis n/a+n/a n/a 8-O-4’-neolignans Nutmeg n/a n/a+n/a WO 2022/079574 PCT/IB2021/059301 -65 - (-)-epi catechin CacaoGreen Tean/a n/a n/a+ CBD Cannabis+ + + +CBDA Cannabis+ + + +CBDV Cannabis+ + +n/aCBG Cannabis+ + +n/aCBGA Cannabis+ + + +CBGV Cannabis+ + + +THC Cannabis n/a n/a+n/aTHCA Cannabis n/a n/a+n/aTHCV Cannabis+ + + +THCVA Cannabis+ + + +myrcene CannabisBergamot Others +n/a n/a n/a eriodictyol Bergamot n/a n/a n/a+carvacrol Bergamot Oreganon/a n/a+n/a thymol Oregano Thymen/a+ + + linalool Bergamot Cardamom Cannabis n/a n/a+n/a menthol Peppermint n/a n/a+++n/a1-8 cineole Peppermint Eucalyptus Cardamom n/a)־(+n/a piperine Pepper + +n/a n/agingerol Ginger +n/a n/a n/aallicin Garlic Onionn/a+n/a n/a incensole Myrrh n/a n/a n/a+++incensole acetate Frankincense n/a n/a n/a+ WO 2022/079574 PCT/IB2021/059301 -66- id="p-259" id="p-259" id="p-259" id="p-259" id="p-259" id="p-259" id="p-259" id="p-259" id="p-259" id="p-259" id="p-259"
id="p-259"
[0259]As shown in Table 2, the at least one TRP agonist compound may include a TRPV1 receptor agonist. TRPV1 agonists may include capsaicin, eugenol, myristicin, elemicin, CBD, CBDA, CBDV, CBG, CBGA, CBGV, THCV, THCVA, myrcene, piperine and gingerol. TRPV1 agonists reduce inflammation by competing for the TRP receptor site and sending altered signals that reduce expression of inflammation markers and generation of ROS. Inclusion of a TRPV1 agonist lowers the amount of 5HT2A agonist required for a given effect, including the MED of 5HT2A agonist. Inclusion of a TRPV1 agonist alters the effects of the formulation by reducing inflammation, improving digestion and improving symptoms of depression. [0260]As shown in Table 2, the at least one TRP agonist compound may include a TRPA1 receptor agonist. TRPA1 agonists may include curcumin, cinnamaldehyde, alpha terpineol, CBD, CBDA, CBDV, CBG, CBGA, CBGV, THCV, THCVA, thymol, piperine, allicin. Some of these molecules may also act as antagonists for other TRP receptors by reducing signalling associated with other endogenous compounds associated with inflammation. For example, curcumin has shown to antagonize the effects of capsaicin at TRPV1 (Zhi, 2013). Inclusion of these molecules allowed for a reduced dose of the 5HT2A agonist and may alter the effects of the formulation reducing inflammation, improving digestion and improving mental health. [0261]As shown in Table 2, the at least one TRP agonist compound may include a TRPM8 receptor agonist. TRPM8 agonists may include eugenol, cinnamaldehyde, CBD, CBDA, CBDV, CBG, CBGA, CBGV, THC, THCA, THCV, THCVA, carvacrol, thymol, menthol and 1-8 cineole. Activation of TRPM8 typically results from sensitization from cold and inclusion of molecules with activity at this receptor may alter the effects of the formulations, in some cases improving alertness, ability, and enhancing sexual experiences, including by increased libido. [0262]As shown in Table 2, the at least one TRP agonist compound may include a TRPV3 receptor agonist. TRPV3 agonists may include eugenol, P־caryophyllene, (-)- epicatechin, eriodictyol, cinnamaldehyde, incensole, thymol and cannabinoids. Activation of TRPV3 typically results from sensitization to warm temperature and inclusion of molecules with activity at this receptor alters the effects of the formulations mood.
WO 2022/079574 PCT/IB2021/059301 -67- Capsaicin id="p-263" id="p-263" id="p-263" id="p-263" id="p-263" id="p-263" id="p-263" id="p-263" id="p-263" id="p-263" id="p-263"
id="p-263"
[0263]Capsaicin is a well-known and potent potentiator of the TRPV1 receptor. Capsaicin has been shown to have healing properties as a topical for inflammation and pain. A product including capsaicin as an active pharmaceutical ingredient has been approved by the United States Food and Drug Administration (the "FDA")for topical pain relief. [0264]A combination of capsaicin and a 5HT2A agonist improves the anti-inflammatory properties and the psychological benefits of both compounds. A combination of capsaicin and psilocybin decreased the onset time of the psilocybin, with perceived effects occurring within 15 to 30 minutes after ingestion. The peak effects of the psilocybin had a longer duration but the overall duration of the effects appeared unchanged. Capsaicin with psilocybin improved pain and inflammation in individuals with acute symptoms and improved mood often within one dose. Some individuals reported lasting positive benefits on pain levels and mental health for days following a single dose, and long after psychoactive effects of psilocybin had ended. The combination of capsaicin with psilocybin allowed a reduction in the dose of psilocybin required for perceived effects to reduce inflammation and peripheral pain, resulting in a lower amount of psilocybin at MED50. Increased alertness was also reported relative to psilocybin alone or relative to baseline. [0265]The dose of capsaicinoids in dosage forms of the composition was calculated at between 0 and 2.5 mg based on inclusion of between 0 and 1 g of dried cayenne pepper. However, the dose of capsaicinoids in dosage forms of the composition can also be between 0.5 and 2 mg, and 1 and 1.5 mg. Cayenne pepper, or red chili pepper, typically includes about 300 pg capsaicinoids of gram dry weight reported in ground cayenne pepper (Al Othman, 2011) but has a reported range up to 2.5% w/w. [0266]The spicy flavor of capsaicin may upset stomach and result in pain in some individuals. Capsaicin also caused intestinal issues at large doses. Various peppers were utilized as a source of capsaicin, with cayenne pepper being the most effective without side effects. While a similar amount of capsaicin per gram would be expected from many species, though there may be variations in minor capsiates. Many species caused serious stomach pains or gastrointestinal pains in some people, particularly people who do not typically consume spicy food. Heartbum was also occasionally reported. However, no WO 2022/079574 PCT/IB2021/059301 -68 - negative effects were reported from the cayenne pepper utilized at the doses listed. While the spicy flavor is still notable in chocolate formulations that include the compositions, it was often masked to some extent by the other ingredients in the composition and was tolerable to most people at the ratio included. For some, capsules were preferred over chocolates due to the spicy flavor of cayenne. [0267]Species from the Solanaceae family that contain capsaicin are summarized in the below Table 3.
Table 3:Capsaicinoids in commonly used peppers Species Common Names Part Capsaicinoids (ppm) Capsicum annuumCherry Pepper, Sweet Pepper, Bell Pepper, Paprika, Green Pepper, Cone Pepper Resin, exudate, sap 634,000Fruit 4,000Tissue culture 590Capsicum frutescensHot Pepper, Tabasco, Cayenne, Chili, Red Chili, Spur Pepper Fruit 17,900Seed 5 Curcumin id="p-268" id="p-268" id="p-268" id="p-268" id="p-268" id="p-268" id="p-268" id="p-268" id="p-268" id="p-268" id="p-268"
id="p-268"
[0268]Curcuminoids, are found in the spice turmeric from the ginger family Zingiberacea. (lE,6E)-l,7-bis(4-hydroxy-3-methoxyphenyl) hepta-l,6-diene-3,5-dione, also called curcumin, is a linear diarylheptanoid and curcuminoid. Curcumin is a phytopolylphenol pigment isolated from Curcuma longa. Curcumin is used in a variety of products including herbal supplements, food coloring, food flavoring, and cosmetics. Curcumin belongs to a group of compounds known as curcuminoids. Curcumin is a tautomeric compound, stable in both enolic form in an organic solvent and in a keto form when in water. Curcumin is a TRPA1 receptor agonist and antagonize the effects of TRPV1 receptor agonists when combined (Yeon et al, 2010). [0269]In addition to curcumin, species of turmeric also contain various amounts of antioxidant molecules sybisabolone-9-one, 4-methyllene-5-hydroxybisabola-2,10-diene- 9-one, turmeronol B, 5-hydroxy-l,7-bis(4-hydroxy-3-methoxyphenyl)-l-hepten-3-one, 3- hydroxy-l,7-bis(4-hydroxyphenyl)-6-hepten-l,5-dione, cyclobisdemethoxycurcumin, bisdemethoxycurcumin and demethoxycurcumin (Akter, 2019). Anti-inflammatory and antidepressant activity of turmeric and extracts from turmeric may be due to biologically WO 2022/079574 PCT/IB2021/059301 -69- active molecule other than curcumin, such as these antioxidants or other molecules present in the turmeric, in addition to curcumin. [0270]Curcumin has been investigated in numerous clinical and laboratory trials. Curcumin has been challenging to develop as an API in a drug because it is unstable, reactive and has limited bioavailability (Nelson, 2017). Nonetheless, curcumin has shown promise as a therapeutic agent for its activity as an antioxidant (Sreejayan, 1994), anti- inflammatory (Brouet, 1995), anticarcinogenic (Rao, 1995), antimicrobial (Limtrakul, 1997) hypoglycemic (Arun, 2002) and anti-depressive effects (Kulkarni, 2009). Curcumin has antidepressant effects in animal models. Chronic, but not acute, administration of 1mg/kg curcumin significantly raised anandamide levels in a variety of brain regions (Smalheiser, 2019). [0271]Curcumin shows agonist activity at TRPA1 and antagonist activity at TRPV1. Curcumin is also listed as an MAO inhibitor (Kulkarni, 2008) and while it does not appear to cross the blood-brain barrier and the active form is not detected to a significant extent in the blood, yet curcumin has been shown to increase levels of BDNF and reduce depression. Studies suggest that curcumin can normalize depressive-like behaviors, which may be independent of concurrent analgesic action. Correction of depressive behavior could potentially be mediated by the supraspinal serotonergic system and downstream GABA receptor (Zhao, 2014). [0272]Curcumin has been extensively studied as a medicine, with nearly 6,000 published citations, most of which have appeared within the past 20 years. Wikipedia indicates that "Curcumin, which shows positive results in most drug discovery assays, is regarded as a false lead that medicinal chemists include among "pan-assay interference compounds ". This attracts undue experimental attention while failing to advance as viable therapeutic or drug leads. [3][11][12]. Factors that limit the bioactivity of curcumin or its analogs include chemical instability, water insolubility, absence of potent and selective target activity, low bioavailability, limited tissue distribution, and extensive metabolism.[3] Very little curcumin escapes the GI tract and most is excreted in feces unchanged." This interpretation shows a failure to understand that gut biology was also important for brain health, and that signals could be sent to the brain without the molecule itself ever leaving the digestive tract or entering the blood stream. The lack of attention on curcumin specifically demonstrates how a traditional pharmaceutical approach to depression that targets the brain has neglected and ignored useful compounds in favor of compounds that WO 2022/079574 PCT/IB2021/059301 -70- cross the blood brain barrier and target a specific receptor with high affinity. Put otherwise, due to the complexity of the system and lack of molecular evidence for a mechanism of action on these compounds in the brain, they were ignored in favor of compounds with measurable activity at a neurotransmitter receptor in the brain. [0273]A combination of curcumin and a 5HT2A agonist improves the anti-inflammatory properties and the psychological benefits of both compounds. Curcumins presence in the compositions increased the length of the subjective effects of psilocybin reported by the user and also improved mental health benefits. A combination of curcumin and psilocybin decreased the dosage of psilocybin at MED and prolonged the effects of the psilocybin at the dosage. Doses of curcumin were based on curcumin accounting for about 6% of the dry weight of turmeric. Turmeric was provided in approximately a 1:ratio of weight compared with dried fruiting bodies. [0274]A combination of psilocybin and curcumin may antagonize or provide competition for binding at the TRPV receptor when present with capsaicin or other TRPV agonists, resulting in a longer duration of effects and a greater impact on mental health. Rather than a quick onset and rapid drop off with effects stopping within two hours, this combination resulted in a sustained effect for 4 to 6 hours. Combining curcumin with capsaicin and psilocybin also lead to greater anti-inflammatory activity than capsaicin and psilocybin alone. Combining curcumin with capsaicin and psilocybin also allowed the MED of capsaicin to be reduced by 50% while still achieving a similar effect. For example, a 2:2:1 ratio of dried psilocybin fruiting bodies:turmeric:cayenne pepper provided an effective MED at 160 mg: 160 mg: 80 mg. A combination of psilocybin with turmeric synergistically improved inflammation and depression without increasing anxiety, in contrast with a combination of capsaicin and psilocybin, or psilocybin alone. [0275]Species from the Curcuma genus that may be applied to the compositions disclosed herein include C. aeruginosa (pink and blue ginger), C. albicoma, C. albi ora, C. alismatifolia (summer tulip), C. amada (mango ginger), C. amarissima, C. Americana, C. angustifolia (tall hidden ginger), C. aromatica, C. attenuata, C. aurantiaca (rainbow curcuma), C. aurantijlora, C. australasica (Cape York turmeric), C. bakeriana, C. bicolor (candy com), C. brog, C. burttii, C. caesia, C. cannanorensis, C. cannanorensis var. Lutea, C. caulina, C. careyana, C. certothecca, C. chuanezhe, C. chuanhuangjiang, C. chuanyujin, C. cochinchinensis, C. codonantha, C. coerulea, C. colorata, C. comosa, C. cordata (jewel of Thailand), C. cordifolia, C. coriacea, C. decipiens, C. domestica WO 2022/079574 PCT/IB2021/059301 -71 - (Emperor variegated), C. ecalcarala. C. ecomata, C. elata (giant plume), C. erubescens, C. euchroma, C. euclroma, C. exigua, C. ferruginea, C. jlavijlora (red fireball ginger), C. glans, C. glaucophylla, C. gracillima (chocolate zebra), C. grahamiana, C. grandijlora, C. haritha, C. harmandii (emerald pagoda ginger), C. heyneana, C. inodora (pink ginger), C. karnatakensis, C. kudagensis, C. kwangsiensis, C. kwangsiensis var.affmis, C. kwangsiensis var. puberula, C. lanceolata, C. latijlora, C. latifolia, C. leopoldi, C. leucorhiza, C. loerzingii, C. lillicina (pink cloud), C. longa (turmeric), C. longiflora, C. longi spica, C. lutea, C. malabarica, C. mangga, C. meraukensis, C. montana, C.musacea, C. mutabilis, C. neilgherrensis, C. nilamburensis, C. ochrorhiza, C. of cinalis, C. olena, C. oligantha (white turmeric), C. oligantha var. lutea, C. ornate (ornate plume ginger), C. pallida, C. parvijlora (white angel), C. parvula, C. peethapushpa, C. petiolata (Temu Puteri in Java), C. phaeocaulis, C. pierreana (sleeping princess), C.plicata, C. porphyrotaenia, C. prakasha, C. pseudomontana, C. purpurascens, C. purpurea, C. raktakanta, C. ranadei, C. reclinata, C. rhabdota, C. rhomba, C. roscoeana (pride of Burma), C. rotunda, C. rubescens (wine red plume), C. rubricaulis, C. rubrobracteata (fire plug), C. sessilis, C. siamensis, C. sichuanensis, C. singularis (Easan white), C. soloensis, C. sparganifolia, C. speciosa, C. spicata, C. stenochila, C. strobilifera, C.sulcata, C. sumatrana (Sumatra ginger), C. sylvatica, C. sylvestris, C. thalakaveriensis, C. thorelii (Chiang Mai Snow), C. trichosantha, C. vamana, C. vellanikkarensis, C. viridi ora, C. wenchowensis, C. wenyujin, C. xanthorrhiza, C. yunnanensis (Yunnan plume ginger), C. zanthorrhiza (temulawak), C. zedoaria (zedoary white turmeric) and C. zerumbet.
Eugenol id="p-276" id="p-276" id="p-276" id="p-276" id="p-276" id="p-276" id="p-276" id="p-276" id="p-276" id="p-276" id="p-276"
id="p-276"
[0276]In addition to curcumin, turmeric also contains eugenol. Eugenol can act as a local analgesic and is an agonist for TRPV1 and a strong agonist for TRPV3 (Xu, 2006). Turmeric may include about 0.3% essential oil, of which about 8% may be eugenol (Stanojevic, 2015), supporting an estimate of about 240 pg eugenol per gram of turmeric. [0277]In addition to turmeric, eugenol is also found in clove from the Caryophyllus aromaticus tree. Eugenol is used in dentistry as a topical analgesic (Chung, 2013). Eugenol is found in concentrations of ranging from 9,400 mg to 14,600 mg per 100 g of fresh plant material (Cortes-Rojas, 2014). Clove represents one of the major vegetal sources of phenolic compounds as flavonoids, hydroxybenzoic acids, hydroxy cinnamic WO 2022/079574 PCT/IB2021/059301 -72- acids and hydroxyphenyl propenes. Clove has historic use for toothachejoint pain and antispasmodic. The voltage dependent effects of eugenol in sodium and calcium channels and in receptors expressed in the trigeminal ganglion may be primarily responsible for the analgesic effect of clove (Wang, 2015). [0278]Eugenol was selected for its potential to bind TRP receptors and its potential to interfere with several other cell-signaling pathways, specifically the nuclear factor kappa B ("NF-kB"). This factor is activated by free radicals and results in the expression of genes that suppress apoptosis and induce cellular transformation, proliferation, invasion, metastasis and other phenomena associated with cancer progression (Hoesel, 2013). Inclusion of the eugenol reduces inflammatory markers and ROS signaling from the gut to the brain. [0279]Inclusion of ingredients including significant amounts of eugenol resulted in reports of a calming effect compared with psilocybin alone, with capsaicin and psilocybin or with capsaicin, curcumin and psilocybin. Eugenol is included in the compositions disclosed herein primarily through clove, turmeric and black pepper. The dose of eugenol was calculated at between 0.1 and 1.6 g based on 17-20% maximum amount in the the ingredients, with between 0.1 and 5 grams of turmeric and clove daily, and in some cases also the addition of black pepper. In some aspects, other doses of eugenol could be between 0.2 and 1.5 g, 0.3 and 1.4 g, 0.4 and 1.3 g, 0.5 and 1.2 g, 0.6 and 1.1g, 0.7 and 1.0 g, and 0.8 and 0.9 g. Peripheral antinociceptive activity of eugenol has been reported as showing significant activity at doses of 50, 75 and 100 mg/kg (Daniel, 2009). [0280]Other herbal sources of eugenol are summarized in Table 4. The concentrations for some of the herbal ingredients listed in Table 4 are cited from (Khalil, 2017). In addition to the sources of eugenol listed in Table 4, ginger, oregano, basil, mace, pepper and marjoram also include eugenol.
Table 4:Eugenol in commonly used herbal ingredients Common Names Part Eugenol (mg/g) Clove Flowers and buds 180Clover Fruit 36Betel Pepper Leaves 18Cinnamon Bark 3.5Tulsi Leaves 4 to 5 WO 2022/079574 PCT/IB2021/059301 -73 - B-caryophyllene Bay Leaves 1.3Turmeric Leaves and Essential Oil 2.1Nutmeg Seeds 0.3Thyme Shoots 0.02 id="p-281" id="p-281" id="p-281" id="p-281" id="p-281" id="p-281" id="p-281" id="p-281" id="p-281" id="p-281" id="p-281"
id="p-281"
[0281]Clove and turmeric contains significant amounts of B-caryophyllene ("BCP"), which is thought to be an agonist of the CB1 receptor and also a TRP VI receptor agonist (Sharma, 2015). Clove may include about 2% BCP. Turmeric may also include BCP. Agonism at both CB1 and TRP receptors highlights the indirect linkage and cross talk between the TRP and ECS pathways. Numerous molecules are agonists on both sets of receptors. As shown in Fig. 5, arachidonic acid signaling interacts with TRP receptor signaling pathways. ECS stimulation results in arachidonic acid metabolism. [0282] BCPwas approved by the FDA and the European Food Safety Authority (EFSA) for human consumption. BCP is also used as flavor enhancer and in cosmetics (Skold, 2016). Neuroinflammation or inflammation of the brain a process leading to nervous system degeneration, characterized by the activation of monocytes, macrophages, mast cells, lymphocytes, and the production of inflammation mediators, such as nitric oxide ("NO"),various cytokines (IL-1p, interleukin-6 ("IL-6"), interleukin-8 ("IL-8") and TNF- a), NF-KB and prostaglandins. While curcuminoids do not pass the blood-brain barrier, BCPdoes pass the blood-brain barrier and has anti-inflammatory effects directly on the brain. [0283]Even at the low doses being administered, BCP being included in the compositions in addition to psilocybin alone improved mood in those with both depression and anxiety issues. Recipes including clove or clove oil contain both significant eugenol and some BCP. The isolated molecules have been tested in vitro and found to both possess anti-inflammatory properties. [0284]Herbal sources of BCP are summarized in Table 5.
Table 5:Herbal Sources of BCP Species Family Common Names Part BCP (mg/g) Cannabis sativa Cannabaceae Marijuana flower 3.8-37.5* WO 2022/079574 PCT/IB2021/059301 -74- Carum nigrum Ranunculacea Black carawayseeds 7.8* Syzygium aromaticum Myrtaceae Clove fruit, stems, buds 1.7-19.5* Humulus lupulus Cannabaceae Hops fruits 5.1-14.5*Ocimum gratissimum Lamiaceae Clove basil leaves 5.3-10.5*Ocimum micranthum Lamiaceae Wild basil leaves 4-19.8*Origanum vulgare Lamiaceae Oregano leaves 4.9-15.7*Piper nigrum Piperaceae Black pepper fruit 7.29*Piper aleyreanum Piperaceae Black pepper fruit 15.9Lavandula angustifolia Lamiaceae Lavendar Flowers ,leaves4.62-7.55* Rosmarinus officinalis Lamiaceae Rosemary Flowers ,leaves0.1-8.3* Cinnamomum zeylanicumLauraceae True cinnamonSeeds, bark, leaves 6.9-11.1* Cinnamomum tamala Lauraceae Tamala Leaves 25*Cananga odorata Annonaceae Cananga Leaves, flowers3.1 - 10.7* Copaifera langsdorffii Fabaceae Diesel tree FruitOrthosiphon stamineus Lamiaceae 24-35*Knema kunstleri Myristicaceae 23*Croton glandulosus Euphorbiaceae 53.2*Pterodon emarginatus Fabaceae Sucupira fruits 20.3Cymbopogon olivieri 14.4Pachira aquatica Malvaceae Money tree 11.5Staudtia gabonensis Myristicaceae Seeds and bark12.2 Gnetum africanum Gnetaceae leaves 18.1Lallemantia peltata Lamiaceae flowers 20Piper cyrtopodon Piperaceae Aerial parts34.6 Mentha aquatica lamiaceae Aerial parts12.8 WO 2022/079574 PCT/IB2021/059301 -75 - * percentage BCP in essential oil from that part Renealmia alpinia Zingiberacea Honey bract Leaves 22.9Persea americana Lauraceae Avocado leaves 43.9Vitex negundo lamiaceae Chinese chaste treefruits 36 Oyedaea verbesinoides Asteraceae 27.1Vitex doniana Verbenaceae Sweet leaves 12.6Salvia leucantha lamiaceae leaves 10.7Phlomis cancellata Labiatae Aerial parts Chromolaena odorata Asteraceae Christmas bushleaves 25.2 Cnidium silaifolium Apiaceae Aerial parts8.2 Zosimia absinthifolia Umbelliferae 22.2Lantana canescens Verbenaceae 16.3Pimpinella kotschyana Apiaceae Full plant Acalypha fruticosa Euphorbiaceae leaves 42Petitia domingensis lamiaceae flowers 35.7Scutellaria havanensis lamiaceae leaves 75.6Garcinia mangostana Clusiaceae Mangosteen Leaves bark17-21 Clerodendrum polycephalumlamiaceae Bagflower leaf 28.9 Centaurea imperialis Asteraceae Centaury 14.1Lantana camara Verbenaceae 10.1 id="p-285" id="p-285" id="p-285" id="p-285" id="p-285" id="p-285" id="p-285" id="p-285" id="p-285" id="p-285" id="p-285"
id="p-285"
[0285]Other sources of BCP include thyme (Thymus vulgaris), sage (Salvia officinalis), mint (Mentha piperita) and ginger (Zingiber officinale), Cinnamaldehyde id="p-286" id="p-286" id="p-286" id="p-286" id="p-286" id="p-286" id="p-286" id="p-286" id="p-286" id="p-286" id="p-286"
id="p-286"
[0286]Cinnamon zeylanicum (cinnamon) is widely used in traditional system of medicine to treat diabetes in India. Cinnamon contains both eugenol and BCP. In addition, Cinnamon has a significant amount of the biologically active molecule (2E)-3- phenylprop-2-enal, also known as cinnamaldehyde, which is a phenylpropanoid that gives WO 2022/079574 PCT/IB2021/059301 -76- cinnamon its flavor and odor. Cinnamaldehyde is found in the bark of cinnamon trees and other species of the genus Cinnamomum. Cinnamaldehyde has a range of uses including as a flavoring, an agrichemical and as a corrosion inhibitor. Cinnamaldehyde has also been shown to possess antibacterial (Doyle, 2019), antiviral (Feng, 2020), antifungal, anticancer (Tian, 2017), antipyretic (Sui, 2010), and anti-obesity (Jiang, 2017) properties. Though some of these may be attributed to the activity of BCP and eugenol, cinnamaldehyde has been shown to activate TRPA1, which may provide an additional synergistic effect (Bandell, 2004). [0287]Cinnamaldehyde was found to cause nociceptive behavior in mice when administered via intraplantar injections (Bandell, 2004). Iwasaki et al. (2008) demonstrated that cinnamaldehyde was capable of increasing adrenaline secretions in rats (Iwasaki, 2008; Anderson 2013). [0288]The dose of cinnamaldehyde was based on a content of 0.5% to 3.0% in cinnamon species and the inclusion of between 0 and 5 grams of ingredients containing cinnamaldehyde per dose. In some aspects, doses of cinnamaldehyde could be between 0.6% to 2.9%, 0.7% to 2.8%, 0.8% to 2.7%, 0.9% to 2.6%, 1.0% to 2.5%, 1.1% to 2.4%, 1.2% to 2.3%, 1.3% to 2.2%, 1.4% to 2.1%, 1.5% to 2.0%, 1.6% to 1.9%, and 1.7% to 1.8%. The dosing of cinnamaldehyde was estimated based on up to 3.0% cinnamaldehyde in cinnamon. [0289]Addition of cinnamon allowed a reduction in the amount of clove in the recipe. Reducing clove and adding cinnamon may also improve flavor in formulations of the composition. Addition of cinnamon also appeared to reduce sugar cravings. Addition of cinnamon also may provide appetite suppression, weight loss and mitigation of uric acid crystals, which may be associated with gout. Cinnamon also helped mitigate aggression in men, potentially due to testosterone reduction in cases with elevated testosterone.
Endocannabinoids and Phytocannabinoid Agonists id="p-290" id="p-290" id="p-290" id="p-290" id="p-290" id="p-290" id="p-290" id="p-290" id="p-290" id="p-290" id="p-290"
id="p-290"
[0290]Endocannabinoids ("ECs")and phytocannabinoids both at least partially modulate biological process via cannabinoid receptor types 1 ("CB1")and cannabinoid receptor type 2 ("CB2").ECs and phytocannabinoids have also been shown to interact with the TRP receptors. The TRP receptors and the CB receptors are linked through the activity of endogenous ECs, such as AA and arachidonyl ethanolamide/anandamide ("AEA").AA WO 2022/079574 PCT/IB2021/059301 -77- has been shown to be an agonist at TRPA1, TRPM5, TRPV3 and TRPM2. AA is also an antagonist at TRPM8. AEA is an agonist of TRPV1 and TRP Al. [0291]The differencing activity of ECs at the various TRP receptors indicated that phytocannabinoids also influence TRP channels and modulated the effects of the composition. Indeed, TRPA1 is also activated by THC and cannabinol ("CBN").THC is the major psychoactive cannabinoid in Cannabis sativa. THC and cannabinol activate TRPA1 in TRPA1 overexpressing CHO cells and in trigeminal neurons. When consumed by humans, THC produces a wide range of biological effects, such as an increase in pulse rate, decreased blood-pressure, muscle weakening, increased appetite, and euphoria, followed by drowsiness (Ciardo, 2017). CBD, CBG, CBN and other cannabinoids in contract may produce markedly different effects without significant psychoactive effects. [0292]Extracts or inclusion of either clove or cannabis were each found to have synergistic effects with low doses of psilocybin. Each such composition includes molecules active at TRP receptors and molecules active at CB receptors. [0293]Similar metabolic pathways in individuals suffering from either post-traumatic stress disorder ("PTSD")and traumatic brain injury ("TBI").Specifically, lower endocannabinoid signaling coupled with blocked calcium signaling downstream of TRP receptors CBD and other brain stimulation and neuroprotective molecules were included in compositions directed to improvement of mental health or treatment of the effects of brain injury. [0294]A demographic of regular psilocybin users are often regular cannabis consumers as well. Cannabis is typically consumed as an unknown varietal and smoked in most instances where the actual amount has not been measured. However, low doses of cannabis in combination with psilocybin have not been reported or studied. In addition to the inclusion of a TRP agonist, the compositions may optionally include cannabis or ingredients from cannabis at doses below those required to cause significant psychoactive effects. Cannabis contains many phytocannabinoids that interact with the CB1 and CBreceptors. THC and CBD are the most common phytocannabinoids. The precursor to each of THC and CBD is CBG. Cannabinol is a degradation product of THC that may be present in cannabis. THC converts to CBN under heat or catalysis. Additional rare phytocannabinoids such as CBDV have also shown to bind with TRP receptors. [0295]Inclusion of phytocannabinoids extracted from select varieties of cannabis administered at low doses in the compositions facilitated reduced anxiety and increased WO 2022/079574 PCT/IB2021/059301 -78 - relaxation, and also showed increased libido in some individuals. Cannabis also includes many terpenoids, some of which have been shown to influence the TRP receptors. A dominant terpene in many cannabis varieties is myrcene. The compositions may also be prepared with an isolate of a phytocannabinoids to mitigate potential synergy, antagonism or contra-indications that may have occurred form the addition of unknown phytocannabinoids or terpenoids. In some cases CBD isolate was used to avoid the psychoactive properties that may result from the presence of other cannabinoids. [0296]In many jurisdictions, cannabis is prohibited, and while an adult use market for cannabis is regulated in Canada, psilocybin remains prohibited in 2020 and Canadian regulations do not allow for 5HT2A agonists to be added to cannabis products in significant quantities. Clove was chosen as the preferred ingredient to include in most compositions to stimulate both a TRP receptor and potentially the CB receptors. Including cannabis or clove provided a more relaxing effect and promoted deeper sleep after the dose and again further reduced inflammation.
Myristicin id="p-297" id="p-297" id="p-297" id="p-297" id="p-297" id="p-297" id="p-297" id="p-297" id="p-297" id="p-297" id="p-297"
id="p-297"
[0297]Nutmeg contains myristicin, which is also found in carrot, basil, cinnamon, and parsley. Myristicin, or methoxysafrole, is a benzodioxole that is active at the 5HT2A receptors in the brain with slight MAO inhibiting properties. Myristicin has hypotensive, sedative, anti-depressant, anesthetic, hallucinogenic, and serotonergic properties. Elemicin is another molecule has similar structure and shows similar effects. Both myristicin and elemicin appear to act as a significant potentiator of GABA. Large doses may cause hyper-excitability and may cause CNS depression among other negative effects. Nutmeg may include between 20 and 30 mg per gram, and the amount of myristicin in the compositions formulated with nutmeg was estimated to be up to 3% w/w. [0298]Nutmeg also contains alpha terpineol and 8-O-4'-neolignans, which activate the TRPAl and TRPM8 receptors respectively. Agonism at TRPAl and TRPM8 may amplify antidepressant effects of the compositions and potentially support cessation of SSRIs. Many individuals who were taking SSRIs required a higher dose of the compositions in order to feel the effects of the compositions. With psilocybin and nutmeg, in some cases individuals were able to ween from (through sequentially reducing the dose) and/or replace their SSRIs within a matter of weeks without significant issues.
WO 2022/079574 PCT/IB2021/059301 -79- id="p-299" id="p-299" id="p-299" id="p-299" id="p-299" id="p-299" id="p-299" id="p-299" id="p-299" id="p-299" id="p-299"
id="p-299"
[0299]Nutmeg appeared to help with the and improve the overall antidepressant qualities and allow for a reduction in the amount of psilocybin (to about 0.1 g of dried fruiting bodies) while still achieving an improvement in mood, reduced anxiety, reduced depression or other therapeutic effects. This translated to improved happiness and elevation of positive thoughts associated with the compositions. Including nutmeg and reducing the amount of psilocybin also improved the therapeutic effects and allow for a better sleep. However, including nutmeg with psilocybin amplified the psychoactive effects of the psilocybin, which increase in psychoactivity may be offset by the reduced amount of psilocybin used when nutmeg is included in the composition. [0300]Formulations that included nutmeg produced a more uplifting and euphoric effect and were often included stronger aphrodisiac properties, especially when combined with frankincense and myrrh. [0301]Nutmeg was included in compositions for depression but not for stimulant compositions designed to treat ADD/ADHD. Individuals using stimulant medication often have difficulties sleeping. Nutmeg helped many individuals stop using stimulants and have an easier time falling asleep, as well as a more restful sleep, particularly when combined with phytocannabinoids. 1-8 Cineole id="p-302" id="p-302" id="p-302" id="p-302" id="p-302" id="p-302" id="p-302" id="p-302" id="p-302" id="p-302" id="p-302"
id="p-302"
[0302]Bergamot citrus fruit flavonoids, including 1-8 cineole, are potent and selective blockers of TRPM3. Eucalyptus also includes 1-8 cineole, in addition to pinene and eucalyptol. The dose of 1-8 cineole vas variable based on inclusion of ingredients with or without it. Bergamot resulted in uplifting and extended effects but also amplified the psychoactive effects of the psilocybin, allowing a lowered dose of psilocybin relative to formulations that lacked bergamot. [0303]Bergamot was found to support increased focus and concentration, and prolong the effects of the compositions. Some reported feeling a lasting benefit 12 to 24 hours after ingestion of a single dose. TRPM3 is expressed in nociceptive sensory neurons in dorsal root and trigeminal ganglia, similar to TRPV1. Similarly to TRPV1, activation of TRPM3 has been linked to thermal pain as well. [0304]The physiological functions of TRPM3 and the antagonists known to interact with TRPM3 are different than TRVP1, although they both respond to thermal nociceptive stimuli, an effect that is maintained after induction of inflammatory hyperalgesia. The WO 2022/079574 PCT/IB2021/059301 - 80 - ability of molecules in bergamot such as eriodictyol to block the capsaicin-induced activation of rat TRPV1 but still show activity on TRPM3 indicate a different mode of action, and it has been shown to be involved in signaling from the eyes (Janda, 2016). [0305]Some individuals described the psychoactive effects of formulations including bergamot in some cases as "a light was turned on inside the brain" or "a glow". This may be connected to TRP receptors having been implicated in light sensitivity for both mammals and insects. Bergamot essential oil has phototoxic effects in humans when consumed in high doses, and transduction by TRP channels is associated with better information transfer in bright light (Katz, 2018). A relatively low amount of bergamot oil was sufficient to result in this effect and was notably different than formulations which lacked the bergamot. A dose of about was 0.012% (w/w) of the composition. Enhanced focus, concentration and energy were observed and reported from the compositions including citrus terpenoids in the bergamot.
TRPM8 Agonists id="p-306" id="p-306" id="p-306" id="p-306" id="p-306" id="p-306" id="p-306" id="p-306" id="p-306" id="p-306" id="p-306"
id="p-306"
[0306]Menthol, commonly known for its cooling sensation when eaten, inhaled or applied to the skin through agonism of TRPM8. Menthol is a natural monoterpenoid synthesized in plants from the Mentha genus (Salehi, 2018). Peppermint menthol, a compound obtained from the oil of peppermint (Mentha piperita), popularly known for its cooling effect, activates heat-activated TRPV3 (Oz, 2017). At warm temperatures menthol might be interpreted as warm based on its sensitizing effect on TRPV3, while at cooler temperatures, its activation of TRPM8 dominates its sensory quality (Oz, 2017). Eugenol also shows activity at TRPM8. [0307]Other monoterpenes that activate TRPM8 include eucalyptol or 1-8 cineole (present in essential oils from Eucalyptuspolybractea), menthone (the precursor of menthol in monoterpene biosynthesis), geraniol (found in lemon-grass and aromatic herb oils), linalool (found in floral scents of Onagraceae species), menthyl lactate (from peppermint oil), trans- and cis-p-menthane-3,8-diol (fromE. citriodora), L-carvone (from spearmint or Kuromoji oil), isopulegol (from AT. pulegium or Lilium kdebourri) and hydroxyl-citronellal (from citronella oils, volatile oils such as lemon, lemongrass or melissa oils) (Bharate, 2012).
WO 2022/079574 PCT/IB2021/059301 - 81 - TRPA1 Agonists id="p-308" id="p-308" id="p-308" id="p-308" id="p-308" id="p-308" id="p-308" id="p-308" id="p-308" id="p-308" id="p-308"
id="p-308"
[0308]TRPA1 is activated by pungent chemicals as allyl isothiocyanate (mustard oil), allicin (from garlic), cinnamaldehyde (from cinnamon), methylsalicylate (winter-green), eugenol (cloves) and gingerol (ginger). [0309]Garlic and onion also contain allium. Including garlic and onion in the compositions may be practical in capsule formulation but was not typically included in food-based formulations as the combination with other spices may be off-putting. People with gastrointestinal issues often took garlic and ginger tablets, pills or capsules separately to mitigate bowel symptoms. The dose of allium was included for compositions directed to facilitating digestion. Garlic and onion may also improve weight loss, and may improve gastrointestinal issues along.
Other TRP Agonists id="p-310" id="p-310" id="p-310" id="p-310" id="p-310" id="p-310" id="p-310" id="p-310" id="p-310" id="p-310" id="p-310"
id="p-310"
[0310]Black pepper is high in BCP and contains myristicin. In addition, black pepper, includes another potent TRPV1 agonist - piperine (McNamara, 2005). Black pepper also includes guineensine, an anandamide reuptake inhibitor (Nicolussi, 2014) which further improve the effects, especially with cannabis present in the composition. [0311]Ginger contains gingerol, a bioactive compound with demonstrated anti- inflammatory and antioxidant effects. (Wang, 2014.) [0312]Carvacrol, the major ingredient of oregano (Origanum majorana! O. vulgare), and thymol, a lesser component of oregano but an important constituent of thyme (Thymus vulgaris) are both known to evoke a sense of warmth and sensitize skin (Can, 2008). Enhanced digestion through oregano oil and thyme may be due to carvacrol agonist binding at TRPV3.
Additional Ingredients id="p-313" id="p-313" id="p-313" id="p-313" id="p-313" id="p-313" id="p-313" id="p-313" id="p-313" id="p-313" id="p-313"
id="p-313"
[0313]Additional molecules and carriers may influence the effects. These were consciously chosen so as to either prevent any additional effect or to enhance the effect and flavor, making the medication more enjoyable. [0314]Chocolate cacao and its derivatives cocoa and chocolate contain N- linoleoylethanolamide and N-oleoylethanolamide, compounds which inhibit anandamide breakdown, as well as variable amounts of anandamide. Inclusion of at least 70% dark WO 2022/079574 PCT/IB2021/059301 - 82 - cacao not only was used for flavor, but also increased the positive and euphoric affects associated with the formula (Smalheiser, 2019). [0315]Vegan recipes were used to reduce any symptoms associated with cacao, which has been associated with an increase blood pressure and therefore removed from anxiety medications or for those with dietary issues. Vegan Carib chips maybe used to replace cacao and milk substitutes such as almond, soy or oat milk may be used to replace dairy milk as the liquid matrix. [0316]Coffee was added to some compositions for stimulation where stimulation is consistent with the intended effect of the composition. It was also common for individuals to decide to take the edible chew formulation dissolved in coffee. [0317]The compositions may include ingredients to suppress appetite as well and reduce sugar craving, which ultimately helps reduce inflammation in the body. Significant weight loss has been reported in many case studies, though theses cannot be attributed to the drug alone. Reduced sugar cravings and better adjusted appetite may have been a result of the experience during the psychoactive effects of the psilocybin and not due to neurochemical effects per se of the drug. In some cases, individuals using the compositions simply make decision to exercise more often and eat differently. Due to improved cognitive function and reduced depression, most individuals show drastic lifestyle changes that can also attribute to this. This includes an increased connection with nature, an increased connection with the environment and often drastic alterations in diet. Specific recipes were made to deal with dietary issues such as bowel inflammation.
Formulations id="p-318" id="p-318" id="p-318" id="p-318" id="p-318" id="p-318" id="p-318" id="p-318" id="p-318" id="p-318" id="p-318"
id="p-318"
[0318]The compositions may be formulated in dry form, as extracts or solubilized. The compositions may be formulated with acceptable carrier, excipient or diluent for oral administration and absorption through the gut or oral mucosa (e.g. sublingual, gingival, etc.), for dermal application or suppository. The compositions may be prepared from purified or synthesized compounds, from extracts with broad spectrum ingredients from source biomass, from raw biomass or from other preparations of raw biomass (e.g. dried, ground, sifted or otherwise processed without extraction, etc.). In any such examples, the 5HT2A agonist(s) and/or the TRP agonist(s) in the compositions may be at least about 99% pure. Pharmaceutically acceptable forms of the compounds in the compositions include salts, solvates, esters, carbamates, and phosphate esters.
WO 2022/079574 PCT/IB2021/059301 - 83 - id="p-319" id="p-319" id="p-319" id="p-319" id="p-319" id="p-319" id="p-319" id="p-319" id="p-319" id="p-319" id="p-319"
id="p-319"
[0319]Formulations including the compositions may be used for promotion and maintenance of mental health in health individuals. The formulations could be prepared as edible chews, capsules such as gel caps or soft gels, tinctures, tablets, dissolvable strips (e.g., sublingual films or buccal films), sachets, granules, suspensions, beverages, as foods or any other suitable formulation. In some aspects, the formulations may be administered according to any suitable dosing regimen, such as from 1-10 times per day. In other aspects, the formulations may be administered from 1-9 times per day, 1-8 times per day, 1-7 times per day, 1-6 times per day, 1-5 times per day, 1-4 times per day, 1-times per day, 1-2 times per day, or once per day. In some aspects, the formulations may be administered 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 times per day. [0320]The formulations may be used in a therapeutic product (e.g. a drug product, a natural health product, a nutraceutical, etc.) for the treatment of inflammation related to bowel conditions including IBS, Crohn’s disease, colitis, leaky gut syndrome, as well a mental illness conditions including ADD, ADHD, situational depression, MDD, minor depression, bipolar disorder, borderline personality disorder, seasonal affective disorder, postpartum depression, premenstrual dysphoric disorder, any treatment resistant depressions, post-traumatic stress disorder ("PTSD"),any of which may be co-morbid with other conditions listed above, with other psychological conditions, or with physical conditions such as peripheral pain, neurological pain or other forms of pain. [0321]A "therapeutically effective amount" of a drug is an amount effective to demonstrate a selected activity of the drug in an individual receiving the drug. A "therapeutically effective amount" may also be referred to as an "effective dose range." Preferred doses, effective dose ranges, recommended maximum doses, and/or recommended daily intake amounts for TRP agonists and 5HT2A agonists are listed below in Tables 6 and 7.
Table 6:Preferred, and Total Daily Intake Amounts for Selected TRP Agonists Substance Molecule Preferred Doses Total Daily Amount Cayenne pepper Capsiacin/ Capsiates 0.1-1 mg, 0.2-0.9 mg, 0.3-0.8 mg, 0.4-0.7 mg, or 0.5-0.6 mg 0.1-50 mg Tumeric Curciminoids 0.1-10 mg, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg l-500mg WO 2022/079574 PCT/IB2021/059301 - 84 - Clove Eugenol BetaCary ophyllene 0.1-25111*2,1-24 mg, 2-23mg, 3- 22111g, 4-21 mg, 5-20mg, 6-19111g, 7-18111g, 8-17111*2, 9-16111g, 10- 15111*2, 11-14111g, or 12-13mg 0.1-10mg, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg 1- 500mg l-200mg Cinnamon Cinnamaldehye 0.1-10111 g, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg l-100mg Nutmeg*** Elemicin Myristicin 0.1-5mg, 0.5-4.5 mg, 1-4 mg, 1.5- l-200mg l-200mg 3.5 mg, or 2-3mg 0.1-5mg, 0.5-4.5 mg, 1-4 mg, 1.5- 3.5 mg, or 2-3mg *** also a 5HT2A Oregano Carvacrol 0.1-10111 g, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg l-100mg Thyme Thymol 0.1-10111 g, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg l-200mg Pepper Piperine 0.1-10111 g, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg l-150mg Peppermint Menthol 0.1-10111 g, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg 0.5-150mg Eucalyptus/ CardamomEucalyptol (1-cineole) 0.1-10111 g, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg l-150mg Onion / Garlic Allicin 0.5-10mg, l-9mg, 2-8mg, 3-7mg, or 4-6mg 0.1-100mg Bergamot Eriodictyol Myrcene 0.01-lmg, 0.05-0.9mg, 0.1-0.8mg, 0.2-0.7mg, 0.3-0.6mg, or 0.4- 0.5mg 0.01-lmg, 0.05-0.9mg, 0.1-0.8mg, 0.2-0.7mg, 0.3-0.6mg, or 0.4- 0.5mg 0.1-20111g 0.1-20mg WO 2022/079574 PCT/IB2021/059301 - 85 - Cannabis THC 0.01-0.5mg, 0.05-0.45mg, 0.1-0.4 mg, 0.15-3.5mg, or 0.2-0.3mg 0.1-10mg CBD 0.1-10mg, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg l-100mg CBG 0.1-10mg, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg l-100mg CBN 0.1-10mg, 1-9 mg, 2-8 mg, 3-7 mg, or 4-6 mg l-100mg THCV 0.01-0.5mg, 0.05-0.45mg, 0.1-0.4 mg, 0.15-3.5mg, or 0.2-0.3mg 0.1-10mg CBDV Minor Cannabinoids 0.01-0.5mg, 0.05-0.45mg, 0.1-0.4 mg, 0.15-3.5mg, or 0.2-0.3mg 0.01-0.5mg, 0.05-0.45mg, 0.1-0.4 mg, 0.15-3.5mg, or 0.2-0.3mg 0.1-10mg 0.1-10mg Table 7:Preferred, Average, and Recommended Maximum Intake Amounts for Selected 5HT2A Agonists Molecule Chemical Name Preferred Doses Average Dose Recommended Maximum Dose Tryptamines 0.1-20mg, 1- 19mg, 2-18mg, 3- 17mg, 4-16mg, 5- 15mg, 6-14mg, 7- 13mg, 8-12mg, or 9-1 ling Psilocybin 3-[2-(dimethylamino)ethyl]-4- phosphoryloxyindole 0.1-20mg, 1- 19mg, 2-18mg, 3- 17mg, 4-16mg, 5- 15mg, 6-14mg, 7- 13mg, 8-12mg, or 9-llmg 15-25 mg 40 mg Psilocin 3-[2-(dimethylamino)ethyl]- 4-hydroxyindole 0.1-20mg, 1- 19mg, 2-18mg, 3- 17mg, 4-16mg, 5- 15mg, 6-14mg, 7- 13mg, 8-12mg, or 9-llmg 15-25 mg 40 mg Psilacetin (4AcO-DMT) 3-[2-(dimethylamino)ethyl]-4- acetoxyindole 0.1-20mg, 1- 19mg, 2-18mg, 3- 17mg, 4-16mg, 5- 15mg, 6-14mg, 7- 13mg, 8-12mg, or 9-llmg 15-30mg 60mg WO 2022/079574 PCT/IB2021/059301 - 86 - Molecule Chemical Name Preferred Doses Average Dose Recommended Maximum Dose Aeruginascin 3-[2(trimethylamino)ethyl]-4-phosphoryloxyindole 0.1-20mg, 1- 19mg, 2-18mg, 3- 17mg, 4-16mg, 5- 15mg, 6-14mg, 7- 13mg, 8-12mg, or 9-1 ling No tox studies found Baeocystin 3-[2-(methylamino)ethyl]-4- phosphoryloxyindole 0.1-20mg, 1- 19mg, 2-18mg, 3- 17mg, 4-16mg, 5- 15mg, 6-14mg, 7- 13mg, 8-12mg, or 9-1 ling No tox studies found Norpsilocin 3-[2-(methylamino)ethyl]-4- hydroxyindole, 3-[2- (amino)ethyl]-4- hydroxyindole 0.1-20mg, 1- 19mg, 2-18mg, 3- 17mg, 4-16mg, 5- 15mg, 6-14mg, 7- 13mg, 8-12mg, or 9-1 ling No tox studies found Norbaeocystin3-[2-(amino)ethyl]-4- phosphoryloxyindole 0.1-20mg, 1- 19mg, 2-18mg, 3- 17mg, 4-16mg, 5- 15mg, 6-14mg, 7- 13mg, 8-12mg, or 9-1 ling No tox studies found Bufotenin 5-methoxy-DMT 1-20 mg, 1- 19mg, 2-18mg, 3- 17mg, 4-16mg, 5- 15mg, 6-14mg, 7- 13mg, 8-12mg, or 9-1 ling -mgmg DMT N,N- Dimethyltryptamine 1-1 Omg, 2-9mg, 3- 8mg, 4-7mg, or 5- 6mg20-40 40-60 Endogenous molecules 0.1-400mg, 1- 375mg, 10- 350mg, 50- 325mg, 75- 300mg, 100- 275mg, 125- 250mg, 150- 225mg, or 175- 200mg MelatoninN-acetyl-5-methoxy tryptamine 0.25 - 1 mg, 0.3- 0.9mg, 0.4-0.8mg, or 0.5-0.7mg- 3 mg 6 mg WO 2022/079574 PCT/IB2021/059301 - 87 - Molecule Chemical Name Preferred Doses Average Dose Recommended Maximum Dose Serotonin 5-hydroxy tryptamine l-400mg, 25- 375mg, 50-350mg, 75-325mg, 100-300mg, 125-275mg, 150-250mg, or 175- 225mg -HTP 5 -hydroxy-tryptophan 50 - 200 mg, 60- 190mg, 70-180mg, 80-170mg, 90- 160mg, 100- 150mg, 110- 140mg, or 120- 130mg 100-3mg300 - 400 mg Ergolines -500 ug, 50-450 ug, 100-400 ug, 150-350 ug, or 200-300 pg LAED-lysergic acid ethyl ami de 0.1 - 0.5 mg, 0.15- 0.45mg, 0.2-4mg, or 0.25-0.35mg0.5 - 1.mgD-lysergic acid beta- propanolamide0.2-0.mg ESA (ergine) Lysergic acid amide l-500pg, 50-450 pg, 100-400 pg, 150-350 pg, or 200-300 pg LSBD-lysergic acid 2-butyl amide0.03 - 0.06 mg0.07-0.12 mg0.24 mgD-lysergic acid 1-butanol ami de0.1 - 0.2 mg 0.2 mg 0.8 mg 1-methyl-D- lysergic acid butanol ami de 1 - 2mg, 1.1- 1.9mg, 1.2-1.8mg, 1.3-1.7mg, or 1.4- 1.6mgmg 8 mg ESPD-lysergic acid 3-pentyl amide 75% potency of LSD? LSM-775D-N-morpholinyllysergamide 500 - 750 pg, 525- 725 pg, 550 - 7pg, 575 - 675pg, or 600 - 650 pg 750 -1250 pg1.5 mg LPD-824D-N-pyrrolidyllysergamide800 pg WO 2022/079574 PCT/IB2021/059301 - 88 - Molecule Chemical Name Preferred Doses Average Dose Recommended Maximum Dose LSD-Pip (8p)-6-methyl-8-(piperi din-1 -ylcarbonyl)- 9,1O-didehydroergoline More potent than LPD-824 and LSM-775, butstill several times less potent than LSD as a5H[T2A agonist DAMN,N-dimethyllysergamidemg L AMIDED-lysergic acid methylisopropyl amide 50 - 200 pg, 60 - 190 pg, 70 - 1pg, 80 - 170 pg, - 160 pg, 100 - 150 pg, 110- 1pg, or 120 - 1Pg 180-3Pg LSZD-lysergic acid 2,4- dimethyl azeti di de - 150 pg, 20- 140 pg, 30 - 1pg, 40- 120 pg, 50-110 pg, 60- 100 pg, or 70 - 90Pg 100-3Pg200 pg LSDLysergic acid diethylamimde - 75 pg, 20 - pg, 30 - 55 pg, or - 55 pg50-1Pg400 pg ALD-52D-l-acetyl-lysergic acid diethylamide - 125 pg, 40 - 115 pg, 50 - 1pg, 60 - 95 pg, or- 85 pg 100- 1Pg325 pg 1P-LSDD-l-propionyl-lysergic acid diethylamide -50 pg, 15-pg, 20 - 40 pg, or - 35 pg- 1Pg200 - 300 pg 1B-LSDD-N1 -butyryl-lysergic acid diethylamide -75 pg, 20-pg, 25 - 65 pg, 30- 60 pg, 35 - pg, or 40 - 50 pg 75 - 1Pg150 - 300 pg IcP-LSD D-Nl-(cyclopropylmethanoyl)- lysergic aciddiethylamide -75 pg, 20-pg, 25 - 65 pg, 30- 60 pg, 35 - pg, or 40 - 50 pg 75 - 1Pg150 - 300 pg LSHD-Lysergic acid a- hydroxy ethylamide l-500pg, 25- 475pg, 50-450pg, 75-425pg, 100-400pg, 125-375pg, 150-350pg, 175-325pg, 200-300pg, or 225- 275pg WO 2022/079574 PCT/IB2021/059301 - 89 - Molecule Chemical Name Preferred Doses Average Dose Recommended Maximum Dose MEDD-N1 -methyl-lysergic acid diethylamide100-300Eg ETH-LADD-6-ethyl-6-nor-lysergic acid diethylamide -60 pg, 20-pg, 25 - 50 pg, - 45 pg, or 35 - Pg 60 - 1Eg225 pg 1P-ETH-LAD D-l-propionyl-6-ethyl-6- nor-lysergic acid diethyamide - 60 pg, 30 - pg, 35 - 50 pg, or- 45 pg- 100Eg100 -200 pg AL-LADD-6-allyl-6-nor-lysergic acid diethylamide 50 - 100 pg, 55 - pg, 60 - 90 pg, - 85 pg, or 70 -pg 100-2Eg200 - 300 pg PRO-LAD D-6-propyl-6-nor- lysergic acid diethylamide -75 pg, 15-pg, 20 - 65 pg, - 60 pg, 30 - pg, 35 - 50 pg, or- 45 pg 100-2Eg200 - 300 pg IP-LAD D-6-isopropyl-6-nor- lysergic acid diethylamide -75 pg, 15-pg, 20 - 65 pg, - 60 pg, 30 - pg, 35 - 50 pg, or- 45 pg 100-2Eg200 - 300 pg PARGY-LAD D-6-propynyl-6-nor- lysergic acid diethylamide 50 - 275 pg, 75 - 250 pg, 100-2pg, 125 - 200 pg, or 150 - 175 pg 275 - 650Eg700 pg BU-LADD-6-butyl-6-norlysergic acid diethylamide 100 - 500 pg, 1-475 pg, 150- 450 pg, 175 -4pg, 200 - 400 pg, 225 - 375 pg, 2- 350 pg, or 275 - 325pgDAL N,N-diallyllysergamide No tox studies found ECPLAD-N-ethyl-N- cy cl opropy 11 y sergami de 40% potency of LSD? Phenethylamines 0.1-200mg, 1- 190mg, 10- 180mg, 20- 170mg, 30- 160mg, 40- 150mg, 50- 140mg, 60- 130mg, 70- WO 2022/079574 PCT/IB2021/059301 -90- Molecule Chemical Name Preferred Doses Average Dose Recommended Maximum Dose 120mg, 80- llOmg, or 90- lOOmg Mescaline 3,4,5-trimethoxyphenethylamine -200 mg, 20- 190mg, 30-180mg, 40-170mg, 50- 160mg, 60-150mg, 70-140mg, 80- 130mg, 90-120mg, or 100-1 lOmg 200 - 3mg700 mg TMA trimethoxy amphetamine -100mg, 95mg, 35-85mg, 80mg, 50-70mg, or 55-5 mg 1250mgShulgin Research 2C-B 4-bromo-2,5- dimethoxybenzeneethana mine 2- 15 mg, 3-mg, 4-13 mg, 5-mg, 6-11 mg, 7-mg, or 8-9 mg -mgmg DOB4-bromo-2,5- dimethoxy amphetamine 0.2 - 0.75 mg, 0.25-0.7 mg, 0.3- 0.65 mg, 0.35-0.mg, 0.4-0.55 mg, or 0.45-0.5 mg 0.75 -1.75 mg3.5 mg DOM4-methyl-2,5- dimethoxy amphetamine 0.5 - 2mg, 0.6- 1.9mg, 0.7-1.8mg, 0.8-1.7mg, 0.9- 1.6mg, 1-1.5mg, l.l-1.4mg, or 1.2-13mg 2 - 6mg 12 mg 2C-D 4-methyl-2,5- dimethoxybenzeneethana mine 3 - 15 mg, 4-mg, 5-13 mg, 6-mg, 7-11 mg, or 8- mg -mg100 mg MDA 3,4-methyl enedi oxy ampheta mine l-100mg, 5-95mg, 10-90mg, 15- 85mg, 20-80mg, 25-75mg, 30- 70mg, 35-65mg, 40-60mg, or 45- 55mg 60 - 1mg200 mg MDMA N-methyl-3,4- methyl enedi oxy ampheta mine l-100mg, 5-95mg, 10-90mg, 15- 85mg, 20-80mg,- 1mg200 mg WO 2022/079574 PCT/IB2021/059301 -91 - Molecule Chemical Name Preferred Doses Average Dose Recommended Maximum Dose 25-75mg, 30- 70mg, 35-65mg, 40-60mg, or 45- 55mg Isoroscaline 4-isopropoxy-3,5- dimethoxyphenethylamin e l-50mg, 5-45mg, 10-40mg, 15- 35mg, or 20-3Omg50-200mg Proscaline 4-propoxy-3,5-DMPEA l-50mg, 5-45mg, 10-40mg, 15- 35mg, or 20-3Omg20-40mg 60mg allylescaline l-50mg, 5-45mg, 10-40mg, 15- 35mg, or 20-3Omg Escaline l-50mg, 5-45mg, 10-40mg, 15- 35mg, or 20-3Omg Phenylpropanoid s/ Aromatic Ethers 0.1-200mg, 1- 190mg, 10- 180mg, 20- 170mg, 30- 160mg, 40- 150mg, 50- 140mg, 60- 130mg, 70- 120mg, 80- llOmg, or 90- lOOmg Elemicinl,2,3-timethoxy-5-(prop- 2-en-1 -yl)benzene 50 - 200 mg, 55- 195 mg, 60- 190mg, 65-185mg, 70-180mg, 75- 175mg, 80-170mg, 85-165mg, 90- 160mg, 95-155mg, 100-150mg, 105- 145mg, 110- 140mg, 115- 135mg, or 120- Omg 200 - 5mg500 - 800 mg Myristicin 50 - 200 mg, 55- 195 mg, 60- 190mg, 65-185mg, 70-180mg, 75- 175mg, 80-170mg, 85-165mg, 90- 160mg, 95-155mg, WO 2022/079574 PCT/IB2021/059301 -92- Molecule Chemical Name Preferred Doses Average Dose Recommended Maximum Dose 100-150mg, 105- 145mg, 110- 140mg, 115-135mg, or 120- 130mg id="p-322" id="p-322" id="p-322" id="p-322" id="p-322" id="p-322" id="p-322" id="p-322" id="p-322" id="p-322" id="p-322"
id="p-322"
[0322]A "combination therapy" is a treatment with a certain substance or composition in which an individual is treated with, or given, one or more other compositions or drugs for the disorder or condition in conjunction with the first therapy or in conjunction with one or more other therapies. A combination therapy may be sequential therapy wherein an individual is treated first with one treatment modality (e.g. drug, psychotherapy, etc.) and then the other (e.g. drug, psychotherapy, etc.) or one more drugs, one or more therapies, or one or more drugs and one or more therapies, can be administered simultaneously. In either case, these drugs or therapies are said to be "coadministered". It is to be understood that "coadministered" does not necessarily mean that the drugs or therapies are administered in a combined form. The drugs or therapies may be administered separately or together to the same or different sites at the same or different times.
EXAMPLES EXAMPLE 1 id="p-323" id="p-323" id="p-323" id="p-323" id="p-323" id="p-323" id="p-323" id="p-323" id="p-323" id="p-323" id="p-323"
id="p-323"
[0323]Eighteen initial experimental compositions including combinations of TRP receptor agonists were prepared are named based on their intended use. Each of these compositions could be formulated, for example into edible chews or gel caps as described in specific examples provided herein. [0324]Each of the initial eighteen compositions utilized may be prepared including any suitable 5HT2A agonist obtained from a natural source with no special chemistry or extractions required. Each of these compositions was prepared using food ingredients or simple extracts from these food ingredients, as sources of the TRP receptor agonists described herein, including at Table 1 and Table 2. Any suitable source of the active ingredients present in these food ingredients as described in Table 1 and in Table 2 could be used to prepare the compositions described herein. [0325]Seven base compositions were prepared, as shown in Table 8.
WO 2022/079574 PCT/IB2021/059301 -93 - Table 8:Base Compositions Composition Cayenne Clove Turmeric Cinnamon Nutmeg Base 1 - Analgesia Yes Yes No No No Base 2 - Mood Support No Yes Yes No No Base 3 - Anti-Inflammatory Yes No Yes No No Base 4 - General Yes Yes Yes No No Base 5 - Anti-Depression Yes Yes Yes No YesBase 6 - Anti-Anxiety Yes Yes Yes Yes No Base 7 - Complete Yes Yes Yes Yes Yes id="p-326" id="p-326" id="p-326" id="p-326" id="p-326" id="p-326" id="p-326" id="p-326" id="p-326" id="p-326" id="p-326"
id="p-326"
[0326]From the above seven base compositions listed in Table 8, eleven additional example compositions were prepared and named based on their intended use, as shown in Table 9.
Table 9:Specific Compositions No / Base Composition Additional ingredients Optional Ingredients 8; 2 Sleepcinnamon, nutmeg, serotonin, melatonincannabis, passion flower 9; 5Anti- depression(none), cacao cinnamon, cannabis, kratom, frankincense, myrrh, kava, pepper10; 6 Anti-anxiety (none) cannabis, kratom11; 7Relaxation coffee, cannabis, bergamot peppercorns, cacao 12; 7 Focusgingko biloba cannabis, cacao, peppermint, peppercorns 13; 7 Creativitycoffee, pepper, peppermint cannabis, cacao, gingko biloba, bergamot, myrrh 14; 6Anti- inflammatory for bowel garlic, ginger, cardamom, onion, thymecannabis, frankincense, oregano, cacao, pepper ; 2 Digestioncinnamon, garlic, ginger, peppermint, cardamomcannabis, frankincense, oregano, cacao, pepper 16; 6 Analgesiapepper, peppermint, thyme, oreganocannabis, kratom, cacao, pepper 17; 7 TBI Treatmentcacao, gingko biloba, myrrh, frankincenseCannabis, pepper WO 2022/079574 PCT/IB2021/059301 -94- No / Base Composition Additional ingredients Optional Ingredients peppermint, gingko biloba, peppercorns, ginseng, 18; 7 Aphrodisiac cardamom, myrrh, cannabis, kratomfrankincense, kava, EXAMPLE 2 id="p-327" id="p-327" id="p-327" id="p-327" id="p-327" id="p-327" id="p-327" id="p-327" id="p-327" id="p-327" id="p-327"
id="p-327"
[0327]Thirty experimental formulations were prepared including many of the example compositions described herein. The formulations were prepared as capsules and as cocoa-based chews. Fourteen of the above compositions were prepared for each of these two formulations. Specifically, example formulations are provided for the compositions Base 1 - Analgesia, Base 2 - Mood Support, Base 3 - Anti-Inflammatory, Base 6 - Anti- Anxiety, Sleep, Anti-depression, Relaxation, Focus, Creativity, Anti-inflammatory for bowel, Digestion, Analgesia, TBI Treatment and Aphrodisiac. [0328]Each of these formulations included psilocybin as a 5HT2A agonist, but could be prepared with any suitable 5HT2A agonist. The psilocybin used in each of these formulations was sourced from dried fruiting bodies of P. cubensis, but the compositions could be prepared with fruiting bodies, sclerotia, mycelia, cell culture or any suitable species of psilocybin containing fungi or other source of psilocybin. Since dried fruiting bodies were used as a source of psilocybin, it is likely that some amounts of psilocin, baeocystin, aeruginascin, norpsilocybin, norpsilocin, norbaeocystin or other tryptamines that are 5HT2A agonists were also present in the formulations. [0329]The 5HT2A agonist used in each of these formulations included psilocybin from dried fruiting bodies. In sleep, the 5HT2A agonist also included serotonin and melatonin. In all formulations other than Base 1 - Analgesia, Base 2 - Mood Support, Base 3 - Anti- Inflammatory, Base 6 - Anti-Anxiety, Sleep, Anti-inflammatory for bowel, Digestion and Analgesia, the 5HT2A agonist also included myristicin and elemicin. [0330]All ingredients in the capsule formulation were dried and ground other than as indicated in the below Tables with even numbers from among Tables 10 to 37. [0331]The "liquid matrix" in the edible chew formulation may be any suitable and palatable liquid for mixing with the cacao (e.g. dairy milk, almond milk, hemp milk, soy milk, oat milk, etc.). All ingredients in the edible chew formulation were dried and ground other than ingredients that were not dried and ground in the corresponding capsule formulation, the dark chocolate and the liquid matrix.
WO 2022/079574 PCT/IB2021/059301 -95 - id="p-332" id="p-332" id="p-332" id="p-332" id="p-332" id="p-332" id="p-332" id="p-332" id="p-332" id="p-332" id="p-332"
id="p-332"
[0332]When formulated as an edible chew, the dark chocolate is heated with sufficient liquid matrix to melt the dark chocolate without burning. The liquid matrix is further added as additional dried powdered ingredients are added. Finely ground dried fruiting bodies were added last without heating and stirred thoroughly to homogenize. Once the material had mixed sufficiently and begun to cool below flow temperature, then the material was put into moulds and cooled to allow solidifying into individual dosage units. [0333]In formulations that included the ingredients, capsaicin was present at between 0.05 and 2.5 mg per dosage unit, curcumin was present at between 1.00 and 15 mg per dosage unit, eugenol was included at between 0.5 and 15 mg per dosage unit, BCP was included at between 0.25 and 5 mg per dosage unit, cinnamaldehyde was included at between 0.25 and 3 mg per dosage unit and myristicin and elemicin was present at between 0.50 and 3 mg per dosage unit.
Example Formulation 01 - Base Analgesia id="p-334" id="p-334" id="p-334" id="p-334" id="p-334" id="p-334" id="p-334" id="p-334" id="p-334" id="p-334" id="p-334"
id="p-334"
[0334]Table 10 shows the ingredients for Base Analgesia formulated as material to be included in a capsule dosage form.
Table 10:Ingredients for Base Analgesia formulated for capsules Ingredient Weight (g) Ratio P. cubensis dried fruiting bodies 20 0.50Cayenne pepper fruit and seeds 10 0.25Clove fruit, stems and buds 10 0.25 id="p-335" id="p-335" id="p-335" id="p-335" id="p-335" id="p-335" id="p-335" id="p-335" id="p-335" id="p-335" id="p-335"
id="p-335"
[0335]The ingredients in Table 10 provide a total mass of 40 g. The weight per dosage unit is 0.3 g, including about 0.15 g of dried fruiting bodies of the P. cubensis. This provides approximately 133 dosage units from the ingredients in Table 10. Through a Controlled Substance Dealers license obtained through the Office of Controlled Substances with Health Canada, we were able to legally propagate and analyze the exact strain of mushrooms being utilized in the formulations referred to as P.cubensis. HPLC analysis on Psilocybin/psilocin content in the fungal biomass was determined using methanol mushroom extracts (100 mg of dry homogenized mushroom biomass + 5 mL of 100% methanol incubated at 60 °C for 1 h with vortexing and then filtered through a 0.um filter) were separated on an Agilent 1200 Series HPLC system using the following parameters: WO 2022/079574 PCT/IB2021/059301 -96- Column: iHILIC-Fusion, PEEK, P/N: 100.152.0310.Column temperature: 40 °C.Mobile Phase: 80:20 (v/v) acetonitrile - ammonium formate (lOmM, pH 3.5). Flow Rate: 0.3 mL/min.Results indicate a range between approximately 0.5-2.25% active metabolites by weight at various stages of growth with an average of around 1% in the freshly harvested and dried fruiting bodies. As such, we calculate the amount of psilocybin to be approximately 1-1.5 mg in most of the recipes and formulations tested depending on the amount of dried fruiting bodies included. As the dried fruiting bodies are about 1.0% psilocybin in this formulation, this provides about 1.5 mg psilocybin per dosage unit. [0336]Table 11. HPLC results from cultivated Psilocybin cubensis mushrooms including many results from various harvests of the mushroom as well as some more common strains for comparison. This specific strain of mushroom also has a relative psilocybin to psilocin content of 10:1 compared to other varieties found to be closer to 1:1 or 2:1 ratios.
Table 11:HPLC results from cultivated Psilocybin cubensis mushrooms including results from various harvests of the mushroom and more common strains for comparison.
HPLC of isolated P.cubensis variety Experiment Sample Description Psilocin (% w/w) Psilocybin (% w/w) Combined Total (% w/w) Ratio Psilocybin /Psilocin Anatomical analysis P.cubensis Batch 16 Primordial stage 0.05 0.65 0.70 13.13P.cubensis Batch 16 Small Immature mushroom 0.21 2.01 2.23 9.55 P.cubensis Batch 16Medium Immature mushroom 0.19 1.22 1.41 6.54P.cubensis Batch 16 Mature Stem (interior) 0.08 0.53 0.60 6.85P.cubensis Batch 16 Mature Stem (exterior) 0.09 0.94 1.02 10.89P.cubensis Batch 16 Mature Blended stems 0.07 1.00 1.07 14.29P.cubensis Batch 16 Mature Gills 0.09 1.50 1.59 17.60P.cubensis Batch 16 Mature Cap 0.10 0.74 0.85 7.11P.cubensis Batch 16 Blended Harvests 0.08 0.84 0.92 10.04P.cubensis Batch 16 Spores ND ND NA NA Average 0.11 1.05 1.15 10.67 Sequential Harvests WO 2022/079574 PCT/IB2021/059301 -97- P. cubensis Batch 42 First Harvest (Flush) 0.16 0.87 1.03 5.44P. cubensis Batch 42 Second Harvest 0.11 0.96 1.07 9.16P. cubensis Batch 42 Third Harvest 0.08 0.84 0.92 10.54P. cubensis Batch 42 Forth Harvest 0.06 0.87 0.93 13.85 Average 0.10 0.89 0.99 9.75 Degradation analysis P. cubensis Batch 2 ~6 months post harvest 0.06 0.51 0.57 8.00P. cubensis Batch 9 ~5 months post harvest 0.06 0.55 0.61 9.50P. cubensis Batch 23 ~3 months post harvest 0.06 0.51 0.57 8.09P. cubensis Batch 25 ~3 months post harvest 0.07 0.57 0.64 8.34P. cubensis Batch 26 ~3 months post harvest 0.05 0.47 0.52 8.68P. cubensis Batch 42 ~2 months post harvest 0.06 0.74 0.79 12.81 Average 0.06 0.56 0.62 9.24 Strain Comparison P. cubensis strain ‘Alacabenzi‘ 0.25 0.48 0.73 1.89P. cubensis strain 'Avery's Albino' 0.25 0.45 0.70 1.82P. cubensis strain 'B+' 1.64 1.86 3.50 1.13 id="p-337" id="p-337" id="p-337" id="p-337" id="p-337" id="p-337" id="p-337" id="p-337" id="p-337" id="p-337" id="p-337"
id="p-337"
[0337]Table 12 shows the ingredients for Base Analgesia formulated as an edible chew dosage form.
Table 12:Ingredients for Base Analgesia formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 550 0.821Liquid matrix 80 ml 80 0.119Dried fruiting bodies n/a 20 0.030Clove fruit, stems and buds 2 tbsp 10 0.015Cayenne pepper fruit and seeds 2 tbsp 10 0.015 id="p-338" id="p-338" id="p-338" id="p-338" id="p-338" id="p-338" id="p-338" id="p-338" id="p-338" id="p-338" id="p-338"
id="p-338"
[0338]The ingredients in Table 12 provide a total mass of 670. The weight per dosage unit is 5 g, including about 0.15 g of dried fruiting bodies. This provides 133 dosage units from the ingredients in Table 12. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.5 mg psilocybin per dosage unit.
WO 2022/079574 PCT/IB2021/059301 -98 - Example Formulation 02 - Base Mood Support id="p-339" id="p-339" id="p-339" id="p-339" id="p-339" id="p-339" id="p-339" id="p-339" id="p-339" id="p-339" id="p-339"
id="p-339"
[0339]Table 13 shows the ingredients for Base Mood Support formulated as material to be included in a capsule dosage form.
Table 13:Ingredients for Base Mood Support formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 20 0.40Turmeric root 20 0.40Clove fruit, stems and buds 10 0.20 id="p-340" id="p-340" id="p-340" id="p-340" id="p-340" id="p-340" id="p-340" id="p-340" id="p-340" id="p-340" id="p-340"
id="p-340"
[0340]The ingredients in Table 13 provide a total mass of 50 g. The weight per dosage unit is 0.3 g, including about 0.12 g of dried fruiting bodies. This provides 133 dosage units from the ingredients in Table 13. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.2 mg psilocybin per dosage unit. [0341]Table 14 shows the ingredients for Base Mood Support formulated as an edible chew dosage form.
Table 14:Ingredients for Base Mood Support formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 550 0.821Liquid matrix 80 ml 80 0.119Turmeric root 2 tbsp 20 0.030Dried fruiting bodies n/a 15 0.022Clove fruit, stems and buds 2 tsp 5 0.007 id="p-342" id="p-342" id="p-342" id="p-342" id="p-342" id="p-342" id="p-342" id="p-342" id="p-342" id="p-342" id="p-342"
id="p-342"
[0342]The ingredients in Table 14 provide a total mass of 670 g. The weight per dosage unit is 5 g, including about 0.15 g of dried fruiting bodies. This provides 133 dosage units from the ingredients in Table 14. The dried fruiting bodies are about 1.0% psilocybin, providing about 0.11 mg psilocybin per dosage unit.
Example Formulation 03 - Base Anti-Inflammatory id="p-343" id="p-343" id="p-343" id="p-343" id="p-343" id="p-343" id="p-343" id="p-343" id="p-343" id="p-343" id="p-343"
id="p-343"
[0343]Table 15 shows the ingredients for Base Anti-Inflammatory formulated as material to be included in a capsule dosage form.
WO 2022/079574 PCT/IB2021/059301 -99- Table 15:Ingredients for Base Anti-Inflammatory formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 25 0.50Turmeric root 20 0.40Cayenne pepper fruit and seeds 5 0.10 id="p-344" id="p-344" id="p-344" id="p-344" id="p-344" id="p-344" id="p-344" id="p-344" id="p-344" id="p-344" id="p-344"
id="p-344"
[0344]The ingredients in Table 15 provide a total mass of 50 g. The weight per dosage unit is 0.3 g, including about 0.15 g of dried fruiting bodies. This provides 166 dosage units from the ingredients in Table 15. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.5 mg psilocybin per dosage unit. [0345]Table 16 shows the ingredients for Base Anti-Inflammatory formulated as an edible chew dosage form.
Table 16:Ingredients for Base Anti-Inflammatory formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 600 0.828Liquid matrix 80 ml 80 0.110Dried fruiting bodies n/a 20 0.028Turmeric root 2 tbsp 20 0.028Cayenne pepper fruit and seeds 1 tbsp 5 0.007 id="p-346" id="p-346" id="p-346" id="p-346" id="p-346" id="p-346" id="p-346" id="p-346" id="p-346" id="p-346" id="p-346"
id="p-346"
[0346]The ingredients in Table 16 provide a total mass of 725 g. The weight per dosage unit is 5 g, including about 0.14 g of dried fruiting bodies. This provides 145 dosage units from the ingredients in Table 16. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.4 mg psilocybin per dosage unit.
Example Formulation 06 - Base Anti-Anxiety id="p-347" id="p-347" id="p-347" id="p-347" id="p-347" id="p-347" id="p-347" id="p-347" id="p-347" id="p-347" id="p-347"
id="p-347"
[0347]Table 17 shows the ingredients for Base Anti-Anxiety formulated as material to be included in a capsule dosage form.
Table 17:Ingredients for Base Anti-Anxiety formulated for capsules Ingredient Dried fruiting bodies Turmeric root Weight (g) Ratio 0.420.33 20 WO 2022/079574 PCT/IB2021/059301 - 100- Ingredient Weight (g) Ratio Cayenne pepper fruit and seeds 5 0.08Cinnamon stalk 5 0.08Clove fruit, stems and buds 5 0.08 id="p-348" id="p-348" id="p-348" id="p-348" id="p-348" id="p-348" id="p-348" id="p-348" id="p-348" id="p-348" id="p-348"
id="p-348"
[0348]The ingredients in Table 17 provide a total mass of 70 g. The weight per dosage unit is 0.3 g, including about 0.11 g of dried fruiting bodies. This provides 233 dosage units from the ingredients in Table 17. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.1 mg psilocybin per dosage unit. [0349]Table 18 shows the ingredients for Base Anti-Anxiety formulated as an edible chew dosage form.
Table 18:Ingredients for Base Anti-Anxiety formulated as edible chews Ingredient Volume Weight (g) Ratio Vegan carob chips n/a 600 0.821Liquid matrix 80 ml 80 0.110Turmeric root 2 tbsp 20 0.027Dried fruiting bodies n/a 15 0.021Cayenne pepper fruit and seeds 1 tbsp 5 0.007Cinnamon stalk 2 tsp 5 0.007Clove fruit, stems and buds 2 tsp 5 0.007 id="p-350" id="p-350" id="p-350" id="p-350" id="p-350" id="p-350" id="p-350" id="p-350" id="p-350" id="p-350" id="p-350"
id="p-350"
[0350]The ingredients in Table 18 provide a total mass of 730 g. The weight per dosage unit is 5 g, including about 0.10 g of dried fruiting bodies. This provides 146 dosage units from the ingredients in Table 18. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.0 mg psilocybin per dosage unit.
Example Formulation 08 - Sleep id="p-351" id="p-351" id="p-351" id="p-351" id="p-351" id="p-351" id="p-351" id="p-351" id="p-351" id="p-351" id="p-351"
id="p-351"
[0351]Table 19 shows the ingredients for Sleep formulated as material to be included in a capsule dosage form.
Table 19:Ingredients for Sleep formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 15 0.23Turmeric root 10 0.15 WO 2022/079574 PCT/IB2021/059301 - 101 - Ingredient Weight (g) Ratio Nutmeg seed 10 0.15Cinnamon stalk 5 0.08Clove fruit, stems and buds 5 0.0870% cacao dark chocolate 5 0.08Cannabis flower with about 10% CBD and about 0.5% CBN0.08 Serotonin formulated into 400 mg capsules including 50 mg serotonin0.08 Melatonin formulated into 250 mg capsules including 5 mg melatonin0.08 id="p-352" id="p-352" id="p-352" id="p-352" id="p-352" id="p-352" id="p-352" id="p-352" id="p-352" id="p-352" id="p-352"
id="p-352"
[0352]The ingredients in Table 19 provide a total mass of 65 g. The weight per dosage unit is 0.3 g, including about 0.07 g of dried fruiting bodies. This provides 217 dosage units from the ingredients in Table 19. The dried fruiting bodies are about 1.0% psilocybin, providing about 0.7 mg psilocybin per dosage unit. [0353]Table 20 shows the ingredients for Sleep formulated as an edible chew dosage form.
Table 20:Ingredients for Sleep formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 600 0.816Liquid matrix 80 ml 80 0.110Dried fruiting bodies n/a 10 0.013Turmeric root 1 tbsp 10 0.013Nutmeg seed 1 1/2 tbsp 10 0.013Cinnamon stalk 2 tsp 5 0.07Clove fruit, stems and buds 2 tsp 5 0.07cannabis extract with over 50% CBD and over 2% CBN contenttsp 5 0.07 Serotonin formulated into 400 mg capsules including 50 mg serotoninn/a 5 0.07 Melatonin formulated into 250 mg capsules including 5 mg melatoninn/a 5 0.07 WO 2022/079574 PCT/IB2021/059301 - 102- id="p-354" id="p-354" id="p-354" id="p-354" id="p-354" id="p-354" id="p-354" id="p-354" id="p-354" id="p-354" id="p-354"
id="p-354"
[0354]The ingredients in Table 20 provide a total mass of 735 g. The weight per dosage unit is 5 g, including about 0.07 g of dried fruiting bodies. This provides 147 dosage units from the ingredients in Table 20. The dried fruiting bodies are about 1.0% psilocybin, providing about 0.7 mg psilocybin per dosage unit.
Example Formulation 09 - Anti-Depress! on id="p-355" id="p-355" id="p-355" id="p-355" id="p-355" id="p-355" id="p-355" id="p-355" id="p-355" id="p-355" id="p-355"
id="p-355"
[0355]Table 21 shows the ingredients for Anti-Depression formulated as material to be included in a capsule dosage form.
Table 21:Ingredients for Anti-Depression formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 25 0.33Turmeric root 20 0.2770% cacao dark chocolate 10 0.13Nutmeg seed 5 0.07Cayenne pepper fruit and seeds 5 0.07Cinnamon stalk 5 0.07Clove fruit, stems and buds 5 0.07 id="p-356" id="p-356" id="p-356" id="p-356" id="p-356" id="p-356" id="p-356" id="p-356" id="p-356" id="p-356" id="p-356"
id="p-356"
[0356]The ingredients in Table 21 provide a total mass of 75 g. The weight per dosage unit is 0.3 g, including about 0.10 g of dried fruiting bodies. This provides 250 dosage units from the ingredients in Table 21. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.0 mg psilocybin per dosage unit. [0357]Table 22 shows the ingredients for Anti-Depression formulated as an edible chew dosage form.
Table 22:Ingredients for Anti-Depression formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 550 0.797Liquid matrix 80 ml 80 0.116Turmeric root 2 tbsp 20 0.029Dried fruiting bodies n/a 15 0.022Nutmeg seed 1 V2 tbsp 10 0.014Cayenne pepper fruit and seeds 1 tbsp 5 0.007 WO 2022/079574 PCT/IB2021/059301 - 103 - Ingredient Volume Weight (g) Ratio Cinnamon stalk 2 tsp 5 0.007Clove fruit, stems and buds 2 tsp 5 0.007 id="p-358" id="p-358" id="p-358" id="p-358" id="p-358" id="p-358" id="p-358" id="p-358" id="p-358" id="p-358" id="p-358"
id="p-358"
[0358]The ingredients in Table 22 provide a total mass of 690 g. The weight per dosage unit is 5 g, including about 0.11 g of dried fruiting bodies. This provides 138 dosage units from the ingredients in Table 22. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.1 mg psilocybin per dosage unit.
Example Formulation 11- Relax id="p-359" id="p-359" id="p-359" id="p-359" id="p-359" id="p-359" id="p-359" id="p-359" id="p-359" id="p-359" id="p-359"
id="p-359"
[0359]Table 23 shows the ingredients for Relax formulated as material to be included in a capsule dosage form.
Table 23:Ingredients for Relax formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 30 0.33Turmeric root 20 0.22Nutmeg seed 10 0.11Cayenne pepper fruit and seeds 5 0.05Cinnamon stalk 5 0.05Clove fruit, stems and buds 5 0.0570% cacao dark chocolate 5 0.05Ground coffee beans 5 0.05Bergamot flower 3 0.03Peppercorns 3 0.03 id="p-360" id="p-360" id="p-360" id="p-360" id="p-360" id="p-360" id="p-360" id="p-360" id="p-360" id="p-360" id="p-360"
id="p-360"
[0360]The ingredients in Table 23 provide a total mass of 88 g. The weight per dosage unit is 0.3 g, including about 0.09 g of dried fruiting bodies. This provides 293 dosage units from the ingredients in Table 23. The dried fruiting bodies are about 1.0% psilocybin, providing about 0.9 mg psilocybin per dosage unit. [0361]Table 24 shows the ingredients for Relax formulated as an edible chew dosageform.
WO 2022/079574 PCT/IB2021/059301 - 104- Table 24:Ingredients for Relax formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 600 0.801Liquid matrix 80 ml 80 0.107Turmeric root 2 tbsp 20 0.027Dried fruiting bodies n/a 15 0.020Nutmeg seed 1 1/2 tbsp 10 0.013Cayenne pepper fruit and seeds 1 tbsp 5 0.007Cinnamon stalk 2 tsp 5 0.007Clove fruit, stems and buds 2 tsp 5 0.007Coffee beans 1 tbsp 5 0.007Peppercorns 1 1/4 tsp 3 0.004Cannabis extract with 60% w/w THCn/a0.001(not present in capsule formulation) Bergamot 100% essential oil 0.15 ml 0.15 <0.001 id="p-362" id="p-362" id="p-362" id="p-362" id="p-362" id="p-362" id="p-362" id="p-362" id="p-362" id="p-362" id="p-362"
id="p-362"
[0362]The ingredients in Table 24 provide a total mass of 748 g. The weight per dosage unit is 5 g, including about 0.10 g of dried fruiting bodies. This provides 149 dosage units from the ingredients in Table 24. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.0 mg psilocybin per dosage unit.
Example Formulation 12 - Focus id="p-363" id="p-363" id="p-363" id="p-363" id="p-363" id="p-363" id="p-363" id="p-363" id="p-363" id="p-363" id="p-363"
id="p-363"
[0363]Table 25 shows the ingredients for Focus formulated as material to be included in a capsule dosage form.
Table 25:Ingredients for Focus formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 25 0.27Turmeric root 20 0.22Nutmeg seed 10 0.11Cayenne pepper fruit and seeds 5 0.05Cinnamon stalk 5 0.05Clove fruit, stems and buds 5 0.05Coffee beans 5 0.05 WO 2022/079574 PCT/IB2021/059301 - 105 - Ingredient Weight (g) Ratio 70% cacao dark chocolate 5 0.05Peppermint leaves 5 0.05Ginkgo biloba leaves 3 0.03Peppercorns 3 0.03 id="p-364" id="p-364" id="p-364" id="p-364" id="p-364" id="p-364" id="p-364" id="p-364" id="p-364" id="p-364" id="p-364"
id="p-364"
[0364]The ingredients in Table 25 provide a total mass of 91 g. The weight per dosage unit is 0.3 g, including about 0.08 g of dried fruiting bodies. This provides 303 dosage units from the ingredients in Table 25. The dried fruiting bodies are about 1.0% psilocybin, providing about 0.8 mg psilocybin per dosage unit. [0365]Table 26 shows the ingredients for Focus formulated as an edible chew dosage form.
Table 26:Ingredients for Focus formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 500 0.772Liquid matrix 80 ml 80 0.123Turmeric root 2 tbsp 20 0.031Dried fruiting bodies n/a 15 0.023Nutmeg seed 3/4 tbsp 5 0.008Cayenne pepper fruit and seeds 1 tbsp 5 0.008Cinnamon stalk 2 tsp 5 0.008Clove fruit, stems and buds 2 tsp 5 0.008Coffee beans 1 tbsp 5 0.008Peppercorns 2 tsp 5 0.008Ginkgo biloba leaves n/a 2 0.003Peppermint extract 1 ml 1 0.002 id="p-366" id="p-366" id="p-366" id="p-366" id="p-366" id="p-366" id="p-366" id="p-366" id="p-366" id="p-366" id="p-366"
id="p-366"
[0366]The ingredients in Table 26 provide a total mass of 648 g. The weight per dosage unit is 5 g, including about 0.12 g of dried fruiting bodies. This provides 129 dosage units from the ingredients in Table 26. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.2 mg psilocybin per dosage unit.
WO 2022/079574 PCT/IB2021/059301 - 106- Example Formulation 13 - Creative id="p-367" id="p-367" id="p-367" id="p-367" id="p-367" id="p-367" id="p-367" id="p-367" id="p-367" id="p-367" id="p-367"
id="p-367"
[0367]Table 27 shows the ingredients for Creative formulated as material to be included in a capsule dosage form.
Table 27:Ingredients for Creative formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 30 0.31Turmeric root 20 0.21Nutmeg seed 10 0.10Cayenne pepper fruit and seeds 5 0.05Cinnamon stalk 5 0.05Clove fruit, stems and buds 5 0.0570% cacao dark chocolate 5 0.05Coffee beans 5 0.05Peppermint leaves 5 0.05Peppercorns 3 0.03Bergamot flower 3 0.03 id="p-368" id="p-368" id="p-368" id="p-368" id="p-368" id="p-368" id="p-368" id="p-368" id="p-368" id="p-368" id="p-368"
id="p-368"
[0368]The ingredients in Table 27 provide a total mass of 96 g. The weight per dosage unit is 0.3 g, including about 0.09 g of dried fruiting bodies. This provides 320 dosage units from the ingredients in Table 27. The dried fruiting bodies are about 1.0% psilocybin, providing about 0.9 mg psilocybin per dosage unit. [0369]Table 28 shows the ingredients for Creative formulated as an edible chew dosage form.
Table 28:Ingredients for Creative formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 500 0.768Liquid matrix 80 ml 80 0.123Dried fruiting bodies n/a 20 0.031Turmeric root 2 tbsp 20 0.031Nutmeg seed 1 1/2 tbsp 10 0.015Cayenne pepper fruit and seeds 1 tbsp 5 0.008Cinnamon stalk 2 tsp 5 0.008 WO 2022/079574 PCT/IB2021/059301 - 107- Ingredient Volume Weight (g) Ratio Clove fruit, stems and buds 2 tsp 5 0.008Coffee beans 1 tbsp 5 0.008Peppermint extract 1 ml 1 0.002Bergamot extract 0.15 ml 0.15 <0.001 id="p-370" id="p-370" id="p-370" id="p-370" id="p-370" id="p-370" id="p-370" id="p-370" id="p-370" id="p-370" id="p-370"
id="p-370"
[0370]The ingredients in Table 28 provide a total mass of 665 g. The weight per dosage unit is 5 g, including about 0.15 g of dried fruiting bodies. This provides 133 dosage units from the ingredients in Table 28. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.5 mg psilocybin per dosage unit.
Example Formulation 14 - Anti-Inflammatory for Bowel id="p-371" id="p-371" id="p-371" id="p-371" id="p-371" id="p-371" id="p-371" id="p-371" id="p-371" id="p-371" id="p-371"
id="p-371"
[0371]Table 29 shows the ingredients for Anti-Inflammatory for Bowel formulated as material to be included in a capsule dosage form.
Table 29:Ingredients for Anti-Inflammatory for Bowel formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 30 0.385Turmeric root 10 0.128Cayenne pepper fruit and seeds 5 0.064Cinnamon stalk 5 0.064Clove fruit, stems and buds 5 0.064Cannabis flower (not present in edible chew formulation) with between 10 and % combined THC and CBD0.064 70% cacao dark chocolate 5 0.064Ginger 3 0.038Garlic 2.5 0.032Onion 2.5 0.032Thyme 2 0.026Oregano 2 0.026Cardamom 1 0.013 id="p-372" id="p-372" id="p-372" id="p-372" id="p-372" id="p-372" id="p-372" id="p-372" id="p-372" id="p-372" id="p-372"
id="p-372"
[0372] The ingredients in Table 29 provide a total mass of 78 g. The weight per dosageunit is 0.3 g, including about 0.12 g of dried fruiting bodies. This provides 260 dosage WO 2022/079574 PCT/IB2021/059301 - 108 - units from the ingredients in Table 29. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.2 mg psilocybin per dosage unit. [0373]Table 30 shows the ingredients for Anti-Inflammatory for Bowel formulated as an edible chew dosage form.
Table 30:Ingredients for Anti-Inflammatory for Bowel formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 550 0.797Liquid matrix 80 ml 80 0.116Turmeric root 2 tbsp 20 0.029Dried fruiting bodies n/a 15 0.022Cayenne pepper fruit and seeds 1 tbsp 5 0.007Cinnamon stalk 2 tsp 5 0.007Clove fruit, stems and buds 2 tsp 5 0.007Ginger 1 2/3 tsp 3 0.004Garlic 1 tsp 2.5 0.004Onion 1 tsp 2.5 0.004Cardamom 1 tsp 2 0.003Oregano oil 10 drops 0.5 0.001Thyme oil 2 drops 1 <0.001 id="p-374" id="p-374" id="p-374" id="p-374" id="p-374" id="p-374" id="p-374" id="p-374" id="p-374" id="p-374" id="p-374"
id="p-374"
[0374]The ingredients in Table 30 provide a total mass of 691 g. The weight per dosage unit is 5 g, including about 0.11 g of dried fruiting bodies. This provides 138 dosage units from the ingredients in Table 30. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.1 mg psilocybin per dosage unit.
Example Formulation 15 - Digestion id="p-375" id="p-375" id="p-375" id="p-375" id="p-375" id="p-375" id="p-375" id="p-375" id="p-375" id="p-375" id="p-375"
id="p-375"
[0375]Table 31 shows the ingredients for Digestion formulated as material to be included in a capsule dosage form.
Table 31:Ingredients for Digestion formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 25 0.37Turmeric root 10 0.15 WO 2022/079574 PCT/IB2021/059301 - 109- Ingredient Weight (g) Ratio Cinnamon stalk 5 0.07Clove fruit, stems and buds 5 0.0770% cacao dark chocolate 5 0.07Decarboxylated cannabis flower with 1:ratio of THGCBD and 20% w/w total 50.07 phytocannabinoidsPeppermint leaves 5 0.07Ginger 2.5 0.04Garlic 2.5 0.04Cardamom 2 0.03 id="p-376" id="p-376" id="p-376" id="p-376" id="p-376" id="p-376" id="p-376" id="p-376" id="p-376" id="p-376" id="p-376"
id="p-376"
[0376]The ingredients in Table 31 provide a total mass of 67 g. The weight per dosage unit is 0.3 g, including about 0.11 g of dried fruiting bodies. This provides 223 dosage units from the ingredients in Table 31. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.1 mg psilocybin per dosage unit. [0377]Table 32 shows the ingredients for Digestion formulated as an edible chew dosage form.
Table 32:Ingredients for Digestion formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 500 0.790Liquid matrix 80 ml 80 0.126Turmeric root 2 tbsp 20 0.032Dried fruiting bodies n/a 15 0.024Cinnamon stalk 2 tsp 5 0.008Clove fruit, stems and buds 2 tsp 5 0.008Garlic 1 tsp 2.5 0.004Ginger 1 tsp 2.5 0.004Cardamom 3/4 tsp 2 0.003Peppermint extract 1 mlg0.002 id="p-378" id="p-378" id="p-378" id="p-378" id="p-378" id="p-378" id="p-378" id="p-378" id="p-378" id="p-378" id="p-378"
id="p-378"
[0378]The ingredients in Table 32 provide a total mass of 633 g. The weight per dosage unit is 5 g, including about 0.11 g of dried fruiting bodies. This provides 126 dosage WO 2022/079574 PCT/IB2021/059301 - 110- units from the ingredients in Table 32. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.1 mg psilocybin per dosage unit.
Example Formulation 16 - Analgesia id="p-379" id="p-379" id="p-379" id="p-379" id="p-379" id="p-379" id="p-379" id="p-379" id="p-379" id="p-379" id="p-379"
id="p-379"
[0379]Table 33 shows the ingredients for Analgesia formulated as material to be included in a capsule dosage form.
Table 33:Ingredients for Analgesia formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 25 0.34Turmeric root 10 0.14Cayenne pepper fruit and seeds 5 0.07Cinnamon stalk 5 0.07Clove fruit, stems and buds 5 0.07Decarboxylated cannabis flower with 1:4ratio or lower of THC:CBD and about 5 0.0720% w/w total phytocannabinoids70% cacao dark chocolate 5 0.07Peppermint leaves 5 0.07Peppercorns 3 0.04Thyme 2.5 0.03Oregano 2.5 0.03 id="p-380" id="p-380" id="p-380" id="p-380" id="p-380" id="p-380" id="p-380" id="p-380" id="p-380" id="p-380" id="p-380"
id="p-380"
[0380]The ingredients in Table 33 provide a total mass of 73 g. The weight per dosage unit is 0.3 g, including about 0.10 g of dried fruiting bodies. This provides 243 dosage units from the ingredients in Table 33. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.0 mg psilocybin per dosage unit. [0381]Table 34 shows the ingredients for Analgesia formulated as an edible chew dosage form.
Table 34:Ingredients for Analgesia formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 550 0.797Liquid matrix 80 ml 80 0.116Turmeric root 2 tbsp 20 0.029 WO 2022/079574 PCT/IB2021/059301 - Ill - Ingredient Volume Weight (g) Ratio Dried fruiting bodies n/a 15 0.022Cayenne pepper fruit and seeds 1 tbsp 5 0.007Cinnamon stalk 2 tsp 5 0.007Clove fruit, stems and buds 2 tsp 5 0.007Decarboxylated cannabis extract with 1:4 ratio or lower of THC:CBD and about 60% to 80% w/w total phytocannabinoidsn/a 5 0.007 Peppercorns n/a 3 0.004Oregano oil 10 drops 0.5 0.001Peppermint oil 10 drops 0.5 0.001Thyme oil 2 drops 0.1 <0.001 id="p-382" id="p-382" id="p-382" id="p-382" id="p-382" id="p-382" id="p-382" id="p-382" id="p-382" id="p-382" id="p-382"
id="p-382"
[0382]The ingredients in Table 34 provide a total mass of 689 g. The weight per dosage unit is 5 g, including about 0.11 g of dried fruiting bodies. This provides 137 dosage units from the ingredients in Table 34. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.1 mg psilocybin per dosage unit.
Example Formulation 17 - TBI Treatment id="p-383" id="p-383" id="p-383" id="p-383" id="p-383" id="p-383" id="p-383" id="p-383" id="p-383" id="p-383" id="p-383"
id="p-383"
[0383]Table 35 shows the ingredients for TBI Treatment formulated as material to be included in a capsule dosage form.
Table 35:Ingredients for TBI Treatment formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 40 0.37Turmeric root 20 0.19Nutmeg seed 10 0.09Decarboxylated cannabis flower with 2:ratio or greater of THC:CBD and about 20% w/w total phytocannabinoids0.09 Cayenne pepper fruit and seeds 5 0.05Cinnamon stalk 5 0.05Clove fruit, stems and buds 5 0.0570% cacao dark chocolate 5 0.05Ginkgo biloba 3 0.03 WO 2022/079574 PCT/IB2021/059301 - 112- Ingredient Weight (g) Ratio Myrrh 2.5 0.02Frankincense 2.5 0.02 id="p-384" id="p-384" id="p-384" id="p-384" id="p-384" id="p-384" id="p-384" id="p-384" id="p-384" id="p-384" id="p-384"
id="p-384"
[0384]The ingredients in Table 35 provide a total mass of 108 g. The weight per dosage unit is 0.3 g, including about 0.11 g of dried fruiting bodies. This provides 360 dosage units from the ingredients in Table 35. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.1 mg psilocybin per dosage unit. [0385]Table 36 shows the ingredients for TBI Treatment formulated as an edible chew dosage form.
Table 36:Ingredients for TBI Treatment formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 650 0.812Liquid matrix 80 ml 80 0.100Dried fruiting bodies n/a 20 0.025Turmeric root 2 tbsp 20 0.025Nutmeg seed 1 % tbsp 10 0.012Cayenne pepper fruit and seeds 1 tbsp 5 0.006Cinnamon stalk 2 tsp 5 0.006Clove fruit, stems and buds 2 tsp 5 0.006Ginkgo biloba leaves 2 tsp 5 0.006Myrrh extract 10 drops 0.5 0.001Frankincense extract 2 drops 0.1 <0.001 id="p-386" id="p-386" id="p-386" id="p-386" id="p-386" id="p-386" id="p-386" id="p-386" id="p-386" id="p-386" id="p-386"
id="p-386"
[0386]The ingredients in Table 36 provide a total mass of 801 g. The weight per dosage unit is 5 g, including about 0.12 g of dried fruiting bodies. This provides 160 dosage units from the ingredients in Table 36. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.2 mg psilocybin per dosage unit.
Example Formulation 18 - Aphrodisiac id="p-387" id="p-387" id="p-387" id="p-387" id="p-387" id="p-387" id="p-387" id="p-387" id="p-387" id="p-387" id="p-387"
id="p-387"
[0387]Table 37 shows the ingredients for Aphrodisiac formulated as material to be included in a capsule dosage form.
WO 2022/079574 PCT/IB2021/059301 - 113 - Table 37:Ingredients for Aphrodisiac formulated for capsules Ingredient Weight (g) Ratio Dried fruiting bodies 30 0.28Turmeric root 20 0.19Nutmeg seed 10 0.09Cayenne pepper fruit and seeds 5 0.05Cinnamon stalk 5 0.05Clove fruit, stems and buds 5 0.05Coffee beans 5 0.0570% cacao dark chocolate 5 0.05Peppermint leaves 5 0.05Kava kava root 5 0.05Peppercorns 3 0.03Ginkgo biloba 3 0.03Frankincense 2.5 0.02Myrrh 2.5 0.02Cardamom 1 0.01 id="p-388" id="p-388" id="p-388" id="p-388" id="p-388" id="p-388" id="p-388" id="p-388" id="p-388" id="p-388" id="p-388"
id="p-388"
[0388]The ingredients in Table 37 provide a total mass of 107 g. The weight per dosage unit is 0.3 g, including about 0.14 g of dried fruiting bodies. This provides 356 dosage units from the ingredients in Table 37. The dried fruiting bodies are about 1.0% psilocybin, providing about 0.14 mg psilocybin per dosage unit. [0389]Table 38 shows the ingredients for Aphrodisiac formulated as an edible chew dosage form.
Table 38:Ingredients for Aphrodisiac formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 500 0.748Liquid matrix 80 ml 80 0.120Dried fruiting bodies n/a 25 0.037Turmeric root 2 tbsp 20 0.030Nutmeg seed 1 % tbsp 10 0.015Kava kava root 2 tsp 5 0.007Cayenne pepper fruit and seeds 1 tbsp 5 0.007 WO 2022/079574 PCT/IB2021/059301 - 114- Ingredient Volume Weight (g) Ratio Cinnamon stalk 2 tsp 5 0.007Clove fruit, stems and buds 2 tsp 5 0.007Coffee beans 1 tbsp 5 0.007Peppercorns 1 1/2 tsp 3 0.004Ginkgo biloba leaves 3/4 tSp 2 0.003Cardamom seeds n/a 2 0.003Peppermint extract 1 ml 1 0.001Myrrh 10 drops 0.5 g 0.001Frankincense 2 drops 0.1g<0.001 id="p-390" id="p-390" id="p-390" id="p-390" id="p-390" id="p-390" id="p-390" id="p-390" id="p-390" id="p-390" id="p-390"
id="p-390"
[0390]The ingredients in Table 38 provide a total mass of 668 g. The weight per dosage unit is 5 g, including about 0.18 g of dried fruiting bodies. This provides 133 dosage units from the ingredients in Table 38. The dried fruiting bodies are about 1.0% psilocybin, providing about 1.8 mg psilocybin per dosage unit.
EXAMPLE 3 id="p-391" id="p-391" id="p-391" id="p-391" id="p-391" id="p-391" id="p-391" id="p-391" id="p-391" id="p-391" id="p-391"
id="p-391"
[0391]Three example formulations were prepared including some of the examples compositions described in Tables 8 and 9. The Base Complete and Focus formulations were prepared as capsules. The Focus formulation was also prepared as an edible chew. These formulations were prepared with serotonin as the primary 5HT2A agonist, but could be prepared with any suitable 5HT2A agonist. The serotonin was provided as purified and formulated serotonin with 50 mg serotonin in each 400 mg capsule. [0392]Unlike psilocybin, many other tryptamines, many ergolines and many phenethylamines, serotonin is not strongly psychoactive and in many jurisdictions is not a controlled substance. The safety and daily consumption limit have been well studied allowing these formulations to be administered to a broader range of individuals including minors.
Example Formulation 07 - Complete id="p-393" id="p-393" id="p-393" id="p-393" id="p-393" id="p-393" id="p-393" id="p-393" id="p-393" id="p-393" id="p-393"
id="p-393"
[0393]Table 39 shows the ingredients for Base Complete formulated as material to be included in a capsule dosage form.
WO 2022/079574 PCT/IB2021/059301 - 115 - Table 39:Ingredients for Base Complete formulated for capsules Ingredient Weight (g) Ratio Turmeric root 20 0.26Compounded serotonin powder 10 0.13Nutmeg seed 10 0.13Coffee beans 10 0.1370% cacao dark chocolate 10 0.13Cayenne pepper fruit and seeds 7 0.09Cinnamon stalk 5 0.06Clove fruit, stems and buds 5 0.06 id="p-394" id="p-394" id="p-394" id="p-394" id="p-394" id="p-394" id="p-394" id="p-394" id="p-394" id="p-394" id="p-394"
id="p-394"
[0394]The ingredients in Table 39 provide a total mass of 77 g. The weight per dosageunit is 0.5 g, including about 0.06 g of compounded serotonin powder. This provides 1dosage units from the ingredients in Table 39. The compounded serotonin powder is about 12.5% serotonin, providing about 7.5 mg serotonin per dosage unit.
Example Formulation 12 - Focus id="p-395" id="p-395" id="p-395" id="p-395" id="p-395" id="p-395" id="p-395" id="p-395" id="p-395" id="p-395" id="p-395"
id="p-395"
[0395]Table 40 shows the ingredients for Focus formulated as material to be included in a capsule dosage form.
Table 40:Ingredients for Focus formulated for capsules Ingredient Weight (g) Ratio Compounded serotonin powder 20 0.23Turmeric root 20 0.23Nutmeg seed 10 0.12Cayenne pepper fruit and seeds 5 0.06Cinnamon stalk 5 0.06Clove fruit, stems and buds 5 0.06Coffee beans 5 0.0670% cacao dark chocolate 5 0.06Peppermint leaves 5 0.06Ginkgo biloba leaves 3 0.03Peppercorns 3 0.03 WO 2022/079574 PCT/IB2021/059301 - 116- id="p-396" id="p-396" id="p-396" id="p-396" id="p-396" id="p-396" id="p-396" id="p-396" id="p-396" id="p-396" id="p-396"
id="p-396"
[0396]The ingredients in Table 40 provide a total mass of 86 g. The weight per dosage unit is 0.3 g, including about 0.07 g of compounded serotonin powder. This provides 2dosage units from the ingredients in Table 40. The compounded serotonin powder is about 12.5 % serotonin, providing about 8.75 mg serotonin per dosage unit. [0397]Table 41 shows the ingredients for Focus formulated as an edible chew dosage form.
Table 41:Ingredients for Focus formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 500 0.778Liquid matrix 80 ml 80 0.124Turmeric root 2 tbsp 20 0.031Compounded serotonin powder n/a 15 0.016Nutmeg seed 3/4 tbsp 5 0.008Cayenne pepper fruit and seeds 1 tbsp 5 0.008Cinnamon stalk 2 tsp 5 0.008Clove fruit, stems and buds 2 tsp 5 0.008Coffee beans 1 tbsp 5 0.008Peppercorns 2 tsp 5 0.008Ginkgo biloba leaves n/a 2 0.003Peppermint extract 1 ml 1 0.002 id="p-398" id="p-398" id="p-398" id="p-398" id="p-398" id="p-398" id="p-398" id="p-398" id="p-398" id="p-398" id="p-398"
id="p-398"
[0398]The ingredients in Table 41 provide a total mass of 643 g. The weight per dosage unit is 5 g, including about 0.08 g of compounded serotonin powder. This provides 1dosage units from the ingredients in Table 41. The compounded serotonin powder is about 12.5 % serotonin, providing about 1.0 mg serotonin per dosage unit.
EXAMPLE 4 id="p-399" id="p-399" id="p-399" id="p-399" id="p-399" id="p-399" id="p-399" id="p-399" id="p-399" id="p-399" id="p-399"
id="p-399"
[0399]Three example formulations were prepared including some of the examples compositions described in Tables 8 and 9. The Base Complete, formulations were prepared as capsules. These formulations were prepared with ergolines as the 5HT2A agonist, but could be prepared with any suitable 5HT2A agonist. The ergolines were WO 2022/079574 PCT/IB2021/059301 - 117- provided either morning glory seeds or Hawaiian baby woodrose seeds that have been crushed and pulverized into a fine powder.
Example Formulation 07 - Base Complete id="p-400" id="p-400" id="p-400" id="p-400" id="p-400" id="p-400" id="p-400" id="p-400" id="p-400" id="p-400" id="p-400"
id="p-400"
[0400]Table 42 shows the ingredients for Base Complete formulated as material to be included in a capsule dosage form.
Table 42:Ingredients for Base Complete formulated for capsules Ingredient Weight (g) Ratio Morning glory seed 40 0.42Turmeric root 20 0.21Nutmeg seed 10 0.11Cayenne pepper fruit and seeds 5 0.05Cinnamon stalk 5 0.05Clove fruit, stems and buds 5 0.05Coffee beans 5 0.0570% cacao dark chocolate 5 0.05 id="p-401" id="p-401" id="p-401" id="p-401" id="p-401" id="p-401" id="p-401" id="p-401" id="p-401" id="p-401" id="p-401"
id="p-401"
[0401]The ingredients in Table 42 provide a total mass of 95 g. The weight per dosage unit is 0.5 g, including about 0.21 g of morning glory seeds. This provides 253 dosage units from the ingredients in Table 42. [0402]According to one study, morning glory seeds are between 260 ug/g and 300 ug/g ESA and about 0.5 to 1.75 relative abundance of ESH to ESA and ergometrine, providing between 130 ug/g and 525 ug/g ESH in morning glory seeds (Nowak, J., Wozniakiewicz, M., Klepacki, P., Sowa, A., & Koscielniak, P. (2016). Identification and determination of ergot alkaloids in Morning Glory cultivars. Analytical and bioanalytical chemistry, 408(12), 3093-3102, which is incorporated herein by reference in its entirety). At these concentrations of ergolines, each dosage unit includes between 54 to 63 pg ESA per dosage unit and between 27 and 95 pg ESH per dosage unit.
Example Formulation 07 - Base Complete id="p-403" id="p-403" id="p-403" id="p-403" id="p-403" id="p-403" id="p-403" id="p-403" id="p-403" id="p-403" id="p-403"
id="p-403"
[0403]Table 43 shows the ingredients for Base Complete formulated as material used in in a tea format. Peppermint tea may be used to mitigate potential stomach cramping, WO 2022/079574 PCT/IB2021/059301 - 118 - through the addition to menthol providing a 5HT3 antagonist. The tea may also be combined with bergamot, garlic or ginger.
Table 43:Ingredients for Base Complete formulated for use in tea Ingredient Weight (g) Ratio Morning glory seed 42 0.42Turmeric root 21 0.21Nutmeg seed 12 0.12Cayenne pepper fruit and seeds 5 0.05Cinnamon stalk 5 0.05Clove fruit, stems and buds 5 0.05Coffee beans 5 0.0570% cacao dark chocolate 5 0.05 id="p-404" id="p-404" id="p-404" id="p-404" id="p-404" id="p-404" id="p-404" id="p-404" id="p-404" id="p-404" id="p-404"
id="p-404"
[0404]The ingredients in Table 43 provide a total mass of 99 g. One gram of the formulation is used in a cup of tea, which includes including about 0.42 g of morning glory seeds. [0405]According to one study, morning glory seeds are between 260 ug/g and 300 ug/g LSA and about 0.5 to 1.75 relative abundance of LSH to LSA and ergometrine, providing between 130 ug/g and 525 ug/g LSH in morning glory seeds (Nowak, 2016). At these concentrations of ergolines, each dosage unit includes between 260 pg and 300 pg LSA per dosage unit and between 130 pg and 525 pg LSH per dosage unit.
Example Formulation 07 - Base Complete id="p-406" id="p-406" id="p-406" id="p-406" id="p-406" id="p-406" id="p-406" id="p-406" id="p-406" id="p-406" id="p-406"
id="p-406"
[0406]Table 44 shows the ingredients for Base Complete formulated as an edible chewdosage form. This formulation may also include peppercorns or CBD.
Table 44:Ingredients for Focus formulated as edible chews Ingredient Volume Weight (g) Ratio Dark chocolate (70% cacao) n/a 600 0.780Liquid matrix 80 ml 80 0.104Morning glory seeds n/a 42 0.055Turmeric root 2 tbsp 20 0.027Nutmeg seed 2 tbsp 12 0.016 WO 2022/079574 PCT/IB2021/059301 - 119- Ingredient Volume Weight (g) Ratio Cinnamon stalk 2 tsp 5 0.006Clove fruit, stems and buds 2 tsp 5 0.006Cayenne pepper fruit and seeds 3/4 tbsp 4 0.005Peppermint oil extract 0.5 ml 0.5 0.001 id="p-407" id="p-407" id="p-407" id="p-407" id="p-407" id="p-407" id="p-407" id="p-407" id="p-407" id="p-407" id="p-407"
id="p-407"
[0407]The ingredients in Table 44 provide a total mass of 769.5 g. Each dosage unit is g, which includes including about 0.49 g of morning glory seeds. This provides dosage units from the ingredients in Table 44. [0408]According to one study, morning glory seeds are between 260 ug/g and 300 ug/g LSA and about 0.5 to 1.75 relative abundance of LSH to LSA and ergometrine, providing between 130 ug/g and 525 ug/g LSH in morning glory seeds (Nowak, 2016). At these concentrations of ergolines, each dosage unit includes between 130 and 150 pg LSA and between 65 and 260 pg LSH.
Example Formulation 07 - Base Complete id="p-409" id="p-409" id="p-409" id="p-409" id="p-409" id="p-409" id="p-409" id="p-409" id="p-409" id="p-409" id="p-409"
id="p-409"
[0409]Table 45 shows the ingredients for Base Complete formulated as material to be included in a capsule dosage form with Hawaiian Baby woodrose seeds.
Table 45:Ingredients for Base Complete formulated for capsules Ingredient Weight (g) Ratio Turmeric root 20 0.35Nutmeg seed 10 0.1870% cacao dark chocolate 10 0.18Cayenne pepper fruit and seeds 7 0.12Cinnamon stalk 5 0.09Clove fruit, stems and buds 5 0.09 id="p-410" id="p-410" id="p-410" id="p-410" id="p-410" id="p-410" id="p-410" id="p-410" id="p-410" id="p-410" id="p-410"
id="p-410"
[0410]The ingredients in Table 45 provide a total mass of 57 g. The weight per dosage unit is 0.3 g. This provides 190 dosage units from the ingredients in Table 45. The capsules may be taken with a separate capsule including between 50 and 300 mg Hawaiian baby woodrose seeds. Due to the number of doses required to achieve efficacy with Morning glory seeds, Hawaiian baby woodrose seeds were pulverized and WO 2022/079574 PCT/IB2021/059301 - 120- distributed as a separate pill as a preferred method of consumption. This allows the user to increase either the 5HT2A agonists or the TRP agonists separately. [0411]According to one study, Hawaiian baby woodrose seeds are about 1,400 ug/g LSA, 1,800 ug/g iso-LSA, 350 ug/g LSH and 240 ug/g iso-LSH (Chao, 1973). At these concentrations of ergolines, each 50 mg to 300 mg dosage unit of Hawaiian baby woodrose seeds includes between 70 pg and 420 pg LSA, between 90 pg and 540 pg iso- LSA, between 20 pg and 120 pg LSH and between 10 pg and 70 pg iso-LSH.
Example Formulation 07 - Base Complete with Garlic and Onion id="p-412" id="p-412" id="p-412" id="p-412" id="p-412" id="p-412" id="p-412" id="p-412" id="p-412" id="p-412" id="p-412"
id="p-412"
[0412]Table 46 shows the ingredients for Base Complete with garlic and onion formulated as material to be included in a capsule dosage form.
Table 46:Ingredients for Base Complete formulated for capsules Ingredient Weight (g) Ratio Turmeric root 20 0.33Nutmeg seed 10 0.17Cayenne pepper fruit and seeds 5 0.0870% cacao dark chocolate 5 0.08Cinnamon stalk 5 0.08Clove fruit, stems and buds 5 0.08Ginger 5 0.08Garlic 5 0.08 id="p-413" id="p-413" id="p-413" id="p-413" id="p-413" id="p-413" id="p-413" id="p-413" id="p-413" id="p-413" id="p-413"
id="p-413"
[0413]The ingredients in Table 46 provide a total mass of 60 g. The weight per dosage unit is 0.3 g, This provides 200 dosage units from the ingredients in Table 46. The capsules may be taken with a separate capsule including between 50 and 300 mg Hawaiian baby woodrose seeds. [0414]According to one study, Hawaiian baby woodrose seeds are about 1,400 pg/g LSA, 1,800 pg/g iso-LSA, 350 pg/g LSH and 240 pg/g iso-LSH (Chao, 1973). At these concentrations of ergolines, each 50 mg to 300 mg dosage unit of Hawaiian baby woodrose seeds includes between 70 pg and 420 pg LSA, between 90 pg and 540 pg iso- LSA, between 20 pg and 120 pg LSH and between 10 pg and 70 pg iso-LSH.
WO 2022/079574 PCT/IB2021/059301 - 121 - Example Formulation 07 - Base Complete id="p-415" id="p-415" id="p-415" id="p-415" id="p-415" id="p-415" id="p-415" id="p-415" id="p-415" id="p-415" id="p-415"
id="p-415"
[0415]Table 47 shows the ingredients for Base Complete formulated as material to be included in a capsule dosage form.
Table 47:Ingredients for Base Complete formulated for capsules Ingredient Weight (g) Ratio Turmeric root 20 0.31Hawaiian baby woodrose seeds 10 0.16Nutmeg seed 10 0.16Cinnamon stalk 5 0.08Clove fruit, stems and buds 5 0.08Coffee beans 5 0.0870% cacao dark chocolate 5 0.08Cayenne pepper fruit and seeds 4 0.06 id="p-416" id="p-416" id="p-416" id="p-416" id="p-416" id="p-416" id="p-416" id="p-416" id="p-416" id="p-416" id="p-416"
id="p-416"
[0416]The ingredients in Table 47 provide a total mass of 64 g. The weight per dosage unit is 0.5 g, including about 0.16 g of Hawaiian baby woodrose seeds. This provides 1dosage units from the ingredients in Table 47. [0417]According to one study, Hawaiian baby woodrose seeds are about 1,400 ug/g ESA, 1,800 ug/g iso-LSA, 350 ug/g ESH and 240 ug/g iso-LSH (Chao, 1973). At these concentrations of ergolines, each dosage unit includes 220 pg ESA, 290 pg iso-LSA, pg ESH and 40 pg iso-LSH.
Example Formulation 19 - Enhanced Focus id="p-418" id="p-418" id="p-418" id="p-418" id="p-418" id="p-418" id="p-418" id="p-418" id="p-418" id="p-418" id="p-418"
id="p-418"
[0418]Table 48 shows the ingredients for an Enhanced Focus LSA/LSH recipe that can be made with either morning glory or Hawaiian baby woodrose.
Table 48:Ingredients for Enhanced Focus formulated for capsules Ingredient Weight (g) Ratio Morning Glory citrate powder 42 0.66Nutmeg seed 21 0.33Peppermint oil 0.5 0.01Frankincense oil 0.25 3.92E-05 WO 2022/079574 PCT/IB2021/059301 - 122- id="p-419" id="p-419" id="p-419" id="p-419" id="p-419" id="p-419" id="p-419" id="p-419" id="p-419" id="p-419" id="p-419"
id="p-419"
[0419]The ingredients in Table 48 provide a total mass of 63.75g. Each dosage unit is 0.3 g, which includes including about 0. 198g of morning glory seeds in citrate powder form. This provides 212 dosage units from the ingredients in Table 44. [0420]Reformulation and extraction of LSA and LSH with citric juices or citric acid was found to make the recipe significantly more tolerable and palatable. Seeds were pulverized and soaked in juices of lemon, lime or orange, followed by dehydration in a standard food dehydrator. An alcohol may be added to aid in the process or even extract the active metabolites if desired. The seed mash is soaked in the liquid overnight (hours minimum), dried and then reground and used in formulations. The process was also repeated with Citric Acid at pH 3.5 with a similar result being achieved. Conversion of LSA/LSH to a citrate form of the molecule can be confirmed with a UV ‘black’ light as the seed mash fluoresces after this treatment. Though the complete conversions of the molecules cannot be confirmed, it is presumed that at least some of the metabolites are converted. It is suspected this allows them to pass the stomach more easily and bypass some of the interaction with 5HT3 receptors that may cause nausea. According to one study, morning glory seeds are between 260 ug/g and 300 ug/g LSA and about 0.5 to 1.75 relative abundance of LSH to LSA and ergometrine, providing between 130 ug/g and 525 ug/g LSH in morning glory seeds (Nowak, 2016). At these concentrations of ergolines, each dosage unit includes between 130 and 150 pg LSA and between 65 and 260 pg LSH, though at least some of this is suspected to be in a citrate form through chemical reaction processes.
EXAMPLE 5 id="p-421" id="p-421" id="p-421" id="p-421" id="p-421" id="p-421" id="p-421" id="p-421" id="p-421" id="p-421" id="p-421"
id="p-421"
[0421]Product development studies were directed to defining MED formulations that would reduce or eliminate any potential negative side effects and also mitigate the psychoactive effects of psilocybin. The specific objectives were fivefold. First,to develop a multimodal a broad spectrum treatment for multi-symptomatic individuals and those who present with more than one persistent medical condition including those related to inflammation, pain and a mental health condition or mood disorder. Second,to prevent any tolerance or resistance to the 5HT2A agonist activity being established with prolonged or consecutive use. Some issues have been reported with taking microdose formulations everyday resulting in a reduction in efficacy, requiring a higher dose to be WO 2022/079574 PCT/IB2021/059301 - 123 - taken subsequently or a period of abstinence time between doses, for example taken once every three days. Ramping doses of the 5HT2A agonist may complicate stabilization of a condition or of general health. Third,to eliminate any intoxicating effects associated with 5HT2A agonism, facilitating use of formulations during everyday activities without compromising, impairing, perturbing or otherwise altering mental ability as a result of strongly psychoactive effects of the 5HT2A agonist. To mitigate intoxicating effects, potentiator compounds were assessed that would allow for a reduced dose of the 5HT2A agonist while still retaining efficacy of the 5HT2A agonist. Fourth,to achieve a prolonged and sustained effect. Often psilocybin shows a relatively rapid onset with maximum effects at 45min to 1 hour and then notable reduced effects tapering off from this point. In contrast, some other 5HT2A agonists show sustained activity for sometimes to 12 hours or more. Inclusion of specific ingredients were meant to prolong the effect of the psilocybin or other ingredients to reduce the need for regular dosing and to allow for individuals to gauge the duration of the effects of the compositions. Fifth,to achieve little to no side physical side-effects, including mitigating psychoactive effects, and to mitigate stomach and bowel discomfort, each of which are often reported with use of psilocybin. Some ingredients was specifically to reduce unpleasant physical effects from any of the active ingredients in the formulation.
Methods id="p-422" id="p-422" id="p-422" id="p-422" id="p-422" id="p-422" id="p-422" id="p-422" id="p-422" id="p-422" id="p-422"
id="p-422"
[0422]Edible chew and capsule formulations including the Base 07 - Complete with coffee beans, the 5HT2A agonist alone with corn starch (positive control) or sugar and placebo formulations including corn starch (negative control) or sugar alone (double negative control) were prepared and provided to small groups of individuals for assessment of the effects of the compositions. [0423]All participants were informed that each dosage unit of active composition or psilocybin control that included, depending on the study, between 0.05 and 0.30 g of dried P. cubensis fruiting bodies, between 0.05 and 0.50 g of morning glory seeds or between 0.05 and 0.50 g of Hawaiian baby woodrose seeds. The formulations also included additional GRAS material. Participants were informed that the data would be used for research and for protection of intellectual property rights. All participants were informed that a survey would follow and that participation in the survey was voluntary. No potential benefits were communicated to participants. All studies with psilocybin WO 2022/079574 PCT/IB2021/059301 - 124- were conducted in Jamaica where psilocybin is not scheduled as a controlled substance. All studies with morning glory seeds or Hawaiian baby woodrose seeds were in a jurisdiction where possession and person use of morning glory seeds or Hawaiian baby woodrose seeds is compliant with controlled substances law. Some studies were undertaken in the context of a music festival. Other studies were undertaken at psilocybin retreat events. Numerous individuals also self-administered the formulations in their personal space and observed their daily routines over an extended number of days of using the formulations. Exclusion criteria were applied in a questionnaire to exclude individuals with a schizophrenia diagnosis, individuals with a family history of schizophrenia, pregnant individuals, minors and other high-risk categories for using psilocybin. [0424]Typically, between 1 and 9 dosage units were provided to each participant per day. The studies varied in duration from one day to four weeks. Heavier individuals (<75kg) were typically given larger dosages. This conservative approach to dosing participants is consistent with the MED approach and with mitigating potential negative results from the study.
Results from Music Festival Surveys id="p-425" id="p-425" id="p-425" id="p-425" id="p-425" id="p-425" id="p-425" id="p-425" id="p-425" id="p-425" id="p-425"
id="p-425"
[0425]On multiple occasions a standard dose of the chocolate format of the complete recipe was distributed prior to a music festival event in Jamaica. Participants signed waivers and knowingly were consuming a "psilocybin microdose formulation" and a minimal education and safety session was given regarding the dose prior to being distributed. The GRAS material in the formulation was not identified. Some participants completed optional surveys following the experience, and data was gathered from the surveys. Participants were allowed to consume up to 3 chocolates throughout an evening though only one is distributed to start. A minimum delay of one hour was applied for all participants before a second dose or third dose. [0426]Overall, there was an astoundingly positive response. Individuals were happily surprised that they consumed less alcohol or other drugs after taking the formulation. Individuals reported feeling alert and good overall the following day. No hangover of strong intoxication effects was reported. Out of one hundred participants at a music festival, only one participant reported feeling overwhelmed by anxiety related to the effects to the extent of choosing to leave the music festival. A few individuals reported WO 2022/079574 PCT/IB2021/059301 - 125 - not feeling anything at all. Most reported having an excellent experience with elevation in mood and enhancement of feelings of well-being and energy, as well as lasting positive changes post-experience. Some individuals experienced profound and lasting changes in perspective on life. One individual reported that previous intrusive suicidal thoughts were completely eliminated following one dose of the formulation. All individuals who chose to also consume alcohol reported reduced consumption.
Results from Wellness Retreat Surveys id="p-427" id="p-427" id="p-427" id="p-427" id="p-427" id="p-427" id="p-427" id="p-427" id="p-427" id="p-427" id="p-427"
id="p-427"
[0427]Participants attended a five-day all inclusive retreat in Jamaica with a complete integrative wellness package. While no health benefits were attributed to psilocybin, participants were aware of optional microdose chocolates or capsules offered up to three times a day. The formulations were of the 07 - Base Complete composition. In some cases, the composition was adjusted for guests who may have had specific conditions they were looking to address and formulations of other compositions were provided to these guests. Formulations including Base 2 - Mood Support, 11- Relaxation, 12 - Focus, - Creativity and 18 - Aphrodisiac. [0428]Many participants reported a life altering experience with lasting and meaningful change in their lives. Some participants reported that the experience felt like the first vacation they feel truly rested from. Many felt renewed and able to return to their lives and struggles with new skills and tools around health and well being. Both single individuals and couples showed benefits in their lives and relationships. [0429]More specifically, participants reported reduction in negative symptoms, such as, depression, anxiety, suicidal ideation, PTSD symptoms, and negative self-talk. Participants also reported improvements of personal and work relationship communication, sleep health, inspiration to perform self-care tasks, increased creativity and more. No negative side effects or other negative consequences by individuals attending the retreat have been reported. [0430]Formulations of the 07 Base - Complete were provided to multiple individuals who subsequently reported that they had been on the verge of attempting suicide or had recently attempted to commit suicide. In some cases, a single MED drastically improved the individual’s mental state. In all cases, the desire to commit suicide was drastically reduced or completely eliminated, facilitating other therapeutic interventions. Most continued daily activities after taking a MED of a formulation of the 07 Base - Complete WO 2022/079574 PCT/IB2021/059301 - 126- composition with only intermittent breaks. These individuals have often reported feeling like "themselves again" or "not having felt as good in years". [0431]Often these individuals were using or addicted to other drugs, whether prescription pharmaceuticals or illicit substances - and have replaced these substances with the formulation, and in some cases reported maintaining societal functions such as working, driving, and other regular activities. Many reported increased interest in daily life activities, a shift in perspective, a presence of positive emotions, increased energy and an increased desire and ability to interact, communicate or feel connected with others.
Results from Unsupervised Regular Home Use. id="p-432" id="p-432" id="p-432" id="p-432" id="p-432" id="p-432" id="p-432" id="p-432" id="p-432" id="p-432" id="p-432"
id="p-432"
[0432]Many individuals consumed the 07 Base - Complete composition in a capsule or chocolate formulation. In some cases, other recipes were formulated based on the specific condition the individual might have been facing such as comorbidities with depression. Many saw profound changes within a short period of time (hours to days). These changes were often associated with both mental and physical health. Improved mood and increased energy are reported by most individuals consuming the formulation daily. Little to no tolerance was reported with daily use. Some individuals increased dosage as weeks progressed, though most found a single dose effective and were able to perform regular tasks at this dose. Most individuals who used pharmaceutical drugs such as painkillers and antidepressants reported decreased use of these substances, but often required a higher dose (such as 2x) to obtain efficacy. Most individuals who used alcohol reported reduced consumption of alcohol and regular use of other potentially impairing substances after using the formulations.
Overall Summary of Results id="p-433" id="p-433" id="p-433" id="p-433" id="p-433" id="p-433" id="p-433" id="p-433" id="p-433" id="p-433" id="p-433"
id="p-433"
[0433]After over three thousand doses distributed in Jamaica, including hundreds of individuals who consumed the compositions for at least three days in a row, there have had almost no reports of negative side effects and zero serious adverse events reported. [0434]In all cases of placebo, no statistical significant improvement was noted and no effects reported. For psilocybin alone, at the point which the individual reported feeling the effects of the psilocybin, they also reported some psychoactive effects and sometimes physical side-effects. With the inclusion of TRP agonists with psilocybin, the amount of psilocybin needed to achieve a notable effect was reduced, resulting in a reduction in WO 2022/079574 PCT/IB2021/059301 - 127- psychoactive effects and other side effects. In some cases, TRP agonists alone helped with pain or inflammation issues, but again the addition of both TRP and 5HT2A increases efficacy and reduced the amount of either class of substance required to achieve the effect. In order to achieve a similar effect with Psilocybin, a higher amount (almost triple) was required than when combined with TRP receptor agonists. Formulations of the Base 07 - Complete composition produced what many individuals referred to as a "lightness" or "glow" for 4 to 6 hours and a sustained good mood for days or weeks afterwards in some cases. Alterations of the ingredients and amounts of certain ingredients altered the effect of the formulation and allows adjustment to treat specific conditions more effectively, as shown above in Tables 8 and 9. There are many agonists for both the 5HT2A receptor and TRP family receptors. Various molecules and combinations of molecules alter the effects in a subjectively noticeable way [0435]Lack of effect from a single dose was the most common complaint and most these were able to feel the effects of the formulation within three doses. Many individuals who complained of not feeling one dose were over 200 lbs in weight, well above the 150 lb average that was used in calculating the MED. Conversely, some smaller individuals, often female, would half the MED dose, suggesting that even 50% of a MED is enough for some people. In individuals who used the formulation for several days, a double dose was common for regular users over 70 kg, but not for those under 70 kg. No significant tolerance effects or buildup have been reported beyond situationally increasing dosage based on increased stress to the system, whether mental or physical. [0436]Many individuals reported minimal to no psychoactive effects from a single MED, but nearly all individuals felt psychoactive effects from three MEDs. There is some contraindication of psilocybin with SSRI based on both literature and observation. Blocking serotonin reuptake at the brain may limit the effect of the incoming signal from the gut. Individuals taking SSRIs do not appear to feel the effects of a MED and require an increased dose in order to feel anything at all in most cases. Individuals on low levels of citalopram appeared to show significant results but those on higher doses of fluoxetine or other stronger SSRIs do not often feel the effect from a MED that affects healthy individuals who are not using SSRIs. This trend result was not as pronounced with Wellbutrin, which is a dopamine uptake inhibitor, but still there appeared to be a cross- tolerance or lack of effect to the formulations when SSRIs were present in the system.
WO 2022/079574 PCT/IB2021/059301 - 128 - Some individuals who weened off SSRI medications saw similar results to those not using SSRIs after a few months. [0437]The most commonly noted side effects were digestive issues or stomach cramping. In many cases, stomach cramping was minor and subsided quickly. Two individuals reported severe intestinal pain. One awoke the morning after with sharp pains that were not accompanied by irregular bowel activity. Cramps were sharp and painful but went away within an hour of waking. The second individual develop the symptoms after using the formulation for a significant period of time (over three weeks). Severe cramping would occur not often occur during the dosage, but hours after when the effects had worn off. The second individual then tried psilocybin mushrooms alone with no other additives and the cramping returned, indicating it was not specific to the formulation, but rather psilocybin. The second individual responded well to a formulation lacking psilocybin but containing serotonin as a 5HT2A substitute, demonstrating that psilocybin is not required for efficacy and that serotonin or other 5HT2A agonists may effectively combine with TRP molecules. These cases indicate that a small subset of the population may have some sensitivity to psilocybin or the mushrooms themselves, perhaps as a result of abnormal pain receptor signaling following 5HT2A receptor agonism. It is possible that improper signaling between 5HT2A and TRP Receptors may occur as a result of this stimulated signaling, resulting in the painful sensation. Alternatively, TRP agonists may be flooding the system in large concentrations once metabolized and cause this pain. Regardless, this appears to be sensitization of TRP channels to signal heat and pain. [0438]At the amount of Psilocybin consumed in one MED (>150mg dried fruiting bodies), there were no reports of intoxication or other psychoactive effects to a degree that influenced motor skills or coordination. The vast majority of individuals reported normal ability to perform simple motor tasks. Some report enhanced positive feelings and none report enhanced negative feelings. Some report this positive effect lasted for weeks after a single MED. [0439]Effects observed in individuals included increased ability to relax, increased ability to concentrate, enhanced cognitive effects, increased energy levels, lower appetite levels, increased disposition to avoid sugar and lowered requirement for prescription medications.
WO 2022/079574 PCT/IB2021/059301 - 129- id="p-440" id="p-440" id="p-440" id="p-440" id="p-440" id="p-440" id="p-440" id="p-440" id="p-440" id="p-440" id="p-440"
id="p-440"
[0440]Some individuals reported difficulty sleeping before taking the formulations. Some individuals who reported difficulty sleeping after an active dose were provided with formulations excluding coffee beans or cacao, and thereafter reported less difficulty sleeping. [0441]Most individuals reported persistent effects of the medication six hours after consumption of a MED. In contrast most individuals who took equivalent or higher doses of psilocybin alone do not report feeling effects at 6 hours after consumption. [0442]Some individuals reported an absence of suicidal ideation after taking even a single MED, and reported generally higher to feeling amazing and having no desire to kill themselves within a single dose. Amazing results in most individuals following one day of treatment. This is contrary to all available antidepressants on the market. [0443]The compositions may be applied to reduce addiction and pleasure seeking behaviors, finding application in harm reduction approaches. Drug addicts often show reduced 5HT2A expression and lower abundance of 5HT2A receptors. Formulations of the compositions provided herein improved the ability of people to cease use of addictive drugs including alcohol, tobacco (or other nicotine), cocaine and opiates, even when the formulations were consumed at music festivals. Individuals have also reported mitigated addictive behaviors such as gambling.
EXAMPLE 6 id="p-444" id="p-444" id="p-444" id="p-444" id="p-444" id="p-444" id="p-444" id="p-444" id="p-444" id="p-444" id="p-444"
id="p-444"
[0444]Variation in the activity of different 5HT2A agonists was confirmed through analysis of compounds known to interact with serotonin receptors, and specifically ergoline class molecules. The Convolvulaceae family, commonly referred to as the bindweed or morning glory family, comprises approximately sixty genera and more than 1,650 species of mostly herbaceous vines. Morning glory seeds have been used to produce psychedelic experiences through ingestion due to the presence of ESA or ESH. A number of species in this family are known to produce hallucinogenic effects when consumed. (Grzegorz, 2013) [0445]Experiments were performed with seeds from three different species, Heavenly Blue morning glory (Ipomoea tricolor), Mexican Morning glory (Ipomoea hederacea), traditionally known as Ololiuqui, and Hawaiian Baby Woodrose (Argyreia nervosa) also known as Elephant creeper. The Heavenly Blue morning glory seemed to be slightly more WO 2022/079574 PCT/IB2021/059301 - 130- potent than the Mexican variety at an equivalent weighted dose. The Hawaiian baby woodrose was at least three times as strong as the Heavenly Blue variety of morning glory when considered by mass. This was reflected in the MED50, which was under >300 mg of seeds for Hawaiian baby woodrose and over 1000 mg for Heavenly Blue morning glory. This correlates with literature regarding the amounts of LSA or LSH in the seeds with Hawaiian baby woodrose containing approximately triple the ergoline content compared with the morning glory. [0446]Ingestion of Hawaiian baby woodrose or morning glory seeds alone resulted in significant psychoactive effects at higher doses. For Hawaiian baby woodrose 300 mg of ground seed was required to achieve MED50 and over 500 mg typically resulted in intoxicating effects including visual distortions and mild hallucinations. Similar to psilocybin, the MED for Hawaiian baby woodrose seeds is lowered by the inclusion of TRP agonists and these potentiator compounds influence the effects of the LSA, the LSH and potentially other 5HT2A agonist molecules present in the seeds. With TRP agonists included, even 250 mg was too much for most people to tolerate comfortably and was well above the established MED50 of around 140 mg. The TRP agonists potentiate the combination of LSA, LSH significantly to the point of making it uncomfortable for most individuals even at moderate doses (<200 mg seed with TRPs). [0447]As seen with Psilocybin, the addition of the TRP agonists to species containing LSA, LSH and other ergolines also significantly reduced the MED50, by a similar margin of 2/3. There was a reduction in the MED50 with TRP agonists added to psilocybin by nearly 60% and similar reductions were achieved for both morning glory and Hawaiian baby woodrose seeds (see Figs. 6 to 8). As such, the TRP agonists make the effects of the 5HT2A agonists about three times more noticeable as when taken alone. [0448]The active ergoline molecules present in Convolvulaceae species are more similar in subjective to LSD than to psilocybin and when consumed on their own, which is consistent with the presence of LSA, LSH and other ergolines. Without the inclusion of the TRP receptor agonists, the effects were significantly different than psilocybin. Even at lower doses, the effects were notably different than previously described formulations with psilocybin. While still producing an improved mood and slight euphoric feeling, there were subjective differences in many areas. The duration was significantly longer with most still feeling the effects 9 hours after a single dose, and in some cases 12 hours after dosing. Unlike psilocybin, the effects do not result in a feeling of connection to WO 2022/079574 PCT/IB2021/059301 - 131 - others or the environment. While psilocybin often improves openness and promotes communication, LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds almost seem to do the opposite. Instead, these appear to be quite introspective. Definitely a desire to be away from groups of people or unknown situations and remain in a comfortable setting. Subjects report a desire to avoid being alone due to the anxiety, and also a desire to avoid strangers or to participate in situations wherein the individual lacks control. Comfort is key to a stress-free or low-stress environment due to the anxiety that may be caused by LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds. [0449]While subjects generally appear activities outdoor such as gardening, or in nature such as hiking, the LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds appears to be more useful for individual tasks not involving groups or other people. Some individuals described feeling "energized" and compelled to do things after taking formulations including LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds. Unfortunately there also appears to be negative effects on the hippocampus, including difficulties with spatial memory. Multiple subjects report forgetting what they were doing or where they had put things down. Participants report it being easy to get lost in thought and also difficult to sit still. [0450]Without the TRP agonists, the effects appeared to overlap somewhat with attention deficit disorder inducing and most individuals did not enjoy the experience. With the presence of TRPs and a reduced dose of LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds, therapeutic effects to the formulations may be more accessible, particularly with respect to creativity. Despite a lack of mental focus, there was also an underlying clarity of being, an enhancement of visual and auditory senses, but overpowering or hallucinogenic effects were uncommon. Tunnel-like vision was reported by a few individuals, yet most were still able to perform regular tasks such as riding a bicycle, mowing the lawn, washing dishes, etc. Manty individuals were able to concentrate on specific tasks, but tasks with math, numbers or spreadsheets seemed almost impossible to some individuals. In contrast, music and art are most enjoyable, as either a spectator or creator. Individuals note seeing things they have never seen before and noticing small details they had overlooked. Music appeared to some individuals to have more depth and color.
WO 2022/079574 PCT/IB2021/059301 - 132- id="p-451" id="p-451" id="p-451" id="p-451" id="p-451" id="p-451" id="p-451" id="p-451" id="p-451" id="p-451" id="p-451"
id="p-451"
[0451]As indicated by the predicted amounts of LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds, the Hawaiian baby woodrose was very strong and felt somewhat "heavy" compared to the morning glory seeds. In some individuals, breathing felt heavy or slowed with Hawaiian baby woodrose and adds to the anxiety effects. This was not as pronounced with morning glory where about 0.5 grams of seeds seems to be an effective and comfortable dose for most people when TRP receptor agonists are present. [0452]Anxiety was reported in almost all users, particularly within the first two hours following ingestion. This is likely due to interaction with 5HT3 serotonin receptor. The 5HT3 serotonin receptor is activated by LSA and LSH. The activation of 5HT3 along with differential activity at the 5HT2A receptor likely accounts for some of the differences between psilocybin and the seeds containing LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds. Psilocybin is less likely to activate 5HT3 than are LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds. Menthol is an antagonist of 5HT3 (Ashoor, 2013), and inclusion of peppermint in the formulations helped alleviate symptoms of nausea and anxiety. Mixing the ingredients directly into green tea with peppermint was an effective method of administration which likely improved the speed at which the materials exited the stomach and entered the digestive tract. [0453]The 5HT3 receptor is expressed throughout the central and peripheral nervous systems, and mediates a variety of physiological functions. On a cellular level, postsynaptic 5-HT3 receptors mediate fast excitatory synaptic transmission in neocortical interneurons, amygdala, and hippocampus, and in visual cortex. 5HT3 agonism is known to induce nausea through influencing the vomiting center in brain stem. 5HT3 agonism has also been linked to anxiety, seizure propensity, pro-nociception. This may account for some of the unpleasant side effects of morning glory and Hawaiian baby woodrose seed consumption which was mitigated by the inclusion of citric acid as described previously. The conversion of these molecules to a citrate form at lower ph along reduced feelings of uneasiness and anxiety as well as the associated stomach pain or cramping. [0454]While LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds resulted in different effects from psilocybin alone or in combination with TRPs, there still appeared to be therapeutic value. The ergolines seemed to result in a greater tendency to lose focus or want to wander. Nature was reported to be the best WO 2022/079574 PCT/IB2021/059301 - 133 - scenario for consumption of these products. Visual acuity seems enhanced, but with some degree of tunnel vision. Focus and concentration as well as creativity appear to be restored somewhat by the inclusion of Frankincense with LSA/LSH, especially in the citrate form.[0455] One effect of formulations including LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds with the TRP agonists that may have therapeutic value is intense polyphagia that may occur within a few hours of consuming the dose. Some participants report hunger that cannot seem to be satiated when using formulations including the TRP agonists and LSA, LSH and other ergolines present in morning glory or Hawaiian baby woodrose seeds as 5HT2A agonists. Polyphagia was unexpected as most 5HT2A agonists are reported to curb appetite. This effect may provide therapeutic benefits for individuals suffering from anorexia and bulimia. Once over the queasiness in the first few hours, appetite stimulation became intense for many individuals and eating is very pleasurable, to the extent that these formulations may have efficacy for reducing nausea. Eating before using the formulations is recommended to mitigate polyphagia. However, eating before using the formulations also appeared to lengthen the onset of the dosage and therefore increase the period of anxiety sometimes reported. Some reported yawning and feeling tired at lower doses. Numerous subjects took a nap while on the dose and reported vivid dreams. This is also contrary to most reported psychoactive 5HT2A agonists, which often prevent sleep while active in the body.
In Vitro Examples 7-49 Showing Effects of 5HT2A Agonists and/or TRP Agonists on Inflammatory Markers on Human Primary Small Intestinal Epithelial Cells (HSIECs) Overview of Methods id="p-456" id="p-456" id="p-456" id="p-456" id="p-456" id="p-456" id="p-456" id="p-456" id="p-456" id="p-456" id="p-456"
id="p-456"
[0456]Cell Culture: Human primary small intestinal epithelial cells (HSIEC), purchased from Cell Biologies were cultured in Epithelial Cell Medium /w Kit. HSIEC cells were incubated at 37°C in a humidified atmosphere of 5% CO2. HSIEC cells were treated with mycoplasma removal reagent BM-Cyclin (Roche) to ensure mycoplasma negative before treatment. [0457]MTT Cell Viability Assay: The MTT assay is used to measure cellular metabolic activity as an indicator of cell viability, proliferation and cytotoxicity. Cytotoxicity of psilocybin (Psygen), 4-AcO-DMT (ChemLogix), ketanserin (TCI America), capsaicin WO 2022/079574 PCT/IB2021/059301 - 134- (Sigma), curcumin (Sigma), and eugenol (Sigma) was measured using MTT assay. Once HSIEC cells grown to 80% confluency, 3 x io3 cells/well were replated in 96-well plates. At 24 h after incubation, cells were treated with the indicated concentration of psilocybin, 4-AcO-DMT, ketanserin, capsaicin, curcumin, carvacrol, piperine, cinnemaldehyde, or eugenol, individually or in combination(s), DMSO and/or ethanol served as a control. Assays were performed with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) using the Cell Proliferation Kit I (Roche Diagnostics GmbH) in triplicate, as described by the manufacturer. The spectrophotometric absorbance of samples was measured at 595 nm using a microtiter plate reader (FLUOstar Omega, BMG LAB TECH). Psilocybin and Eugenol were also analyzed on Al 72 glioblastoma cell line using a similar methodology as described below. As shown in Table 49 below, most of the compounds tested did not have a significant negative effect on cellular metabolic activity at most of the concentrations tested. Further studies are generally only performed at doses which do no show aberrant cell growth, meaning significantly increased or decreased from the control. High doses of psilocybin and 4AcO-DMT increase growth of cells whereas doses of 40 um and less did not. Most other substances showed some toxicity, reducing cellular growth in a dose dependent fashion. Ketanserin showed an inhibitory effect above 20 pM. All initial doses of capsaicin were found to be inhibitory with very low doses (<10 pM) showing no effect. Cinnamaldehyde also demonstrated significant toxicity over 10 pM concentration. This was similar for piperine, and carvacrol which could only be studied at very low dose (2.5 pM). Eugenol only had a slight inhibitory effect on cell growth but only became toxic at very high concentrations. Combinations of low doses of each 5HT2A agonist with TRP agonists were performed at doses where the individual ingredients did not show significant cellular aberrations. Most substances when combined with either psilocybin or 4AcO-DMT did not significantly reduced growth withing the first 72 hours at concentrations that did not influence cell growth for each individual compound. The dose of Curcumin and Capsaicin specifically had to be reduced farther to combine these ingredients with the 5HT2A agonists and antagonist without causing toxicity.
Table 49:Cellular Metabolic Activity in HSIEC Cells Treated with Compounds of Interest Single Molecules WO 2022/079574 PCT/IB2021/059301 - 135 - Psilocybin 0 24 h 48 h 72 h 96 hControl Ethanol 0.040 0.097 0.196 0.463 0.6605pM 0.047 0.098 0.186 0.380 0.621lOpM 0.038 0.107 0.198 0.388 0.62420pM 0.038 0.150 0.238 0.415 0.63540pM 0.041 0.182 0.259 0.467 0.68580pM 0.042 0.345 0.371 0.579 0.805160pM 0.042 0.523 0.604 0.808 1.099 Curcumin 0 24 h 48 h 72 h 96 hControl Ethanol 0.040 0.097 0.196 0.463 0.660IpM 0.040 0.086 0.184 0.375 0.6115pM 0.036 0.079 0.148 0.299 0.595lOpM 0.036 0.070 0.115 0.215 0.46620pM 0.040 0.059 0.057 0.060 0.03840pM 0.039 0.038 0.026 0.014 0.0080pM 0.041 0.042 0.019 0.018 0.005 Eugenol 0 24 h 48 h 72 h 96 hControl Ethanol 0.040 0.099 0.190 0.384 0.837lOpM 0.047 0.064 0.168 0.346 0.63250pM 0.038 0.079 0.145 0.337 0.647lOOpM 0.038 0.075 0.136 0.346 0.662200|1M 0.041 0.064 0.111 0.296 0.652400|1M 0.042 0.059 0.128 0.242 0.549800|1M 0.042 0.053 0.091 0.146 0.268 Capsaicin 0 24 h 48 h 72 h 96 hControl Ethanol 0.040 0.099 0.190 0.384 0.837lOpM 0.040 0.075 0.174 0.331 0.70850pM 0.036 0.062 0.155 0.292 0.681lOOpM 0.036 0.063 0.150 0.272 0.623200|1M 0.040 0.044 0.082 0.144 0.231400|1M 0.039 0.016 0.031 0.016 0.018800|1M 0.041 0 0 0 0 Capsaicin (Low Dose repeat) 0 24 h 48 h 72 h 96 hControl Ethanol 0.065 0.102 0.159 0.348 0.5710.5uM 0.068 0.088 0.154 0.288 0.469luM 0.066 0.084 0.150 0.326 0.5022.5uM 0.066 0.078 0.137 0.279 0.4225uM 0.068 0.080 0.148 0.296 0.477 4-AcO-DMT 0 24 h 48 h 72 h 96 h WO 2022/079574 PCT/IB2021/059301 - 136- Control DMSO 0.016 0.073 0.116 0.230 0.4415uM 0.022 0.084 0.137 0.305 0.580lOuM 0.020 0.194 0.233 0.370 0.64720uM 0.019 0.127 0.176 0.319 0.59940uM 0.020 0.194 0.233 0.370 0.64780uM 0.017 0.338 0.377 0.518 0.755160uM 0.018 0.595 0.621 0.780 0.912 Ketanserin 0 24 h 48 h 72 h 96 hControl DMSO 0.016 0.073 0.116 0.230 0.441luM 0.015 0.084 0.128 0.251 0.5295uM 0.014 0.072 0.122 0.258 0.509lOuM 0.016 0.066 0.123 0.252 0.51020uM 0.015 0.075 0.114 0.253 0.46640uM 0.013 0.063 0.113 0.121 0.22980uM 0.014 0.054 0.078 0.113 0.226 Piperine 0 24 h 48 h 72 h 96 hControl EtOH 0.026 0.068 0.163 0.261 0.5592.5pM 0.033 0.073 0.175 0.276 0.4605pM 0.035 0.077 0.170 0.278 0.517lOpM 0.026 0.073 0.183 0.271 0.43820pM 0.022 0.075 0.166 0.268 0.44540pM 0.025 0.069 0.169 0.226 0.42380pM 0.026 0.068 0.171 0.224 0.391lOOpM 0.030 0.071 0.175 0.248 0.410200!1M 0.027 0.071 0.171 0.243 0.426400!1M 0.031 0.068 0.191 0.187 0.255 Carvacrol 0 24 h 48 h 72 h 96 hControl EtOH 0.026 0.068 0.163 0.261 0.5592.5pM 0.021 0.071 0.176 0.245 0.5155pM 0.022 0.072 0.175 0.261 0.501lOpM 0.021 0.070 0.164 0.267 0.48720pM 0.022 0.071 0.171 0.266 0.46140pM 0.022 0.070 0.159 0.272 0.54480pM 0.025 0.076 0.120 0.221 0.423lOOpM 0.026 0.069 0.106 0.259 0.397200|1M 0.027 0.061 0.088 0.179 0.238400!1M 0.027 0.062 0.079 0.139 0.137 Cinnamaldehyde 0 24 h 48 h 72 h 96 hControl EtOH 0.033 0.175 0.158 0.255 0.587 WO 2022/079574 PCT/IB2021/059301 - 137- 2.5pM 0.035 0.170 0.159 0.249 0.4175pM 0.026 0.183 0.148 0.236 0.423lOpM 0.022 0.166 0.119 0.160 0.32120pM 0.025 0.169 0.095 0.105 0.15240pM 0.026 0.171 0.049 0.018 0.01580pM 0.030 0.175 0.021 0100uM 0.027 0.171 0.016200pM 0.031 0.191 0.009 Molecules in Combination Psilocybin + Eugenol 0 24 h 48 h 72 h 96 hControl EtOH 0.046 0.049 0.110 0.192 0.358WpM PSI+25pM EUG 0.045 0.069 0.108 0.197 0.30720pM PSI+25pM EUG 0.046 0.079 0.136 0.221 0.31140pMPSI+25pMEUG 0.046 0.141 0.170 0.284 0.377 Psilocybin + Curcumin 0 24 h 48 h 72 h 96 hControl EtOH 0.046 0.049 0.110 0.192 0.35810pMPSI+25pM CUR 0.045 0.075 0.114 0.141 0.15020pMPSI+25pM CUR 0.044 0.089 0.122 0.141 0.13740pMPSI+25pM CUR 0.042 0.157 0.163 0.195 0.189 Psilocybin + Curcumin(0.5uM CUR) 0 24 h 48 h 72 h 96 hControl EtOH 0.094 0.116 0.185 0.494 0.7590.5pM Curcumin 10uMPST+0.5uM CUR 0.083 0.106 0.166 0.485 0.61120pM PSI+0.5pM CUR 0.090 0.135 0.169 0.421 0.59540pMPSI+0.5pM CUR 0.089 0.251 0.247 0.579 0.761 Psilocybin + Curcumin(luM CUR) 0 24 h 48 h 72 h 96 hControl EtOH 0.094 0.116 0.185 0.494 0.759pM Curcumin lOpM PSI+lpM CUR 0.090 0.116 0.157 0.439 0.64020pM PSI+lpM CUR 0.097 0.138 0.176 0.422 0.57840pMPSI+lpM CUR 0.091 0.299 0.264 0.677 0.855 Psilocybin + Curcumin(2.5pM CUR) 0 24 h 48 h 72 h 96 hControl EtOH 0.094 0.116 0.185 0.494 0.7592.5pM Curcumin lOpM PSI+2.5pM CUR 0.093 0.089 0.148 0.422 0.63720pMPSI+2.5pM CUR 0.092 0.131 0.171 0.480 0.66140pMPSI+2.5pM CUR 0.098 0.182 0.199 0.467 0.778 Psilocybin + Capsaicin(0.5uM CAP) 0 24 h 48 h 72 h 96 hControl EtOH 0.065 0.102 0.159 0.348 0.5710.5pM Capsaicin 10uMPSI+0.5uM CAP 0.067 0.101 0.174 0.328 0.487 WO 2022/079574 PCT/IB2021/059301 - 138 - 20pMPSI+0.5pM CAP 0.066 0.201 0.264 0.432 0.55040pMPSI+0.5pM CAP 0.061 0.185 0.208 0.390 0.599 Psilocybin + Capsaicin(luM CAP) 0 24 h 48 h 72 h 96 hControl EtOH 0.065 0.102 0.159 0.348 0.571pM Capsaicin lOpMPSI+lpM CAP 0.070 0.113 0.147 0.318 0.46020pMPSI+lpM CAP 0.062 0.155 0.205 0.355 0.55340pMPSI+lpM CAP 0.070 0.247 0.265 0.469 0.599 Psilocybin + Piperine(2.5pM) 0 24 h 48 h 72 h 96 hControl EtOH 0.080 0.140 0.340 0.490 0.495lOpM PSI+2.5pM PIP 0.076 0.177 0.355 0.506 0.32820pMPSI+2.5pM PIP 0.074 0.238 0.395 0.554 0.39140pMPSI+2.5pM PIP 0.072 0.345 0.430 0.599 0.292 Psilocybin + Carvacrol(2.5 pM CAR) 0 24 h 48 h 72 h 96 hControl EtOH 0.080 0.140 0.340 0.490 0.495lOpM PSI+2.5pM CAR 0.075 0.181 0.376 0.529 0.37820pMPSI+2.5pM CAR 0.080 0.231 0.429 0.586 0.43840pMPSI+2.5pM CAR 0.073 0.335 0.474 0.637 0.484 Psilocybin + Cinnamaldehyde(0.5pM CINN) 0 24 h 48 h 72 h 96 hControl EtOH 0.080 0.140 0.340 0.490 0.49510pMPSI+0.5pM CINN 0.079 0.179 0.378 0.516 0.35320pMPSI+0.5pM CINN 0.078 0.250 0.410 0.563 0.34840pMPSI+0.5pM CINN 0.062 0.372 0.504 0.704 0.547 4-AcO-DMT + Eugenol(25 pM) 0 24 h 48 h 72 h 96 hControl DMSO 0.047 0.046 0.103 0.191 0.342lOpM 4-AcO+25pM EUG 0.048 0.069 0.133 0.194 0.31320pM 4-AcO+25pM EUG 0.044 0.084 0.148 0.229 0.34340pM 4-AcO+25pM EUG 0.042 0.136 0.164 0.281 0.345 4-AcO-DMT + Curcumin(25 pM) 0 24 h 48 h 72 h 96 hControl DMSO 0.047 0.046 0.103 0.191 0.342lOpM 4-AcO+25pM CUR 0.044 0.068 0.095 0.120 0.12720pM 4-AcO+25pM CUR 0.045 0.080 0.114 0.140 0.14840pM 4-AcO+25pM CUR 0.049 0.125 0.154 0.193 0.196 4-AcO-DMT + Curcumin(0.5pM ) 0 24 h 48 h 72 h 96 hControl DMSO 0.089 0.091 0.162 0.458 0.7530.5pM Curcumin lOpM 4-AcO+0.5pM CUR 0.084 0.116 0.161 0.470 0.62520pM 4-AcO+0.5pM CUR 0.086 0.130 0.173 0.484 0.67640pM 4-AcO+0.5pM CUR 0.088 0.190 0.197 0.481 0.684 4-AcO-DMT + Curcumin(IpM) 0 24 h 48 h 72 h 96 h WO 2022/079574 PCT/IB2021/059301 - 139- Control DMSO 0.089 0.091 0.162 0.458 0.753pM Curcumin lOpM 4-AcO+lpM CUR 0.090 0.107 0.155 0.400 0.59520pM 4-AcO+lpM CUR 0.090 0.140 0.165 0.411 0.63940pM 4-AcO+lpM CUR 0.084 0.203 0.209 0.458 0.674 4-AcO-DMT + Curcumin(2.5pM) 0 24 h 48 h 72 h 96 hControl DMSO 0.089 0.091 0.162 0.458 0.7532.5pM Curcumin lOpM 4-AcO+2.5pM CUR 0.094 0.116 0.138 0.340 0.51220pM 4-AcO+2.5pM CUR 0.086 0.137 0.153 0.399 0.66140pM 4-AcO+2.5pM CUR 0.096 0.181 0.191 0.368 0.580 4-AcO-DMT + Capsaicin(0.5uM) 0 24 h 48 h 72 h 96 hControl DMSO 0.066 0.067 0.154 0.262 0.4910.5pM Capsaicin lOpM 4-AcO+0.5pM CAP 0.065 0.102 0.174 0.312 0.56920pM 4-AcO+0.5pM CAP 0.062 0.127 0.205 0.402 0.62040pM 4-AcO+0.5pM CAP 0.063 0.197 0.242 0.456 0.647 4-AcO-DMT + Capsaicin(luM) 0 24 h 48 h 72 h 96 hControl DMSO 0.066 0.067 0.154 0.262 0.491pM Capsaicin lOpM 4-AcO+lpM CAP 0.064 0.097 0.174 0.306 0.51720pM 4-AcO+lpM CAP 0.069 0.143 0.225 0.357 0.53140pM 4-AcO+lpM CAP 0.065 0.209 0.259 0.452 0.601 Ketanserin + Eugenol(25 pM) 0 24 h 48 h 72 h 96 hControl DMSO 0.046 0.114 0.208 0.503 0.844lpMKET+25pMEUG 0.045 0.118 0.217 0.471 0.7135pMKET+25pMEUG 0.046 0.114 0.217 0.516 0.74010pMKET+25pMEUG 0.046 0.116 0.216 0.469 0.720 Ketanserin + Curcumin(5pM) 0 24 h 48 h 72 h 96 hControl DMSO 0.046 0.114 0.208 0.503 0.844lpMKET+5pM CUR 0.046 0.118 0.164 0.394 0.5655pMKET+5pM CUR 0.045 0.096 0.157 0.340 0.58510pMKET+5pM CUR 0.044 0.104 0.151 0.328 0.557 Ketanserin + Curcumin(0.5pM ) 0 24 h 48 h 72 h 96 hControl DMSO 0.064 0.048 0.108 0.256 0.4760.5pM Curcumin 10MKET+0.5pM CUR 0.065 0.052 0.103 0.239 0.5225pMKET+0.5pM CUR 0.068 0.058 0.101 0.233 0.54010pMKET+0.5pM CUR 0.066 0.045 0.099 0.223 0.472 Ketanserin + Curcumin (IpM ) 0 24 h 48 h 72 h 96 hControl DMSO 0.064 0.048 0.108 0.256 0.476pM Curcumin IpMKET+lpM CUR 0.066 0.057 0.097 0.217 0.4425pMKET+lpM CUR 0.068 0.054 0.101 0.226 0.494 WO 2022/079574 PCT/IB2021/059301 - 140- 10uMKET+luM CUR 0.067 0.047 0.101 0.215 0.468 Ketanserin + Curcumin(2.5pM) 0 24 h 48 h 72 h 96 hControl DMSO 0.064 0.048 0.108 0.256 0.4762.5pM Curcumin lpMKET+2.5pM CUR 0.066 0.045 0.084 0.186 0.3545pMKET+2.5pM CUR 0.061 0.045 0.098 0.209 0.399lOpM KET+2.5pM CUR 0.070 0.044 0.086 0.158 0.298 Ketanserin + Capsaicin(0.5pM) 0 24 h 48 h 72 h 96 hControl DMSO 0.064 0.048 0.108 0.256 0.4760.5pM Capsaicin 10MKET+0.5pM CAP 0.066 0.049 0.109 0.252 0.5075pMKET+0.5pM CAP 0.065 0.046 0.113 0.263 0.521lOpM KET+0.5pM CAP 0.062 0.044 0.109 0.251 0.520 Ketanserin + Capsaicin(luM) 0 24 h 48 h 72 h 96 hControl DMSO 0.064 0.048 0.108 0.256 0.476pM Capsaicin 1uMKET+IuM CAP 0.063 0.054 0.103 0.240 0.4645pMKET+lpM CAP 0.064 0.051 0.103 0.258 0.52510MKET+1pM CAP 0.069 0.043 0.094 0.234 0.454 id="p-458" id="p-458" id="p-458" id="p-458" id="p-458" id="p-458" id="p-458" id="p-458" id="p-458" id="p-458" id="p-458"
id="p-458"
[0458]Induction of Inflammation in HSIECs and Treatment with Molecules of Interest: HSIEC cells grown to 80% confluence were treated with 10 ng/ml TNF-a/IFN-Y (Sigma) (Yang et al., 2015), for the time points indicated in FIG. 9, to assess the best time point for determination of anti-inflammatory potential of the molecules and formulations of interest. To do so, COX-2, an enzyme which mediates the bioconversion of arachidonic acid to inflammatory prostaglandins (PGs), was measured via densitometry. GAPDH was used as a reference housekeeping marker for relative densitometry measures. As shown in FIG. 9, the greatest inflammatory effect was observed at 12 hours after treatment with TNF-a/IFN-y. The anti-inflammatory potential of the molecules and formulations of interest were evaluated at 48 hours post-TNF-a/IFN-y treatment in the HSIEC assays described below due to reduced variability and ability to assess differences between treatments. Ethanol or DMSO was used, as indicated in the figures, as a vehicle for dilution and as a negative control showing the amount of the inflammatory marker present when inflammation was not induced. [0459]Increasing doses of each molecule of interest, or each combination of molecules of interest, were then distributed to the HSIEC cells treated to induce inflammatory response. Inflammatory markers COX-2 and/or IL-6 were assessed at specific timepoints after induction of inflammation for protein content marker measured via western blot.
WO 2022/079574 PCT/IB2021/059301 - 141 - GAPDH was used as a reference housekeeping marker for relative densitometry measures of protein content.
EXAMPLES 7-9 Effects of 5HT2A Agonists Psilocybin, and 4-ACO-DMT on COX-2 in In Vitro HSIEC Cell Assays id="p-460" id="p-460" id="p-460" id="p-460" id="p-460" id="p-460" id="p-460" id="p-460" id="p-460" id="p-460" id="p-460"
id="p-460"
[0460]The anti-inflammatory effects of 5HT2A agonists psilocybin and 4-ACO-DMT, as evaluated based on their effects on COX-2, are described below and shown in FIGs. 14- 17. FIG. 14 illustrates the structures of 5HT2A agonists psilocybin, 4-ACO-DMT, psilocin, and serotonin. 5HT2A antagonist ketanserin, used as a control in assays 2A-2C, also is shown. Psilocybin is a potent 5HT2A agonist. 4-ACO-DMT ( psilacetin) is a synthetic 5HT2A agonist that is similar in structure to psilocybin and psilocin.Ketanserin is a synthetic, high-affinity non-selective antagonist of 5-HT2 receptors in rodents. Based on the mechanism of action of the 5HT2A agonists psilocybin and 4- ACO-DMT, it was hypothesized that both would have anti-inflammatory activity while ketanserin would not.
EXAMPLE 7 id="p-461" id="p-461" id="p-461" id="p-461" id="p-461" id="p-461" id="p-461" id="p-461" id="p-461" id="p-461" id="p-461"
id="p-461"
[0461]In vitro HSIEC Cell Assay Example 7 is illustrated in FIG. 15, which shows the effects of escalating doses of 5 pM, 10 pM, 20 pM, and 40 pM psilocybin on COX-2 in the HSIEC cells treated with TNF-a/IFN-y as described above. As can be seen in FIG. 15, all doses of psilocybin resulted in the reduction of inflammatory marker COX-2, with pM and 40 pM psilocybin reducing COX-2 to the greatest extent.
EXAMPLE 8 id="p-462" id="p-462" id="p-462" id="p-462" id="p-462" id="p-462" id="p-462" id="p-462" id="p-462" id="p-462" id="p-462"
id="p-462"
[0462]In vitro HSIEC Cell Assay Example 8 is illustrated in FIG. 16, which shows the effects of escalating doses of 5 pM, 10 pM, 20 pM, and 40 pM 4-ACO-DMT on COX-in the HSIEC cells treated with TNF-a/IFN-y as described above. As can be seen in FIG. 16, 20 pM, and 40 pM doses resulted in significant reduction of inflammatory marker COX-2, with 40 pM 4-ACO-DMT reducing COX-2 to the greatest extent.
WO 2022/079574 PCT/IB2021/059301 - 142- EXAMPLE 9 id="p-463" id="p-463" id="p-463" id="p-463" id="p-463" id="p-463" id="p-463" id="p-463" id="p-463" id="p-463" id="p-463"
id="p-463"
[0463]In vitro HSIEC Cell Assay Example 9 is illustrated in FIG. 17, which shows the effects of escalating doses of 1 pM, 5 pM, 10 pM, and 20 pM ketanserin on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As expected, none of the doses of ketanserin resulted in a significant reduction in COX-2, while 20 pM ketanserin significantly increased COX-2.
EXAMPLES 10-12 Effects of TRP Agonists Eugenol, Capsaicin, and Curcumin on COX-2 in In Vitro HSIEC Cell Assays id="p-464" id="p-464" id="p-464" id="p-464" id="p-464" id="p-464" id="p-464" id="p-464" id="p-464" id="p-464" id="p-464"
id="p-464"
[0464]The anti-inflammatory effects of TRP agonists eugenol, capsaicin, and curcumin, as evaluated based on their effects on COX-2, are described below and shown in FIGs. 11-13. FIG. 10 illustrates the structures of TRP agonists eugenol, capsaicin, and curcumin. Eugenol is a TRPA1, TRPV1, TRPV3 and TRPM8 agonist. Capsaicin is a potent TRPV1 agonist and may have some activity on others TRP receptors such as V3. Curcumin is a TRPV1 antagonist and also predicted to be a TRPA1 agonist. Based on the mechanism of action of these TRP agonists, it was hypothesized that all three would demonstrate some anti-inflammatory activity on their own.
EXAMPLE 10 id="p-465" id="p-465" id="p-465" id="p-465" id="p-465" id="p-465" id="p-465" id="p-465" id="p-465" id="p-465" id="p-465"
id="p-465"
[0465]In vitro HSIEC Cell Assay Example 10 is illustrated in FIG. 11, which shows the effects of escalating doses of 10 pM, 50 pM, 100 pM, 200 pM, and 400 pM eugenol on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 11, lower doses of 10 pM-100 pM eugenol resulted in the greatest reduction in inflammatory marker COX-2, while higher doses of 200 pM and 400 pM eugenol reduced COX-2 to a lesser extent.
EXAMPLE 11 id="p-466" id="p-466" id="p-466" id="p-466" id="p-466" id="p-466" id="p-466" id="p-466" id="p-466" id="p-466" id="p-466"
id="p-466"
[0466]In vitro HSIEC Cell Assay Example 11 is illustrated in FIG. 12, which shows the effects of escalating doses of 0.5 pM, 1 pM, 2.5 pM, and 5 pM capsaicin on COX-2 in WO 2022/079574 PCT/IB2021/059301 - 143 - the HSIEC cells treated with TNF-a/IFN-Y as described above. As with eugenol, lower doses of 0.5 pM and 1 pM capsaicin resulted in the greatest reduction in inflammatory marker COX-2, while higher doses of 2.5 pM and 5 pM capsaicin reduced COX-2 to a lesser extent.
EXAMPLE 12 id="p-467" id="p-467" id="p-467" id="p-467" id="p-467" id="p-467" id="p-467" id="p-467" id="p-467" id="p-467" id="p-467"
id="p-467"
[0467]In vitro HSIEC Cell Assay Example 12 is illustrated in FIG. 13, which shows the effects of escalating doses of 0.5 pM, 1 pM, 2.5 pM, and 5 pM curcumin on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As with eugenol and capsaicin, lower doses of 0.5 pM and 1 pM curcumin resulted in the greatest reduction in inflammatory marker COX-2, while higher doses of 2.5 pM and 5 pM curcumin reduced COX-2 to a lesser extent. [0468]In each of HSIEC Cell Assay Examples 10-12, low doses of the TRP agonist are anti-inflammatory but decrease in efficacy as the concentration increases. This indicates that lower doses may be optimal for reducing inflammatory response. These lower doses were assessed in combination with 5HT2A agonists, as described below with respect to the assays illustrated in FIGs. 18-24 to assess potential synergistic reduction in inflammation of combinations of the 5HT2A with the TRP agonists of interest.
EXAMPLES 13-19 Effects of Combinations of 5HT2A Agonists Psilocybin and 4-ACO-DMT with Eugenol on COX-2, IL-6, IL-8, and iNOS in In Vitro HSIEC Cell Assays id="p-469" id="p-469" id="p-469" id="p-469" id="p-469" id="p-469" id="p-469" id="p-469" id="p-469" id="p-469" id="p-469"
id="p-469"
[0469]The anti-inflammatory effects of combinations of 5HT2A agonists psilocybin and 4-ACO-DMT with eugenol, as evaluated based on their effects on COX-2, IL-6, IL-8, and TFN are described below and shown in FIGs. 18-24. Based on the mechanism of action of the 5HT2A agonists psilocybin and 4-ACO-DMT and eugenol, it was hypothesized that combinations of psilocybin and 4-ACO-DMT with eugenol would have synergistic effects on COX-2 and IL-6 while a combination of the 5HT2A antagonist ketanserin with eugenol would not.
WO 2022/079574 PCT/IB2021/059301 - 144- EXAMPLE 13 id="p-470" id="p-470" id="p-470" id="p-470" id="p-470" id="p-470" id="p-470" id="p-470" id="p-470" id="p-470" id="p-470"
id="p-470"
[0470]In vitro HSIEC Cell Assay Example 13 is illustrated in FIG. 18, which shows the separate and combined effects of psilocybin and eugenol on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 18, combinations of psilocybin and eugenol resulted in the reduction of inflammatory marker COX-2, with the combination of 40 pM psilocybin and 25 pM eugenol reducing COX-2 to the greatest extent, thus indicating synergistic effects of psilocybin and eugenol on COX-2. A combination of 40 pM psilocybin and 25 pM eugenol reduced COX-2 by 83% more than pM psilocybin alone.
EXAMPLE 14 id="p-471" id="p-471" id="p-471" id="p-471" id="p-471" id="p-471" id="p-471" id="p-471" id="p-471" id="p-471" id="p-471"
id="p-471"
[0471]In vitro HSIEC Cell Assay Example 14 is illustrated in FIG. 19, which shows the separate and combined effects of psilocybin and eugenol on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 19, combinations of psilocybin and eugenol resulted in the reduction of inflammatory marker IL-6, with the combination of 40 pM psilocybin and 25 pM eugenol reducing IL-6 to the greatest extent, thus indicating synergistic effects of psilocybin and eugenol on IL-6. A combination of 40 pM psilocybin and 25 pM eugenol reduced IL-6 by 63% more than pM psilocybin alone.
EXAMPLE 15 id="p-472" id="p-472" id="p-472" id="p-472" id="p-472" id="p-472" id="p-472" id="p-472" id="p-472" id="p-472" id="p-472"
id="p-472"
[0472]In vitro HSIEC Cell Assay Example 15 is illustrated in FIG. 20, which shows the separate and combined effects of psilocybin and eugenol on IL-8 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 20, combinations of psilocybin and eugenol resulted in the reduction of inflammatory marker IL-8, with the combination of 40 pM psilocybin and 25 pM eugenol reducing IL-8 to the greatest extent, thus indicating synergistic effects of psilocybin and eugenol on IL-8. A combination of 40 pM psilocybin and 25 pM eugenol reduced IL-8 by 17% more than pM psilocybin alone.
WO 2022/079574 PCT/IB2021/059301 - 145 - EXAMPLE 16 id="p-473" id="p-473" id="p-473" id="p-473" id="p-473" id="p-473" id="p-473" id="p-473" id="p-473" id="p-473" id="p-473"
id="p-473"
[0473] In vitro HSIEC Cell Assay Example 16 is illustrated in FIG. 21, which shows the separate and combined effects of psilocybin and eugenol on TNF receptor 2 (TNF-R2) in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 21, combinations of psilocybin and eugenol resulted in the reduction of inflammatory marker TNF-R2, with the combination of 10 pM psilocybin and 25 pM eugenol reducing TNF-R2 to the greatest extent, thus indicating synergistic effects of psilocybin and eugenol on TNF-R2. A combination of 10 pM psilocybin and 25 pM eugenol reducing TNF by 52% more than 10 pM psilocybin alone.
EXAMPLE 17 id="p-474" id="p-474" id="p-474" id="p-474" id="p-474" id="p-474" id="p-474" id="p-474" id="p-474" id="p-474" id="p-474"
id="p-474"
[0474]In vitro Assay Example 17 is illustrated in FIG. 22, which shows the separate and combined effects of 4-ACO-DMT and eugenol on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 22, combinations of 4-ACO- DMT and eugenol resulted in the reduction of inflammatory marker COX-2, with 40 pM 4-ACO-DMT and 25 pM eugenol reducing COX-2 to the greatest extent, thus indicating synergistic effects of 4-ACO-DMT and eugenol on COX-2. A 40 pM 4-ACO-DMT and pM eugenol reduced COX-2 by 13% more than 40 pM 4-ACO-DMT alone.
EXAMPLE 18 id="p-475" id="p-475" id="p-475" id="p-475" id="p-475" id="p-475" id="p-475" id="p-475" id="p-475" id="p-475" id="p-475"
id="p-475"
[0475]In vitro Assay Example 18 is illustrated in FIG. 23, which shows the separate and combined effects of 4-ACO-DMT and eugenol on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 23, combinations of 4-ACO- DMT and eugenol resulted in the reduction of inflammatory marker IL-6, with the combination of 20 pM 4-ACO-DMT and 25 pM eugenol reducing IL-6 to the greatest extent, thus indicating synergistic effects of 4-ACO-DMT and eugenol on IL-6. A combination of 20 pM 4-ACO-DMT and 25 pM eugenol reduced IL-6 by 63% more than pM 4-ACO-DMT.
WO 2022/079574 PCT/IB2021/059301 - 146- EXAMPLE 19 id="p-476" id="p-476" id="p-476" id="p-476" id="p-476" id="p-476" id="p-476" id="p-476" id="p-476" id="p-476" id="p-476"
id="p-476"
[0476]In vitro HSIEC Cell Assay Example 19 is illustrated in FIG. 24, which shows the effects of escalating doses of 1 pM, 5 pM, and 10 pM ketanserin, alone or in combination with 25 pM eugenol, on COX-2 in the HSIEC cells treated with TNF-a/IFN-y as described above. As expected, none of the doses of ketanserin resulted in a significant reduction in COX-2 when combined with eugenol, while 1 pM ketanserin significantly increased COX-2.
EXAMPLE 20 id="p-477" id="p-477" id="p-477" id="p-477" id="p-477" id="p-477" id="p-477" id="p-477" id="p-477" id="p-477" id="p-477"
id="p-477"
[0477]In vitro HSIEC Cell Assay Example 20 is illustrated in FIG. 34, which shows the effects of escalating doses of 5 pM, 10 pM, 20 pM, and 40 pM psilocybin on iNOS in the HSIEC cells treated with TNF-a/IFN-y as described above. As can be seen in FIG. 34, all doses of psilocybin resulted in the reduction of inflammatory marker iNOS, with 10 pM psilocybin reducing iNOS to the greatest extent.
EXAMPLE 21 id="p-478" id="p-478" id="p-478" id="p-478" id="p-478" id="p-478" id="p-478" id="p-478" id="p-478" id="p-478" id="p-478"
id="p-478"
[0478]In vitro HSIEC Cell Assay Example 21 is illustrated in FIG. 35, which shows the separate and combined effects of psilocybin and eugenol on iNOS in the HSIEC cells treated with TNF-a/IFN-y as described above. As can be seen in FIG. 35, the combination of psilocybin with eugenol resulted in an attenuation in the reduction of inflammatory marker iNOS relative to psilocybin alone, with the combinations of 10 pM psilocybin with 25 pM eugenol resulting in the greatest attenuation in the reduction of inflammatory marker iNOS relative to psilocybin alone, thus indicating that eugenol attenuates the reduction in iNOS resulting from psilocybin. A combination of 10 pM psilocybin with 25 pM eugenol reduced iNOS by 77% more thanlO pM psilocybin alone.
EXAMPLE 22 id="p-479" id="p-479" id="p-479" id="p-479" id="p-479" id="p-479" id="p-479" id="p-479" id="p-479" id="p-479" id="p-479"
id="p-479"
[0479]In vitro HSIEC Cell Assay Example 22 is illustrated in FIG. 36, which shows the effects of escalating doses of 5 pM, 10 pM, 20 pM, and 40 pM 4-ACO-DMT on iNOS in the HSIEC cells treated with TNF-a/IFN-y as described above. As can be seen in FIG.
WO 2022/079574 PCT/IB2021/059301 - 147- 36, all doses of 4-ACO-DMT resulted in the reduction of inflammatory marker iNOS, with 10 pM 4-ACO-DMT reducing iNOS to the greatest extent.
EXAMPLE 23 id="p-480" id="p-480" id="p-480" id="p-480" id="p-480" id="p-480" id="p-480" id="p-480" id="p-480" id="p-480" id="p-480"
id="p-480"
[0480]In vitro HSIEC Cell Assay Example 23 is illustrated in FIG. 37, which shows the separate and combined effects of 4-ACO-DMT and eugenol on iNOS in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 37, the combination of 4-ACO-DMT with eugenol resulted in an attenuation in the reduction of inflammatory marker iNOS relative to 4-ACO-DMT alone, with the combinations of pM 4-ACO-DMT with 25 pM eugenol and 40 pM 4-ACO-DMT with 25 pM eugenol resulting in the greatest attenuation in the reduction of inflammatory marker iNOS relative to 4-ACO-DMT alone, thus indicating that eugenol attenuates the reduction in iNOS resulting from 4-ACO-DMT. A combination of 20 pM 4-ACO-DMT with 25 pM eugenol reduced iNOS by 71% more than 20 pM 4-ACO-DMT alone.
EXAMPLE 24 id="p-481" id="p-481" id="p-481" id="p-481" id="p-481" id="p-481" id="p-481" id="p-481" id="p-481" id="p-481" id="p-481"
id="p-481"
[0481]In vitro HSIEC Cell Assay Example 24 is illustrated in FIG. 38, which shows the effects of doses of 1 pM, 5 pM, and 10 pM ketanserin, alone or in combination with pM eugenol, on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As expected, none of the doses of ketanserin resulted in a significant reduction in COX-when combined with eugenol, while 1 pM and 5 pM ketanserin significantly increased COX-2.
EXAMPLES 25-29 Effects of Combinations of 5HT2A Agonists Psilocybin and 4-ACO-DMT with Capsaicin on COX-2 and IL-6 in In Vitro HSIEC Cell Assays id="p-482" id="p-482" id="p-482" id="p-482" id="p-482" id="p-482" id="p-482" id="p-482" id="p-482" id="p-482" id="p-482"
id="p-482"
[0482]The anti-inflammatory effects of combinations of 5HT2A agonists psilocybin and 4-ACO-DMT with capsaicin, as evaluated based on their effects on COX-2 and IL-6, are described below and shown in FIGs. 25-29. Based on the mechanism of action of the 5HT2A agonists psilocybin and 4-ACO-DMT and capsaicin, it was hypothesized that combinations of psilocybin and 4-ACO-DMT with capsaicin would have synergistic WO 2022/079574 PCT/IB2021/059301 - 148 - effects on COX-2 and IL-6 while a combination of the 5HT2A antagonist ketanserin with capsaicin would not.
EXAMPLE 25 id="p-483" id="p-483" id="p-483" id="p-483" id="p-483" id="p-483" id="p-483" id="p-483" id="p-483" id="p-483" id="p-483"
id="p-483"
[0483]In vitro HSIEC Cell Assay Example 25 is illustrated in FIG. 25, which shows the separate and combined effects of psilocybin and capsaicin on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 25, combinations of psilocybin and capsaicin resulted in the reduction of inflammatory marker COX-2, with the combinations of 10 pM, 20 pM, and 40 pM psilocybin with 0.5 pM capsaicin reducing COX-2 to the greatest extent, thus indicating synergistic effects of psilocybin and capsaicin on COX-2. A combination of 40 pM psilocybin with 0.5 pM capsaicin reduced COX-2 by 33% more than 40 pM psilocybin alone.
EXAMPLE 26 id="p-484" id="p-484" id="p-484" id="p-484" id="p-484" id="p-484" id="p-484" id="p-484" id="p-484" id="p-484" id="p-484"
id="p-484"
[0484]In vitro HSIEC Cell Assay Example 26 is illustrated in FIG. 26, which shows the separate and combined effects of psilocybin and capsaicin on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 26, combinations of psilocybin and capsaicin resulted in the reduction of inflammatory marker IL-6, with the combinations of 10 pM, 20 pM, and 40 pM psilocybin with 0.5 pM capsaicin reducing IL-6 to the greatest extent, thus indicating synergistic effects of psilocybin and capsaicin on IL-6. A combination of 40 pM psilocybin with 0.5 pM capsaicin reduced IL- by 8% more than 40 pM psilocybin alone.
EXAMPLE 27 id="p-485" id="p-485" id="p-485" id="p-485" id="p-485" id="p-485" id="p-485" id="p-485" id="p-485" id="p-485" id="p-485"
id="p-485"
[0485]In vitro HSIEC Cell Assay Example 27 is illustrated in FIG. 27, which shows the separate and combined effects of 4-ACO-DMT and capsaicin on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 27, the combinations of 4-ACO-DMT and capsaicin resulted in the reduction of inflammatory marker IL-6, with the combination of 10 pM 4-ACO-DMT with 0.5 pM capsaicin reducing IL-6 to the greatest extent, thus indicating synergistic effects of 4-ACO-DMT WO 2022/079574 PCT/IB2021/059301 - 149- and capsaicin on IL-6. A combination of 10 pM 4-ACO-DMT with 0.5 pM capsaicin reduced IL-6 by 32% more than 10 pM 4-ACO-DMT alone.
EXAMPLE 28 id="p-486" id="p-486" id="p-486" id="p-486" id="p-486" id="p-486" id="p-486" id="p-486" id="p-486" id="p-486" id="p-486"
id="p-486"
[0486]In vitro HSIEC Cell Assay Example 28 is illustrated in FIG. 28, which shows the separate and combined effects of 4-ACO-DMT and capsaicin on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 28, the combinations of psilocybin and capsaicin resulted in the reduction of inflammatory marker COX-2, with the combinations of 10 pM 4-ACO-DMT and 20 pM 4-ACO-DMT with 0.5 pM capsaicin reducing COX-2 to the greatest extent, thus indicating synergistic effects of 4-ACO-DMT and capsaicin on COX-2. A combination of 20 pM 4-ACO-DMT with 0.5 pM capsaicin reduced COX-2 by 23% more than 20 pM 4-ACO-DMT alone.
EXAMPLE 29 id="p-487" id="p-487" id="p-487" id="p-487" id="p-487" id="p-487" id="p-487" id="p-487" id="p-487" id="p-487" id="p-487"
id="p-487"
[0487]In vitro HSIEC Cell Assay Example 29 is illustrated in FIGS. 29A and 29B, which show the effects of doses of 1 pM and 5 pM ketanserin, alone or in combination with 0.5 pM capsaicin, on COX-2 and IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As expected, none of the doses of ketanserin resulted in a significant reduction in COX-2 or IL-6 when combined with capsaicin, while 1 pM ketanserin significantly increased COX-2.
EXAMPLES 30-33 Effects of Combinations of 5HT2A Agonists Psilocybin and 4-ACO-DMT with Curcumin on COX-2 and IL-6 in In Vitro HSIEC Cell Assays EXAMPLE 30 id="p-488" id="p-488" id="p-488" id="p-488" id="p-488" id="p-488" id="p-488" id="p-488" id="p-488" id="p-488" id="p-488"
id="p-488"
[0488]In vitro HSIEC Cell Assay Example 30 is illustrated in FIG. 30, which shows the separate and combined effects of psilocybin and curcumin on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 30, combinations of psilocybin and curcumin resulted in the reduction of inflammatory marker COX-2, with the combinations of 10 pM and 40 pM psilocybin with 0.5 pM curcumin reducing WO 2022/079574 PCT/IB2021/059301 - 150- COX-2 to the greatest extent, thus indicating synergistic effects of psilocybin and curcumin on COX-2. A combination of 40 pM psilocybin with 0.5 pM curcumin reduced COX-2 by 20% more than 40 pM psilocybin alone.
EXAMPLE 31 id="p-489" id="p-489" id="p-489" id="p-489" id="p-489" id="p-489" id="p-489" id="p-489" id="p-489" id="p-489" id="p-489"
id="p-489"
[0489]In vitro HSIEC Cell Assay Example 31 is illustrated in FIG. 31, which shows the separate and combined effects of psilocybin and curcumin on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 31, combinations of psilocybin and curcumin resulted in the reduction of inflammatory marker IL-6, with the combinations of 10 pM and 40 pM psilocybin with 0.5 pM curcumin reducing IL-6 to the greatest extent, thus indicating synergistic effects of psilocybin and curcumin on IL-6. A combination of 40 pM psilocybin with 0.5 pM curcumin reduced IL-6 by 28% more than 40 pM psilocybin alone.
EXAMPLE 32 id="p-490" id="p-490" id="p-490" id="p-490" id="p-490" id="p-490" id="p-490" id="p-490" id="p-490" id="p-490" id="p-490"
id="p-490"
[0490]In vitro HSIEC Cell Assay Example 32 is illustrated in FIG. 32, which shows the separate and combined effects of 4-ACO-DMT and curcumin on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 32, the combinations of 4-ACO-DMT and curcumin resulted in the reduction of inflammatory marker IL-6, with the combinations of 10 pM, 20 pM, and 40 pM 4-ACO-DMT with 0.pM curcumin reducing IL-6 to the greatest extent, thus indicating synergistic effects of 4- ACO-DMT and curcumin on IL-6. A combination of 40 pM 4-ACO-DMT with 0.5 pM curcumin reduced IL-6 by 76% more than 40 pM 4-ACO-DMT alone.
EXAMPLE 33 id="p-491" id="p-491" id="p-491" id="p-491" id="p-491" id="p-491" id="p-491" id="p-491" id="p-491" id="p-491" id="p-491"
id="p-491"
[0491]In vitro HSIEC Cell Assay Example 33 is illustrated in FIGS. 33A and 33B, which show the effects of doses of 1 pM, 5 pM, and 10 pM ketanserin, alone or in combination with 0.5 pM curcumin, on COX-2 and IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As expected, none of the doses of ketanserin resulted in a significant reduction in COX-2 or IL-6 when combined with curcumin, while 1 pM, pM, and 10 pM ketanserin significantly increased COX-2.
WO 2022/079574 PCT/IB2021/059301 - 151 - EXAMPLES 34-48 Effects of TRP Agonists Carvacrol, Piperine, and Cinnamaldehyde, Alone or in Combination with 5HT2A Agonist Psilocybin, on COX-2, IL-6, and IL-8 in In Vitro HSIEC Cell Assays id="p-492" id="p-492" id="p-492" id="p-492" id="p-492" id="p-492" id="p-492" id="p-492" id="p-492" id="p-492" id="p-492"
id="p-492"
[0492]The anti-inflammatory effects of TRP agonists carvacrol, piperine, and cinnamaldehyde, as evaluated based on their effects on COX-2, IL-6, and IL-8 are described below and shown in FIGs. 39-53. FIG. 39 illustrates the structures of TRP agonists carvacrol, piperine, and cinnamaldehyde. Carvacrol is a TRPA1, TRPM7, and TRPV3 agonist. Piperine is a TRPA1 agonist and a TRPV3 agonist. Cinnamaldehyde is a TRPA1 agonist. Based on the mechanism of action of these TRP agonists, it was hypothesized that all three would have some anti-inflammatory activity.
EXAMPLE 34 id="p-493" id="p-493" id="p-493" id="p-493" id="p-493" id="p-493" id="p-493" id="p-493" id="p-493" id="p-493" id="p-493"
id="p-493"
[0493]In vitro HSIEC Cell Assay Example 34 is illustrated in FIG. 40, which shows the effects of escalating doses of 2.5 pM, 5 pM, 10 pM, 20 pM, and 40 pM carvacrol on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 40, doses of carvacrol of 2.5 pM, 5 pM, and 10 pM resulted in the reduction of inflammatory marker COX-2, with 5 pM carvacrol reducing COX-2 to the greatest extent. Doses of carvacrol of 20 pM and 40 pM resulted in the increase of inflammatory marker COX-2.
EXAMPLE 35 id="p-494" id="p-494" id="p-494" id="p-494" id="p-494" id="p-494" id="p-494" id="p-494" id="p-494" id="p-494" id="p-494"
id="p-494"
[0494]In vitro HSIEC Cell Assay Example 35 is illustrated in FIG. 41, which shows the separate and combined effects of psilocybin and carvacrol on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 41, combinations of psilocybin and carvacrol resulted in the reduction of inflammatory marker COX-2, with the combinations of 20 pM psilocybin with 2.5 pM carvacrol reducing COX-2 to the greatest extent, thus indicating synergistic effects of psilocybin and carvacrol on COX-2. A combination of 20 pM psilocybin with 2.5 pM carvacrol reducing COX-2 by 77% more than 20 pM psilocybin alone.
WO 2022/079574 PCT/IB2021/059301 - 152- EXAMPLE 36 id="p-495" id="p-495" id="p-495" id="p-495" id="p-495" id="p-495" id="p-495" id="p-495" id="p-495" id="p-495" id="p-495"
id="p-495"
[0495]In vitro HSIEC Cell Assay Example 36 is illustrated in FIG. 42A, which shows the effects of psilocybin on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 42A, psilocybin resulted in the reduction of inflammatory marker IL-6, with 20 pM and 40 pM psilocybin reducing IL-6 to the greatest extent.
EXAMPLE 37 id="p-496" id="p-496" id="p-496" id="p-496" id="p-496" id="p-496" id="p-496" id="p-496" id="p-496" id="p-496" id="p-496"
id="p-496"
[0496]In vitro HSIEC Cell Assay Example 37 is illustrated in FIG. 42B, which shows the separate and combined effects of psilocybin on IL-8 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 42B, most dosages of psilocybin resulted in the reduction of inflammatory marker IL-8, with 10 pM and 40 pM psilocybin reducing IL-8 to the greatest extent.
EXAMPLE 38 id="p-497" id="p-497" id="p-497" id="p-497" id="p-497" id="p-497" id="p-497" id="p-497" id="p-497" id="p-497" id="p-497"
id="p-497"
[0497]In vitro HSIEC Cell Assay Example 38 is illustrated in FIG. 43 A, which shows the effects of escalating doses of 2.5 pM, 5 pM, 10 pM, 20 pM, and 40 pM carvacrol on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 43 A, doses of carvacrol of 10 pM resulted in the reduction of inflammatory marker IL-6. Doses of 2.5 pM, 5 pM, 20 pM, and 40 pM carvacrol resulted in no substantial decrease or in the increase of inflammatory marker IL-6.
EXAMPLE 39 id="p-498" id="p-498" id="p-498" id="p-498" id="p-498" id="p-498" id="p-498" id="p-498" id="p-498" id="p-498" id="p-498"
id="p-498"
[0498]In vitro HSIEC Cell Assay Example 39 is illustrated in FIG. 43B, which shows the effects of escalating doses of 2.5 pM, 5 pM, 10 pM, 20 pM, and 40 pM carvacrol on IL-8 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 43B, all doses of carvacrol resulted in the reduction of inflammatory marker IL-8. Doses of 20 pM, and 40 pM carvacrol resulted in the greatest decrease of inflammatory marker IL-8.
WO 2022/079574 PCT/IB2021/059301 - 153 - EXAMPLE 40 id="p-499" id="p-499" id="p-499" id="p-499" id="p-499" id="p-499" id="p-499" id="p-499" id="p-499" id="p-499" id="p-499"
id="p-499"
[0499]In vitro HSIEC Cell Assay Example 40 is illustrated in FIG. 44, which shows the separate and combined effects of psilocybin and carvacrol on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 44, combinations of psilocybin and carvacrol resulted in the reduction of inflammatory marker IL-6, with the combinations of 40 pM psilocybin with 2.5 pM carvacrol reducing IL-6 to the greatest extent, thus indicating synergistic effects of psilocybin and carvacrol on IL-6. A combination of 40 pM psilocybin with 2.5 pM carvacrol reduced IL-6 by 63% more than pM psilocybin alone.
EXAMPLE 41 id="p-500" id="p-500" id="p-500" id="p-500" id="p-500" id="p-500" id="p-500" id="p-500" id="p-500" id="p-500" id="p-500"
id="p-500"
[0500]In vitro HSIEC Cell Assay Example 41 is illustrated in FIG. 45, which shows the separate and combined effects of psilocybin and carvacrol on IL-8 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 45, combinations of psilocybin and carvacrol resulted in the reduction of inflammatory marker IL-8, with the combinations of 40 pM psilocybin with 2.5 pM carvacrol reducing IL-8 to the greatest extent, thus indicating synergistic effects of psilocybin and carvacrol on IL-8. A combination of 40 pM psilocybin with 2.5 pM carvacrol reducing IL-8 by 55% more than pM psilocybin alone.
EXAMPLE 42 id="p-501" id="p-501" id="p-501" id="p-501" id="p-501" id="p-501" id="p-501" id="p-501" id="p-501" id="p-501" id="p-501"
id="p-501"
[0501]In vitro HSIEC Cell Assay Example 42 is illustrated in FIG. 46, which shows the effects of escalating doses of 2.5 pM, 5 pM, 10 pM, 20 pM, and 40 pM piperine on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 46, doses of piperine of 2.5 pM and 5 pM resulted in the reduction of inflammatory marker COX-2, with 2.5 pM piperine reducing COX-2 to the greatest extent. Doses of piperine of 10 pM, 20 pM, and 40 pM resulted in the increase of inflammatory marker COX-2.
WO 2022/079574 PCT/IB2021/059301 - 154- EXAMPLE 43 id="p-502" id="p-502" id="p-502" id="p-502" id="p-502" id="p-502" id="p-502" id="p-502" id="p-502" id="p-502" id="p-502"
id="p-502"
[0502]In vitro HSIEC Cell Assay Example 43 is illustrated in FIG. 47, which shows the separate and combined effects of psilocybin and piperine on COX-2 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 47, combinations of psilocybin and piperine resulted in the reduction of inflammatory marker COX-2, with the combinations of 20 pM psilocybin with 2.5 pM piperine reducing COX-2 to the greatest extent, thus indicating synergistic effects of psilocybin and piperine on COX-2. A combination of 20 pM psilocybin with 2.5 pM piperine reducing COX-2 by 93% more than 20 pM psilocybin alone.
EXAMPLE 44 id="p-503" id="p-503" id="p-503" id="p-503" id="p-503" id="p-503" id="p-503" id="p-503" id="p-503" id="p-503" id="p-503"
id="p-503"
[0503]In vitro HSIEC Cell Assay Example 44 is illustrated in FIG. 48A, which shows the effects of piperine on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 48A, piperine resulted in the reduction of inflammatory marker IL-6, with 5 pM and 40 pM piperine reducing IL-6 to the greatest extent.
EXAMPLE 45 id="p-504" id="p-504" id="p-504" id="p-504" id="p-504" id="p-504" id="p-504" id="p-504" id="p-504" id="p-504" id="p-504"
id="p-504"
[0504]In vitro HSIEC Cell Assay Example 45 is illustrated in FIG. 48B, which shows the effects of piperine on IL-8 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 48B, most dosages of piperine resulted in the reduction of inflammatory marker IL-8, with 10 pM, 20 pM, and 40 pM piperine reducing IL-8 to the greatest extent.
EXAMPLE 46 id="p-505" id="p-505" id="p-505" id="p-505" id="p-505" id="p-505" id="p-505" id="p-505" id="p-505" id="p-505" id="p-505"
id="p-505"
[0505]In vitro HSIEC Cell Assay Example 46 is illustrated in FIG. 49, which shows the separate and combined effects of psilocybin and piperine on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 49, combinations of psilocybin and piperine resulted in the reduction of inflammatory marker IL-6, with the combinations of 20 pM or 40 pM psilocybin with 2.5 pM piperine reducing IL-6 to the greatest extent, thus indicating synergistic effects of psilocybin and piperine on IL-6. A WO 2022/079574 PCT/IB2021/059301 - 155 - combination of 20 pM psilocybin with 2.5 pM piperine reduced IL-6 by 92% more than pM psilocybin, and 40 pM psilocybin with 2.5 pM piperine reduced IL-6 by 91% more than 40 pM psilocybin.
EXAMPLE 47 id="p-506" id="p-506" id="p-506" id="p-506" id="p-506" id="p-506" id="p-506" id="p-506" id="p-506" id="p-506" id="p-506"
id="p-506"
[0506]In vitro HSIEC Cell Assay Example 47 is illustrated in FIG. 50, which shows the separate and combined effects of psilocybin and piperine on IL-8 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 50, combinations of psilocybin and piperine resulted in the reduction of inflammatory marker IL-8, with the combinations of 20 pM or 40 pM psilocybin with 2.5 pM piperine reducing IL-8 to the greatest extent, thus indicating synergistic effects of psilocybin and piperine on IL-8. A combination of 20 pM psilocybin with 2.5 pM piperine reduced IL-8 by 44% more than pM psilocybin, and 40 pM psilocybin with 2.5 pM piperine reduced IL-8 by 72% more than 40 pM psilocybin.
EXAMPLE 48 id="p-507" id="p-507" id="p-507" id="p-507" id="p-507" id="p-507" id="p-507" id="p-507" id="p-507" id="p-507" id="p-507"
id="p-507"
[0507]In vitro HSIEC Cell Assay Example 48 is illustrated in FIG. 51, which shows the effects of escalating doses of 0.5 pM, 1.25 pM, 2.5 pM, and 5 pM cinnemaldehyde on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 51, doses of cinnemaldehyde of 0.5 pM and 2.5 pM resulted in the reduction of inflammatory marker IL-6. Doses of 1.25 pM and 5 pM cinnemaldehyde resulted in no substantial decrease or in the increase of inflammatory marker IL-6.
EXAMPLE 49 id="p-508" id="p-508" id="p-508" id="p-508" id="p-508" id="p-508" id="p-508" id="p-508" id="p-508" id="p-508" id="p-508"
id="p-508"
[0508]In vitro HSIEC Cell Assay Example 49 is illustrated in FIG. 52, which shows the separate and combined effects of psilocybin and cinnemaldehyde on IL-6 in the HSIEC cells treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 52, combinations of psilocybin and cinnemaldehyde resulted in the reduction of inflammatory marker IL-6, with the combination of 10 pM psilocybin with 0.5 pM cinnemaldehyde showing synergistic effects of psilocybin and cinnemaldehyde on IL-6. A combination of WO 2022/079574 PCT/IB2021/059301 - 156- pM psilocybin with 0.5 pM cinnemaldehyde reduced IL-6 by 18% more than 10 pM psilocybin alone.
In Vitro Examples 50-51 Showing Effects of 5HT2A Agonists and/or TRP Agonists on Inflammatory Markers on 3-Dimensional Intestinal Tissue Model Overview of Methods id="p-509" id="p-509" id="p-509" id="p-509" id="p-509" id="p-509" id="p-509" id="p-509" id="p-509" id="p-509" id="p-509"
id="p-509"
[0509]Model: An Epilntestinal tissue model (Mat Tek) was used as inflammation model that exhibits in vzvo-like growth and morphological characteristics, in which cells sustain differentiation and metabolic status similar to those of human intestinal epithelium. [0510]Induction of Inflammation in 3D Tissue Assays: One Mat Tek model was exposed to 10 ng/ml (i.e., the concentration was shown to effectively induce inflammation in the HSIEC assays described above) of TNF/IFN for periods of time ranging from 0-72 hours. GAPDH was used as a reference housekeeping marker for relative densitometry measures. As shown in FIG. 53, the greatest inflammatory effect was observed at hours after treatment with TNF-a/IFN-y. Thus, the anti-inflammatory potential of the molecules and formulations of interest were evaluated at 12 hours post-TNF-a/IFN-Y treatment in the Mat Tek 3D tissue assays described below. Ethanol was used as a vehicle for dilution and as a negative control showing the amount of the inflammatory marker present when inflammation was not induced.
EXAMPLES 50-51 Effects of Combinations of 5HT2A Agonist Psilocybin with Capsaicin on COX-and IL-6 in In Vitro 3D Tissue Assays id="p-511" id="p-511" id="p-511" id="p-511" id="p-511" id="p-511" id="p-511" id="p-511" id="p-511" id="p-511" id="p-511"
id="p-511"
[0511]The anti-inflammatory effects of combinations of the 5HT2A agonist psilocybin with TRP agonist capsaicin, as evaluated based on their effects on COX-2 and IL-6, are described below and shown in FIGs. 54-55. Based on the mechanism of action of the 5HT2A agonist psilocybin and capsaicin, it was hypothesized that combinations of psilocybin and 4-ACO-DMT with capsaicin would have synergistic effects on COX-and IL-6 in 3D tissue assays.
WO 2022/079574 PCT/IB2021/059301 - 157- EXAMPLE 50 id="p-512" id="p-512" id="p-512" id="p-512" id="p-512" id="p-512" id="p-512" id="p-512" id="p-512" id="p-512" id="p-512"
id="p-512"
[0512]In vitro 3D Tissue Assay Example 50 is illustrated in FIG. 54, which shows the separate and combined effects of psilocybin and capsaicin on COX-2 in the 3D Mat Tek tissue model treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 54, combinations of psilocybin and capsaicin resulted in the reduction of inflammatory marker COX-2, with the combinations of 10 pM, 20 pM, and 40 pM psilocybin with 0.pM capsaicin reducing COX-2 to the greatest extent, thus indicating synergistic effects of psilocybin and capsaicin on COX-2. A combination of 40 pM psilocybin with 0.5 pM capsaicin reduced COX-2 by 91% more than 40 pM psilocybin alone.
EXAMPLE 51 id="p-513" id="p-513" id="p-513" id="p-513" id="p-513" id="p-513" id="p-513" id="p-513" id="p-513" id="p-513" id="p-513"
id="p-513"
[0513]In vitro Assay Example 51 is illustrated in FIG. 55, which shows the separate and combined effects of psilocybin and capsaicin on IL-6 in the 3D Mat Tek tissue model treated with TNF-a/IFN-Y as described above. As can be seen in FIG. 55, combinations of psilocybin and capsaicin resulted in the reduction of inflammatory marker IL-6, with the combinations of 10 pM, 20 pM, and 40 pM psilocybin with 0.5 pM capsaicin reducing IL-6 to the greatest extent, thus indicating synergistic effects of psilocybin and capsaicin on IL-6. A combination of 10 pM psilocybin with 0.5 pM capsaicin reduced IL- by 31% more than 10 pM psilocybin.
In Vitro Examples 52-59 Showing Effects of 5HT2A Agonists and/or TRP Agonists on Markers of Depression and Inflammatory Markers in A-172 Glioblastoma Cells Overview of Methods id="p-514" id="p-514" id="p-514" id="p-514" id="p-514" id="p-514" id="p-514" id="p-514" id="p-514" id="p-514" id="p-514"
id="p-514"
[0514]This experiment was designed to explore the synergistic interaction of 5HT2A agonist and a TRP agonists on receptors in the brain that are associated with depression and/or inflammation. A-172 neuronal cells are glioblastoma (cancer) cells. The development of an inflammatory microenvironment is considered important to the initiation and progression of glioblastoma; however, therapeutic approaches to target inflammation have previously been limited. The abnormal function of IL-6 and IL-8 has been predicted to lead to glioblastoma. The effects of psilocybin and eugenol, alone or in combination, on GABA/BDNF (markers related to depression in which patients are often deficient) and IL-6 and IL-8 (markers of inflammation) were analyzed for potential to WO 2022/079574 PCT/IB2021/059301 - 158 - reduce inflammatory markers and simultaneously increase brain markers associated with depression. [0515]MTT Cell Viability Assay: An MTT assay evaluating the effects of psilocybin and eugenol on cellular metabolic activity was conducted on the A-172 cells in the manner described above with respect to the MTT assay conducted on the HSIEC cells. As shown in Table 50 below, the 80 pM dose of psilocybin resulted in a modest increase in cell growth, while eugenol was observed to have a slight inhibitory effect. Thus, as with the HSIEC cells, relatively low doses of the 5HT2A agonists and the TRP agonists were used with the A-172 cells as described in the Examples below.
Table 50:Cellular Metabolic Activity in A-172 Cells Treated with Compounds of Interest MTT in A172 Cells Psilocybin 0 24 h 48 h 72 h 96 hControl EtOH 0.092 0.149 0.236 0.341 0.6385pM 0.090 0.155 0.253 0.374 0.53010uM 0.090 0.181 0.269 0.363 0.57720pM 0.082 0.201 0.303 0.370 0.63640pM 0.086 0.287 0.369 0.457 0.70380pM 0.084 0.469 0.528 0.586 0.871 Eugenol 0 24 h 48 h 72 h 96 hControl EtOH 0.092 0.149 0.236 0.341 0.638lOpM 0.084 0.137 0.234 0.329 0.533pM 0.083 0.153 0.266 0.318 0.55750pM 0.086 0.146 0.229 0.327 0.542lOOpM 0.082 0.170 0.230 0.322 0.516200pM 0.089 0.170 0.224 0.313 0.431400pM 0.088 0.173 0.208 0.272 0.422 Psilocybin + Eugenol 0 24 h 48 h 72 h 96 hControl EtOH 0.123 0.197 0.269 0.430 0.31625pMEUG 0.134 0.202 0.297 0.473 0.3195pM PSI 0.132 0.199 0.261 0.438 0.3215pMPSI+pm25EUG 0.131 0.201 0.280 0.436 0.288lOpM PSI 0.139 0.206 0.279 0.431 0.31110pMPSI+25pMEUG 0.138 0.195 0.293 0.332 0.25120pMPSI 0.143 0.204 0.282 0.451 0.27020pMPSI+25pMEUG 0.139 0.199 0.299 0.432 0.342 WO 2022/079574 PCT/IB2021/059301 - 159- id="p-516" id="p-516" id="p-516" id="p-516" id="p-516" id="p-516" id="p-516" id="p-516" id="p-516" id="p-516" id="p-516"
id="p-516"
[0516]The A-172 cells already had elevated content of COX-2 and IL-6 compared to normal cells due to aberrant genetic regulation. Thus, unlike the experiments on HSIEC cells described above, no inflammatory treatment was applied to the A-172 cells. The A- 172 cells were grown to -60% confluence on T-25 flasks to allow a 96-hour duration of exposure of the cells to the compounds of interest EXAMPLE 52 id="p-517" id="p-517" id="p-517" id="p-517" id="p-517" id="p-517" id="p-517" id="p-517" id="p-517" id="p-517" id="p-517"
id="p-517"
[0517]In vitro A-172 Cell Assay Example 52 is illustrated in FIG. 56A, which shows the effects of escalating doses of 2.5 pM, 5 pM, 10 pM, 20 pM, and 40 pM psilocybin on GABA in the A-172 cells described above. As can be seen in FIG. 56A, doses of psilocybin of 2.5 pM, 5 pM, and 20 pM resulted in the increase of depression-related marker GABA, with the 5 pM dose resulting in the greatest increase. Doses of psilocybin of 10 pM and 40 pM resulted in the decrease of GABA.
EXAMPLE 53 id="p-518" id="p-518" id="p-518" id="p-518" id="p-518" id="p-518" id="p-518" id="p-518" id="p-518" id="p-518" id="p-518"
id="p-518"
[0518]In vitro A-172 Cell Assay Example 53 is illustrated in FIG. 56B, which shows the effects of escalating doses of 10 pM, 25 pM, 50 pM, and 100 pM eugenol on depression- related marker GABA in the A-172 cells described above. As can be seen in FIG. 56B, doses of eugenol of 25 pM and 50 pM resulted in the increase of GABA. Doses of eugenol of 10 pM and 100 pM had little effect on GABA.
EXAMPLE 54 id="p-519" id="p-519" id="p-519" id="p-519" id="p-519" id="p-519" id="p-519" id="p-519" id="p-519" id="p-519" id="p-519"
id="p-519"
[0519]In vitro A-172 Cell Assay Example 54 is illustrated in FIG. 57A, which shows the effects of escalating doses of 2.5 pM, 5 pM, 10 pM, and 20 pM psilocybin on depression-related marker BDNF in the A-172 cells described above. As can be seen in FIG. 57A, doses of psilocybin of 2.5 pM, 5 pM, and 10 pM resulted in the increase of BDNF. Doses of psilocybin of 20 pM resulted in the decrease of BDNF.
WO 2022/079574 PCT/IB2021/059301 - 160- EXAMPLE 55 id="p-520" id="p-520" id="p-520" id="p-520" id="p-520" id="p-520" id="p-520" id="p-520" id="p-520" id="p-520" id="p-520"
id="p-520"
[0520]In vitro A-172 Cell Assay Example 55 is illustrated in FIG. 57B, which shows the effects of escalating doses of 10 pM, 25 pM, 50 pM, and 100 pM eugenol on depression- related marker BDNF in the A-172 cells described above. As can be seen in FIG. 57B, doses of 10 pM, 25 pM, 50 pM, and 100 pM of eugenol all resulted in the increase of BDNF, with the 100 pM dose resulting in the greatest increase in BDNF.
EXAMPLE 56 id="p-521" id="p-521" id="p-521" id="p-521" id="p-521" id="p-521" id="p-521" id="p-521" id="p-521" id="p-521" id="p-521"
id="p-521"
[0521]In vitro A-172 Cell Assay Example 56 is illustrated in FIG. 58A, which shows the separate and combined effects of psilocybin and eugenol on COX-2 in the A-172 cells described above. As can be seen in FIG. 58A, the combination of 5 pM psilocybin with pM eugenol resulted in a greater reduction of inflammatory marker COX-2 than 5 pM psilocybin alone, while 25 pM eugenol alone resulted in an increase in COX-2. This indicates the synergistic effects of psilocybin and eugenol on COX-2. A combination of pM psilocybin with 25 pM eugenol reduced COX-2 by 51% more than 5 pM psilocybin alone and by 71% more than 25 pM eugenol alone.
EXAMPLE 57 id="p-522" id="p-522" id="p-522" id="p-522" id="p-522" id="p-522" id="p-522" id="p-522" id="p-522" id="p-522" id="p-522"
id="p-522"
[0522]In vitro A-172 Cell Assay Example 57 is illustrated in FIG. 58B, which shows the separate and combined effects of psilocybin and eugenol on GABA in the A-172 cells described above. As can be seen in FIG. 58B, the combination of 5 pM psilocybin with pM eugenol resulted in a greater increase in depression-related marker GABA than pM psilocybin or 25 pM eugenol alone, thus indicating the synergistic effects of psilocybin and eugenol on GABA. A combination of 5 pM psilocybin with 25 pM eugenol increased GABA by 64% more than 5 pM psilocybin alone and by 43% more than 25 pM eugenol alone.
EXAMPLE 58 id="p-523" id="p-523" id="p-523" id="p-523" id="p-523" id="p-523" id="p-523" id="p-523" id="p-523" id="p-523" id="p-523"
id="p-523"
[0523]In vitro A-172 Cell Assay Example 58 is illustrated in FIG. 58C, which shows the separate and combined effects of psilocybin and eugenol on IL-6 in the A-172 cells WO 2022/079574 PCT/IB2021/059301 - 161 - described above. As can be seen in FIG. 58C, the combination of 5 pM psilocybin with pM eugenol resulted in a greater reduction of inflammatory marker IL-6 than 5 pM psilocybin or 25 pM eugenol alone, thus indicating the synergistic effects of psilocybin and eugenol on IL-6. Indeed, psilocybin and eugenol together resulted in approximately 40% decrease in IL-6 compared to psilocybin alone. A combination of 5 pM psilocybin with 25 pM eugenol reduced IL-6 by 38% more than 5 pM psilocybin alone and by 14% more than 25 pM eugenol alone.
EXAMPLE 59 id="p-524" id="p-524" id="p-524" id="p-524" id="p-524" id="p-524" id="p-524" id="p-524" id="p-524" id="p-524" id="p-524"
id="p-524"
[0524]In vitro A-172 Cell Assay Example 59 is illustrated in FIG. 58D, which shows the separate and combined effects of psilocybin and eugenol on BDNF in the A-172 cells described above. As can be seen in FIG. 58D, the combination of 5 pM psilocybin with pM eugenol resulted in a greater increase in depression-related marker BDNF than pM psilocybin or 25 pM eugenol alone, thus indicating the synergistic effects of psilocybin and eugenol on BDNF. A combination of 5 pM psilocybin with 25 pM eugenol increased BDNF by 51% more than 5 pM psilocybin alone and by 133% more than 25 pM eugenol alone.
EXAMPLE 60 id="p-525" id="p-525" id="p-525" id="p-525" id="p-525" id="p-525" id="p-525" id="p-525" id="p-525" id="p-525" id="p-525"
id="p-525"
[0525]Psilocybin combined with Eugenol are selected for further study. Combinations of these two pure compounds demonstrate efficacy as an anti-inflammatory, with increases in brain markers GABA and BDNF. The combination also lacks toxic effects in the MTT assay. The safety and pharmacokinetics of both molecules is well established. Formulations combining these two active molecules are created. Eugenol is a liquid that can be applied directly to a powder as a concentrate or can be diluted in ethanol (or another alcohol) in order to achieve a more consistent mixture at higher volumes. Pure Psilocybin crystal can be added and this mixture can be consumed directly as a tincture to achieve the desired dose (mg) as seen in Table 51. [0526]Alternatively, a eugenol/alcohol solution of desired concentration can be directly applied to the dried fruiting bodies of psilocybin fungi. The ethanol is then allowed to evaporate at low temperature (<35 °C) as it has a significantly lower vapor and boiling WO 2022/079574 PCT/IB2021/059301 - 162- point than eugenol, leaving the eugenol infused in the fungal biomass. This can then be homogenized for even distribution during production. Various ratios can be made as seen in Table 51. [0527]Alternatively, both the pure compounds (-99%) Psilocybin and Eugenol can be formulated to achieve the desired concentrations of both ingredients. In this case, due to the small amounts required, binders, fillers or excipients are likely required to fill out the formulations. The liquid alcohol based solution again can be applied to the powder, dehydrated and homogenized before final productization into a pill or tablet format. Pure psilocybin and pure eugenol can also be applied directly to any number of carriers binders, fillers, excipients or flavoring agents included in the final formulation. Psilocybin may also be first added to the eugenol and/or eugenol ethanol blend and applied to a filler substrate. Formulations outlining the desired concentrations and ratios can be found in Table 51.
Table 51:Example Formulations of Psilocybin + Eugenol Product Psilocybin Eugenol (99%+) Ratio (between) Carriers/Fillers/ Binders/Excipients/ Flavoring Agents Final or Volume Mushroom- based pill100 mg-3mg @1%1-3 pL (mg) 3:1 to 1:3 none 101-303 mg 100 mg-3mg @1%10-30 pL (mg) l:10to 3:10 0-190 mg 300-330 mg 100 mg @ 1% 100-300 pL (mg)1:100 to 1:300 100mg-300 mg 500 mg PurePressedTablet 1 mg-3 mg 1-3 pL (mg) 3:1 to 1:3 294-298 mg 300 mg 1 mg-3 mg 10-30 pL (mg) l:10to 3:10 267-289 mg 300 mgmg-3 mg 100 pL (mg) 1:33 to 1:100 197-199 mg 300 mgPure Solid Capsulemg-3 mg 1-3 pL (mg) 3:1 to 1:3 294-298 mg 300 mg 1 mg-3 mg 10-30 pL (mg) l:10to 3:10 267-289 mg 300 mgmg-3 mg 100 pL (mg) 1:100 to 1:300 197-199 mg 300 mgPureTincturemg-3 mg 1-3 pL (mg) 3:1 to 1:3 244-248 pL 0.25 mL 1 mg-3 mg 10-30 pL (mg) l:10to 3:10 217-239 pL 0.25 mLmg-3 mg 100 pL (mg) 1:33 to 1:100 147-149 pL 0.25 mL WO 2022/079574 PCT/IB2021/059301 - 163 - References id="p-528" id="p-528" id="p-528" id="p-528" id="p-528" id="p-528" id="p-528" id="p-528" id="p-528" id="p-528" id="p-528"
id="p-528"
[0528]Akter, J., Hossain, M. A., Takara, K., Islam, M. Z., & Hou, D.-X. (2019). Antioxidant activity of different species and varieties of turmeric (Curcuma spp): Isolation of active compounds. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 215, 9-17. [0529]Al Othman, Z.A., Ahmed Y.B.H., Habila, M.A. and Ghafar, A.A. (2011). Determination of Capsaicin and Dihydrocapsaicin in Capsicum Fruit Samples using High Performance Liquid Chromatography .Molecules, 16, 8919-8929;doi :10.33 90/molecules 16108919 [0530]Anderson, R. A., Qin, B., Canini, F., Poulet, L., & Roussel, A. M. (2013). Cinnamon Counteracts the Negative Effects of a High Fat/High Fructose Diet on Behavior, Brain Insulin Signaling and Alzheimer-Associated Changes. PLOS ONE, 8(12), 683243-683243. [0531]Arun, N., & Nalini, N. (2002). Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods for Human Nutrition, 57(1), 41-52. [0532]Ashoor, Abrar, Jacob C. Nordman, Daniel Veltri, Keun-Hang Susan Yang, Yaroslav Shuba, Lina Al Kury, Bassem Sadek et al. (2013). "Menthol Inhibits 5-HTReceptor-Mediated Currents." Journal of Pharmacology and Experimental Therapeutics, 347(2): 398-409. [0533]Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., Earley, T. J., & Patapoutian, A. (2004). Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 41(6), 849-857. [0534]Bharate, S. S., & Bharate, S. B. (2012). Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chemical Neuroscience, 3(4), 248-267. [0535]Brouet, L, & Ohshima, H. (1995). Curcumin, an anti-tumor promoter and anti- inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochemical and Biophysical Research Communications, 206(f), 533-540. [0536]Can Baser, K. H.(2008). Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Current Pharmaceutical Design, 14(29), 3106-3119. [0537]Chao, J-M., & Marderosian, A.H.D. (1973). Ergoline alkaloidal constituents of hawaiian baby wood rose, argyreia nervosa (Burm. f.) bojer. Journal of Pharmaceutical Sciences, 62(4), 588-591.
WO 2022/079574 PCT/IB2021/059301 - 164- id="p-538" id="p-538" id="p-538" id="p-538" id="p-538" id="p-538" id="p-538" id="p-538" id="p-538" id="p-538" id="p-538"
id="p-538"
[0538]Chung, G., & Oh, S. B. (2013). Eugenol as local anesthetic. Natural Products, 4001-4015. [0539]Ciardo, M. G., & Ferrer-Montiel, A. (2017). Lipids as central modulators of sensory TRP channels. [0540]Cortes-Rojas, D. F., de Souza, C. R. F., & Oliveira, W. P. (2014). Clove (Syzygium aromaticum): A precious spice. Asian Pacific Journal of Tropical Biomedicine, 4(2), 90-96. [0541]Daniel, A. N., Sartoretto, S. M., Schmidt, G., Caparroz-Assef, S. M., Bersani- Amado, C. A., & Cuman, R. K. N. (2009). Anti-inflammatory and antinociceptive activities A of eugenol essential oil in experimental animal models. Revista Brasileira de Farmacognosia, 79(IB), 212-217. [0542]Jon G. Dean, Tiecheng Liu, Sean Huff, Ben Sheler, Steven A. Barker, Rick J. Strassman, Michael M. Wang, Jimo Borjigin. "Biosynthesis and Extracellular Concentrations of N,N-dimethyltryptamine (DMT) in Mammalian Brain." Scientific Reports, 2019; 9(1) DOI: 10.1038/s41598-019-45812-w [0543]Della Corte, K. W., Perrar, I., Penczynski, K. J., Schwingshackl, L., Herder, C., & Buyken, A. E. (2018). Effect of dietary sugar intake on biomarkers of subclinical inflammation: A systematic review and meta-analysis of intervention studies. Nutrients, 10(5), 606-606. [0544]de Sousa Rodrigues, M. E., Bekhbat, M., Houser, M. C., Chang, J., Walker, D. L, Jones, D. P., Oller do Nascimento, C. M. P., Barnum, C. J., & Tansey, M. G. (2017). Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain, Behavior, andlmmunity, 59, 158-172. [0545]Dickens, C., McGowan, L., Clark-Carter, D., & Creed, F. (2002). Depression in rheumatoid arthritis: A systematic review of the literature with meta-analysis. Psychosomatic Medicine, 64(), 52-60. [0546]Doyle, A. A., & Stephens, J. C. (2019). A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia, 139, 104405-104405. [0547]Feng, L., Li, J., Yu, H.-B., Xue, Q., & Dai, L.-J. (2020). Effects of cinnamaldehyde on anti-respiratory syncytial virus: A protocol of systematic review and meta-analysis. Medicine, 99(20).
WO 2022/079574 PCT/IB2021/059301 - 165 - id="p-548" id="p-548" id="p-548" id="p-548" id="p-548" id="p-548" id="p-548" id="p-548" id="p-548" id="p-548" id="p-548"
id="p-548"
[0548]Gan, W. Q., Man, S. F. P., Senthilselvan, A., & Sin, D. D. (2004). Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax, 59(f), 574-580. [0549]Goldstein, B. L, Kemp, D. E., Soczynska, J. K., & McIntyre, R. S. (2009). Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: A systematic review of the literature. Journal of Clinical Psychiatry, 70(8), 1078-1078. [0550]Grzegorz R. Juszczak & Artur H. Swiergiel (2013) Recreational Use of D- Lysergamide from the Seeds of Argyreia nervosa, Ipomoea tricolor, Ipomoea violacea, and Ipomoea purpurea in Poland. J Psychoactive Drugs 45(l):79-93. [0551]Heim, R, & Wasson, R. G. (1958). Les Champignons hallucinogenes duMexique, ed. Du Museum national d’Histoire Naturelle. [0552]Hoesel, B., & Schmid, J. A. (2013). The complexity of NF-kB signaling in inflammation and cancer. Molecular Cancer, 12(C), 1-15. [0553]Iwasaki, Y., Tanabe, M., Kobata, K., & Watanabe, T. (2008). TRPA1 agonists— Allyl isothiocyanate and cinnamaldehyde—Induce adrenaline secretion. Bioscience, Biotechnology, and Biochemistry, 72(10), 2608-2614. [0554]Janda, E., Lascala, A., Martino, C.,Ragusa, S.,Nucera, S.,Walker, R., Gratteri, S., &Mollace, V. (2016). Molecular mechanisms of lipid-and glucose-lowering activities of bergamot flavonoids. PAaz7zzaAzz/z77zoz7, 4, S8-S18. [0555]Jiang, J., Emont, M. P., Jun, H., Qiao, X., Liao, J., Kim, D.-L, & Wu, J. (2017). Cinnamaldehyde induces fat cell-autonomous thermogenesis and metabolic reprogramming. A/efczZw/zszzz: Clinical and Experimental, 77, 58-64. [0556]Karlovic, D.,Serretti, A., Vrkic, N., Martinac, M., & Marcinko, D.(2012). Serum concentrations of CRP, IL-6, TNF-aand cortisol in major depressive disorder with melancholic or atypical features. Psychiatry Research, 198(C), 74-80. [0557]Khalil, A. A., ur Rahman, U., Khan, M. R., Sahar, A., Mehmood, T., & Khan, M. (2017). Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. ASCv4t/vazzce5, 7(52), 32669-32681. [0558]Krishnadas, R., & Cavanagh, J. (2012). Depression: An inflammatory illness? Journal of Neurology, Neurosurgery damp; Psychiatry, 83(5), 495 LP - 502. [0559]Kulkarni, SK, Dhir, A., & Akula, K. K. (2009). Potentials of curcumin as an antidepressant. TheScientificWorldJOURNAL, 9.
WO 2022/079574 PCT/IB2021/059301 - 166- id="p-560" id="p-560" id="p-560" id="p-560" id="p-560" id="p-560" id="p-560" id="p-560" id="p-560" id="p-560" id="p-560"
id="p-560"
[0560]Kulkarni, Shrinivas K, Bhutani, M. K., & Bishnoi, M. (2008). Antidepressant activity of curcumin: Involvement of serotonin and dopamine system.Psychopharmacology, 201(3), 435-435. [0561]Lee, C.-H., & Giuliani, F. (2019). The Role of Inflammation in Depression and 13aligxiQ. Frontiers in Immunology, 10, 1696-1696. [0562]Limtrakul, P.,Lipigorngoson, S.,Namwong, O.,Apisariyakul, A., & Dunn, F. W. (1997). Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. Cancer Letters, 116(2), 197-203. [0563]Liu, Y., Ho, R. C.-M., & Mak, A. (2012). Interleukin (IL)-6, tumour necrosis factor alpha (TNF-a) and soluble interleukin-2 receptors (8IL-2R) are elevated in patients with major depressive disorder: A meta-analysis and meta-regression. Journal of Affective Disorders, 139(3), 230-239. [0564]Lopresti A.L. (2017). Curcumin for neuropsychiatric disorders: a review of in vitro, animal and human studies. JPsychopharmacol, 31(3), 287-302. doi: 10.1177/0269881116686883 [0565]Lopresti A.L., Hood S.D., Drummond P.D. (2012). Multiple antidepressant potential modes of action of curcumin: A review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol, 26(12), 1512-1524. doi: 10.1177/0269881112458732. [0566]Loyd, D. R., Henry, M. A., & Hargreaves, K. M. (2013). Serotonergic neuromodulation of peripheral nociceptors. Seminars in Cell & Developmental Biology, 24(1), 51-57. [0567]Lu, L, Jiao, Z., Yu, Y., Zhang, C.,He, X., Li, Q.,Xu, D., & Wang, H. (2018). Programming for increased expression of hippocampal GAD67 mediated the hypersensitivity of the hypothalamic-pituitary-adrenal axis in male offspring rats with prenatal ethanol exposure. Cell Death & Disease, 9(6), 659-659. [0568]Ma, K., Zhang, H., & Baloch, Z. (2016). Pathogenetic and therapeutic applications of tumor necrosis factor-a (TNF-a) in major depressive disorder: A systematic review. International Journal of Molecular Sciences, 17(5), 733-733. [0569]McNamara, F. N., Randall, A., & Gunthorpe, M. J. (2005). Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). British Journal of Pharmacology, 144(6), 781-781.
WO 2022/079574 PCT/IB2021/059301 - 167- id="p-570" id="p-570" id="p-570" id="p-570" id="p-570" id="p-570" id="p-570" id="p-570" id="p-570" id="p-570" id="p-570"
id="p-570"
[0570]Mezuk, B., Eaton, W. W., Albrecht, S., &Golden, S.H. (2008). Depression and type 2 diabetes over the lifespan: A meta-analysis. Diabetes Care, 37(12), 2383-2390. [0571]Moussaieff, A., Rimmerman, N., Bregman, T., Straiker, A., Felder, C.C.Shoham, S., Kashman, Y. et al. (2008). Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. The FASEB Journal 22(8), 3024-3034.[0572] Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The Essential Medicinal Chemistry of Curcumin. Journal of Medicinal Chemistry, 60(5), 1620-1637.[0573] Nicolussi, S., Viveros-Paredes, J. M., Gachet, M. S., Rau, M., Flores-Soto, M. E., Blunder, M., & Gertsch, J. (2014). Guineensine is a novel inhibitor of endocannabinoid uptake showing cannabimimetic behavioral effects in BALB/c mice. Pharmacological Research, 80, 52-65. [0574]Nowak, J., Wozniakiewicz, M., Klepacki, P., Sowa, A., & Koscielniak, P. (2016). Identification and determination of ergot alkaloids in Morning Glory cultivars. Analytical and bioanalytical chemistry, 408Q2), 3093-3102. [0575]Nutt, D.(2019). Psychedelic drugs-a new era in psychiatry? Dialogues in Clinical Neuroscience, 21(2), 139-147. [0576]Ohta, T., Ikemi, Y., Murakami, M., Imagawa, T., Otsuguro, K., & Ito, S. (2006). Potentiation of transient receptor potential VI functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons. The Journal of Physiology, 576(3), 809- 822.[0577] O’Neil, A., Stevenson, C. E., Williams, E. D., Mortimer, D., Oldenburg, B., & Sanderson, K. (2013). The health-related quality of life burden of co-morbid cardiovascular disease and major depressive disorder in Australia: Findings from a population-based, cross-sectional study. Quality of Life Research, 22(1), 37-44. [0578]Oz, M., El Nebrisi, E. G., Yang, K.-H. S., Howarth, F. C., & Al Kury, L. T. (2017). Cellular and Molecular Targets of Menthol Actions. Frontiers in Pharmacology, 8, 472-472. [0579]Palagini, L., Mosca, M., Tani, C.,Gemignani, A., Mauri, M., & Bombardieri, S. (2013). Depression and systemic lupus erythematosus: A systematic review. Lupus, 22(5), 409-416.
WO 2022/079574 PCT/IB2021/059301 - 168 - id="p-580" id="p-580" id="p-580" id="p-580" id="p-580" id="p-580" id="p-580" id="p-580" id="p-580" id="p-580" id="p-580"
id="p-580"
[0580]Patel, A. (2013). The role of inflammation in depression. Psychiatr Danub, 25(Suppl 2), S216-23. [0581]Polito, V., & Stevenson, R. J. (2019). A systematic study of microdosing psychedelics. PLOS ONE, 14(2), e0211023-e0211023. [0582]Premkumar, L.S. (2014). Transient receptor potential channels as targets for phytochemicals. ACS chemical neuroscience 5(11), 1117-1130. [0583]Rao, C. V., Rivenson, A., Simi, B., & Reddy, B. S. (1995). Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Research, 55(2), 259-266. [0584]Salehi, B., Stojanovic-Radic, Z., Matejic, J., Sharopov, F., Antolak, H., Krgiel, D., Sen, S., Sharifi-Rad, M., Acharya, K., Sharifi-Rad, R., Martorell, M., Sureda, A., Martins, N., & Sharifi-Rad, J. (2018). Plants of Genus Mentha: From Farm to Food Factory. Plants (Basel, Switzerland), 7(3), 70-70. [0585]Sharma, C., Sadek, B., Goyal, S. N., Sinha, S., Kamal, M. A., & Ojha, S. (2015). Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development. Evidence-Based Complementary and Alternative Medicine : ECAM, 2015, 238482-238482. [0586]Skbld, M., Karlberg, A.-T., Matura, M., & Bbrje, A. (2006). The fragrance chemical B-caryophyllene—Air oxidation and skin sensitization. Food and Chemical Toxicology, 44(4), 538-545. [0587]Slavich, G. M., & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychological Bulletin, 140(3), 774-774. [0588]Smalheiser, N. R. (2019). A Neglected Link Between the Psychoactive Effects of Dietary Ingredients and Consciousness-Altering Drugs. Frontiers in Psychiatry, 10, 591- 591. [0589]Sommer, C.(2004). Serotonin in pain and analgesia. Molecular Neurobiology, 30(2), 117-125. [0590]Sreejayan, & Rao, M.N.A. (1994). Curcuminoids as Potent Inhibitors of Lipid Journal ojPharmacy and Pharmacology, 46(2), 1013-1016. [0591]Stanojevic, J.S., Stanojevic, L.P., Cvetkovic, D. J., Danilovic, B.R. (2015). Chemical Composition, Antioxidant and Antimicrobial Activity of the Turmeric Essential Oil (Curcuma longa L.). Advanced technologies, 4(2), 19-25.
WO 2022/079574 PCT/IB2021/059301 - 169- id="p-592" id="p-592" id="p-592" id="p-592" id="p-592" id="p-592" id="p-592" id="p-592" id="p-592" id="p-592" id="p-592"
id="p-592"
[0592]Stenvinkel, P., & Alvestrand, A. (2002). Review articles: Inflammation in end- stage renal disease: Sources, consequences, and therapy. Seminars in Dialysis, 75(5), 329-337. [0593]Stiedl, O., Pappa, E., Konradsson-Geuken, A., & Ogren, S. O. (2015). The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Frontiers in Pharmacology, 6, 162-162. [0594]Straub, R. H. (2014). TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: Role in chronic inflammatory diseases with an evolutionary perspective. Journal of Molecular Medicine, 92(9), 925-937. [0595]Sugiuar, T., Bielefeldt, K., & Gebhart, G. F. (2004). TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. Journal of Neuroscience, 24(43), 9521-9530. [0596]Sui, F., Lin, N., Guo, J.-Y., Zhang, C.-B., Du, X.-L., Zhao, B.-S., Liu, H.-B., Yang, N., Li, L.-F., & Guo, S.-Y. (2010). Cinnamaldehyde up-regulates the mRNA expression level of TRPV1 receptor potential ion channel protein and its function in primary rat DRG neurons in vitro. Journal of Asian Natural Products Research, 12 f), 76-87. [0597]Tian, F., Yu, C. T., Ye, W. D., &Wang, Q. (2017). Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochemical and Biophysical Research Communications, 493(3), 1260-1266. [0598]Ting, E., Yang, A., & Tsai, S., "Role of Interleukin-6 in Depressive Disorder," Int. J. Mol. Set, 21(6):2194 (March 2020). [0599]Uchida, Kunitoshi, Wuping Sun, Jun Yamazaki, and Makoto Tominaga. "Role of thermo-sensitive transient receptor potential channels in brown adipose tissue." Biological and Pharmaceutical Bulletin 41, no. 8 (2018): 1135-1144. [0600]Vogt-Eisele, A. K., Weber, K., Sherkheli, M. A., Vielhaber, G., Panten, J., Gisselmann, G., & Hatt, H. (2007). Monoterpenoid agonists of TRPV3. British Journal of Pharmacology, 151(4), 530-540. [0601]Wang, Shaopeng, Caihua Zhang, Guang Yang, and Yanzong Yang. "Biological properties of 6-gingerol: a brief review." Natural product communications 9, no. 7 (2014): 1934578X1400900736.
WO 2022/079574 PCT/IB2021/059301 - 170- id="p-602" id="p-602" id="p-602" id="p-602" id="p-602" id="p-602" id="p-602" id="p-602" id="p-602" id="p-602" id="p-602"
id="p-602"
[0602]Wang, Z.-J., Tabakoff, B., Levinson, S. R., & Heinbockel, T. (2015). Inhibition of Navi.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions. Acta Pharmacologica Sinica, 36(1), 791-799. [0603]Woolf, C. J., & Ma, Q. (2007). Nociceptors—Noxious stimulus detectors. Neuron, 55(3), 353-364. [0604]Xu, H., Belling, M., Jun, J. C., & Clapham, D. E. (2006). Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neuroscience, 9(5), 628-635. [0605]Xu, Y., Ku, B., Tie, L., Yao, H., Jiang, W., Ma, X., & Li, X. (2006). Curcumin reverses the effects of chronic stress on behavior, the HP A axis, BDNF expression and phosphorylation of CREB. Brain Research, 1122(1), 56-64. [0606] Yu, Jing-Jie, Liu-Bao Pei, Yong Zhang, Zi-Yu Wen, and Jian-Li Yang. Chronicsupplementation of curcumin enhances the efficacy of antidepressants in major depressive disorder: a randomized, double-blind, placebo-controlled pilot study. Journal of Clinical Psychopharmacology, 35(4), 406-410. [0607]Zhao, X., Wang, C., Zhang, J.-E, Liu, L., Liu, A.-M., Ma, Q., Zhou, W.-H., & Xu, Y. (2014). Chronic curcumin treatment normalizes depression-like behaviors in mice with mononeuropathy: Involvement of supraspinal serotonergic system and GABA A receptor. Psychopharmacology, 237(10), 2171-2187. [0608]Zhi, L., Dong, L., Kong, D., Sun, B., Sun, Q., Grundy, D., Zhang, G. Rong, W. (2013). Curcumin acts via transient receptor potential vanilloid-1 receptors to inhibit gut nociception and reverses visceral hyperalgesia. Neurogastroenterology & Motility, 25(6), 6429-6440.
Examples Only
Claims (69)
1. A composition comprising a therapeutic combination of a 5HT2A agonist compound andat least one TRP agonist compound,wherein the therapeutically effective amount of the 5HT2A agonist is between about 1 pg and about 300 mg; and the therapeutically effective amount of the at least one TRP receptor agonist is between about 0.01 mg and about 300 mg.
2. The composition of claim 1, wherein the 5HT2A agonist compound is selected from the group consisting of a tryptamine, an ergoline, a phenethylamine, and a phenylpropanoid.
3. The composition of claim 2, wherein the tryptamine is a 4-substituted tryptamine.
4. The composition of claim 3, wherein the 4-substituted tryptamine is a 4-substituted DMTcompound.
5. The composition of claim 4, wherein the 4-substituted DMT compound is selected from the group consisting of 3-[2-(dimethylamino)ethyl]-4-phosphoryloxyindole (psilocybin), 3-[2-(dimethylamino)ethyl]- 4-hydroxyindole (psilocin), 3-[2-(dimethylamino)ethyl]-4- acetoxyindole (psilacetin), and any suitable salt of any of the foregoing.
6. 6. The composition of claim 3, wherein the 4-substituted tryptamine is selected from thegroup consisting of 3-[2(trimethylamino)ethyl]-4-phosphoryloxyindole (aeruginascin), 3- [2-(methylamino)ethyl]-4-phosphoryloxyindole (baeocystin), 3-[2-(methylamino)ethyl]- 4-hydroxyindole, 3-[2-(amino)ethyl]-4-hydroxyindole (norpsilocin), 3-[2-(amino)ethyl]- 4-phosphoryloxyindole (norbaeocystin), and any suitable salt of any of the foregoing.
7. The composition of any one of claims 3 to 6, wherein the 4-substituted tryptamine is derived from fungi.
8. The composition of claim 7, wherein the fungi is a species of a genus selected from the group consisting of Gymnopilus, Inocybe, Panaeolus, Pholiotina, Pluteus, and Psilocybe. WO 2022/079574 PCT/IB2021/059301 - 172-
9. The composition of claim 7 or 8, wherein the fungi is selected from the group consisting of C. cyanopus, C. siligineoides and C. kuehneriana; Copelandia species including C. affinis, C. anomala, C. bispora, C. cambodginiensis, C. chlorocystis, C. cyanescens, C. lentisporus, C. tirunelveliensis, C. tropica, C. tropicalis and C. westii; G. steglichii; G. thiersii, G. aeruginosus, G. braendlei, G. cyanopalmicola, G. intermedins, G. junonius, G. lateritius, G. liquiritiae, G. luteofolius, G. luteoviridis, G. luteus, G. purpuratus, G. subpur puratus, G. validipes and G. viridans; I. aeruginascens, I. aeruginascens, I. coelestium, I. corydalina, I. corydalina var. corydalina, I. corydalina var. erinaceomorpha, I. haemacta and I. tricolor; P. cinctulus, P. affinis, P. africanus, P. bisporus, P. cambodginiensis, P. castaneifolius, P. chlorocystis, P. cinctulus, P. cyanescens, P. fimicola, P. lentisporus, P. microsporus, P. moellerianus, P. olivaceus, P. rubricaulis, P. tirunelveliensis, P. tropicalis and P. venezolanus; P. cyanopus and P. smithii; P. americanus, P. albostipitatus, P. americanus, P. cyanopus, P. glaucus, P. glaucotinctus, P. nigroviridis, P. phaeocyanopus, P. salicinus, P. saupei and P. villosus; P. tampanensis, P. acutipilea, P. allenii, P. angustipleurocystidiata, P. antioquiensis, P. atlantis, P. aquamarina, P. armandii, P. aucklandii, P. atlantis, P. aztecorum, P. aztecorum var. aztecorum, P. aztecorum var. bonetii, P. azurescens, P. baeocystis, P. banderillensis, P. bispora, P. brasiliensis, P. brunneocystidiata, P. cubensis, P. caeruleoannulata, P. caerulescens, P. caerulescens var. caerulescens, P. caerulescens var. ombrophila, P. caerulipes, P. callosa, P. carbonaria, P. caribaea, P. chuxiongensis, P. collybioides, P. Columbiana, P. cordispora, P. cubensis, P. cyanescens, P. cyanofibrillosa, P. dumontii, P. egonii, P. fagicola, P. fagicola var. fagicola, P. fagicola var. mesocystidiata, P. farinacea, P. fimetaria, P. fuliginosa, P. furtadoana, P. tampanensis, P. galindoi, P. gallaeciae, P. graveolens, P. guatapensis, P. guilartensis, P. heimii Guzman, P. herrerae Guzman, P. hispanica Guzman, P. hoogshagenii, P. hoogshagenii var. hoogshagenii, P. hoogshagenii var. convexa, P. inconspicua, P. indica, P. isabelae, P. jacobsii, P. jaliscana, P. kumaenorum, P. laurae, P. lazoi, P. liniformans, P. liniformans var. liniformans, P. liniformans var. americana, P. mexicana, P. mairei, P. makarorae, P. mammillata, P. medullosa, P. meridensis, P. meridionalis, P.mescaleroensis, P. mexicana, P. moseri, P. muliercula, P. naematoliformis, P. natalensis, P. natarajanii, P. neorhombispora, P. neoxalapensis, P. ovoideocystidiata, P. ovoideocystidiata, P. papuana, P. paulensis, P. pelliculosa, P. pintonii, P.pleurocystidiosa, P. plutonia, P. portoricensis, P. pseudoaztecorum, P. puberula, P. WO 2022/079574 PCT/IB2021/059301 - 173 - quebecensis, P. ricki, P. rostrata, P. rzedowskii, P. samuiensis, P. schultesii, P. semilanceata, P. septentrionalis, P. serbica, P. sierras , P. silvatica, P. singeri, P. squamosa, P. strictipes, P. stuntzii, P. subacutipilea, P. subaeruginascens, P. subaeruginosa, P. subbrunneocystidiata, P. subcaerulipes, P. subcubensis, P. subpsilocybioides, P. subtropicalis, P. tampanensis, P. tampanensis, P. thaicordispora, P. thaiaerugineomaculans, P. thaiduplicatocystidiata, P. uruguayensis, P. uxpanapensis, P. venenata, P. villarrealiae, P. weraroa, P. wassoniorum, P. weilii, P. weldenii, P.weraroa, P. wrightii, P. xalapensis, P. yungensis, P. zapotecorum, P. zapotecoantillarum, P. zapotecocaribaea, andP. zapotecorum.
10. The composition of any one of claims 7 to 9, wherein the composition further comprises dried matter of the fungi, wherein the dried matter is selected from the group consisting of fruiting bodies, mycelia, sclerotia, and hyphae, or combinations thereof.
11. The composition of any one of claims 1 or 2, wherein the tryptamine is a 5-substituted tryptamine.
12. The composition of claim 11, wherein the 5-substituted tryptamine is selected from the group consisting of 5-methoxy-DMT (bufotenin), N-acetyl-5-methoxy tryptamine (melatonin), 5-hydroxy tryptamine (serotonin), 5-hydroxy-tryptophan (5-HTP), and any suitable salt of any of the foregoing.
13. The composition of any one of claims 1 or 2, wherein the 5HT2A agonist compound is an ergoline.
14. The composition of claim 13, wherein the ergoline is selected from the group consisting of D-lysergic acid ethylamide (“LAE”),D-lysergic acid beta-propanolamide, D-lysergic acid 2-butyl amide ("LSB"), D-lysergic acid 1-butanolamide, 1-methyl-D-lysergic acid butanolamide, D-lysergic acid 3-pentyl amide (“LSP”), D-N-morpholinyllysergamide (“LSM-775”), D-N-pyrrolidyllysergamide (LPD-824"), (8p)-6-methyl-8-(piperidin-l- ylcarbonyl)-9,10-didehydroergoline (“LSD-Pip”), N,N-dimethyllysergamide (“DAM”), D-lysergic acid methylisopropyl amide ("LAMIDE"), D-lysergic acid 2,4- WO 2022/079574 PCT/IB2021/059301 - 174- dimethylazetidide (“LSZ”), LSD, D-l-acetyl-lysergic acid diethylamide ("ALD-52"), D- 1-propionyl-lysergic acid diethylamide ("1P-LSD"), D-Nl-butyryl-lysergic acid diethylamide ("1B-LSD"), D-Nl-(cyclopropylmethanoyl)-lysergic acid diethylamide (“IcP-LSD”), D-Nl-methyl-lysergic acid diethylamide (“MLD”), D-6-ethyl-6-nor- lysergic acid diethylamide ("ETH-LAD"), D-l-propionyl-6-ethyl-6-nor-lysergic acid diethyamide ("1P-ETH-LAD"), D-6-allyl-6-nor-lysergic acid diethylamide ("AL-LAD"), D-6-propyl-6-nor-lysergic acid diethylamide (“PRO-LAD”), D-6-isopropyl-6-nor- lysergic acid diethylamide (“IP-LAD”), D-6-propynyl-6-nor-lysergic acid diethylamide ("PARGY-LAD"), D-6-butyl-6-norlysergic acid diethylamide (“BU-LAD”), N,N- diallyllysergamide (“DAL”) and D-N-ethyl-N-cyclopropyllysergamide (“ECPLA”).
15. The composition of any one of claims 13 or 14, wherein the ergoline is derived from fungi or a plant.
16. The composition of claim 15, wherein the fungi or plant is a species selected from the group consisting of Claviceps purpurea, Rivea corymbosa. Ipomoea violacea, I. tricolor, I. purpurae, I. alba, Argeyreia nervosa, and a Periglandula species.
17. The composition of any one of claims 1 or 2, wherein the 5HT2A agonist compound is a phenethylamine.
18. The composition of claim 17, wherein the phenethylamine is selected from the group consisting of 3,4,5-trimethoxyphenethylamine (mescaline), trimethoxyamphetamine (“TMA”), 4-bromo-2,5-dimethoxybenzeneethanamine (“2C-B”), 4-bromo-2,5- dimethoxyamphetamine (“DOB”), 4-methyl-2,5-dimethoxyamphetamine (“DOM”), 4- methyl-2,5-dimethoxybenzeneethanamine (“2C-D”), 3,4-methylenedioxyamphetamine (“MDA”), N-methyl-3,4-methylenedioxyamphetamine (“MDMA”).
19. The composition of any one of claims 17 or 18, wherein the phenethylamine is plant- derived. WO 2022/079574 PCT/IB2021/059301 - 175 -
20. The composition of claim 19, wherein the plant includes a species selected from the group consisting Lophophora williamsii, Trichocereuspachanoi, Echinopsispachanoi, Trichocereus peruvianus, Echinopsis peruviana, Trichocereus bridgesii, Echinopsis lageniformis, and Trichocereus/Echinopsis scopulicola.
21. The composition of any one of claims 1 or 2, wherein the 5HT2A agonist compound is a phenylpropanoid.
22. The composition of claim 21, wherein the phenylpropanoid is l,2,3-timethoxy-5-(prop-2- en-l-yl)benzene (elemicin).
23. The composition of any one of claims 21 or 22, wherein the phenylpropanoid is plant- derived.
24. The composition of claim 23, wherein the plant is a species in the Myristicaceae family.
25. The composition of any one of claims 1 to 24, wherein the TRP agonist compound isselected from the group consisting of a capsiate, eugenol, elemicin, myrcene, piperine and gingerol.
26. The composition of claim 25, where the capsiate is capsaicin.
27. The composition of any one of claims 1 to 26, wherein the TRP agonist compound isplant-derived.
28. The composition of claim 27, wherein the plant includes one or more species selected from the group consisting of cayenne pepper, turmeric, clove, cinnamon, nutmeg, pepper, cannabis, bergamot and ginger. WO 2022/079574 PCT/IB2021/059301 - 176-
29. The composition of any one of claims 1 to 28, wherein the TRP agonist compound is selected from the group consisting of a curcuminoid, cinnamaldehyde, alpha terpineol, thymol, piperine and allicin.
30. The composition of claim 29, wherein the curcuminoid is curcumin.
31. The composition of any one of claims 29 or 30, wherein the TRP agonist compound is plant-derived.
32. The composition of claim 31, wherein the plant includes one or more species selected from the group consisting of curcumin, cinnamon, turmeric, nutmeg, cannabis, thyme, pepper, garlic, and onion.
33. The composition of any one of claims 1 to 32, wherein the TRP agonist compound is selected from the group consisting of eugenol, cinnamaldehyde, carvacrol, thymol, menthol, and 1-8 cineole.
34. The composition of claim 33, wherein the TRP agonist compound is plant-derived.
35. The composition of claim 34, wherein the plant includes one or more species selectedfrom the group consisting of turmeric, clove, cinnamon, pepper, nutmeg, cannabis, bergamot, oregano, thyme, cardamom, peppermint, and eucalyptus.
36. The composition of any one of claims 1 to 35, wherein the TRP agonist compound is selected from the group consisting of eugenol, B-caryophyllene, (-)-epicatechin, CBD, CBDA, CBGA, CBGV, THCV, THCVA, eriodictyol, cinnamaldehyde, incensole, boswellic acid, eucalyptol, and thymol.
37. The composition of claim 36, wherein the TRP agonist compound is plant-derived. WO 2022/079574 PCT/IB2021/059301 - 177-
38. The composition of claim 37, wherein the plant includes one or more species selected from the group consisting of turmeric, clove, cinnamon, pepper, nutmeg, cannabis, bergamot, oregano, thyme, cardamom, peppermint, and eucalyptus.
39. The composition of any one of claims 1 to 5, 7 to 10, and 25 to 38, wherein the 5HT2A agonist compound is psilocybin, and wherein the therapeutically effective amount of psilocybin is between about 100 mg and about 300 mg.
40. The composition of any one of claims 1 to 5, 7 to 10, and 25 to 39, wherein the 5HT2A agonist is psilocybin, and wherein the therapeutically effective amount of psilocybin is between about 110 mg and about 290 mg, about 120 mg and about 280 mg, about 130 mg and about 270 mg, about 140 mg and about 260 mg, about 150 mg and about 250 mg, about 160 mg and about 240 mg, about 170 mg and about 230 mg, about 180 mg and about 220 mg, about 190 mg and about 210 mg, or about 195 mg and about 205 mg.
41. The composition of any one of claims 1 to 40, wherein the at least one TRP agonist compound is capsaicin in an amount of about 0.1 mg and about 1 mg, about 0.2 mg and bout 0.9 mg, about 0.3 mg and about 0.8 mg, about 0.4 and about 0.7 mg, or about 0.5mg and about 0.6 mg.
42. The composition of any one of claims 1 to 40, wherein the at least one TRP agonist compound is capsaicin, and wherein the composition comprises a ratio (w/w) of between about 22:1 and about 270,000:1 of the 5HT2A agonist to capsaicin, about 50:1 and about 200,000:1 of the 5HT2A agonist to capsaicin, about 100:1 and about 150,000:1 of the 5HT2A agonist to capsaicin, about 500:1 and about 100,000:1 of the 5HT2A agonist to capsaicin, about 1,000:1 and about 50,000:1 of the 5HT2A agonist to capsaicin, about 5,000:1 and about 40,000:1 of the 5HT2A agonist to capsaicin, about 10,000:1 and about 30,000:1 of the 5HT2A agonist to capsaicin, or about 15,000:1 and about 25,000:1 of the 5HT2A agonist to capsaicin.
43. The composition of any one of claims 1 to 40, wherein the at least one TRP agonist compound is eugenol in an amount of about 1 mg and about 300 mg, about 5 mg and WO 2022/079574 PCT/IB2021/059301 - 178 - about 290 mg, about 10 mg and about 280 mg, about 15 mg and about 270 mg, about mg and about 260 mg, about 25 mg and about 250 mg, about 30 mg and about 240 mg, about 35 mg and about 230 mg, about 40 mg and about 220 mg, about 40 mg and about 210 mg, about 50 mg and about 210 mg, about 55 mg and about 200 mg, about 60 mg and about 190 mg, about 65 mg and about 180 mg, about 70 mg and about 170 mg, about 75 mg and about 160 mg, about 80 mg and about 150 mg, about 85 mg and about 140 mg, about 90 mg and about 130 mg, about 95 mg and about 120 mg, or about 100 mg and about 110 mg.
44. The composition of any one of claims 1 to 40, wherein the at least one TRP agonist compound is eugenol, and wherein the composition comprises a ratio (w/w) of between about 0.6:1 and about 270,000:1 of the 5HT2A agonist to eugenol, about 1:1 and about 250,000:1 of the 5HT2 A agonist to eugenol, about 5:1 and about 225,000:1 of the 5HT2A agonist to eugenol, about 10:1 and about 200,000:1 of the 5HT2A agonist to eugenol, about 50:1 and about 175,000:1 of the 5HT2A agonist to eugenol, about 100:1 and about 150,000:1 of the 5HT2A agonist to eugenol, about 150:1 and about 125,000:1 of the 5HT2A agonist to eugenol, about 300:1 and about 100,000:1 of the 5HT2A agonist to eugenol, about 500:1 and about 75,000:1 of the 5HT2A agonist to eugenol, about 1,000:and about 50,000:1 of the 5HT2A agonist to eugenol, about 5,000:1 and about 45,000:of the 5HT2A agonist to eugenol, about 10,000:1 and about 40,000:1 of the 5HT2A agonist to eugenol, about 15,000:1 and about 35,000:1 of the 5HT2A agonist to eugenol, or about 20,000:1 and about 30,000:1 of the 5HT2A agonist to eugenol.
45. The composition of any one of claims 1 to 40, wherein the at least one TRP agonist compound is curcumin in an amount of about 0.1 mg to about 10 mg, about 0.5 mg to about 9 mg, about 1 mg to about 8 mg, about 2 mg to about 7 mg, about 3 mg to about mg, or about 4 mg to about 5 mg.
46. The composition of any one of claims 1 to 40, wherein the at least one TRP agonist compound is curcumin, and wherein the composition comprises a ratio (w/w) of between about 0.04:1 and about 10:1 of the 5HT2A agonist to curcumin, about 0.1:1 and about 9.5:1 of the 5HT2A agonist to curcumin, about 0.5:1 and about 9:1 of the 5HT2A agonist WO 2022/079574 PCT/IB2021/059301 - 179- to curcumin, about 1:1 and about 8.5:1 of the 5HT2A agonist to curcumin, about 1.5:and about 8:1 of the 5HT2A agonist to curcumin, about 2:1 and about 7.5:1 of the 5HT2A agonist to curcumin, about 2.5:1 and about 7:1 of the 5HT2A agonist to curcumin, about 3:1 and about 6.5:1 of the 5HT2A agonist to curcumin, about 3.5:1 and about 6:1 of the 5HT2A agonist to curcumin, about 4:1 and about 5.5:1 of the 5HT2A agonist to curcumin, or about 4.5:1 and about 5:1 of the 5HT2A agonist to curcumin.
47. The composition of any one of claims 1 to 40, wherein the at least one TRP agonist compound is P־caryophyllene, and wherein the composition comprises a ratio (w/w) of between about 0.33:1 and about 36:1 of the 5HT2A agonist to B-caryophyllene, about 1:and about 33:1 of the 5HT2A agonist to B-caryophyllene, about 3:1 and about 30:1 of the 5HT2A agonist to P־caryophyllene, about 5:1 and about 27:1 of the 5HT2A agonist to P־ caryophyllene, about 7:1 and about 25:1 of the 5HT2A agonist to P־caryophyllene, about 10:1 and about 22:1 of the 5HT2A agonist to P־caryophyllene, about 15:1 and about 20:of the 5HT2A agonist to P־caryophyllene, or about 17:1 and about 18:1 of the 5HT2A agonist to B-caryophyllene.
48. The composition of any one of claims 1 to 40, wherein the at least one TRP agonist compound is cinnamaldehyde in an amount of between about 0.1 mg and about 10 mg, about 0.5 mg and about 9.5 mg, about 1 mg and about 9 mg, about 1.5 mg and about 8.mg, about 2 mg and about 8 mg, about 2.5 mg and about 7.5 mg, about 3 mg and about mg, about 3.5 mg and about 6.5 mg, about 4 mg and about 6 mg, or about 4.5 mg and about 5.5 mg.
49. The composition of any one of claims 1 to 40, wherein the at least one TRP agonist compound is cinnamaldehyde, and wherein the composition comprises a ratio (w/w) of between about 0.5:1 and about 36:1 of the 5HT2A agonist to cinnamaldehyde, about 1:and about 33:1 of the 5HT2A agonist to cinnamaldehyde, about 3:1 and about 30:1 of the 5HT2A agonist to cinnamaldehyde, about 5:1 and about 27:1 of the 5HT2A agonist to cinnamaldehyde, about 7:1 and about 25:1 of the 5HT2A agonist to cinnamaldehyde, about 10:1 and about 22:1 of the 5HT2A agonist to cinnamaldehyde, about 15:1 and WO 2022/079574 PCT/IB2021/059301 - 180- about 20:1 of the 5HT2A agonist to cinnamaldehyde, or about 17:1 and about 18:1 of the 5HT2A agonist to cinnamaldehyde.
50. The composition of any one of claims 1 to 49, wherein the composition is formulated for oral administration.
51. The composition of claim 50, further comprising at least one pharmaceutically acceptable excipient, diluent, or filler.
52. The composition of any one of claims 50 or 51, wherein the composition is selected from the group consisting of a tablet, capsule, sachets, granules, sublingual film, buccal film, and a suspension.
53. A method for reducing inflammation in a subject, comprising administering the composition of any one of claims 1 to 52 to the subject.
54. The method of claim 53, wherein the inflammation is acute or chronic.
55. The method of any one of claims 53 or 54, comprising administering the composition 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times per day.
56. The method of any one of claims 53 to 55, whereby the reduction in inflammation is measured by an 50% reduction of at least one biomarker selected from the group consisting of COX-2, interferon-y, interleukin 1, interleukin-2, interleukin-6, interleukin- 8, interleukin-10, tumor necrosis factor (TNF), and reactive oxygen species (ROS) when measured via densitometry.
57. The method of claim 56, wherein the ROS is inducible nitric oxide synthase (iNOS).
58. The method of any one of claims 53 to 57, wherein the subject is suffering from acondition selected from the group consisting of cancer, neurological disorder, diabetic WO 2022/079574 PCT/IB2021/059301 - 181 - complications, mental health disorder (MHD), bone, muscular and skeletal disease, metabolic disorder, chronic inflammatory disorder and cardiovascular disease.
59. The method of claim 58, wherein the MHD is selected from depression, anxiety, post- traumatic stress disorder, schizophrenia, bipolar disorder, ADD, ADHD, borderline personality disorder, seasonal affective disorder, and premenstrual dysphoric disorder.
60. The method of claim 58, wherein the MHD is depression, and wherein the reduction in inflammation is accompanied by a reduction in at least one symptom of depression.
61. The method of claim 58, wherein the MHD is anxiety, and wherein the reduction in inflammation is accompanied by a reduction in at least one symptom of anxiety.
62. A method for reducing at least one biomarker in a mammalian cell, wherein the biomarker is selected from the group consisting of COX-2, interferon-y, interleukin 1, interleukin-2, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor (TNF), and reactive oxygen species (ROS), comprising administering the composition of any one of claims 1 to 52 to a subject,wherein administering the composition reduces the biomarker in the mammalian cell between about 10% and about 90%.
63. The method of claim 62, wherein the 5HT2A agonist is psilocybin in an amount of about 100 mg to about 300 mg, and wherein the TRP agonist is eugenol in an amount of about 100 mg to about 300 mg.
64. The method of claim 62 or 63, wherein the 5HT2A agonist is psilocybin in an amount of about 100 mg to about 300 mg, about 110 mg to about 290 mg, about 120 mg to about 280 mg, about 130 mg to about 270 mg, about 140 mg to about 260 mg, about 150 mg to about 250 mg, about 160 mg to about 240 mg, about 170 mg to about 230 mg, about 1mg to about 220 mg, about 190 mg to about 210 mg, or about 195 mg to about 205 mg, and wherein TRP agonist is eugenol in an amount of about 100 mg to about 300 mg, about 110 mg to about 290 mg, about 120 mg to about 280 mg, about 130 mg to about WO 2022/079574 PCT/IB2021/059301 - 182- 270 mg, about 140 mg to about 260 mg, about 150 mg to about 250 mg, about 160 mg to about 240 mg, about 170 mg to about 230 mg, about 180 mg to about 220 mg, about 1mg to about 210 mg, or about 195 mg to about 205 mg.
65. The method of any one of claims 62-64, wherein administering the composition reduces IL-6 in the mammalian cell by about an additional 20% relative to administering the therapeutically effective amount of psilocybin alone.
66. The method of claim 65, wherein administering the composition reduces IL-6 in the mammalian cell by about an additional 25% relative to administering the therapeutically effective amount of psilocybin alone.
67. The composition of any one of claims 1-38, wherein the therapeutically effective amount of the 5HT2A agonist is between about 10 pg and about 195 mg, about 50 pg and about 190 mg, about 100 pg and about 185 mg, about 200 pg and about 180 mg, about 300 pg and about 175 mg, about 400 pg and about 170 mg, about 500 pg and about 165 mg, about 600 pg and about 160 mg, about 700 pg and about 155 mg, about 800 pg and about 150 mg, about 900 pg and about 145 mg, about 1 mg and about 140 mg, about 5 mg and about 135 mg, about 10 mg and about 130 mg, about 15 mg and about 125 mg, about mg and about 120 mg, about 25 mg and about 115 mg, about 30 mg and about 110 mg, about 35 mg and about 105 mg, about 40 mg and about 100 mg, about 45 mg and about mg, about 50 mg and about 90 mg, about 55 mg and about 85 mg, about 60 mg and about 80 mg, or about 65 mg and about 75 mg.
68. The composition of any one of claims 1-38, wherein the therapeutically effective amount of the at least one TRP receptor agonist is between about 0.1 mg and about 24 mg, about 0.5 mg and about 23 mg, about 1 mg and about 22 mg, about 2 mg and about 21 mg, about 3 mg and about 20 mg, about 4 mg and about 19 mg, about 5 mg and about 18 mg, about 6 mg and about 17 mg, about 7 mg and about 16 mg, about 8 mg and about 15 mg, about 9 mg and about 14 mg, about 10 mg and about 13 mg, or about 11 mg and about mg. WO 2022/079574 PCT/IB2021/059301 - 183 -
69. The composition of any one of claims 1-38, wherein the therapeutically effective amount of the 5HT2A agonist is between about 10 pg and about 195 mg, about 50 pg and about 190 mg, about 100 pg and about 185 mg, about 200 pg and about 180 mg, about 300 pg and about 175 mg, about 400 pg and about 170 mg, about 500 pg and about 165 mg, about 600 pg and about 160 mg, about 700 pg and about 155 mg, about 800 pg and about 150 mg, about 900 pg and about 145 mg, about 1 mg and about 140 mg, about 5 mg and about 135 mg, about 10 mg and about 130 mg, about 15 mg and about 125 mg, about mg and about 120 mg, about 25 mg and about 115 mg, about 30 mg and about 110 mg, about 35 mg and about 105 mg, about 40 mg and about 100 mg, about 45 mg and about mg, about 50 mg and about 90 mg, about 55 mg and about 85 mg, about 60 mg and about 80 mg, or about 65 mg and about 75 mg, and wherein the therapeutically effective amount of the at least one TRP receptor agonist is between about 0.1 mg and about mg, about 0.5 mg and about 23 mg, about 1 mg and about 22 mg, about 2 mg and about mg, about 3 mg and about 20 mg, about 4 mg and about 19 mg, about 5 mg and about mg, about 6 mg and about 17 mg, about 7 mg and about 16 mg, about 8 mg and about mg, about 9 mg and about 14 mg, about 10 mg and about 13 mg, or about 11 mg and about 12 mg.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063090552P | 2020-10-12 | 2020-10-12 | |
PCT/IB2021/059301 WO2022079574A1 (en) | 2020-10-12 | 2021-10-12 | Compositions for reducing inflammation to improve or maintain mental or physical health |
Publications (1)
Publication Number | Publication Date |
---|---|
IL301656A true IL301656A (en) | 2023-05-01 |
Family
ID=81207752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IL301656A IL301656A (en) | 2020-10-12 | 2021-10-12 | Compositions for reducing inflammation to improve or maintain mental or physical health |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230405028A1 (en) |
EP (1) | EP4225320A4 (en) |
JP (1) | JP2023545327A (en) |
CA (1) | CA3197488A1 (en) |
IL (1) | IL301656A (en) |
WO (1) | WO2022079574A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2020358720A1 (en) | 2019-10-01 | 2022-04-21 | Empyrean Neuroscience, Inc. | Genetic engineering of fungi to modulate tryptamine expression |
WO2023130076A2 (en) | 2021-12-31 | 2023-07-06 | Empyrean Neuroscience, Inc. | Targets and pathways for the production of alkaloidal compounds |
WO2023168023A1 (en) | 2022-03-04 | 2023-09-07 | Reset Pharmaceuticals, Inc. | Co-crystals or salts comprising psilocin |
WO2024054688A2 (en) * | 2022-09-10 | 2024-03-14 | Native Code Bio, Llc | Therapeutic combinations for movement disorders |
WO2024102458A1 (en) * | 2022-11-11 | 2024-05-16 | Gilgamesh Pharmaceuticals, Inc. | Methods of using trazodone to reverse the effects of 5-ht2a receptor agonists |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6017946A (en) * | 1997-10-08 | 2000-01-25 | Posner; Robert | Serotonin containing formulation for oral administration and method of use |
WO2015000064A1 (en) * | 2013-07-05 | 2015-01-08 | Evans Donna | Composition for treating pain and/or inflammation comprising eugenol and beta-caryophyllene |
NL2018190B1 (en) * | 2017-01-18 | 2018-07-26 | Procare Beheer B V | Psilocybin or psilocin in combination with cannabinoid |
JP7273731B2 (en) * | 2017-02-09 | 2023-05-15 | カームテック、エルエルシー | Compositions and methods containing psilocybin derivatives |
WO2019246532A1 (en) * | 2018-06-21 | 2019-12-26 | Robert John Petcavich | Method of inducing dendritic and synaptic genesis in neurodegenerative chronic diseases |
WO2020157569A1 (en) * | 2019-01-30 | 2020-08-06 | Diamond Therapeutics Inc. | Methods and compositions comprising a 5ht receptor agonist for the treatment of psychological, cognitive, behavioral, and/or mood disorders |
-
2021
- 2021-10-12 IL IL301656A patent/IL301656A/en unknown
- 2021-10-12 US US18/248,626 patent/US20230405028A1/en active Pending
- 2021-10-12 EP EP21879622.5A patent/EP4225320A4/en active Pending
- 2021-10-12 WO PCT/IB2021/059301 patent/WO2022079574A1/en active Application Filing
- 2021-10-12 CA CA3197488A patent/CA3197488A1/en active Pending
- 2021-10-12 JP JP2023546575A patent/JP2023545327A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4225320A1 (en) | 2023-08-16 |
WO2022079574A1 (en) | 2022-04-21 |
EP4225320A4 (en) | 2024-09-11 |
US20230405028A1 (en) | 2023-12-21 |
CA3197488A1 (en) | 2022-04-21 |
JP2023545327A (en) | 2023-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230405028A1 (en) | Compositions for reducing inflammation to improve or maintain mental or physical health | |
Bagdas et al. | Pharmacologic overview of chlorogenic acid and its metabolites in chronic pain and inflammation | |
Alok et al. | Herbal antioxidant in clinical practice: A review | |
Kumari et al. | Rauvolfia serpentina L. Benth. ex Kurz.: phytochemical, pharmacological and therapeutic aspects | |
US20200093755A1 (en) | Pharmaceutical compositions comprising cannabidiol and beta-caryophyllene and methods for their use | |
Jo et al. | Polygonatum sibiricum rhizome promotes sleep by regulating non-rapid eye movement and GABAergic/serotonergic receptors in rodent models | |
Abd‐Nikfarjam et al. | Cannabinoids in neuroinflammatory disorders: Focusing on multiple sclerosis, Parkinsons, and Alzheimers diseases | |
Shrivastava et al. | A review on therapeutic applications of Nigella sativa | |
Licón et al. | Potential healthy effects of saffron spice (Crocus sativus L. stigmas) consumption | |
Kazemi et al. | Peppermint and menthol: a review on their biochemistry, pharmacological activities, clinical applications, and safety considerations | |
Oliveira et al. | Plant terpenes on treating cardiovascular and metabolic disease: a review | |
US8227508B2 (en) | Dietary and pharmaceutical compositions containing carnosol and/or rosmanol and their uses | |
Ahn et al. | Heukharang lettuce (Lactuca sativa L.) leaf extract displays sleep-promoting effects through GABAA receptor | |
JP5467795B2 (en) | β-secretase inhibitor | |
US20240180987A1 (en) | Cannabigerol (cbg) products and methods of use | |
EP1637149A1 (en) | Dietary supplement composition for the man | |
JP2011093842A (en) | Anti-stress agent | |
Wal et al. | Neuro-nutraceuticals: Insights of experimental evidences and molecular mechanism in neurodegenerative disorders | |
US20210251949A1 (en) | Compositions and Methods for Treatment of Narcolepsy and Related Disorders | |
Amanat et al. | Zingiber roseum Roscoe.(Zingiberaceae): Current and future perspective | |
Ogwu et al. | Medicinal Spice, Aframomum melegueta: An Overview of the Phytochemical Constituents, Nutritional Characteristics, and Ethnomedicinal Values for Sustainability | |
Nemati et al. | Anti-depressant activity of hydroalcoholic extract of Asperula odorata L. in mice | |
Akram et al. | Beneath the Poppy's Veil: Exploring Ethnobotanical Treasures, Healing Power, and Biogenic Alchemy of Poppy Seeds | |
Crusiz | Valutazione degli effetti degli oli essenziali di Citrus limon, Rosmarinus officinalis e Lavandula angustifolia sulla funzione mitocondriale | |
Kumar et al. | Introducing the current information of Thai Journal of Pharmaceutical Sciences (TJPS) |