HRP940790A2 - Hybrid cell line for producing monoclonal antibody to a human thymocyte antigen, antibody and method of preparation thereof - Google Patents

Hybrid cell line for producing monoclonal antibody to a human thymocyte antigen, antibody and method of preparation thereof Download PDF

Info

Publication number
HRP940790A2
HRP940790A2 HRP-3066/80A HRP940790A HRP940790A2 HR P940790 A2 HRP940790 A2 HR P940790A2 HR P940790 A HRP940790 A HR P940790A HR P940790 A2 HRP940790 A2 HR P940790A2
Authority
HR
Croatia
Prior art keywords
cells
monoclonal antibody
antibody
hybridoma
thymocytes
Prior art date
Application number
HRP-3066/80A
Other languages
Croatian (hr)
Inventor
Patrick Chung-Shu King
Gideon Goldstein
Original Assignee
Ortho Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/099,970 external-priority patent/US4364933A/en
Application filed by Ortho Pharma Corp filed Critical Ortho Pharma Corp
Publication of HRP940790A2 publication Critical patent/HRP940790A2/en
Publication of HRP940790B1 publication Critical patent/HRP940790B1/en

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

Ovaj izum se odnosi općenito na nove nizove hibridnih stanica a specifičnije na nizove hibridnih stanica za dobivanje monoklonalnog antitijela za antigen koji je nađen kod približno 70% normalnih ljudskih timocita, zatim na ovako dobiveno antitijelo i na terapeutske i dijagnostičke metode i smjese koje koriste ovo tijelo. This invention relates generally to new lines of hybrid cells and more specifically to lines of hybrid cells for obtaining a monoclonal antibody for an antigen found in approximately 70% of normal human thymocytes, then to the antibody thus obtained and to therapeutic and diagnostic methods and mixtures using this body .

Fuzija mišjih mielomskih stanica za stanice slezene iz imuniziranog miša, izvršena od strane Kohlera i Milsteina 1975. god. /Nature, 256, 495-497 (1975)/ prvi put je pokazala da je moguće dobiti kontinuirani niz stanica praveći homogeno (takozvano "monoklonalno") antitijelo. Od tog početnog rada učinjeno je mnogo napora u pravcu dobivanja različitih hibridnih stanica (koje se zovu “hibridome” i korištenjem antitijela načinjenog od strane ovih hibridoma za različita znanstvena istraživanja. Vidi, na primjer, Current Topics in Microbiology and Immunology, volume 81, "Lymphocyte Hybridomas", F. Melchers, M. Potter and N. Warner, izdavači, Springer-Verlag, 1978. i reference date u ovom djelu; C. J. Barnstable et al, Cell, 14, 9-20 (svibanj, 1978); Handbook of Experimental Immunology, treće izdanje, sv. 2, D. M. Wier, izdavač, Blackwell, 1978, poglavlje 25, Chemical and Engineering News, siječanj 1, 1979, str. 15-17. Ove reference istovremeno ukazuju na nagrade i komplikacije u pokušaju da se dobije monoklonalno antitijelo iz hibridoma. lako se opća tehnika dobro razumije u samom konceptu, postoje mnoge teškoće, koje se sreću u ovom radu, i mnoge varijante ove tehnike koje se zahtijevaju za svaki specifičan slučaj. Ustvari, ne postoji sigurnost, prije pokušaja da se napravi data hibridoma, da će se dobiti željena hibridoma, da će ona proizvesti antitijelo, ako se ona dobije, ili da će tako proizvedeno tijelo imati željenu specifičnost. Na stupanj uspjeha u biti utječe tip upotrijebljenog antigena i tehnika selekcije koja se koristi za izoliranje željene hibridome. Fusion of murine myeloma cells to spleen cells from an immunized mouse, performed by Kohler and Milstein in 1975. /Nature, 256, 495-497 (1975)/ showed for the first time that it is possible to obtain a continuous line of cells by making a homogeneous (so-called "monoclonal") antibody. Since that initial work, many efforts have been made to obtain various hybrid cells (called "hybridomas") and to use the antibodies produced by these hybridomas for various scientific investigations. See, for example, Current Topics in Microbiology and Immunology, volume 81, " Lymphocyte Hybridomas", F. Melchers, M. Potter and N. Warner, publishers, Springer-Verlag, 1978 and references herein; C.J. Barnstable et al, Cell, 14, 9-20 (May, 1978); Handbook of Experimental Immunology, Third Edition, Volume 2, D. M. Wier, Publisher, Blackwell, 1978, Chapter 25, Chemical and Engineering News, January 1, 1979, pp. 15-17 These references indicate both the rewards and complications of attempting to a monoclonal antibody is obtained from a hybridoma. the general technique is easily understood in concept itself, there are many difficulties encountered in this work, and many variants of this technique required for each specific case. In fact, there is no certainty, before attempting that a given hybridoma is made, that the desired hybridoma will be obtained, that it will produce an antibody, if it is obtained, or that the body thus produced will have the desired specificity. The degree of success is essentially influenced by the type of antigen used and the selection technique used to isolate the desired hybridoma.

Pokušano dobivanje monoklonalnog antitijela za ljudske antigene stanica limfocita priopćeno je samo u nekoliko primjera. Vidi, na primjer, Current Topics in Microbioloqy and Immunology, ibid, 66-69 i 164-169. Antigeni, koji su korišteni u ovim priopćenim ogledima, kultivirani su na nizovima stanica humane limfoblastoidne leukemije i humane kronične limfocitne leukemije. Mnoge od dobivenih hibridoma izgleda da proizvode antitijelo za različite antigene kod svih ljudskih stanica. Nijedna od dobivenih hibridoma nije proizvela antitijelo protiv prethodno definirane klase ljudskih limfocita. Nedavno su ovi prijavitelji i drugi autorizirali članke koji objelodanjuju dobivanje i ispitivanje hibridoma koje prave antitijelo za neke T-stanične antigene. Vidi, na primjer, Reinherz, E. L. et al., J. Immunology, 123, 1312-1317 (1979); Reinherz, E. L. et al., Proc. Natl. Acad. Sci. 76, 4061-4065 (1979) i Kung, P. C. et al, Science, 206, 347-349 (1979). Attempts to obtain a monoclonal antibody for human lymphocyte cell antigens have been reported only in a few examples. See, for example, Current Topics in Microbiology and Immunology, ibid, 66-69 and 164-169. The antigens used in these reported experiments were cultured on human lymphoblastoid leukemia and human chronic lymphocytic leukemia cell lines. Many of the resulting hybridomas appear to produce antibody to different antigens on all human cells. None of the obtained hybridomas produced an antibody against a previously defined class of human lymphocytes. Recently, these applicants and others have authored articles disclosing the production and testing of hybridomas that make antibody to certain T-cell antigens. See, for example, Reinherz, E. L. et al., J. Immunology, 123, 1312-1317 (1979); Reinherz, E.L. et al., Proc. Natl. Acad. Sci. 76, 4061-4065 (1979) and Kung, P.C. et al, Science, 206, 347-349 (1979).

Treba shvatiti da postoje dvije osnovne klase limfocita koje su uključene u imunom sustavu čovjeka i životinja. Prva od ovih klasa (stanica koja potječe of timusa ili T-stanica) diferencirana je u timusu iz hemopoietičnih osnovnih stanica. Pošto se nalaze unutar timusa, diferencirane stanice se nazivaju "timociti". Zrele T-stanice izlaze iz timusa i kruže između tkiva, limfatika i krvnih tokova. Ove T-stanice formiraju veliki dio rezervoara recirkulirajućih malih limfocita. One imaju imunološku specifičnost i direktno su uključene u stanicama posredovane imune reakcije (kao što je odbivanje presađivanja) kao efektorske stanice. lako T-stanice ne luče humoralna antitijela, one su ponekad potrebne za lučenje ovih antitijela od strane druge klase limfocita, o kojima se dolje diskutira. Neki tipovi T-stanica igraju regulirajuću ulogu u drugim aspektima imunog sustava. Mehanizam ovog procesa kooperacije stanica još uvijek se potpuno ne razumije. It should be understood that there are two basic classes of lymphocytes involved in the immune system of humans and animals. The first of these classes (thymus-derived cell or T-cell) is differentiated in the thymus from hematopoietic stem cells. Since they are located inside the thymus, the differentiated cells are called "thymocytes". Mature T-cells leave the thymus and circulate between tissues, lymphatics and blood streams. These T-cells form a large part of the reservoir of recirculating small lymphocytes. They have immunological specificity and are directly involved in cell-mediated immune reactions (such as transplant rejection) as effector cells. Although T-cells do not secrete humoral antibodies, they are sometimes required for the secretion of these antibodies by another class of lymphocytes, discussed below. Some types of T-cells play a regulatory role in other aspects of the immune system. The mechanism of this process of cell cooperation is still not fully understood.

Druga klasa limfocita (stanice koje se izvode iz koštane srži ili B-stanice) su one koje luče antitijelo. One se također razvijaju iz hemopoitetičnih osnovnih stanica, ali njihova diferencijacija nije određena timusom. U pticama, one se diferenciraju u jednom organu, koji je analogan timusu, koji se naziva Fabricijusova vreća Međutim, kod sisavaca nije pronađen ekvivalentni organ i smatra se da se ove B-stanice diferenciraju unutar koštane srži. Another class of lymphocytes (bone marrow-derived cells or B-cells) are those that secrete antibodies. They also develop from hemopoietic stem cells, but their differentiation is not determined by the thymus. In birds, they differentiate in a single organ, analogous to the thymus, called the sac of Fabricius. However, no equivalent organ has been found in mammals, and these B-cells are thought to differentiate within the bone marrow.

Sada se zna da se T-stanice dijele na najmanje nekoliko podtipova, koji se nazivaju "pomagačke", "prigušujuće" i “ubijajuće” T-stanice, koje imaju funkciju potpomaganja neke reakcije, zaustavljanja neke reakcije ili ubijanja (razlaganja) stranih stanica. Ove podklase se dobro razumiju za mišje sustave, ali su tek nedavno opisane za ljudske sustave. vidi, na primjer, R. L. Evans et al., Journal of Experimental Medicine, vol. 145, 221-232, 1977, i L. Chess and S. F. Sdilossman - “Functional Analysis of Distinct Human T-Cell Subsets Bearing Unigue Differentiation Antigens”, in “Contemporary Topics in Immunobiology”, O. Stutman, izdavač, Plenum Press, 1977, vol. 7, 363-379. It is now known that T-cells are divided into at least several subtypes, called "helper", "suppressor" and "killer" T-cells, which have the function of helping a reaction, stopping a reaction or killing (decomposing) foreign cells. These subclasses are well understood for mouse systems, but have only recently been described for human systems. see, for example, R. L. Evans et al., Journal of Experimental Medicine, vol. 145, 221-232, 1977, and L. Chess and S. F. Sdilossman - “Functional Analysis of Distinct Human T-Cell Subsets Bearing Unique Differentiation Antigens,” in "Contemporary Topics in Immunobiology", O. Stutman, publisher, Plenum Press, 1977, vol. 7, 363-379.

Sposobnost identifikacije ili prigušivanja klasa ili podklasa T-stanica je značajna za dijagnozu ili liječenje različitih imunoregulatorskih poremećaja ili stanja. The ability to identify or suppress T-cell classes or subclasses is important for the diagnosis or treatment of various immunoregulatory disorders or conditions.

Na primjer, neke leukemije i limfome (oboljenja limfe) imaju različitu prognozu u zavisnosti od toga da li potječu od B-stanica ili T-stanica. Na taj način, procjena prognoze bolesti zavisi od razlikovanja ove dvije klase limfocita. Vidi, na primjer, A. C. Aisenberg and J. C. Long, The American Journal of Medicine, 58, 300 (ožujak, 1975); D. Belpomme et al., u "Immunological Diagnosis of Leukemias and Lymphomas", S. Thierfelder et al., izd., Springer, Heidelberg, 1977, 33-45 i D. Belpomme et al., British Journal of Hematology, 1978, 38, 85. For example, some leukemias and lymphomas (diseases of the lymph) have a different prognosis depending on whether they originate from B-cells or T-cells. In this way, the assessment of the prognosis of the disease depends on the distinction between these two classes of lymphocytes. See, for example, A. C. Aisenberg and J. C. Long, The American Journal of Medicine, 58, 300 (March, 1975); D. Belpomme et al., in "Immunological Diagnosis of Leukemias and Lymphomas", S. Thierfelder et al., eds., Springer, Heidelberg, 1977, 33-45 and D. Belpomme et al., British Journal of Hematology, 1978 , 38, 85.

Neka bolesna stanja (npr. juvenilni reumatoidni artritis, zločudnosti i agamaglobulinemija) u vezi su sa nepostojanjem ravnoteže podklasa T-stanica. Sugerirano je da su autoimune bolesti općenito u vezi sa viškom "pomagačkih". T-stanica ili nedostatkom nekih "suzbijajućih" T-stanica, dok je agamaglobulinemija u vezi sa viškom nekih "suzbijajućih" T-stanica ili nedostatkom "pomagačkih" T-stanica. Zloćudnosti su općenito u vezi sa viškom "suzbijajućih" T-stanica. Some disease states (eg, juvenile rheumatoid arthritis, malignancies, and agammaglobulinemia) are associated with an imbalance of T-cell subclasses. It has been suggested that autoimmune diseases are generally related to an excess of "helpers". T-cells or a deficiency of some "suppressor" T-cells, while agammaglobulinemia is related to an excess of some "suppressor" T-cells or a deficiency of "helper" T-cells. Malignancies are generally related to an excess of "suppressor" T-cells.

Kod nekih leukemija, višak T-stanica se proizvodi u zaustavljenom stanju razvoja. Na taj način dijagnoza može zavisiti od sposobnosti da se detektira, ova neuravnoteženost ili višak i odredi koji je razvojni stupanj u višku. Vidi, na primjer, J. Kersey et al., "Surface Markers Define Human Lymphoid Malignancies with Differing Prognosiss", u Hematology and Blood Transfusion, vol. 20, Springer-Verlag, 1977, 17-24, i u tom radu sadržane reference, i El. L. Reinherz et al., J. Clin. Invest. 64, 392-397 (1979). In some leukemias, excess T-cells are produced in an arrested state. In this way, the diagnosis can depend on the ability to detect this imbalance or excess and determine which developmental stage is in excess. See, for example, J. Kersey et al., "Surface Markers Define Human Lymphoid Malignancies with Differing Prognosis," in Hematology and Blood Transfusion, vol. 20, Springer-Verlag, 1977, 17-24, and references therein, and El. L. Reinherz et al., J. Clin. Invest. 64, 392-397 (1979).

Stečena agamaglobulinemija, bolesno stanje u kojem se ne proizvodi imuni globulin, obuhvaća najmanje dva različita tipa. U tipu I nemogućnost proizvodnje imunog globulina izazvana je viškom suzbijajućih T-stanica, dok je u tipu II prouzrokovana nedostatkom pomagačkih T-stanica. U oba tipa, izgleda da nema defekta ili nedostatka kod pacijentovih B-stanica, limfocita koji su odgovorni za stvarno lučenje antitijela; međutim, ove B-stanice su ili suzbijene ili "nepotpomognute", što rezultira u uveliko smanjenoj ili nepostojećoj proizvodnji imunog globulina. Tip stečene agamaglobulinemije, na taj način može se odrediti ispitivanjem da li postoji višak suzbijajućih T-stanica ili odsustvo pomagačkih T-stanica. Acquired agammaglobulinemia, a disease state in which immune globulin is not produced, includes at least two different types. In type I, the inability to produce immune globulin is caused by an excess of suppressive T-cells, while in type II it is caused by a lack of helper T-cells. In both types, there appears to be no defect or deficiency in the patient's B-cells, the lymphocytes responsible for actually secreting the antibodies; however, these B-cells are either suppressed or "unassisted," resulting in greatly reduced or non-existent production of immune globulin. The type of acquired agammaglobulinemia can thus be determined by examining whether there is an excess of suppressor T-cells or the absence of helper T-cells.

Na terapeutskoj strani, postoji sugestija, iako do sada nije definitivno dokazana, da davanje antitijela protiv podtipa T-stanica u višku može imati terapeutsku prednost kod autoimune bolesti ili zloćudnosti. Na primjer, rak na pomagačkim T-stanicama (neke kožne T-stanične limfome i neke T-stanične akutne limfoblastoidne leukemije) mogu se liječiti antitijelom za antigen pomagačke T-stanice. Liječenje autoimune bolesti prouzrokovane viškom pomagačkih stanica može se također vršiti na isti način. Liječenje bolesti (npr. zloćudnosti ili stečene agamaglobulinemije tipa I) prouzrokovanih viškom suzbijajućih T-stanica, može se izvršiti davanjem antitijela za antigen suzbijajućih T-stanica. On the therapeutic side, there is a suggestion, although not yet definitively proven, that administration of antibodies against a T-cell subtype in excess may have a therapeutic advantage in autoimmune disease or malignancy. For example, helper T-cell cancers (some cutaneous T-cell lymphomas and some T-cell acute lymphoblastoid leukemias) can be treated with an antibody to a helper T-cell antigen. Treatment of an autoimmune disease caused by an excess of helper cells can also be done in the same way. Treatment of diseases (eg, malignancy or acquired agammaglobulinemia type I) caused by an excess of suppressive T-cells can be performed by administering antibodies to the antigen of suppressive T-cells.

Priopćeno je da se antiserumi protiv čitave klase ljudskih T-stanica (takozvani antihumani timocitni globulin ili ATG) mogu terapeutski koristiti kod pacijenata koji su primili presađene organe. Pošto stanicama posredovana reakcija (mehanizam kojim se odbijaju transplantati) zavisi od T-stanica, davanje antitijela za T-stanice sprečava ili zadržava ovaj proces odbijanja. Vidi, na primjer, Cosini et al, "Randomized Clinical Trialof ATG in Cadaver Renal Allgraft Recipients: Importance of T Cell Monitoring", Surgey, 40, 155-163 (1976) i reference date u ovom radu. It has been reported that antisera against an entire class of human T-cells (so-called antihuman thymocyte globulin or ATG) can be used therapeutically in patients who have received organ transplants. Since the cell-mediated reaction (the mechanism by which transplants are rejected) depends on T-cells, administration of T-cell antibodies prevents or delays this rejection process. See, for example, Cosini et al, "Randomized Clinical Trial of ATG in Cadaver Renal Allograft Recipients: Importance of T Cell Monitoring", Surgery, 40, 155-163 (1976) and references therein.

Identifikacija i suzbijanje klasa i podklasa humanih T-stanica ranije je vršena korištenjem spontanih autoantitijela ili selektivnih antiseruma za humane T-stanice dobivenih imunizacijom životinja sa humanim T-stanicama, ispuštanjem krvi životinjama da se dobije serum adsorbiranjem antiseruma sa (na primjer) autolognim ali ne i alogenim B-stanicama da se udalje antitijela neželjene reaktivnosti. Dobivanje ovih antiseruma je izrazito teško, naročito u stupnjevima adsorpcije i pročišćavanja. Čak i adsorbirani i pročišćeni antiserumi, pored željenog antitijela, iz različitih razloga, sadrže i mnoge nečistoće. Prvo, serum sadrži milijune molekula antitijela čak i prije imunizacije T-stanica. Drugo, imunizacija prouzrokuje proizvodnju antitijela protiv mnoštva različitih antigena koji su nađeni kod svih injektiranih humanit T-stanica. Ne postoji selektivna proizvodnja antitijela protiv jednog antigena Treće, koncentracija specifičnog antitijela, koje je dobiveno primjenom ovih metoda, obično je vrlo mala (na primjer inaktivna pri razrjeđenjima većim od 1:100) i odnos specifičnog prema nespecifičnom antitijelu je manji od 1 106. Identification and suppression of human T-cell classes and subclasses has previously been performed using spontaneous autoantibodies or human T-cell-selective antisera obtained by immunizing animals with human T-cells, bled animals to obtain serum by adsorbing antisera with (for example) autologous but not and allogeneic B-cells to remove antibodies of unwanted reactivity. Obtaining these antisera is extremely difficult, especially in the stages of adsorption and purification. Even adsorbed and purified antisera, in addition to the desired antibody, contain many impurities for various reasons. First, serum contains millions of antibody molecules even before T-cell immunization. Second, immunization causes the production of antibodies against a multitude of different antigens found in all injected human T-cells. There is no selective production of antibodies against a single antigen. Third, the concentration of specific antibody obtained using these methods is usually very low (for example, inactive at dilutions greater than 1:100) and the ratio of specific to nonspecific antibody is less than 1 106.

Vidi, na primjer, članak Chessa i Schlossmana, koji je gore referiran (na str. 365 i dalje) i članak u Chemical and Engineering News (koji je također gore referiran), u kojima su opisani nedostaci ranijih antiseruma i prednosti monoklonalnog antitijela. Sada je otkrivena nova hibridoma (označena kao OKT6) koja je u stanju da proizvodi novo monoklonalno antitijelo protiv antigena nađenog kod približno 70% normalnih humanih timocita ali ne i kod normalnih humanih perifernih limfoidnih stanica (T-stanica, B-stanica ili nufltih stanica) ili stanica koštane srži. See, for example, the article by Chess and Schlossman, referred to above (on p. 365 ff.) and the article in Chemical and Engineering News (also referred to above), which describe the disadvantages of earlier antisera and the advantages of the monoclonal antibody. A new hybridoma (designated OKT6) has now been discovered that is able to produce a new monoclonal antibody against an antigen found on approximately 70% of normal human thymocytes but not on normal human peripheral lymphoid cells (T-cells, B-cells or neutrophils). or a bone marrow cell.

Tako proizvedeno antitijelo je monospecifično za jednu deterninantu kod približno 70% normalnih humanih timocita i praktično ne sadrži neki drugi anti-humani imuni globulin, nasuprot ranijim antiserumima (koji su inherentno kontaminirani sa antitijelom reaktivnim prema brojnih humanim antigenima) i ranijim monoklonalnim antitijelima (koja nisu monospecifična za humani timocitni antigen). Pored toga, ova hibridoma može se tako kultivirati da proizvede antitijelo bez potrebe imuniziranja i ubijanja životinja, čemu slijedi mukotrpna adsorpcija i pročišćavanja - što je bilo nužno da se dobiju čak i nečisti antiserumi ranije prakse. The antibody thus produced is monospecific for a single determinant in approximately 70% of normal human thymocytes and practically does not contain any other anti-human immune globulin, in contrast to earlier antisera (which are inherently contaminated with antibodies reactive to numerous human antigens) and earlier monoclonal antibodies (which are not monospecific for human thymocyte antigen). In addition, this hybridoma can be cultured to produce antibody without the need to immunize and kill the animals, followed by laborious adsorption and purification - which was necessary to obtain even the impure antisera of earlier practice.

Prema tome jedan predmet ovog izuma je osiguravanje hibridoma koje proizvode antitijela protiv antigena nađenog kod oko 70% normalnih humanih timocita. Accordingly, one object of this invention is to provide hybridomas that produce antibodies against an antigen found in about 70% of normal human thymocytes.

Jedan daljnji aspekt ovog izuma je da se osiguraju metode za dobivanje ovih hibridoma. A further aspect of the present invention is to provide methods for obtaining these hybridomas.

Daljnji predmet ovog izuma je da se osigura praktično homogeno antitijelo protiv antigena nađenog kod oko 70% normalnih humanih timocita. A further object of this invention is to provide a practically homogeneous antibody against an antigen found in about 70% of normal human thymocytes.

Još jedan daljnji predmet ovog izuma je da se osiguraju metode za liječenje i dijagnozu bolesti ili identifikaciju T-stanice ili podklase timocita a koje koriste ovo antitijelo. It is a further object of this invention to provide methods for the treatment and diagnosis of disease or the identification of a T-cell or thymocyte subclass that utilizes this antibody.

Drugi predmeti i prednosti ovog izuma biti će jasni iz proučavanja ovog otkrića. Other objects and advantages of the present invention will be apparent from a review of this disclosure.

U cilju osiguravanja gore datih predmeta i prednosti ovim izumom se daje nova hibridoma koja proizvodi novo antitijelo za antigen nađen kod približno 70% normalnih humanih timocita (ali ne i kod normalnih humanih perifernih limfoidnih stanica ili stanica koštane srži), zatim samo antitijelo i dijagnostičke i terapeutske metode koje koriste ovo antitijelo. Ova hibridoma je dobivena uz opću primjenu Milsteina i Kohlera. Nakon imunizacije miševa sa normalnim humanim timocitima, stanice slezene imuniziranih miševa su fuzionirane sa stanicama iz jedne vrste mišjih mieloma i dobivene hibridome su sortirane radi dobivanja onih koje sadrže antitijelo i koje su dale selektivno vezivanje za normalne E rozetne pozitivne humane T-stanice ili timocite. Željene hibridome su zatim klonirane i okarakterizirane. Kao rezultat toga, dobivena je hibridoma koja proizvodi antitijelo (označeno kao OKT6) protiv antigen kod približno 70% normalnih humanih timocita. Ne samo da ovo antitijelo reagira sa oko 70% normalnih humanih timocita, već ono također ne reagira sa normalnim perifernim krvnim limfoidnim stanicama ili stanicama koštane srži. In order to provide the above objects and advantages, the present invention provides a new hybridoma that produces a new antibody to an antigen found in approximately 70% of normal human thymocytes (but not in normal human peripheral lymphoid cells or bone marrow cells), then the antibody itself and diagnostic and therapeutic methods using this antibody. This hybridoma was obtained with the general application of Milstein and Kohler. After immunization of mice with normal human thymocytes, spleen cells from the immunized mice were fused with cells from one type of murine myeloma and the resulting hybridomas were sorted to obtain those containing the antibody and which gave selective binding to normal E rosette positive human T-cells or thymocytes. The desired hybridomas were then cloned and characterized. As a result, a hybridoma was obtained that produced an antibody (designated as OKT6) against an antigen in approximately 70% of normal human thymocytes. Not only does this antibody react with about 70% of normal human thymocytes, but it also does not react with normal peripheral blood lymphoid cells or bone marrow cells.

Sa aspekta teškoća ukazanih za raniju praksu i nedostatka uspjeha vezanih za korištenje vrsta malignih stanica kao antigena, iznenađujuće je da ova metoda daje željenu hibridomu. Treba naglasiti da nepredvidljiva priroda dobivanja hibridne stanice ne omogućava da se vrši ekstrapolacija od jednog sustava antigena ili stanica do drugog sustava. Ustvari ovi prijavitelji su otkrili da upotreba vrste T-stanica - malignatnih stanica ili pročišćenih antigena odvojenih od površine stanica kao antigena nije bila uspješna u biti. In view of the difficulties indicated for earlier practice and the lack of success related to the use of malignant cell types as antigens, it is surprising that this method yields the desired hybridoma. It should be emphasized that the unpredictable nature of obtaining a hybrid cell does not allow extrapolation from one system of antigens or cells to another system. In fact, these applicants found that the use of a type of T-cell - malignant cells or purified antigens separated from the cell surface as antigens was essentially unsuccessful.

I predmetna hibridoma i iz nje proizvedeno antitijelo ovdje su identificirani oznakom “OKT6”, poseban materijal će biti očit iz konteksta. Predmetna hibridoma je deponirana 21. studenog 1979. godine kod American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, i dobiven je ATCC prijemni broj CRL8020. Both the hybridoma in question and the antibody produced from it are identified herein by the designation “OKT6”, the separate material will be apparent from the context. The subject hybridoma was deposited on November 21, 1979 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, and was assigned ATCC accession number CRL8020.

Dobivanje i karakteriziranje ove hibridome i rezultirajućeg antitijela bolje će se razumjeti upućivanjem na slijedeći opis i primjere ilustriranja. The preparation and characterization of this hybridoma and the resulting antibody will be better understood by reference to the following description and illustrative examples.

Postupak za dobivanje hibridome općenito obuhvaća slijedeće stupnjeve: The procedure for obtaining a hybridoma generally includes the following steps:

A. Imuniziranje miševa sa normalnim humanim timocitima. lako je nađeno da su od prednosti miševi ženke CAF1, podrazumijeva se da se mogu koristiti i drugi sojevi miševa. Program imunizacije i koncentracija timocita trebaju biti takvi da se proizvedu upotrebljive količine pogodno premiranih splenocita. Nađeno je da su efektivne tri imunicacije u dvotjednim intervalima sa 2x107 stanica/miš/injekcija u 0,2 ml fosfatom puferirane slane otopine. A. Immunization of mice with normal human thymocytes. female CAF1 mice were easily found to be preferred, it is understood that other mouse strains can be used. The immunization program and thymocyte concentration should be such as to produce usable amounts of suitably primed splenocytes. Three immunizations at two-week intervals with 2x107 cells/mouse/injection in 0.2 ml of phosphate-buffered saline were found to be effective.

B. Odstranjivanje slezena iz imuniziranih miševa i pravljenje suspenzije slezene u odgovarajućem mediju. Dovoljno je oko 1 ml medija na slezenu. Ove eksperimentalne tehnike su dobro poznate. B. Removal of spleens from immunized mice and preparation of spleen suspension in appropriate medium. About 1 ml of medium on the spleen is enough. These experimental techniques are well known.

C. Fuzioniranje suspendiranih stanica slezene sa mišjim mielomskim stanicama iz pogodne vrste stanica upotrebom pogodnog pomagača fuzije. Pogodan odnos je oko 5 slezenskih stanica na jednu mielomsku stanicu. Ukupna zapremina od oko 0,5 do 1,0 ml medija za fuziju, odgovara za oko 108 splenocita. Poznate su i mogu se dobiti mnoge vrste mielomskih stanica miša, općenito od članova akademskih zajednica (udruženja) ili različitih depozitnih banaka, kao što je Salk Institute Cell Distribution Center, La Jolla, CA. Upotrijebljena vrsta stanica treba pogodno biti takozvanog tipa "otpornog prema lijekovima", tako da nefuzionirane mielomske stanice ne prežive u selektivnom mediju, dok će hibridi preživjeti. Najviše uobičajena klasa je vrsta stanica 8-azagvanina, koja nema enzim hipoksantin gvanin fosforibozil transferazu i otuda neće biti potpomognuta od strane HAT (hipoksantin, aminopterin i timidin) medija. Također je općenito od prednosti da upotrijebljena vrsta mielomskih stanica bude takozvanog "neizlućujućeg" tipa, što znači da sama ne proizvodi neko antitijelo, iako se mogu koristiti i izlučujući tipovi. Međutim, u nekim slučajevima mogu biti od prednosti lučeće mijelomske vrste. lako je pogodan pomagač fuzije polietilenglikol, koji ima srednju molekulsku težinu od oko 1000 do oko 4000 (koji se u prometu dobiva kao PEG1000, itd.), mogu se koristiti i drugi pospješivači fuzije - koji su poznati u praksi. C. Fusion of suspended spleen cells with murine myeloma cells from a suitable cell type using a suitable fusion adjuvant. A suitable ratio is about 5 spleen cells to one myeloma cell. A total volume of about 0.5 to 1.0 ml of fusion medium corresponds to about 108 splenocytes. Many types of murine myeloma cells are known and can be obtained, generally from members of academic communities (associations) or various depository banks, such as the Salk Institute Cell Distribution Center, La Jolla, CA. The type of cells used should preferably be of the so-called "drug-resistant" type, so that unfused myeloma cells do not survive in the selective medium, while the hybrids will. The most common class is the 8-azaguanine cell type, which lacks the enzyme hypoxanthine guanine phosphoribosyl transferase and will therefore not be supported by HAT (hypoxanthine, aminopterin, and thymidine) media. It is also generally advantageous that the type of myeloma cells used is of the so-called "non-secretory" type, meaning that it does not produce any antibody on its own, although secretory types can also be used. However, in some cases, secretory myeloma types may be of advantage. a readily suitable fusion promoter is polyethylene glycol, which has an average molecular weight of about 1000 to about 4000 (commercially available as PEG1000, etc.), other fusion promoters - which are known in practice - can be used.

D. Razrjeđivanje i kultiviranje u odvojenim posudama, smjese nefuzioniranih stanica slezene, nefuzioniranih mielomskih stanica, i fuzioniranih stanica u selektivnom mediju koji neće potpomagati nefuzionirane mielomske stanice u toku perioda vremena dovoljnog da omogući smrt nefuzioniranih stanica (oko tjedan dana). Razrjeđivanje može biti ograničavajućeg tipa, u kojem je zapremina razrjeđivača izračunata statističkim putem tako da se izolira izvjestan broj stanica (npr. 1 - 4) u svakom odvojenom kontejneru (npr. svakom udubljenju mikrotitarske posude). Medij je onaj (npr. HAT medij) koji neće potpomoći prema lijekovima otpornu (npr. otpornu prema 8-azagvaninu) nefuzioniranu vrstu mielomskih stanica. Otuda se gube ove mielomske stanice. Kao nefuzionirane stanice slezene nisu malignatne one koje imaju samo konačan broj generacija. Na taj način, poslije izvjesnog perioda vremena (oko tjedan dana) ove nefuzionirane stanice slezene prestaju da se reproduciraju. S druge strane, fuzionirane stanice nastavljaju da se reproduciraju jer posjeduju malignantnu osobinu mielomskog pretka i sposobnost preživljavanja u selektivnoj sredini osobine pretka - stanice slezene. D. Diluting and culturing in separate dishes a mixture of unfused spleen cells, unfused myeloma cells, and fused cells in a selective medium that will not support the unfused myeloma cells for a period of time sufficient to allow death of the unfused cells (about one week). The dilution may be of the limiting type, in which the volume of diluent is calculated statistically to isolate a certain number of cells (eg 1-4) in each separate container (eg each well of a microtiter dish). The medium is one (eg, HAT medium) that will not support a drug-resistant (eg, 8-azaguanine-resistant) unfused type of myeloma cells. This is where these myeloma cells are lost. As non-fused spleen cells, those that have only a finite number of generations are not malignant. In this way, after a certain period of time (about a week), these unfused spleen cells stop reproducing. On the other hand, the fused cells continue to reproduce because they possess the malignant trait of the myeloma progenitor and the ability to survive in the selective environment of the progenitor trait - the spleen cells.

E. Procjenjivanje plivajućeg gornjeg sloja u svakoj posudi (udubljenju) koja sadrži hibridomu u odnosu na prisustvo antitijela za E rozetne pozitivne pročišćene humane T-stanice ili timocite. E. Evaluation of the supernatant in each dish (well) containing the hybridoma for the presence of antibody to E rosette positive purified human T-cells or thymocytes.

F. Selekcioniranje (npr. ograničavanjem razrjeđenja) i kloniranje hibridoma koje proizvode željeno antitijelo. F. Selection (eg, by limiting dilution) and cloning of hybridomas that produce the desired antibody.

Kada je jednom selekcionirana i klonirana željena hibridoma rezultirajuće antitijelo može se dobiti primjenom jednog od dva načina. Najčistije monoklonalno antitijelo se dobiva in vitro kultiviranjem željene hibridome u pogodnom mediju u toku pogodnog vremenskog intervala, čemu slijedi izdvajanje željenog antitijela iz gornjeg sloja tekućine. Pogodni medij i pogodni vremenski period kultiviranja su poznati ili se lako mogu odrediti Ova in vitro tehnika proizvodi praktično monospecfično monoklonalno antitijelo, praktično bez drugog specifičnog antihumanog imunoglobulina. Prisutna je mala količina drugog imuno globulina jer medij sadrži ksenogeni serum (npr. fetalni teleći serum). Međutim, ova in vitro metoda ne mora proizvesti dovoljnu količinu ili koncentraciju antitijela za neke svrhe, jer je koncentracija monoklonalnog antitijela samo oko 50 µg/ml. Once the desired hybridoma has been selected and cloned, the resulting antibody can be obtained using one of two methods. The purest monoclonal antibody is obtained in vitro by culturing the desired hybridoma in a suitable medium for a suitable time interval, followed by extraction of the desired antibody from the upper liquid layer. A suitable culture medium and a suitable period of time for cultivation are known or can be easily determined. This in vitro technique produces a practically monospecific monoclonal antibody, practically without any other specific anti-human immunoglobulin. A small amount of other immune globulin is present because the medium contains xenogeneic serum (eg fetal calf serum). However, this in vitro method may not produce a sufficient amount or concentration of antibody for some purposes, as the concentration of the monoclonal antibody is only about 50 µg/ml.

Radi dobivanja mnogo veće koncentracije nešto manje čistog monoklonalnog antitijela, željena hibridoma se može injekcijom dati miševima, pogodno singenskim ili semi-singenskim miševima. Hibridoma će prouzrokovati formiranje tumora koji proizvode antitijelo poslije pogodnog perioda inkubacije, što će rezultirati u visokoj koncentraciji željenog antitijela (oko 5 - 20 mg/ml) u krvnoj struji i peritonalnom eksudatu (trbušna vodena bolest) miša domaćina. lako ovi miševi domaćini također . imaju normalna antitijela u njihovoj krvi i izlučenjima, koncentracija ovih normalnih antitijela je samo oko 5% koncentracije monoklonalnog antitijela. Pored toga, pošto ova normalna antitijela nisu antihumana po svojoj specifičnosti, monoklonalno antitijelo dobiveno iz požnjevenih eksudata ili iz seruma, praktično je bez prisustva bilo kojeg kontaminirajućeg antihumanog imunog globulina. Ovo monoklonalno antitijelo je visoke koncentracije (aktivno pri. razrjeđenjima od 1:50000 ili još većim razrjeđenjima) i visokog odnosa specifičnog prema nespecifičnom imunom globulinu (oko 1 /20). Imuni globulin koji je pri tome proizveden i inkorporira K lake mielomske lance, su nespecifični, “bezvezni” peptidi, koji samo razrjeđuju monoklonalno antitijelo ne oduzimajući mu njegovu specifičnost. In order to obtain a much higher concentration of a slightly less pure monoclonal antibody, the desired hybridoma can be injected into mice, preferably syngeneic or semi-syngeneic mice. The hybridoma will cause the formation of tumors that produce the antibody after a suitable incubation period, which will result in a high concentration of the desired antibody (about 5 - 20 mg/ml) in the bloodstream and peritoneal exudate (abdominal dropsy) of the host mouse. easily these host mice also . have normal antibodies in their blood and secretions, the concentration of these normal antibodies is only about 5% of the concentration of the monoclonal antibody. In addition, since these normal antibodies are not antihuman in their specificity, the monoclonal antibody obtained from harvested exudates or from serum is virtually free of any contaminating antihuman immune globulin. This monoclonal antibody has a high concentration (active at dilutions of 1:50000 or even higher dilutions) and a high ratio of specific to non-specific immune globulin (about 1/20). The immune globulin that is produced and incorporates the K light myeloma chains are non-specific, "non-binding" peptides, which only dilute the monoclonal antibody without depriving it of its specificity.

Primjer 1 Example 1

Dobivanje monoklonalnih antitijela Obtaining monoclonal antibodies

A. Imunizacija i hibridizacija tjelesnih stanica A. Immunization and hybridization of body cells

Ženke CAF1 miševa (Jackson Laboratories, stare 6 - 8 tjedana) su imunizirane intraperitonalno sa 2x107 humanih timocita u 0,2 ml fosfatne slane puferirane otopine u dvotjednim intervalima. Četiri dana, nakon treće imunizacije, iz miševa su odstranjene slezene i napravljena je jednostavna stanična suspenzija prešanjem tkiva kroz sito od nehrđajućeg čelika. Female CAF1 mice (Jackson Laboratories, 6-8 weeks old) were immunized intraperitoneally with 2x107 human thymocytes in 0.2 ml of phosphate-buffered saline at two-week intervals. Four days after the third immunization, the spleens were removed from the mice and a simple cell suspension was made by pressing the tissue through a stainless steel sieve.

Fuzija stanica izvršena je prema postupku Kohlera i Milsteina. 1x108 splenocita je fuzionirano u 0,5 ml fuzionog medija koji sadrži 35% polietilenglikola (PEG1000) i 5% dimetilsulfoksida u RPMI 1640 mediju (Gibco, Grand Island, NY) sa 2x107 P3x63Ag8U1 mielomskih stanica dobivenih od firme Dr. M. Scharff, Albert Einstein Collage of Medicine, Bronx, NY. Ove mielomske stanice luče IgG1 K lake lance. Cell fusion was performed according to the procedure of Kohler and Milstein. 1x108 splenocytes were fused in 0.5 ml fusion medium containing 35% polyethylene glycol (PEG1000) and 5% dimethylsulfoxide in RPMI 1640 medium (Gibco, Grand Island, NY) with 2x107 P3x63Ag8U1 myeloma cells obtained from Dr. M. Scharff, Albert Einstein College of Medicine, Bronx, NY. These myeloma cells secrete IgG1 K light chains.

B. Selekcija i razvoj hibridome B. Hybridoma selection and development

Poslije izvršene fuzije stanica, stanice su kultivirane u HAT mediju (hipoksantin, aminopterin i timidin) pri 37°C sa 5%-tnim CO2 u vlažnoj atmosferi. Nekoliko tjedana kasnije, 40 do 100 μl gornjeg sloja tekućine iz kultura, koje sadrže hibridome, dodano je loptici od 106 perifernih limfoita izdvojenih u E rozetne pozitivne (E+) i E rozetne negativne populacije (E-), koje su napravljene iz krvi zdravih humanih davalaca kao što je opisano od strane Mendesa (J. Immunol. 111, 860 (1973)). Detekcija mišjih hibridomnih antitijela, vezanih za ove stanice, određena je indirektnom imunofluorescencijom. Stanice inkubirane sa gornjim slojevima tekućine kultura obojene su fluoresceniranim kozanti-miš IgG (G/M FITC) (Meloy Laboratories, Springfield, VA; F/p=2,5) i fluorescentnim antitijelom prevučene stanice su zatim analizirane na citofluorografu FC200/4800A (Ortho Instruments, Westwood, MA) kao što je to opisano u promjeru III. Kulture hibridoma koje sadrže antitijela koja reagiraju specifiično sa E+ limfocitima (T-stanice) i/ili timociti su selekcionirane i klonirane dva puta primjenom metoda ograničenog razrjeđvanja u prisustvu hranilačkih stanica. Nakon toga su ekstrakti prenešeni intraperitonalno davanjem injekcije od 1x107 stanica datog ekstrakta (0,2 ml zapr.) u CAF1 miševe premirane sa 2,6,10,14-tetrametilpentadekanom (koji firma Aldrich Chemical Company prodaje pod imenom Pristine). Malignantni eksudati iz ovih miševa su zatim upotrijebljeni da se okarakteriziraju limfociti, kao što je dolje opisano u primjeru 2. Standardnim tehnikama je demonstrirano da je predmetno hibridno antitijelo OKT6 podklase tgG1. After cell fusion, the cells were cultured in HAT medium (hypoxanthine, aminopterin and thymidine) at 37°C with 5% CO2 in a humid atmosphere. A few weeks later, 40 to 100 μl of supernatant from cultures containing hybridomas was added to a pellet of 106 peripheral lymphocytes separated into E rosette positive (E+) and E rosette negative (E-) populations, which were made from blood of healthy human donors as described by Mendes (J. Immunol. 111, 860 (1973)). The detection of mouse hybridoma antibodies, bound to these cells, was determined by indirect immunofluorescence. Cells incubated with culture supernatants were stained with fluorescent anti-mouse IgG (G/M FITC) (Meloy Laboratories, Springfield, VA; F/p=2.5) and fluorescent antibody-coated cells were then analyzed on an FC200/4800A cytofluorograph ( Ortho Instruments, Westwood, MA) as described in section III. Hybridoma cultures containing antibodies that react specifically with E+ lymphocytes (T-cells) and/or thymocytes were selected and cloned twice using limiting dilution methods in the presence of feeder cells. Afterwards, the extracts were transferred intraperitoneally by injecting 1x107 cells of the given extract (0.2 ml each) into CAF1 mice primed with 2,6,10,14-tetramethylpentadecane (sold by Aldrich Chemical Company under the name Pristine). Malignant exudates from these mice were then used to characterize lymphocytes, as described below in Example 2. The OKT6 hybrid antibody in question was demonstrated to be of the tgG1 subclass by standard techniques.

Primjer 2 Example 2

Karakterizacija reaktivnosti OKT6 Characterization of OKT6 reactivity

A. Izoliranje limfocitnih populacija A. Isolation of lymphocyte populations

Humane periferne krvne mononuklearne stanice su izolirane iz zdravih dobrovoljnih davalaca (starosti 15 - 40 godina) primjenom Ficoll-Hypaqueovog centrifugiranja sa gradijentom gustoće (Pharmacia Fine Chemicals, Piscataway, NJ) čemu slijedi tehnika Boyum, Scand. J. Ciin. Lab. Invest. 21 (suppl. 97), 77 (1968). Nefrakcionirane mononuklearne stanice su razdvojene u površinske Ig+(B) i Ig-(T plus nula) populacije primjenom kromatografije na kolon Sephadexa G-200 anti-F(ab’)2, kao što je ranije opisana od strane Chessa et al., u J. Immunol. 113, 1113 (1974). T-stanice su izdvojene E rozetiranjem Ig- populacije sa 5%-tnim ovčjim eritrocitima (Microbiological Associates, Bethesda, MD). Rozetirana smjesa je raslojena preko Ficoll-Hypaquea i izdvojena E+ loptica tretira sa 0,155 M otopinom NH4C1 (10 ml na 108 stanica). Tako dobivena populacija T-stanica je bila < 2% EAC rozetno pozitivna i > 95% E rozetno pozitivna što je određeno standardnim metodama. Pored toga, ne-rozetirajuća Ig- (nula stanice) populacija je požnjevena iz Ficollove međufaze. Ova posljednja populacija je bila < 5% E+ i < 2% s Ig+. Površinska Ig+ (B) populacija je dobivena iz kolone Sephadex G-200 čemu je slijedilo eluiranje sa normalnim humanim gama globulinom, kao što je ranije opisano. Ova populacija je bila > 95% površinski Ig+ i < 5% E+. Human peripheral blood mononuclear cells were isolated from healthy volunteer donors (aged 15-40 years) using Ficoll-Hypaque density gradient centrifugation (Pharmacia Fine Chemicals, Piscataway, NJ) followed by the technique of Boyum, Scand. J. Ciin. Lab. Invest. 21 (suppl. 97), 77 (1968). Unfractionated mononuclear cells were separated into surface Ig+(B) and Ig-(T plus null) populations using Sephadex G-200 anti-F(ab')2 column chromatography, as previously described by Chess et al., in J. Immunol. 113, 1113 (1974). T cells were isolated by E rosetting the Ig population with 5% sheep erythrocytes (Microbiological Associates, Bethesda, MD). The rosette mixture was layered over Ficoll-Hypaque and the separated E+ ball was treated with 0.155 M NH4Cl solution (10 ml per 108 cells). The resulting T-cell population was < 2% EAC rosette positive and > 95% E rosette positive as determined by standard methods. In addition, a non-rosetting Ig- (null cell) population was harvested from the Ficoll interphase. This latter population was < 5% E+ and < 2% with Ig+. The surface Ig+ (B) population was obtained from a Sephadex G-200 column followed by elution with normal human gamma globulin, as described earlier. This population was > 95% surface Ig+ and < 5% E+.

Stanice normalne humane koštane srži dobivene su iz posteriorne krijeste tankog crijeva normalnih humanih dobrovoljaca primjenom aspiracije iglom. Normal human bone marrow cells were obtained from the posterior crest of the small intestine of normal human volunteers using needle aspiration.

B. Izolacija timocita B. Isolation of thymocytes

Normalna humana timusna žlijezda je dobivena iz pacijenta starosti od dva mjeseca do 14 godina, koji su podvrgnuti kirurgiji srca. Svježe dobiveni dijelovi timusne žlijezde su odmah stavljeni u 5%-tni fetalni teleći serum u mediju 199 (Gipco), fino isjeckani kliještima i škarama i popom pretvoreni u jednostanične suspenzije prešanjem kroz žičano sito. Stanice su zatim naslojene preko Ficoll-Hypaque i ispredene i ispirane kao što je ranije opisano u gore datom odjeljku A. Tako dobiveni timociti su bili > 95% plodni i > 90% E rozetno pozitivni. A normal human thymus gland was obtained from a patient aged two months to 14 years who underwent cardiac surgery. Freshly obtained parts of the thymus gland were immediately placed in 5% fetal calf serum in medium 199 (Gipco), finely chopped with forceps and scissors, and then converted into single-cell suspensions by pressing through a wire sieve. Cells were then plated over Ficoll-Hypaque and spun down and washed as described earlier in section A above. Thymocytes thus obtained were > 95% fertile and > 90% E rosette positive.

C. Vrste stanica T soja i T akutnih limfoblastnih leukemijskij stanica C. Cell types of T strain and T acute lymphoblastic leukemia cells

T stanične vrste CEM, HSB-2 i MOLT-4 su date od strane Dr. H. Lazarusa (Sidney Farbar Cancer Institute, Boston, MA). Leukemijske stanice su dobivene od 25 pacijenata sa dijagnozom T stanica sasvim. Ovi pojedinačni tumori su ranije bili određeni da su soja T stanica na osnovu njihovog spontanog rozetnog formiranja sa ovčjim eritrocitima (> 20% E+) i reaktivnosti prema specifičnim heteroantiserumima anti-HTL (B. K.) i A99 za T- stanice, kao što je ranije opisano. Tumorske populacije su konzervirane na niskoj temperaturi od -196°C sa parnom fazom tekućeg dušika pomoću 10%-tnog DMSO i 20%-tnog AB humanog seruma do momenta karakterizacije površine. Sve tumorske populacije (koje su pri tome analizirane) bile su više od 90% blasti što je utvrđeno morfologijom citocentrifugiranih preparata prema Wright-Giemsa. T cell types CEM, HSB-2 and MOLT-4 were provided by Dr. H. Lazarus (Sidney Farbar Cancer Institute, Boston, MA). Leukemic cells were obtained from 25 patients with a diagnosis of T cells completely. These individual tumors were previously determined to be of the T-cell strain based on their spontaneous rosette formation with sheep erythrocytes (> 20% E+) and reactivity with the specific anti-HTL (B.K.) and A99 heteroantisera for T-cells, as previously described. . Tumor populations were preserved at a low temperature of -196°C with a vapor phase of liquid nitrogen using 10% DMSO and 20% AB human serum until the moment of surface characterization. All tumor populations (which were analyzed) were more than 90% blasts, which was determined by the morphology of cytocentrifuged preparations according to Wright-Giemsa.

Primjer 3 Example 3

Citofluorografska analiza i odvajanje stanica Cytofluorographic analysis and cell separation

Citofluorografska analiza monoklonalnih antitijela svih staničnih populacija izvršena je pomoću indirektne imunofluorescencije sa fluorescein-konjugiranim koza-anti-mišjim IgG (G/M FITC) (Meloy Laboratories) uz korištenje Citofluorografa FC200/4800A (Ortho Instruments). Ukratko, 1x106 stanica tretirano je sa 0,15 ml OKTS pri 1:500 razrjeđenju, inkubirano pri 4ºC u toku 30 minuta i 2 puta isprano. Stanice su zatim reagirale sa 0,15 ml G/M FITC razrjeđenja 1:40 pri 4ºC u toku 30 minuta, centrifugirane i 3 puta isprane. Stanice su zatim analizirane na citofluorografu i jačina fluorescencije po stanici je registrirana na pulsnom visinskom analizatoru. Sličan tok reaktivnosti je nađen pri razrjeđenju od 1:10000, ali je dalje razrjeđivanje prouzrokovalo gubitak reaktivnosti. Fon obojenja je dobiven zamjenjujući 0,15 ml alikvotni dio eksudata 1:500 iz CAF1 miša kojem je intraperitonalno data injekcija klona koji ne proizvodi hibrid. U ogledima koji obuhvaćaju antitijelo i kompletno posredovanu limfolizu, timociti i periferne T stanice su kultivirani preko noći čemu je slijedilo selektivno liziranje a zatim analiziranje na citofluorografu. Cytofluorographic analysis of monoclonal antibodies of all cell populations was performed by indirect immunofluorescence with fluorescein-conjugated goat-anti-mouse IgG (G/M FITC) (Meloy Laboratories) using a Cytofluorograph FC200/4800A (Ortho Instruments). Briefly, 1x106 cells were treated with 0.15 ml OKTS at a 1:500 dilution, incubated at 4ºC for 30 minutes and washed twice. The cells were then reacted with 0.15 ml G/M FITC dilution 1:40 at 4ºC for 30 minutes, centrifuged and washed 3 times. The cells were then analyzed on a cytofluorograph and the fluorescence intensity per cell was recorded on a pulse height analyzer. A similar course of reactivity was found at a dilution of 1:10000, but further dilution caused a loss of reactivity. Background staining was obtained by substituting a 0.15 ml aliquot of 1:500 exudate from a CAF1 mouse injected intraperitoneally with a non-hybrid producing clone. In experiments involving antibody and complete mediated lympholysis, thymocytes and peripheral T cells were cultured overnight followed by selective lysis and then analyzed on a cytofluorograph.

Primjer 4 Example 4

Razlaganje limfoidnih populacija sa monoklonalnim antitijelom i komplementom Decomposition of lymphoid populations with monoclonal antibody and complement

40x106 perifernih T stanica ili timocita stavljeno je u plastičnu epruvetu od 15 ml (Falcon, Oxnard, CA). Loptice stanice su inkubirane sa 0,8 ml OKT3; OKT8 ili normalnom kontrolom eksudata razrijeđenim u PBS 1:200, ponovno suspendirane i inkubirane 60 minuta pri 20ºC. Zatim je dodano 0,2 n svježeg zečjeg komplementa u populacije tretirane antitijelom, ponovno suspendirano i dalje inkubirano pri 37ºC u kupatilu sa mućkajućom vodom toku vremenskog perioda od 60 minuta. Na kraju ovog vremenskog perioda stanice su ispredene dolje i plodne stanice su numerirane sa Trypanovom plavom ekskluzijom. Poslije brojenja stanice su ispirane dva puta u 5%-tnom FCS i stavljene u finalni medij /RPMI 1640 (Grand Island Biological Company Grand Island, NY) koji sadrži 20% AB+ humanog seruma, 1 % penicilin- streptomicina, 200 mM L-glutamina, 25 mM HEPES pufera i 0,5% natrij-bikarbonata/, inkubirane preko noći u vlažnoj atmosferi sa 5% CO2 pri 37ºC 40x106 peripheral T cells or thymocytes were placed in a 15 ml plastic tube (Falcon, Oxnard, CA). Cell pellets were incubated with 0.8 ml OKT3; OKT8 or normal exudate control diluted in PBS 1:200, resuspended and incubated for 60 minutes at 20ºC. 0.2 n of fresh rabbit complement was then added to the antibody-treated populations, resuspended and further incubated at 37ºC in a shaking water bath for a period of 60 minutes. At the end of this time period the cells were spun down and the fertile cells were numbered with Trypan blue exclusion. After counting, the cells were washed twice in 5% FCS and placed in the final medium /RPMI 1640 (Grand Island Biological Company Grand Island, NY) containing 20% AB+ human serum, 1% penicillin-streptomycin, 200 mM L-glutamine , 25 mM HEPES buffer and 0.5% sodium bicarbonate/, incubated overnight in a humid atmosphere with 5% CO2 at 37ºC

Kratak opis crteža Brief description of the drawing

Sl. 1 prikazuje uzorak fluorescencije koji je dobiven na citofluorografu poslije reagiranja normalnih humanih timocita sa OKT6 i drugim monoklonalnim antitijelima pri razrjeđenju od 1:500 i G/M FITC. Fon fluorescentnog bojenja je dobiven inkubiranjem svake populacije sa eksudatnom tekućinom (razrjeđenja 1:500) iz miša kojem je injekcijom dat neproizvodni klon. Sl. 1 shows the fluorescence pattern obtained on a cytofluorograph after reacting normal human thymocytes with OKT6 and other monoclonal antibodies at a dilution of 1:500 and G/M FITC. Background fluorescent staining was obtained by incubating each population with exudate fluid (dilution 1:500) from a mouse injected with a non-producing clone.

Sl. 2 prikazuje stupnjeve intratimične diferencijacije u čovjeku. Sl. 2 shows the stages of intrathymic differentiation in man.

Dobivanje hibridoma i dobivanje i karakterizacija rezultirajućeg antitijela izvršeni su kao što je opisano u gore datim primjerima. lako su velike količine predmetnog antitijela dobivene injektiranjem predmetnog hibridoma intraperitonalno miševima i ubiranjem malignatnih eksudata, očito se podrazumijeva da se ove hibridome mogu kuttivirati in vitro primjenom dobro poznatih tehnika u ovoj praksi i da se antitijelo može ukloniti iz gornjeg sloja tekućine. Hybridoma production and the production and characterization of the resulting antibody were performed as described in the examples above. easily large amounts of the subject antibody were obtained by injecting the subject hybridoma intraperitoneally into mice and harvesting the malignant exudates, it is obviously understood that these hybridomas can be cultured in vitro using techniques well known in the art and that the antibody can be removed from the upper fluid layer.

Tabela 1 prikazuje reaktivnost OKT6, OKT8, OKT9 i 0KT10 prema različitim humanim limfoidnim staničnim populacijama. OKT6 monoklonalno antitijelo je reaktivno sa približno 70% normalnih humanih timocita a ne sa bilo kojom drugom od ispitivanih limfoidnih stanica. Ovaj model reaktivnosti je test kojim se može detektirati predmetno antitijelo OKT6 i razlikovati od drugih antitijela. Table 1 shows the reactivity of OKT6, OKT8, OKT9 and 0KT10 against different human lymphoid cell populations. The OKT6 monoclonal antibody is reactive with approximately 70% of normal human thymocytes and not with any other of the lymphoid cells tested. This reactivity model is a test that can detect the subject OKT6 antibody and distinguish it from other antibodies.

Sl. 1 prikazuje reprezentativni fluorescentni model koji je dobiven na citofluorografu poslije reagiranja suspenzija normalnih humanih timocita sa 1:500 razrjeđenjem OKT3, OKT4, OKT5, OKT6, OKT8, OKT9, 0KT10 i G/M FITC. Slični modeli reaktivnosti su nađeni sa 12 dodatnih populacija normalnih humanih timocita koje su pri tome ispitivane. Kao što je prikazano, postoje znatne razlike u postotku reaktivnosti i jačini fluorescencije kod svakog od ovih monoklonalnih antitijela. Na primjer, OKT9 reagira sa približno 10% timocita sa malom jačinom fluorescencije dok OKT5, OKT6, OKT8 i OKT10 reagiraju sa približno 70~° timocita pri većoj jačini fluorescencije OKT4, koji reagira sa 75% timocita, je intermedijer između OKT9 monoklonalnih antitijela koja daju model veće jačine fluorescencije. Pored toga sl. 1 prikazuje da je približno 15% timocita detektirano sa OKT3 primjenom indirektne imunofluorescencije. Nije prikazan OKT1, čiji je model reaktivnost praktično identičan sa OKT3 kod timocita. Model reaktivnosti na sl. 1 je drugi test pomoću kojeg se predmetno antitijelo OKT6 može detektirati i razlikovati od drugih antitijela Sl. 1 shows a representative fluorescence pattern obtained on a cytofluorograph after reacting suspensions of normal human thymocytes with a 1:500 dilution of OKT3, OKT4, OKT5, OKT6, OKT8, OKT9, 0KT10 and G/M FITC. Similar patterns of reactivity were found with 12 additional populations of normal human thymocytes that were examined. As shown, there is considerable variation in percent reactivity and fluorescence intensity with each of these monoclonal antibodies. For example, OKT9 reacts with approximately 10% of thymocytes at low fluorescence intensity while OKT5, OKT6, OKT8 and OKT10 react with approximately 70% of thymocytes at higher fluorescence intensity OKT4, which reacts with 75% of thymocytes, is an intermediate between the OKT9 monoclonal antibodies that give higher fluorescence intensity model. In addition, Fig. 1 shows that approximately 15% of thymocytes were detected with OKT3 using indirect immunofluorescence. OKT1, whose reactivity model is practically identical to OKT3 in thymocytes, is not shown. The reactivity model in Fig. 1 is another test by which the subject OKT6 antibody can be detected and distinguished from other antibodies

Tabela 2 prikazuje raspodjelu antigena koja je definirana različitim monoklonalnim antitijelima kod humanih perifernih T stanica i limfocita, kao što je određeno serijama lizirajućih (razlažućih) eksperimenata koji su opisani u primjeru 4. Pošto su samo OKT3, OKT4 i OKT8 bili komplementi fiksirajući monoklonalna antitijela, ova tri su i korištena. Kao što je prikazano .na tabeli 2A, cjelokupna populacija T stanica reagira sa OKT3 dok OKT4, OKT5 i OKT8 reagiraju sa 60% odnosno 25% i 34% T stanica. Liziranje (razlaganje sa OKT4 i komplementom smanjio je ukupni broj za 62% i specifično izbacilo OKT4+ populaciju. Pored toga, postoci OKT5+ i OKT7+ stanica su porasli i nije bilo efekta na apsolutni broj OKT5+ i OKT8+ T stanica. Ovi eksperimenti sugeriraju da se OKT4+ razlikuje od OKT5+ i OKT8+ i populacija Daljnja potpora za ovaj zaključak je dobivena liziranjem (razlaganjem) T stanica sa OKT8+ i komplementom. U ovom slučaju postotak OKT4+ T stanica je porastao, a apsolutni broj je ostao isti, a OKT8+ OKT5+ su eliminirane. Pored toga, ovi rezultati demonstriraju da je OKT8+ populacija recipročna OKT4+ populaciji i sadrže cjelokupnu OKT5+ populaciju T stanica koje su predviđene. Table 2 shows the distribution of antigens defined by different monoclonal antibodies in human peripheral T cells and lymphocytes, as determined by a series of lysing experiments described in Example 4. Since only OKT3, OKT4, and OKT8 were complement-fixing monoclonal antibodies, these three were used. As shown in Table 2A, the entire T cell population reacts with OKT3 while OKT4, OKT5 and OKT8 react with 60%, 25% and 34% of T cells, respectively. Lysing (digestion with OKT4 and complement reduced the total number by 62% and specifically eliminated the OKT4+ population. In addition, the percentages of OKT5+ and OKT7+ cells increased and there was no effect on the absolute number of OKT5+ and OKT8+ T cells. These experiments suggest that OKT4+ differs of OKT5+ and OKT8+ and populations Further support for this conclusion was obtained by lysing (dissolving) T cells with OKT8+ and complement. In this case, the percentage of OKT4+ T cells increased, while the absolute number remained the same, and OKT8+ OKT5+ were eliminated. In addition, these results demonstrate that the OKT8+ population is reciprocal to the OKT4+ population and contains the entire OKT5+ population of T cells predicted.

Slični eksperimenti sa populacijama humanih timocita dali su različite rezultate. Kao što je prikazano na tabeli 2B, približno 75% timocita je bilo OKT4+ ili OKT8+. Osim toga, naredno liziranje (razlaganje) sa OKT4 ili OKT8 ima za posljedicu da je ostalo samo 25% timocita. Većina preostalih timocita je reaktivna u odnosu na OKT3, dok je samo manji dio reaktivan prema OKT6. Ovi nalazi pokazuju da veći dio populacije humanih timocita nosi OKT4, OKT5, OKT6 i OKT8 površinske antigene kod iste stanice. Pored toga, tabela 2 pokazuje da naredno tretiranje sa OKT8 ili OKT4, dovode do znatnog povećanja zrelih timocita koji nose OKT3 antigen. Na taj način, veći dio OKT3 reaktivnih timocita je već izdvojen u OKT4+ ili OKT8+ podvrste jer je veći dio zaostalih stanica, nakon izvršenog OKT4 ili OKT8 liziranja, k OKT3+. Ako je OKT3+ podpopulacija bila OKT4+ i OKT8+, tad bi liziranje sa bilo kojim antitijelom uklonio OKT3 reaktivne timocite. Da bi se dalje odredio odnos OKT3 reaktivne timocitne podpopulacije prema drugim timocitnim frakcijama, koje su definirane kao monoklonalno tijelo (antitijelo timociti su tretirani sa OKT3 i komplementom i preostale stanice su zatim uspoređene sa netretiranim populacijama timocita. Kao što je prikazano na tabeli 2B, OKT3 i komplementi su uklonili 25% timocita. Osim toga, nije bilo glavnog gubitka OKT4, OKT5, OKT6 ili OKT8 reaktivnih populacija. Ovi nalazi sugeriraju da je ogromna većina timocita koja nosi OKT6 marker sadržana u OKT3- populaciji. Pored toga oni dalje sugeriraju da su timociti koji simultano izražavaju antigene definirane sa OKT4, OKT5 i OKT8, isto tako ograničeni na OKT3- populaciju. Također treba primijetiti da OKT9 reaktivna populacija timocita nije smanjena nakon tretiranja nefrakcioniranih timocita sa OKT3 i komplementom, čime se pokazuje da je OKT9+ podpopulacija uveliko ograničena na OKT3- populaciju timocita. Similar experiments with human thymocyte populations yielded mixed results. As shown in Table 2B, approximately 75% of thymocytes were OKT4+ or OKT8+. In addition, subsequent lysis (decomposition) with OKT4 or OKT8 results in only 25% of thymocytes remaining. Most of the remaining thymocytes are reactive to OKT3, while only a small part is reactive to OKT6. These findings indicate that a major part of the human thymocyte population carries OKT4, OKT5, OKT6 and OKT8 surface antigens on the same cell. In addition, Table 2 shows that subsequent treatment with OKT8 or OKT4 leads to a significant increase in mature thymocytes bearing the OKT3 antigen. In this way, the greater part of OKT3 reactive thymocytes has already been separated into OKT4+ or OKT8+ subtypes because the greater part of residual cells, after OKT4 or OKT8 lysis, are OKT3+. If the OKT3+ subpopulation was OKT4+ and OKT8+, then lysing with either antibody would remove OKT3 reactive thymocytes. To further determine the relationship of the OKT3 reactive thymocyte subpopulation to other thymocyte fractions, which were defined as monoclonal antibody (antibody) thymocytes were treated with OKT3 and complement and the remaining cells were then compared with untreated thymocyte populations. As shown in Table 2B, OKT3 and complements removed 25% of thymocytes. In addition, there was no major loss of OKT4, OKT5, OKT6, or OKT8 reactive populations. These findings suggest that the vast majority of thymocytes bearing the OKT6 marker are contained in the OKT3- population. Additionally, they further suggest that thymocytes simultaneously expressing antigens defined by OKT4, OKT5 and OKT8, also restricted to the OKT3- population. It should also be noted that the OKT9 reactive population of thymocytes was not reduced after treatment of unfractionated thymocytes with OKT3 and complement, thus demonstrating that the OKT9+ subpopulation is largely restricted to OKT3- thymocyte population.

Na osnovu ovih rezultata, moguće je opisati stanje intratimičnog razvoja humanih timocita. Kao što je prikazano na sl. 2, praktično svi timociti nose marker 0KT10. Pored toga, timociti u ranom stadiju stječu OKT9 marker (Thy1 odnosno Thy2). Ovaj stupanj definira manji dio timocita i uračunava približno 10% nefrakcionirane populacije. Nakon toga, humani timociti stječu timocitni jedinstveni antigen koji je definiran sa OKT6 i konkurentno izražavaju OKT4, OKT5 i OKT8 (Thy4). Ova posljednja populacija predstavlja većinu timocitni uračunava do oko 70 - 80% timične populacije. Daljnjim sazrijevanjem timociti gube OKT6 reaktivnost, stječu OKT3 (i OKT1) reaktivnost, i izdvajaju se u podvrste OKT4+ i OKT5+/OKT8+ (Thy7 i Thy8). Najzad, izgleda da dok se timocit eksportira u periferni odjeljak T stanice, .on gubi 0KT10 marker jer ovaj antigen ne postoji kod praktično svih perifernih T Iimfocita. Moguća prelazna stanja između ova tri glavna stupnja timičnog razvoja su označena sa Thy3, Thy5 i Thy6 na sl. 2. Based on these results, it is possible to describe the state of intrathymic development of human thymocytes. As shown in Fig. 2, practically all thymocytes carry the 0KT10 marker. In addition, early-stage thymocytes acquire the OKT9 marker (Thy1 or Thy2). This stage defines a smaller part of thymocytes and accounts for approximately 10% of the unfractionated population. Subsequently, human thymocytes acquire the thymocyte unique antigen defined by OKT6 and competitively express OKT4, OKT5 and OKT8 (Thy4). This last population represents the majority of thymocytes, accounting for about 70 - 80% of the thymic population. With further maturation, thymocytes lose OKT6 reactivity, acquire OKT3 (and OKT1) reactivity, and differentiate into subtypes OKT4+ and OKT5+/OKT8+ (Thy7 and Thy8). Finally, it appears that as the thymocyte is exported to the peripheral T cell compartment, it loses the 0KT10 marker because this antigen is absent from virtually all peripheral T lymphocytes. Possible transitional states between these three main stages of thymic development are marked Thy3, Thy5 and Thy6 in Fig. 2.

Pošto se smatra da akutna limfoblastna leukemija T vrste potječe od nezrelih timocita, određen je odnos između tumorskih stanica iz individua sa T-ALL i onih predloženih stanja intratimične diferencijacije. Ispitivano je 25 populacija tumorskih stanica iz individua sa T-ALL i 3 vrste T stanica koje su ranije proučavane sa uobičajenim reagensima Anti-T stanica i E rozetiranjem. Kao što je pokazano na tabeli 3, većina T-ALL leukemijskih stanica je bila reaktivna sa samim 0KT10 ili OKT9 i 0KT10, i nije reagirala sa drugim monoklonalnim antitijelima. Tako je 15 od 25 proučavanih slučajeva pokazalo da ima rane timocitne antigene (stupanj I). Nasuprot tome, 5 od 25 ispitivanih slučajeva je bilo reaktivno prema OKT6, što sugerira izvođenje iz zrelije timusne populacije (stupanj II). Ova T-ALL grupa je sama po sebi heterogena u odnosu na OKT4, OKTB i OKT9 reaktivnost, kao što je pokazano na tabeli 3. Stanice iz 2 do 5 pacijenata imaju najveći dio uobičajenih timocitnih antigena uključujući OKT4, OKT6 i OKT8. Vrijedi spomenuti da OKT5 nije prisutan kod bilo kojeg od ovih 5 tumora sa stupnjem II čak iako je primijećena OKT8 reaktivnost. Ovaj posljednji rezultat jasno sugerira da OKT5 i OKT8 definiraju različite antigene ili različite determinante kod istog antigena. Najzad, 1 od 25 pacijentnih tumora dolazi od zrele populacije timocita (stupanj III) kao što je definirano njegovom reaktivnošću na OKT3. Ovaj individualni tumor, pored toga, bio je reaktivan prema OKT5, OKT8 i 0KT10. Od 25 analiziranih leukemijskih populacija samo 4 tumora nisu mogla biti jasno kategorizirana. Tri su bila pozitivna prema OKT4 i OKT8, ali nisu reagirala sa OKT3 i OKT6 i najvjerojatnije predstavljaju prijelazna stanja od Thy4 i Thy7,8. Jedan od 25 slučajeva izgleda da je prijelaz od Thy3 do Thy4 jer je posjedovao OKT8 i 0KT10 reaktivnost. Since T-type acute lymphoblastic leukemia is thought to originate from immature thymocytes, the relationship between tumor cells from individuals with T-ALL and those proposed states of intrathymic differentiation was determined. 25 tumor cell populations from individuals with T-ALL and 3 types of T cells previously studied with common Anti-T cell reagents and E rosetting were examined. As shown in Table 3, the majority of T-ALL leukemia cells were reactive with 0KT10 alone or OKT9 and 0KT10, and did not react with other monoclonal antibodies. Thus, 15 of the 25 studied cases showed early thymocyte antigens (grade I). In contrast, 5 of 25 examined cases were reactive to OKT6, suggesting derivation from a more mature thymic population (grade II). This T-ALL group is inherently heterogeneous with respect to OKT4, OKTB, and OKT9 reactivity, as shown in Table 3. Cells from patients 2 to 5 have most of the common thymocyte antigens including OKT4, OKT6, and OKT8. It is worth mentioning that OKT5 was not present in any of these 5 grade II tumors even though OKT8 reactivity was observed. This last result clearly suggests that OKT5 and OKT8 define different antigens or different determinants in the same antigen. Finally, 1 in 25 patient tumors came from a mature thymocyte population (grade III) as defined by its reactivity to OKT3. This individual tumor, in addition, was reactive to OKT5, OKT8 and 0KT10. Out of 25 leukemic populations analyzed, only 4 tumors could not be clearly categorized. Three were positive for OKT4 and OKT8, but did not react with OKT3 and OKT6 and most likely represent transition states from Thy4 and Thy7,8. One of the 25 cases appeared to be a transition from Thy3 to Thy4 because it possessed OKT8 and 0KT10 reactivity.

Vrste T stanica, koje potječu od T-ALL populacija tumora, također su predstavljale stanice iz specifičnog stanja intratimične diferencijacije. Kao što je prikazano na tabeli 4, HSB je bio isključivo reaktivan prema OKT9 i OKT10 i otuda bi mogao definirati populaciju tumora koja potječe iz stupnja I. Nasuprot tome, CEM je bio reaktivan prema OKT4, OKT6, OKT8, OKT9 0KT10 i izgleda da potječe iz stupnja II timocita. Najzad, MOLT-4 izgleda da predstavlja leukemijsku transformaciju na stanju između HSB-2 i CEM jer je izražavao OKT6, OKT9 i 0KT10. T cell types, derived from T-ALL tumor populations, also represented cells from a specific state of intrathymic differentiation. As shown in Table 4, HSB was exclusively reactive to OKT9 and OKT10 and hence could define a tumor population originating from stage I. In contrast, CEM was reactive to OKT4, OKT6, OKT8, OKT9 0KT10 and appeared to originate from from stage II thymocytes. Finally, MOLT-4 appeared to represent a leukemic transformation at a stage between HSB-2 and CEM because it expressed OKT6, OKT9, and 0KT10.

Pošto je pokazano da pacijenti sa kasnijim stupnjevima (npr. stupnjem II) T stanične akutne limfoblastne leukemije imaju produženo preživljavanje bez oboljenja nego oni sa stupnjem I ALL, upotreba OKT6 antitijela omogućava zaključke koji se odnose na prognozu za datog pacijenta sa T stanicama ALL. Since patients with later stages (eg, stage II) T-cell acute lymphoblastic leukemia have been shown to have a longer disease-free survival than those with stage I ALL, the use of OKT6 antibodies allows conclusions regarding the prognosis for a given patient with T-cell ALL.

Tabela 5 pokazuje odnos između razina perifernih T stanica i T staničnih podvrsta i različitih stanja oboljenja. Ovi odnosi se mogu koristiti za dijagnostičke svrhe (npr. da se detektiraju akutne infektivne mononukleoze) analiziranjem uzoraka krvi individue na koju se sumnja da ima jedno od ovih bolesnih stanja da bi se odredile razine T stanica i podvrsta T stanica. Ovi odnosi se također mogu koristiti za terapeutske svrhe tamo gdje je uzrok bolesnog stanja povišena razina podvrste T stanica (npr. tip I stečene agamaglobulinemije). Za terapeutske svrhe, davanje odgovarajućeg monoklonalnog antitijela nekom pacijentu sa povišenom razinom podvrste T stanica smanjit će ili eliminirati višak. Odnosi prikazani na tabelama 2 do 5 su daljnji način na koji se OKT6 antitijelo može detektirati i razlikovati od Table 5 shows the relationship between the levels of peripheral T cells and T cell subtypes and different disease states. These ratios can be used for diagnostic purposes (eg, to detect acute infectious mononucleosis) by analyzing blood samples from an individual suspected of having one of these disease states to determine T cell levels and T cell subtypes. These relationships can also be used for therapeutic purposes where the cause of the disease state is an elevated level of a T cell subtype (eg type I acquired agammaglobulinemia). For therapeutic purposes, administration of the appropriate monoclonal antibody to a patient with elevated levels of a T cell subtype will reduce or eliminate the excess. The relationships shown in Tables 2 through 5 are a further way in which the OKT6 antibody can be detected and distinguished from

drugih antitijela. other antibodies.

Druga monoklonalna antitijela i hibridome koje ih proizvode, a koji su dobiveni od strane ovih prijavitelja (označene sa OKT1, OKT3, OKT4 i OKT5) opisane su i zahtjevane u slijedećim SAD patentnim prijavama: SN 22 132, predata 20. ožujka 1979. godine; SN 33 639, predata 26. travnja 197 godine; SN 33 669, predata 26 travnja 1979. godine, i SN 76 642, preda 18 rujna 1979. godine, i SN 82 515, predata 9. listopada 1979. godine. Druge hibridome, koje proizvode monoklonalno antitijelo, a koje su dobivene od strane ovih prijavilaca (označene OKTB, OKT9 i 0KT10) opisane su i zahtijevane u SAD patentnim prijavama predatim istog dana kada je predata i ova prijava a nazivaju se: Other monoclonal antibodies and their producing hybridomas obtained by these applicants (designated OKT1, OKT3, OKT4 and OKT5) are described and claimed in the following US patent applications: SN 22,132, filed March 20, 1979; SN 33 639, submitted on April 26, 197; SN 33 669, submitted on April 26, 1979, and SN 76 642, submitted on September 18, 1979, and SN 82 515, submitted on October 9, 1979. Other monoclonal antibody-producing hybridomas obtained by these applicants (designated OKTB, OKT9 and 0KT10) are described and claimed in US patent applications filed on the same date as this application and are named:

Vrsta hibridne stanice za dobivanje monoklonalnog antitijela (fiksiranog za komplement) za humane suzbijajuće T stanice, samo antitijelo i metode njegove primjene; Vrsta hibridne stanice za dobivanje monoklonalnog antitijela za humani rani timocitni antigen, samo antitijelo i metode njegove primjene, i Vrsta hibridne stanice za dobivanje monoklonalnog antitijela za humani protimocitni antigen, samo antitijelo i metode njegove primjene. A type of hybrid cell for obtaining a monoclonal antibody (fixed for complement) for human suppressive T cells, the antibody itself and methods of its administration; Type of hybrid cell for obtaining a monoclonal antibody for human early thymocyte antigen, the antibody itself and methods of its application, and Type of hybrid cell for obtaining a monoclonal antibody for human antithymocyte antigen, only the antibody and methods of its application.

Ove prijave su date referencom u ovoj prijavi. These applications are incorporated by reference in this application.

Prema ovom izumu data je hibridoma, koja je u stanju da proizvede antitijelo protiv antigena nađenog kod približno 70% normalnih humanih timocita, postupak za dobivanje ove hibridome, monoklonalno antitijelo protiv antigena nađenog kod približno 70% normalnih humanih timocita, postupci za dobivanje ovog antitijela i postupci i smjese za tretiranje (liječenje) ili dijagnozu bolesti ili identifikaciju T stanice ili podklasa timocita uz primjenu ovog antitijela. According to this invention, there is provided a hybridoma capable of producing an antibody against an antigen found in approximately 70% of normal human thymocytes, a method for obtaining this hybridoma, a monoclonal antibody against an antigen found in approximately 70% of normal human thymocytes, methods for obtaining this antibody and methods and compositions for treatment (treatment) or disease diagnosis or identification of T cells or subclasses of thymocytes with the use of this antibody.

Tabela 1 Table 1

Reaktivnost monoklonalnih antitijela kod humanih limfoidnih populacija Reactivity of monoclonal antibodies in human lymphoid populations

[image] [image]

* Brojevi u zagradama predstavljaju broj ispitivanih uzoraka; * The numbers in parentheses represent the number of tested samples;

postotne vrijednosti označavaju srednje vrijednosti. percentage values indicate mean values.

Tabela 2. Razlike raspodjeli antigena definiranih monoklonalnim antitijelom kod humanih perifernih T i timocita Table 2. Differences in distribution of antigens defined by monoclonal antibody in human peripheral T and thymocytes

[image] [image]

* Neliječene populacije i populacije, koje su liječene samim komplementom, ne mogu se razlikovati pri ponovnoj analizi. Nespecifično analiziranje je bilo < 5% kod svih slučajeva. Dobiveni rezultati su reprezentativni za 6 eksperimenata. * Untreated populations and populations treated with complement alone cannot be distinguished on reanalysis. Non-specific analysis was < 5% in all cases. The obtained results are representative of 6 experiments.

+C’ = komplement +C' = complement

Tabela 3. Ćelijske površinske karakteristike akutne limfoblastne leukemije T-vrste Table 3. Cell surface characteristics of T-type acute lymphoblastic leukemia

[image] [image]

* Dodatna četiri tumora ne mogu se lako kategorirati u stupanj I-III. Vidi tekst specifikacije radi njihove karakterizacije. * An additional four tumors cannot be easily categorized into stage I-III. See specification text for their characterization.

+ Ova oznaka se odnosi na sl. 2. + This mark refers to Fig. 2.

++ Pozitivna (+) reaktivnost je definirana kao > 30% specifične fluoroscencije iznad osnovne kontrolne probe, dok je negativna reaktivnost nemoguće razlikovati od osnovnog (fonskog) obojenja kod suspenzija tumorskih. ++ Positive (+) reactivity is defined as > 30% specific fluorescence above the basic control sample, while negative reactivity is impossible to distinguish from basic (background) staining in tumor suspensions.

Tabela 4 Table 4

Reaktivnost sa monoklonalnim antitijelima Reactivity with monoclonal antibodies

[image] [image]

* Kriterijem za negativnu (-) ili pozitivnu (+) reaktivnost bio je isti kao u tabeli 3. * The criterion for negative (-) or positive (+) reactivity was the same as in table 3.

Tabela 5. Table 5.

Nivoi perifernih T ćelija u bolesnim stanjima Peripheral T cell levels in disease states

[image] [image]

N = unutar normalnih granica ++ = uveliko iznad normalnog N = within normal limits ++ = well above normal

O = odsutno - = ispod normalnog O = absent - = below normal

+ = iznad normalnog -- = uveliko ispod normalnog + = above normal -- = well below normal

* Ovi nivoi se vraćaju na normalne nedjelju dana prije nestajanja kliničkih simptoma * These levels return to normal a week before clinical symptoms disappear

Brojevi u zagradama pokazuju broj razmatranih pacijenata. Numbers in parentheses indicate the number of patients considered.

lako je opisana samo jedna hibridoma koja proizvodi jedno antitijelo protiv humanog timocitnog antigena, namjera je da ovaj izum obuhvati sva monoklonalna antitijela koja pokazuju gore opisane karakteristike. Određeno je da predmetno antitijelo OKT6 pripada podklasi IgG1, koja je jedna od četiri podklase mišjeg IgG. Ove podklase imunog globulina G razlikuju se jedna od druge u takozvanim "fiksiranim" regijama, iako će tijelo za specifični antigen imati takozvanu "promjenjivu" regiju koja je funkcionalno identična bez obzira na činjenicu kojoj podklasi imunog globulina G pripada. To znači monoklonalno antitijelo, koje pokazuje karakteristiku, koja je ovdje opisana, može biti podklase IgG1, IgG2a, IgG2b, ili IgG3 ili klasa IgM, IgA ili drugih poznatih Ig klasa. Razlike između ovih klasa ili podklasa neće utjecati na selektivnost reakcionog toka antitijela, ali mogu utjecati na daljnju reakciju antitijela sa drugim tvarima, kao što je (na primjer) komplement ili anti-mišja antitijela. lako je predmetno antitijelo specifično IgG1 , smatra se da antitijela, koja imaju ovdje ilustrirani tok reaktivnosti, spadaju u opseg ovog izuma, bez obzira na to kojoj klasi ili podklasi imunog globulina pripadaju. readily described is only one hybridoma that produces a single antibody against human thymocyte antigen, this invention is intended to encompass all monoclonal antibodies that exhibit the characteristics described above. The antibody in question, OKT6, was determined to belong to the IgG1 subclass, which is one of the four subclasses of mouse IgG. These immunoglobulin G subclasses differ from each other in so-called "fixed" regions, although for a specific antigen an organism will have a so-called "variable" region that is functionally identical regardless of the fact to which immunoglobulin G subclass it belongs. This means that a monoclonal antibody, which exhibits the characteristic described herein, may be of the IgG1, IgG2a, IgG2b, or IgG3 subclasses or of the IgM, IgA, or other known Ig classes. Differences between these classes or subclasses will not affect the selectivity of the reaction flow of the antibody, but may affect the subsequent reaction of the antibody with other substances, such as (for example) complement or anti-mouse antibodies. easily the antibody in question is IgG1 specific, antibodies having the course of reactivity illustrated herein are considered to fall within the scope of this invention, regardless of which class or subclass of immune globulin they belong to.

U ovaj izum su dalje uključeni postupci za dobivanje gore opisani monoklonalnih antitijela uz korištenje gore ilustrirane tehnike hibridoma. Iako je ovdje dat samo jedan primjer hibridome, smatra se da stručnjak verziran u ovoj oblasti može slijediti imunizaciju, fuziju i postupke selekcije, koji su ovdje dati, i dobije druge hibridome koje mogu proizvoditi antitijela, koja imaju gore opisane karakteristike reaktivnosti. Pošto individualna hibridoma koja je dobivena iz poznate vrste mišje mielomske stanice iz stanica poznate vrste miša dalje ne može biti identificirana, osim upućivanjem na antitijelo, proizvedeno od strane ove hibridome, smatra se da su sve hibridome, koje proizvode antitijelo sa gore opisanim karakteristikama, uključene u opseg ovog izuma, kao i postupci za dobivanje ovog antitijela, uz korištenje spomenute hibridome. The present invention further includes methods for obtaining the monoclonal antibodies described above using the hybridoma technique illustrated above. Although only one example hybridoma is provided herein, it is believed that one skilled in the art can follow the immunization, fusion, and selection procedures provided herein and obtain other hybridomas capable of producing antibodies having the reactivity characteristics described above. Since an individual hybridoma derived from a known mouse myeloma cell type cannot be further identified except by reference to the antibody produced by this hybridoma, all hybridomas that produce an antibody with the characteristics described above are considered to be included. within the scope of this invention, as well as procedures for obtaining this antibody, using the mentioned hybridoma.

Dalji aspekti ovog izuma su metode liječenja ili dijagnoze bolesti koje koriste monoklonalno antitijelo OKT6 ili neko drugo monoklonalno antitijelo, koje pokazuje gore dat mehanizam reaktivnosti. Predmetno antitijelo se može koristiti da se detektiraju i proučavaju intratimične diferencijacije kao što je sumirano na sl. 2. Nenormalnosti u stupnju II diferencijacije indiciraju s odstupanjem od oko 70% OKT6+ timocita. Osim toga, predmetno antitijelo može se koristiti za dijagnozu bolesnih stanja kao što je pokazano na tabeli 5. Ove tehnike se mogu koristiti uz primjenu samog OKT6 antitijela ili kombinaciji sa drugim antitijelima (npr. OKT3 - 0KT10). Mehanizmi reaktivnosti sa panelom antitijela za T stanice i podvrste T stanica omogućit će precizniju detekciju nekih bolesnih stanja nego što je to bilo moguće primjenom ranijih metoda dijagnoze. Further aspects of the present invention are methods of treating or diagnosing disease using the OKT6 monoclonal antibody or other monoclonal antibody, which exhibits the above mechanism of reactivity. The subject antibody can be used to detect and study intrathymic differentiation as summarized in Fig. 2. Abnormalities in stage II differentiation are indicated with a deviation of about 70% of OKT6+ thymocytes. In addition, the subject antibody can be used to diagnose disease states as shown in Table 5. These techniques can be used with the use of the OKT6 antibody alone or in combination with other antibodies (eg, OKT3 - 0KT10). Mechanisms of reactivity with a panel of antibodies for T cells and subtypes of T cells will enable more precise detection of some disease states than was possible using earlier methods of diagnosis.

Liječenje bolesnih stanja (npr. malignih stanja kao što je stupanj II ALL), koja se manifestiraju kao višak OKT6+ stanica može se vršiti davanjem terapeutski efektivne količine OKT6 antitijela individui koja treba ovakvo liječenje. Selektivnom reakcijom sa OKT6+ antigenom, efektivna količina OKT6 antitijela će sniziti višak OKT6+ stanica, čime se popravljaju (poboljšavaju) efekti ovog viška. U ovaj izum su uključene i dijagnostičke i terapeutske smjese, koje sadrže efektivne količine OKT6 antitijela u smjesi sa dijagnostički odnosno farmaceutski prihvatljivim nosačima. Treatment of disease states (eg, malignant conditions such as stage II ALL) that manifest as an excess of OKT6+ cells can be performed by administering a therapeutically effective amount of OKT6 antibody to an individual in need of such treatment. By selectively reacting with the OKT6+ antigen, the effective amount of OKT6 antibodies will reduce the excess of OKT6+ cells, thereby correcting (improving) the effects of this excess. Included in this invention are diagnostic and therapeutic mixtures, which contain effective amounts of OKT6 antibodies in a mixture with diagnostically or pharmaceutically acceptable carriers.

Claims (20)

1. Mišje monoklonsko antitijelo, naznačeno time, da (i) reagira s približno 70% normalnih humanih timocita, ali (ii) ne reagira s nijednom od normalnih humanih perifernih stanica iz skupine koju čine (iii) T stanice i nula stanice, B stanice i nula stanice; i ne reagira s normalnim humanim stanicama koštane moždine.1. A mouse monoclonal antibody, characterized in that (i) reacts with approximately 70% of normal human thymocytes, but (ii) does not react with any of the normal human peripheral cells of the group it forms (iii) T cells and null cells, B cells and null cells; and it does not react with normal human bone marrow cells. 2. Monoklonsko antitijelo prema zahtjevu l, naznačeno time, da spada u razred IgG.2. Monoclonal antibody according to claim 1, characterized in that it belongs to the IgG class. 3. Monoklonsko antitijelo prema zahtjevu 1 ili zahtjevu 2, naznačeno time, da pokazuje oblik reaktivnosti prema normalnim humanim timocitima prikazan na slici l.3. Monoclonal antibody according to claim 1 or claim 2, characterized in that it shows the form of reactivity against normal human thymocytes shown in Figure 1. 4. Monoklonsko antitijelo prema bilo kojem zahtjevu od 1 do 3, naznačeno time, da pokazuje oblik reaktivnosti prema perifernim T stanicama i timocitima prikazan u tablici 2.4. Monoclonal antibody according to any one of claims 1 to 3, characterized in that it shows the form of reactivity against peripheral T cells and thymocytes shown in table 2. 5. Monoklonsko antitijelo prema bilo kojem zahtjevu od 1 do 4, naznačeno time, da pokazuje oblik reaktivnosti prema T stanicama stupnja ALL prikazan u tablici 3.5. Monoclonal antibody according to any one of claims 1 to 4, characterized in that it shows the form of reactivity against T cells of grade ALL shown in table 3. 6. Monoklonsko antitijelo prema bilo kojem zahtjevu od 1 do 5, naznačeno time, da definira populaciju T stanica (OKT6+) koja je niža od normalnih razina u primarnoj cirozi žuči, multiploj sklerozi i hiper IgE, viša od normalnih razina u akutnoj reakciji domaćina u smislu odbacivanja transplantanata, i potpuno odsutna kod mijastenije gravis, akutne infekcijske mononukleoze, svih stupnjeva Hodgkinsove bolesti i psorijaze.6. Monoclonal antibody according to any one of claims 1 to 5, characterized in that it defines a T cell population (OKT6+) which is lower than normal levels in primary biliary cirrhosis, multiple sclerosis and hyper IgE, higher than normal levels in acute host reaction in in terms of transplant rejection, and completely absent in myasthenia gravis, acute infectious mononucleosis, all degrees of Hodgkins disease and psoriasis. 7. Monoklonsko antitijelo prema bilo kojem zahtjevu od 1 do 6, naznačeno time, da je proizvedeno pomoću hibridoma nastalog fuzijom stanica iz linije mišjeg mijeloma i stanica slezene iz miša prethodno imuniziranog s humanim timocitima.7. Monoclonal antibody according to any one of claims 1 to 6, characterized in that it is produced using a hybridoma created by the fusion of cells from a mouse myeloma line and spleen cells from a mouse previously immunized with human thymocytes. 8. Monoklonsko antitijelo, naznačeno time, da je proizvedeno pomoću hibridoma ATCC CRL 8020 (OKT6).8. Monoclonal antibody, characterized in that it was produced by hybridoma ATCC CRL 8020 (OKT6). 9. Hibridom za proizvodnju monoklonskog antitijela prema bilo kojem zahtjevu od 1 do 7, naznačen time, da je dobiven fuzijom stanica slezene iz miša prethodno imuniziranog s humanim timocitima i stanica iz mišje mijelomske linije.9. A hybridoma for the production of a monoclonal antibody according to any of claims 1 to 7, characterized in that it is obtained by fusion of spleen cells from a mouse previously immunized with human thymocytes and cells from a mouse myeloma line. 10. Hibridom, naznačen time, da je to ATCC CRL 8020.10. A hybridoma, designated as ATCC CRL 8020. 11. Metoda za proizvodnju monoklonskog antitijela prema bilo kojem zahtjevu od 1 do 7, naznačena time, da obuhvaća slijedeće stupnjeve: i) imunizaciju miša s humanim timocitima; ii) vađenje slezene iz spomenutog miša i izradu suspenzije stanica slezene; iii) spajanje spomenutih stanica slezene s mišjim mijelomskim stanicama u prisutnosti promotora fuzije; iv) razrjeđivanje i uzgajanje fuzioniranih stanica u odvojenim jamicama u mediju koji ne podržava nefuzionirane stanice mijeloma; v) ocjenjivanje supernatanta u svakoj jamici koja sadrži hibridom u pogledu prisutnosti antitijela koje ima svojstva navedena u bilo kojem zahtjevu od 1 do 7; vi) odabir i kloniranje hibridoma koji proizvode željeno antitijelo; i vii) skupljanje antitijela iz supernatanta iznad spomenutih klonova.11. The method for producing a monoclonal antibody according to any of claims 1 to 7, characterized in that it includes the following steps: i) immunization of mice with human thymocytes; ii) extracting the spleen from said mouse and making a suspension of spleen cells; iii) fusing said spleen cells with murine myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the fused cells in separate wells in a medium that does not support unfused myeloma cells; v) evaluating the supernatant in each well containing the hybridoma for the presence of an antibody having the properties set forth in any of claims 1 to 7; vi) selection and cloning of hybridomas that produce the desired antibody; and vii) collection of antibodies from the supernatant above the mentioned clones. 12. Metoda za proizvodnju mišjeg monoklonskog antitijela prema bilo kojem zahtjevu od 1 do 7, naznačena time, da obuhvaća slijedeće stupnjeve: i) imunizaciju miša s humanim timocitima; ii) vađenje slezene iz spomenutog miša i izradu suspenzije stanica slezene; iii) spajanje stanica slezene s mišjim mijelomskim stanicama u prisutnosti promotora fuzije; iv) razrjeđivanje i uzgajanje fuzioniranih stanica u odvojenim jamicama u mediju koji ne podržava nefuzionirane stanice mijeloma; v) ocjenjivanje supernatanta u svakoj jamici koja sadrži hibridom u pogledu prisutnosti antitijela koje ima svojstva navedena u bilo kojem zahtjevu od 1 do 7; vi) odabir i kloniranje hibridoma koji proizvode željeno antitijelo; vii) prijenos spomenutih klonova intraperitonealno u miša; i viii) skupljanje malignog ascita ili seruma iz tog miša.12. A method for the production of a mouse monoclonal antibody according to any of claims 1 to 7, characterized in that it includes the following steps: i) immunization of mice with human thymocytes; ii) extracting the spleen from said mouse and making a suspension of spleen cells; iii) fusing spleen cells with murine myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the fused cells in separate wells in a medium that does not support unfused myeloma cells; v) evaluating the supernatant in each well containing the hybridoma for the presence of an antibody having the properties set forth in any of claims 1 to 7; vi) selection and cloning of hybridomas that produce the desired antibody; vii) transfer of said clones intraperitoneally into mice; and viii) collection of malignant ascites or serum from that mouse. 13. Metoda za proizvodnju monoklonskog antitijela, naznačena time, da uključuje uzgoj hibridoma ATCC CRL 8020 u prikladnom mediju i skupljanje antitijela iz supernatanta iznad tog hibridoma.13. A method for the production of a monoclonal antibody, characterized in that it includes growing the hybridoma ATCC CRL 8020 in a suitable medium and collecting the antibody from the supernatant above the hybridoma. 14. Metoda za proizvodnju monoklonskog antitijela, naznačena time, da uključuje ubrizgavanje hibridoma ATCC CRL 8020 u miša i dobivanje antitijela iz malignog ascita ili seruma iz tog miša.14. A method for producing a monoclonal antibody, characterized in that it includes injecting hybridoma ATCC CRL 8020 into a mouse and obtaining the antibody from malignant ascites or serum from that mouse. 15. Metoda detekcije nedostatka ili viška OKT6+ stanica u osobi, naznačena time, da uključuje reakciju T stanica ili timocitnog sastava dobivenog iz te osobe s dijagnostički učinkovitom količinom antitijela prema zahtjevu 6, ili zahtjevu 7 kad je u skladu sa zahtjevom 6 ili zahtjevom 8 i mjerenje postotka od ukupne populacije perifernih T stanica i timocita koja reagira s tim antitijelom.15. A method of detecting the lack or excess of OKT6+ cells in a person, indicated by the fact that it includes the reaction of T cells or thymocyte composition obtained from that person with a diagnostically effective amount of antibodies according to claim 6, or claim 7 when it is in accordance with claim 6 or claim 8 and measuring the percentage of the total population of peripheral T cells and thymocytes that reacts with that antibody. 16. Metoda prema zahtjevu 7, naznačena time, da se radi o suvišku T stanica ALL.16. The method according to claim 7, characterized in that it is an excess of T cells ALL. 17. Monoklonsko antitijelo prema zahtjevu 6, ili zahtjevu 7 kad je u skladu sa zahtjevom 6 ili zahtjevom 8, naznačeno time, da se upotrebljava za liječenje suviška OKT6+ stanica u osobe kojoj je potrebno takvo liječenje.17. Monoclonal antibody according to claim 6, or claim 7 when it is in accordance with claim 6 or claim 8, characterized in that it is used for the treatment of excess OKT6+ cells in a person who needs such treatment. 18. Sastav, naznačen time, da osim dijagnostički prihvatljivog nosača u mješavini sadrži i monoklonsko antitijelo prema zahtjevu 6, ili zahtjevu 7 kad je u skladu sa zahtjevom 6 ili zahtjevom 8 i upotrebljava sa za detekciju nedostatka ili suviška OKT6+ stanica u sastavu T stanica ili astavu timocita.18. Composition, characterized by the fact that, in addition to a diagnostically acceptable carrier, the mixture also contains a monoclonal antibody according to claim 6, or claim 7 when it is in accordance with claim 6 or claim 8 and is used to detect the lack or excess of OKT6+ cells in the composition of T cells or thymocyte deposition. 19. Sastav, naznačen time, da osim farmaceutski prihvatljivog nosača sadrži u mješavini učinkovitu količinu monoklonskog antitijela prema zahtjevu 6, zahtjevu 7 kad je u skladu sa zahtjevom 6, ili zahtjevom 8, pri čemu je količina antitijela učinkovita za smanjenje ili odstranjivanje suviška OKT6+ stanica u osobi koja ima takav suvišak.19. Composition, characterized in that, in addition to a pharmaceutically acceptable carrier, it contains in the mixture an effective amount of the monoclonal antibody according to claim 6, claim 7 when it is in accordance with claim 6, or claim 8, wherein the amount of antibody is effective for reducing or removing excess OKT6+ cells in a person who has such an excess. 20. Metoda za proizvodnju sastava prema zahtjevu 18 ili zahtjevu 19, naznačena time, da obuhvaća miješanje monoklonskog antitijela prema zahtjevu 6, zahtjevu 7 kad je u skladu sa zahtjevom 6, ili zahtjevom 8 s dijagnostički ili farmaceutski prihvatljivim nosačem.20. The method for producing the composition according to claim 18 or claim 19, characterized in that it comprises mixing the monoclonal antibody according to claim 6, claim 7 when it is in accordance with claim 6, or claim 8 with a diagnostically or pharmaceutically acceptable carrier.
HRP-3066/80A 1979-12-04 1994-10-26 Hybrid cell line for producing monoclonal antibody to a human thymocyte antigen, antibody and method of preparation thereof HRP940790B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/099,970 US4364933A (en) 1979-12-04 1979-12-04 Monoclonal antibody to a human thymocyte antigen and methods of preparing same
YU3066/80A YU43224B (en) 1979-12-04 1980-12-03 Method of obtaining monoclonal antibodies

Publications (2)

Publication Number Publication Date
HRP940790A2 true HRP940790A2 (en) 1997-06-30
HRP940790B1 HRP940790B1 (en) 2000-02-29

Family

ID=26796694

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-3066/80A HRP940790B1 (en) 1979-12-04 1994-10-26 Hybrid cell line for producing monoclonal antibody to a human thymocyte antigen, antibody and method of preparation thereof

Country Status (2)

Country Link
HR (1) HRP940790B1 (en)
SI (1) SI8013066A8 (en)

Also Published As

Publication number Publication date
SI8013066A8 (en) 1997-10-31
HRP940790B1 (en) 2000-02-29

Similar Documents

Publication Publication Date Title
EP0018795B1 (en) Monoclonal-antibody-producing hybrid cell line, antibody and method of preparing it, therapeutic composition containing it and its diagnostic and therapeutic uses
CA1170592A (en) Hybrid cell line for producing monoclonal antibody to human helper t cells, antibody, and methods
EP0030815B1 (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, method of preparation of this antibody, diagnostic and therapeutic uses, and pharmaceutical compositions comprising this antibody
US4657760A (en) Methods and compositions using monoclonal antibody to human T cells
US4515893A (en) Hybrid cell line for producing complement-fixing monoclonal antibody to human T cells
EP0017381B1 (en) Monoclonal antibody to human t cells, method for preparing it, hybrid cell line producing it, therapeutic composition comprising it and diagnostic method using it
US4658019A (en) Complement-fixing monoclonal antibody to human T cells
EP0030450B1 (en) Hybrid cell line for producing complement-fixing, monoclonal antibody to human suppressor t cells, antibody, method of preparation of this antibody, diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
EP0030814B1 (en) Hybrid cell line for producing monoclonal antibody to a human early thymocyte antigen, antibody, method of preparation of this antibody, diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
US4364933A (en) Monoclonal antibody to a human thymocyte antigen and methods of preparing same
US4658020A (en) Monoclonal antibody to human helper T cells
US4652447A (en) Methods and compositions using monoclonal antibody to human helper T cells
US4515895A (en) Hybrid cell line for producing monoclonal antibody to human helper T cells
US4515894A (en) Hybrid cell line for producing monoclonal antibody to human T cells
US4624925A (en) Hybrid cell line for producing monoclonal antibody to a human early thymocyte antigens, antibody, and methods
HRP940790A2 (en) Hybrid cell line for producing monoclonal antibody to a human thymocyte antigen, antibody and method of preparation thereof
HRP940823A2 (en) Hybrid cell line for producing monoclonal antibody to a human early thymocite antigen, antibody and method of preparation of this antibody
HRP940809A2 (en) Hybrid cell line for producing complement-fixing monoclonal antibody to human t cells, antibody and methods
HRP940824A2 (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods
HRP940808A2 (en) Hybrid cell line for producing monoclonal antibody to helper t cells, antibody and method of preparation thereof
HRP940830A2 (en) Hybrid cell line for producing monoclonal antibody to a human t cell antigen, antibody, and methods

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 19991203

Year of fee payment: 20

B1PR Patent granted
PB20 Patent expired after termination of 20 years

Effective date: 20001203