GB2328689A - Peptides based on the p21 ras proto-oncogene protein for the treatment of cancer - Google Patents
Peptides based on the p21 ras proto-oncogene protein for the treatment of cancer Download PDFInfo
- Publication number
- GB2328689A GB2328689A GB9718110A GB9718110A GB2328689A GB 2328689 A GB2328689 A GB 2328689A GB 9718110 A GB9718110 A GB 9718110A GB 9718110 A GB9718110 A GB 9718110A GB 2328689 A GB2328689 A GB 2328689A
- Authority
- GB
- United Kingdom
- Prior art keywords
- amino acid
- peptide
- cancer
- peptides
- pharmaceutical composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 155
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 92
- 108700020978 Proto-Oncogene Proteins 0.000 title claims abstract description 9
- 102000052575 Proto-Oncogene Human genes 0.000 title claims abstract description 9
- 206010028980 Neoplasm Diseases 0.000 title claims description 43
- 201000011510 cancer Diseases 0.000 title claims description 23
- 238000011282 treatment Methods 0.000 title claims description 14
- 150000001413 amino acids Chemical class 0.000 claims abstract description 38
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 230000005867 T cell response Effects 0.000 claims abstract description 12
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 11
- 238000006467 substitution reaction Methods 0.000 claims abstract description 7
- 108700042226 ras Genes Proteins 0.000 claims description 22
- 241000282414 Homo sapiens Species 0.000 claims description 16
- 239000008194 pharmaceutical composition Substances 0.000 claims description 15
- 238000011321 prophylaxis Methods 0.000 claims description 13
- 108090000623 proteins and genes Proteins 0.000 claims description 13
- 231100000433 cytotoxic Toxicity 0.000 claims description 12
- 230000001472 cytotoxic effect Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 238000002255 vaccination Methods 0.000 claims description 9
- 102000004169 proteins and genes Human genes 0.000 claims description 8
- 238000001727 in vivo Methods 0.000 claims description 6
- 238000000338 in vitro Methods 0.000 claims description 5
- 201000001441 melanoma Diseases 0.000 claims description 5
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 5
- 230000004936 stimulating effect Effects 0.000 claims description 4
- 201000009030 Carcinoma Diseases 0.000 claims description 3
- 206010009944 Colon cancer Diseases 0.000 claims description 3
- 210000003445 biliary tract Anatomy 0.000 claims description 3
- 239000003085 diluting agent Substances 0.000 claims description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims 2
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 claims 2
- 201000005202 lung cancer Diseases 0.000 claims 2
- 208000020816 lung neoplasm Diseases 0.000 claims 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims 2
- 201000002528 pancreatic cancer Diseases 0.000 claims 2
- 239000003937 drug carrier Substances 0.000 claims 1
- 238000011394 anticancer treatment Methods 0.000 abstract description 6
- 238000009566 cancer vaccine Methods 0.000 abstract description 4
- 229940022399 cancer vaccine Drugs 0.000 abstract description 4
- 230000001939 inductive effect Effects 0.000 abstract description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 44
- 210000004027 cell Anatomy 0.000 description 38
- 108010014186 ras Proteins Proteins 0.000 description 30
- 102000016914 ras Proteins Human genes 0.000 description 25
- 230000027455 binding Effects 0.000 description 18
- 230000035772 mutation Effects 0.000 description 16
- 210000004881 tumor cell Anatomy 0.000 description 13
- 102000043276 Oncogene Human genes 0.000 description 12
- 108700020796 Oncogene Proteins 0.000 description 12
- 239000000427 antigen Substances 0.000 description 12
- 108091007433 antigens Proteins 0.000 description 12
- 102000036639 antigens Human genes 0.000 description 12
- 230000007969 cellular immunity Effects 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 8
- 229960005486 vaccine Drugs 0.000 description 8
- 210000000612 antigen-presenting cell Anatomy 0.000 description 7
- 230000009089 cytolysis Effects 0.000 description 7
- 239000012636 effector Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 5
- 108010035452 HLA-A1 Antigen Proteins 0.000 description 4
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 4
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000011275 oncology therapy Methods 0.000 description 4
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 3
- 102100028967 HLA class I histocompatibility antigen, alpha chain G Human genes 0.000 description 3
- 101710197836 HLA class I histocompatibility antigen, alpha chain G Proteins 0.000 description 3
- 102000000588 Interleukin-2 Human genes 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 3
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 108010004141 HLA-B35 Antigen Proteins 0.000 description 2
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 2
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 102000013462 Interleukin-12 Human genes 0.000 description 2
- 108010065805 Interleukin-12 Proteins 0.000 description 2
- 108010010995 MART-1 Antigen Proteins 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 230000000735 allogeneic effect Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 229940117681 interleukin-12 Drugs 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- VVQIIIAZJXTLRE-QMMMGPOBSA-N (2s)-2-amino-6-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoic acid Chemical compound CC(C)(C)OC(=O)NCCCC[C@H](N)C(O)=O VVQIIIAZJXTLRE-QMMMGPOBSA-N 0.000 description 1
- JPOKAKNGULMYHZ-UILVTTEASA-N (2s)-6-amino-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-6-amino-2-[[(2s)-2-[[(2s)-6-amino-2-[[(2s)-6-amino-2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]hexanoyl]amino]hexanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]hexanoyl]amino]-3-(4-hydroxyp Chemical compound C([C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCCN)C(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCN=C(N)N)C1=CC=C(O)C=C1 JPOKAKNGULMYHZ-UILVTTEASA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 1
- 108010028921 Lipopeptides Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 108010047620 Phytohemagglutinins Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 239000012317 TBTU Substances 0.000 description 1
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000037429 base substitution Effects 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000001885 phytohemagglutinin Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/82—Translation products from oncogenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Oncology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
A peptide capable of inducing specific cytotoxic T cell responses (CD 8+) comprises 8 to 10 amino acids of the p21 ras proto-oncogene protein including position 12, 13 or 61 wherein an amino acid substitution has been made at the latter position. These peptides may be used as cancer vaccines and in compositions for anti-cancer treatment.
Description
PEPTIDES
Summary of the invention This invention relates to synthetic peptides corresponding to p21 ras oncogene protein products which elicit cytotoxic T cellular immunity, and to cancer vaccines and compositions for anti-cancer treatment comprising said peptides, as well as methods for the treatment or prophylaxis of cancers arising from activated ras oncogenes.
The present invention represents a further development of
anti-cancer treatment or prophylaxis based on using the body's own immune system through an activation and strengthening of the immune response from specific cytotoxic T cells.
Technlcal Background
The genetic background for the onset of cancer are proto-oncogenes and oncogenes. Proto-oncogenes are normal genes of the cell which have the potential of becoming oncogenes. All oncogenes code for and function through a protein. Oncogenes arise in nature from proto-oncogenes through point mutations or translocations, thereby resulting in a transformed state of the cell harbouring the mutation. Cancer develops through a multistep process involving several mutational events and oncogenes.
In its simplest form a single base substitution in a proto-oncogene may cause the resulting gene product to differ in one amino acid only.
It has been shown that point mutations in intracellular "self"-proteins may give rise to tumour rejection antigens, consisting of peptides differing in a single amino acid from the normal peptide. The T cells which recognise these peptides in the context of the major histocompatibility (MHC) molecules on the surface of the tumour cells, are capable of killing the tumour cells and thus rejecting the tumour from the host.
In contrast to antibodies produced by the B cells, which typically recognise an antigen in its native conformation,
T cells recognise an antigen only if the antigen is bound and presented by a MHC molecule. Usually this bonding will take place only after appropriate antigen processing, which comprises a proteolytic fragmentation of the protein, so that the peptide fits into the groove of the
MHC molecule. Thereby T cells are enabled to also recognise peptides derived from intracellular proteins. T cells can thus theoretically recognise aberrant peptides derived from anywhere in the tumour cell, in the context of MHC molecules on the surface of the tumour cell, and can subsequently be activated to eliminate the tumour cell harbouring the aberrant oncogene.
M.Barinaga, Science, 257, 880-881, 1992 offers a short review of how MHC binds peptides. A more comprehensive explanation of the Technical Background for this Invention may be found in D. Male et al, Advanced Immunology, 1987,
J.B.Lippincott Company, Philadelphia. Both references are hereby included in their entirety.
The MHC molecules in humans are normally referred to as
HLA (human leukocyte antigen) molecules. They are encoded by the HLA region on the human chromosome No 6.
The HLA molecules appear as two distinct classes depending on which region of the chromosome codes for them and which
T cell subpopulations they interact with and thereby activate primarily. The HLA class I molecules are encoded by the HLA A, B and C subloci and they primarily activate
CD8+ cytotoxic T cells. The HLA class II molecules are encoded by the DR, DP and DQ subloci and primarily activate CD4+ T cells.
Normally every individual has six different HLA Class I molecules, usually two alleles from each of the three subgroups A,B and C. However in some cases the number of different HLA Class I molecules is reduced due to occurrence of the same HLA allele twice.
All the gene products are highly polymorphic. Different individuals thus express distinct HLA molecules that differ from those of other individuals. This is the basis for the difficulties in finding HLA matched organ donors in transplantations. The significance of the genetic variation of the HLA molecules in immunobiology is reflected by their role as immune-response genes. Through their peptide binding capacity, the presence or absence of certain HLA molecules governs the capacity of an individual to respond to specific peptide epitopes. As a consequence, HLA molecules determine resistance or susceptibility to disease.
T cells may inhibit the development and growth of cancer by a variety of mechanisms. Cytotoxic T cells, both HLA class I restricted CD8+ and HLA Class II restricted CD4+, may directly kill tumour cells presenting the appropriate tumour antigens. Normally, CD4+ helper T cells are needed for cytotoxic CD8+ T cell responses, but if the appropriate peptide antigen is presented, cytotoxic CD8+ T cells can be activated directly, which results in a quicker, stronger and more efficient response.
While the peptides that are presented by HLA class II molecules are of varying length (12-25 amino acids), the peptides presented by HLA class I molecules must normally be exactly nine amino acid residues long in order to fit into the HLA binding groove. A longer peptide will result in non-binding if it cannot be processed internally by an
APC or target cell, such as a cancer cell, before presenting in the HLA groove. Only a very limited number of deviations from this requisition of nine amino acids have been reported, and in those cases the length of the presented peptide has been either eight or ten amino acid residues long.
The explanation for this difference in necessary peptide length for binding, is found in the nature of the peptide binding grooves of HLA class I and II molecules. The peptide binding groove of HLA class I is closed at both ends, whereas the peptide binding groove of HLA class II is open at both ends and therefore allows the binding of longer peptides that protrude from the binding groove.
A requirement for both HLA class I and II binding is that the peptides must contain a binding motif, which normally is different for different HLA groups and subgroups (alleles). A binding motif is characterised by the requirement for specific amino acids in some positions of the peptide so that a narrow fit with the pockets of the
HLA binding groove is achieved. Further, it is necessary to avoid some specific amino acids at other positions of the peptide since they cause steric hindrance for binding.
The result of this, taken together with the peptide length restriction, is that it is quite unlikely that a peptide binding to one type of HLA class I molecules will also bind to another type. Thus, for example, it may very well be that the peptide binding motif for HLA-A1 and HLA-A2 molecules, which both belong to the class I gender, is as different as the motifs for the HLA-A1 and HLA-B1 molecules.
In order to use oncogene derived peptides as vaccines or anti-cancer agents to generate anti tumour CD8+ cytotoxic
T cells, it is therefore necessary to investigate the oncogenic antigene in question and identify individual peptides that can bind to the various types of HLA class I molecules. Effective vaccination of an individual can only be achieved if at least one HLA class I allele on an
APC can bind a vaccine peptide.
Thus this clearly differs from the situation with HLA class II molecules where it is possible to extend the peptides at both terminals, which makes it possible to design longer peptides that contain epitopes for different types of HLA class II molecules.
Transforming ras genes are the oncogenes most frequently identified in human cancer. It has been established that many of the common cancers such as pancreatic, ovarial, colon rectal, lung and biliary tract carcinomas, result from mutations in ras genes in a high percentage of the patients having such cancers. The protein encoded for by such oncogenes will carry mutations almost exclusively in the positions 12 or 13 or 61 whereas the remaining amino acids in the sequence correspond to the ones found in the p21 ras proto-oncogene protein.
As a consequence synthetic ras peptides can be used as anticancer therapeutical agents or vaccines with the function to trigger the cellular branch of the immune system (T-cells) against cancer cells in patients afflicted with cancers that arise from activated ras oncogenes.
In the present description and claims, the amino acids are represented by their three or one letter abbreviation as known in the art.
Prior art
Scott I. Abrams et al, Eur. J. Immunol. 1996, 26: 435-443 have published results of immunisation of mice with a 4-12 fragment of p21 ras protein having a substitution of Val for Gly at position 12 which resulted in cytotoxic T cell responses (CD8+). These data demonstrate that mutant p21 ras having a Val substitution at position 12 contains a peptide sequence which exhibits specific binding to a murine MHC class I molecule.
The finding that a mouse strain can be immunised is not relevant for the present invention for the following reasons:
It is a general observation in mice that strains with different H-2 MHC types recognise different sets of peptides from the same protein, [S.S.Zamvil et al,
J.Exp.Med, Vol. 168, (1988), 1181-1186], thus a peptide which elicits an immune response in a mouse of one strain, may not stimulate T cells from another, closely related mouse strain. Also in experimental models, T cells from mice, rats and human beings are known to recognise different, non overlapping epitopes of the same protein.
The explanation for this is thought to reside in differences between the species in their antigen processing machinery and peptide binding capabilities of their MHC molecules.
From PCT/NO92/00032 it is known that synthetic peptides spanning the positions 1-25 of p21 ras proteins and fragments having a mutation in positions 12, 13 or 61 can be used to elicit CD4+ T cell immunity against cancer cells harbouring said mutated p21 ras oncogene protein through the administration of such peptides in vaccination or cancer therapy schemes.
Although the prior art has identified p21 ras protein fragments that give rise to CD4+ T cell immunity, no previous studies have defined the correct antigens or antigenic sites giving rise to tumour specific cytotoxic
CD8+ T cell immunity in humans.
Definition of Problem solved by the Invention
Thus, although a CD4+ T cell immunity has been achieved and cancer treatment of patients suffering from tumours deriving from p21 ras oncogenes is at present investigated, the activation of the cells capable of killing the tumour cells, namely the cytotoxic T cells, has been difficult to achieve in a sufficient strength.
Further, the cytotoxic T cell activation, as achieved indirectly through a first CD4+ T cell activation, is rather slow. This is a serious problem especially for inoperable patients with a short life time expectation.
Therefore there is a need for an anticancer treatment or vaccinating agent, which will establish a strong cytotoxic
T cell response against tumours harbouring mutated ras oncogenes in a quick and reliable manner in order to improve the activity of anti-cancer treatment or prophylaxis based on peptides derived from mutated p21 ras proteins.
Definition of the Invention
It has now according to the present invention been found a group of synthetic peptides which solve the above mentioned problems through the direct activation of cytotoxic CDS+ T cells against tumours harbouring an activated ras oncogene. These peptides are from 8-10 amino acids long and have been shown to be identical to naturally processed epitopes as presented by HLA class I molecules in a human patient suffering from such a tumour.
Thus, the peptides according to this invention are characterised in that they
a) contains 8-10 amino acids, and encompasses the
position 12 and/or 13, or 61 of a p21 ras
proto-oncogene protein, and has an amino acid
substitution in position 12 or 13 or 61, while the
remaining amino acids correspond to the ones found
in the same positions of said protein;
and
b) if the peptide encompasses the positions 12 and
13, they are not both Gly;
and
if the amino acid in position 13 is Gly, the
amino acid in position 12 can be any amino acid
except Gly;
or
if the amino acid in position 12 is Gly, the
amino acid in position 13 can be any amino acid
except Gly
or
if the peptide encompasses the position 61, the
amino acid in this position can be any amino acid
except Gln;
and
c) induces specific cytotoxic T cell (CD8+)
responses.
The most preferred peptides according to this invention are the peptides consisting of nine amino acids.
Through the peptides of the invention the following advantages are achieved: - it is possible to design a stronger anticancer therapy and vaccination; - the direct activation of the cytotoxic CD8+ T cells results in a quicker establishment of the killer cells necessary to kill the tumour cells; - a more direct therapy and prophylaxis directed against the specific genetic alterations presented by neoplastic cells is possible.
According to one aspect of the present invention a pharmaceutical composition is prepared which comprises a peptide of the present invention. The pharmaceutical composition can be used to treat a human patient afflicted with a cancer harbouring a ras oncogene with a mutation in position 12, 13 or 61.
As used in this specification and in the claims the term pharmaceutical composition should not only encompass a composition usable in treatment of cancer patients, but also compositions useful in connection with prophylaxis, i.e. vaccine compositions.
Thus, in another aspect of the present invention, the pharmaceutical composition can be used to vaccinate a human being in order to obtain resistance against cancers arising from ras oncogenes with a mutation in position 12, 13 or 61.
A third aspect of the present invention is the use of the peptides defined above to prepare a pharmaceutical composition for eliciting cytotoxic T cell responses in the treatment or prophylaxis of cancers arising from activated ras oncogenes.
A further aspect of the present invention is a method for the treatment of a human patient afflicted with cancer which comprises administering at least one peptide of the invention in an amount effective to elicit a cytotoxic (CD8+) T cell response.
Yet another aspect of the invention is a method for the vaccination of a human being in order to obtain resistance against cancers arising from activated ras oncogenes, which comprises administering at least one peptide of the invention, in an amount effective to elicit a cytotoxic T cell response.
In another aspect of the present invention the peptides of the invention are administered in a pharmaceutical composition or in the methods for the treatment or prophylaxis described above as a mixture of peptides. The mixture may either be: (a) a mixture of peptides having different mutations in one position, i.e. position 12 or position 13 or position 61.
or (b) a mixture of peptides having the same mutation, but suitable to fit different HLA alleles or (c) a mixture of both mixtures (a) and (b) or (d) a mixture of several mixtures (a) or (e) a mixture of several mixtures (b) or (f) a mixture of several mixtures (a) and several mixtures (b).
Alternatively the peptides in the mixtures may be covalently linked with each other to form larger polypeptides or even cyclic polypeptides.
The amino acids chosen in position 12, 13 or 61 in the above mentioned mixtures would be the most commonly found mutations in a specific cancer. Such mixture or mixtures would then be suitable for the treatment of a patient afflicted with said cancer or for the prophylaxis of a person belonging to a risk group for said cancer.
In the prophylaxtic treatment of persons not belonging to any specific risk group, but which may still be in the danger of becoming ill from a cancer harbouring mutated ras oncogene, the administration of a mixture as defined in abstract (f) is considered useful.
In this manner it is possible to adopt the present invention to the different aspects mention above.
It is a purpose of the present invention to produce a cancer therapy or vaccine for cancers harbouring mutated ras oncogenes, by inducing T cell immunity either in vitro, ex vivo or in vivo with the peptides according to the present invention.
Another purpose of the present invention is to design an anti-cancer treatment or prophylaxis specifically adapted to a human individual in need of such treatment or prophylaxis, which comprises administering at least one peptide according to this invention. The administration may take place one or several times as suitable to establish and/or maintain the wanted cytotoxic T cell immunity.
It is further anticipated that the power of an anticancer vaccine or peptide drug as disclosed in the above mentioned PCT/NO92/00032 application, can be enhanced if the peptides of this invention were included. This is based on the assumption that if both specific CD8+ T cells (cytotoxic T cells) and specific CD4+ T cell responses may be induced at the same time, it will lead to an even stronger T cell immunity. Thus in another embodiment of the present invention peptides of the present invention are administered together with, either simultaneously or in optional sequence, the peptides disclosed in
PCT/NO92/00032.
Embodiments
The most preferred peptides according to the invention are those which carry the amino acids substitutions most commonly found in human cancers arising from mutated ras oncogenes. In position 12 of p21 ras proteins the most commonly found mutations are Asp, Val, Arg, Cys, Ala and
Ser. In position 13 the most commonly found mutations are
Asp and Val. In position 61 the most commonly found mutations are Arg, His, Lys and Leu.
One group of preferred peptides according to this invention are the following peptides, wherein Xl represents position 12 in the p21 ras protein and can be any amino acid except Gly:
X1GVGKSALT,
AX1GVGKSAL,
GAX1GVGKSA,
VGAX1GVGKS, VVGAX1GVGK,
VVVGAX1GVG , LVVVGAX1GV,
KLVVVGAX1G, YKLWVGAXl The most preferred peptides of the above group are those wherein X1 is Asp, Val, Arg, Ala, Cys or Ser.
A further group of peptides of this invention are the following, wherein X1 represents position 12 in a p21 ras protein and can be any amino acid except Gly:
X1GVGKSAL
AX1GVGKSA, GAX1GVGKS,
VGAX1GVGIC, wGAX1GVG, WVGAX1GV, LVWGAX1G, KLVVVGAX1
The most preferred peptides of the above group are those wherein X1 is Asp, Val, Arg, Ala, Cys or Ser.
A further group of peptides of this invention are the following, wherein X1 represents position 12 of a p21 ras protein and can be any amino acid except Gly: X1GVGRSALTI, AX1GVGKSALT,
GAX1GVGKSAL,
VGAX1GVGKSA, VVGAX1GVGKS,
WVGAX1GVGK, LWWGAX1GVG,
KLVVVGAX1GV,
YKLVWGAX1G,
EYKLVWGAXl The most preferred peptides of the above group are those wherein X1 is Asp, Val, Arg, Ala, Cys or Ser.
A second group of especially preferred peptides according to this invention are the following wherein X2 represents position 13 of the p21 ras protein and can be any amino acid except Gly:
X2VGKSALTI,
GX2VGKSALT,
AGX2VGKSAL,
GAGX2VGKSA,
VGAGX2VGKS, VVGAGX2VGK,
VVVGAGX2VG,
LVWGAGX2V, KLVVVGAGX2
The most preferred peptides of the above group are those wherein X2 is Asp or Val.
A further group of peptides of the invention are the following wherein X2 represents position 13 of the p21 ras protein and can be any amino acid except Gly:
X2VGKSALT,
GX2VGKSAL,
AGX2VGKSA,
GAGX2VGKS,
VGAGX2VGK, WGAGX2VG w
VWGAGX2V,
LVWGAGX2 The most preferred peptides of the above group are those wherein X2 is Asp or Val.
A further group of peptides of the invention are the following wherein X2 represents position 13 of the p21 ras protein and can be any amino acid except Gly: X2VGKSALTIQ
GX2VGKSALTI AGX2VGKSALT
GAGX2VGKSAL
VGAGX2VGKSA WGAGX2VGKS
VWGAGX2VGK
LWVGAGX2VG KLVVVGAGX2V
YKLVVVGAGX2
The most preferred peptides of the above group are those wherein X2 is Asp or Val.
A third group of preferred peptides according to this invention are the following wherein X3 represents position 61 of the p21 ras protein and can be any amino acid except
Gln:
X3EEYSAMRD GX3EEYSAMR
AGX3 EEYSAM TAGX3EEYSA
DTAGX3EEYS
LDTAGX3EEY
ILDTAGX3EE
DILDTAGX3E LD I LDTAGX3 The most preferred peptides of the above group are those wherein X3 is Arg, Lys, His or Leu.
A further group of peptides of the invention are the following wherein X3 represents position 61 of the p21 ras protein and can be any amino acid except Gln:
X3EEYSAMR,
GX3EEYSAM,
AGX3EEYSA,
TAGX3EEYS,
DTAGX3EEY,
LDTAGX3EE, ILDTAGX3E,
DI LDTAGX3 The most preferred peptides of the above group are those wherein X3 is Arg, Lys, His or Leu.
A further group of peptides of the invention are the following wherein X3 represents position 61 of the p21 ras protein and can be any amino acid except Gln:
X3EEYSAMRDQ,
GX3EEYSAMRD,
AGX3EEYSAMR,
TAGX3EEYSAM,
DTAGX3EEYSA,
LDTAGX3EEYS,
ILDTAGX3EEY,
DILDTAGX3EE,
LDILDTAGX3E, LLDILDTAGX3 The most preferred peptides of the above group are those wherein X3 is Arg, Lys, His or Leu.
As appears from the listing of peptides above, the peptides according to the present invention may be symmetrical or unsymmetrical around each of the positions where the mutations are found in the oncogene proteins.
It is considered that the peptides may be administered together, either simultaneously or separately, with compounds such as cytokines and/or growth factors, i.e.
interleukin-2 (IL-2), interleukin-12 (IL-12), granulocyte macrophage colony stimulating factor (GM-CSF) or the like in order to strengthen the immune response as known in the art.
The peptides according to the present invention can be used in a vaccine or a therapeutical composition either alone or in combination with other materials, such as for instance in the form of a lipopeptide conjugate which as known in the art can induce high-affinity cytotoxic T cells (K. Deres, Nature, Vol.342, (nov.1989)).
The peptides according to the present invention may be useful to include in either a synthetic peptide or recombinant fragment based vaccine.
The peptides of the present invention are particularly suited for use in a vaccine capable of safely eliciting cytotoxic CD8+ T cell immunity: (1) the peptides are synthetically produced and
therefore do not include transforming cancer genes
or other sites or materials which might produce
deleterious effects, (2) the peptides may be used alone to induce cytotoxic T
cellular immunity, (3) the peptides may be targeted for cytotoxic T cell
responses without the side effects of other unwanted
responses.
The peptides according to the present invention can be included in pharmaceutical compositions alone or together with usual pharmaceutically acceptable additives, adjuvants, diluents, stabilisers, carriers or the like as known in the art.
The peptides of the invention can be administered in an amount in the range of lFg - lg to an average human patient or individual to be vaccinated. It is more preferred to use a smaller dose in the range of lFg - lomg for each administration.
A person skilled in the art will find other possible modes of using the peptides of this invention, and these are meant to be encompassed by the present claim.
A cancer therapy according to the present invention may be administered both in vivo, ex vivo or in vitro having as the main goal the raising of specific cytotoxic T cell lines or clones against the gene product of the oncogene responsible for the cancer type with which the patient is afflicted.
The peptides according to this invention may be produced by conventional processes as known in the art, and this is elucidated in the description of the synthesis below.
The invention is further described in the claims.
BIOLOGICAL EXPERIMENTS
In order for a cancer vaccine and methods for specific cancer therapy based on specific T cell immunity to be effective, three conditions must be met: 1. The peptide used must correspond to the processed p21 ras oncogene protein fragment as presented by a HLA Class
I molecule on the cancer cell or on professional antigen presenting cells, 2. The peptides used must be bound to a HLA Class I molecule in an immunogenic form, and 3. Cytotoxic T-cells (CD8+) capable of recognising and responding to the HLA Class I/peptide complex must be present in the circulation of the human being.
It has been established that all these conditions are met for the peptides according to the present invention. The peptides according to the present invention give rise to specific cytotoxic T cell immune responses in vitro. HLA
Class I molecules capable of binding the peptides were determined. It has been established that the synthetic peptides according to this invention correspond to the processed oncogene protein fragments. This is exemplified with synthetic p21 ras peptide fragments having a mutation in position 12. The specificity of cytotoxic T cells induced in vivo by ras peptide vaccination was determined with the peptides of the invention. This is a clear indication that the cancer patient's T cells had been activated by the identical peptide fragments in vivo.
Description of the Figures
Figure 1 shows that a CD8+ cytotoxic T cell clone (CTL 69-30) which was obtained from peripheral blood from a pancreatic carcinoma patient after 12Val mutant ras peptide vaccination, can recognize and kill different tumor cell lines expressing 12Val mutated p21 ras. The cytotoxic T cell clone was obtained after cloning of T-cell blasts present in peripheral blood mononuclear cells (PBMC) from a pancreatic carcinoma patient after position 12 Val mutant ras peptide vaccination.
The peptide vaccination protocol included several infusions of large amounts of peptide- loaded autologous professional antigen-presenting cells (APC). Cloning of T cells was performed by plating responding T cell blasts at 5 blasts per well onto Terasaki plates. Each well contained 2 x 104 autologous, irradiated (30 Gy) PBMC as feeder cells, and the cells were propagated with the 12Val peptide at 25 mM and 5
U/ml recombinant interleukin-2 (rIL-2) (Amersham, Aylesbury,
UK) in a total volume of 20 mL. After 9 days T cell clones were transferred onto flat-bottomed 96-well plates (Costar,
Cambridge, MA) with 1 mg/ml phytohemagglutinin (PHA,
Wellcome, Dartford, UK), 5 U/ml rIL-2 and allogeneic irradiated (30 Gy) PBMC (2 x 105) per well as feeder cells.
Growing clones were further expanded in 24-well plates with
PHA / rIL-2 and 1 x 106 allogeneic, irradiated PBMC as feeder cells and screened for peptide specificity after 4 to 7 days.
T cell clone 69-30 was selected for further characterisation.
It was found that it expresses the cell-surface phenotype
CD3, CD8 and TcR ab. When tested at different effector to target ratios, it was found that CTL 69-30 exhibits lysis of autologous tumour cell targets, which indicates that it is directed against a tumour derived antigen, such as mutant ras.
In order to verify that the antigen recognised is associated with mutant ras, and to identify the HLA class I molecule presenting the putative mutant ras peptide to the cytotoxic
T cell clone, different 12Val p21 ras expressing tumour cell lines carrying one or more HLA class I molecules in common with those of the patient, were used as target cells in cytotoxicity assays. Target cells were labelled with 3H-thymidine (9.25 x 104 Bq/mL) over night, washed once and plated 5000 cells per well in 96 well plates. T cells were added at different effector to target ratios and the plates were incubated for 4 hours at 370C and then harvested before counting in a liquid scintillation counter (Packard
Topcount). Data represent percent specific lysis of 3H-thymidine labelled target cells in a 4h assay at different effector/target ratios. Values are expressed as the mean of triplicate cultures + SD. T cell clone 69-30 demonstrated lysis of the bladder carcinoma cell line T24 (l2Val+, HLA-A1+, B35+) and the melanoma cell line FMEX (12Vall, HLA-A2+, B35+), but not of the colon carcinoma cell line SW 480 (l2Val+, HLA-A2+, B8+). The autologous EBV-B cells (12Val-, HLA-A1+, A2+, B8+, B35+) and the natural killer target
K562 used as controls, were not lysed. These results suggest that T cell clone 69-30 recognises an endogenously-processed 12Val epitope in the context of HLA-B35.
Figure 2 further demonstrates the HLA class I restriction of
T cell clone 69-30 by blocking experiments. The results show that the cytolytic effect of T cell clone 69-30 on autologous pancreatic carcinoma cells (CPE) could be blocked by a panreactive HLA class I mAb (W6/32), but remained unaltered in the presence of monoclonal antibodies directed against HLA class II DR, DQ and DP antigens. Taken together with the results obtained with the different 12Val expressing tumour cell lines, these data demonstrate HLA class I restriction and indicate that HLA-B35 is the restricting molecule of T cell clone 69-30. Specific lysis of CPE-targets was HLA class I restricted as demonstrated by experiments involving monoclonal antibodies directed against HLA class I (W6/32) and class II (B8/ll, SPV-L3 and B7/21) antigens. The cytotoxic T cell clone activity against the autologous tumour cell line was evaluated using monoclonal antibodies directed against HLA class I and class II molecules at a final concentration of 10 mg/ml. Assays were set up in triplicate in 96 well plates and the target cells were preincubated for 30 minutes at 370C before addition of T cells. Results obtained with an effector/target ratio of 10/1 are shown.
Data represent percent specific lysis against 3H-thymidine labelled CPE targets and the various mAbs in a 4h assay, with activity expressed as the mean + SD of triplicate cultures.
Figure 3 shows the fine specificity of T cell clone 69-30 in peptide pulsing experiments. To identify the mutant ras peptide actually beeing recognised by T cell clone 69-30, the panel of nonamer peptides; peptide 10-18, spanning positions 4 to 20 of p21 ras containing the Val substitution at position 12, was tested. Only peptide 15 was capable of stimulating T cell clone 69-30 activity in these experiments.
3H-thymidine labelled, mild acid eluted autologous EBV-B cells were plated 2500 cells per well in 96 well plates and pulsed with the peptides at a concentration of 1 mM together with b2-microglobulin (2.5 mg/mL) in a 5% CO2 incubator at 370C before addition of the T cells. Assays were set up in triplicate in 96 well plates and incubated for 4 hours with an effector to target ratio of 5 to 1. The specificity of cytotoxic T cell clone recognition for the appropriate mutant peptide was illustrated by the absence of lysis observed with the peptide expressing normal ras sequence. Controls included
T cell clone cultured alone, with APC in the absence of peptides or with an irrelevant melanoma associated peptide
MART-1/Melan-A peptide. Data are given as mean of triplicate cultures.
Figure 4 shows the sensitivity of the T cell clone 69-30 to peptide 15. The data show that an anti-ras cytotoxic T cell activity was detectable over a range of several log units, with maximal lysis at 1 x 10-6 M and half maximal response at 1 x 10-9 M peptide concentration. This was examined in a dose-response experiment using peptide sensitised EBV-B cells as target cells. The target cells were pulsed with peptide 15
as described in Figure 3, with the exception that the peptides were added at different concentrations before the addition of T cells. Controls included target cells alone and target cells pulsed with the irrelevant melanoma associated peptide Melan-A/Mart-1. Data are expressed as the mean of triplicate cultures i SD.
Figure 5 shows the fine specificity of T cell clone 42-33 in peptide pulsing experiments. T cell clone 42-33 was also obtained from a vaccinated patient. Of the panel of nonamer peptides; peptide 10-18, only peptide 18 was capable of stimulating T cell clone 42-33. In the experiments the TAP deficient T2 cell line was used as antigen presenting cells.
This cell line expresses only small amounts of HLA-A2 antigen, but increased levels of HLA class I antigens at the cell surface can be induced by addition of b2-microglobulin.
3H-labelled target cells were incubated with the different test peptides and control peptides at a concentration of 1 mM together with b2-microglobulin (2.5 mg/mL) for one hour at 370C. After peptide pulsing, the target cells were washed extensively, counted and plated 2500 cells per well in 96 well plates before addition of the T cells. The plates were incubated for 4 hours at 370C in 5k CO2 before harvesting.
Controls included T cell clone cultured alone or with target cells in the absence of peptides. Assays were set up in triplicate in 96 well plates with an effector to target ratio of 20 to 1.
Synthesis
The peptides were synthesised by using continuous flow solid phase peptide synthesis (9050 PepSynthesizer,
MilliGen or Novasyn Crystal peptide synthesiser,
Novabiochem). N-a-Fmoc-amino acids with appropriate side chain protection ( Ser(tBu), Thr(tBu), Tyr(tBu), Lys(Boc), His(Trt),
Arg(Pmc), Cys(Trt), Asp(O-tBu), Glu(O-tBu) ) were used.
The Fmoc-amino acids were activated by TBTU prior to coupling. 20% piperidine in DMF was used for selective removal of Fmoc after each coupling. Detachment from the resin and final removal of side chain protection was performed by 95% TFA (aq.). The peptides were purified and analysed by reversed phase (C18) HPLC (Shimadzu LC8A). The identity of the peptides was confirmed by using electro-spray mass spectroscopy (Finnigan mat SSQ710).
The peptides which were synthesised by this method are listed in the Sequence ID listing.
Claims (15)
1. A peptide characterised in that it
a) contains 8-10 amino acids, and encompasses the
position 12 and/or 13, or 61 of a p21 ras
proto-oncogene protein, and has an amino acid
substitution in position 12 or 13 or 61, while the
remaining amino acids correspond to the ones found
in the same positions of said protein;
and
b) if the peptide encompasses the positions 12 and
13, they are not both Gly;
and
if the amino acid in position 13 is Gly, the
amino acid in position 12 can be any amino acid
except Gly;
or
if the amino acid in position 12 is Gly, the
amino acid in position 13 can be any amino acid
except Gly
or
if the peptide encompasses the position 61, the
amino acid in this position can be any amino acid
except Gln;
and
c) induces specific cytotoxic T cell (CD8+)
responses.
2. A peptide according to claim 1 characterised in that it consists of 9 amino acids.
3. A Peptide according to claim 2 characterised in that it is selected from the following group:
X1GVGKSALT
AX1GVGKSAL
GAX1GVGKSA
VGAX1GVGKS VVGAX1GVGK
VVVGAX1GVG LVWGAX1GV
KLVVVGAX1G YKLVWGAX1 wherein Xl can be any amino acid except Gly, but X1 is most preferred Asp, Val, Arg, Ala, Cys or Ser.
4. A Peptide according to claim 2 characterised in that it is selected from the group consisting of:
X2VGKSALTI
GX2VGKSALT
AGX2VGKSAL
GAGX2VGKSA VGAGX2 VGKS VVGAGX2VGK vVVGAGX2VG LVWGAGX2V
KLVVVGAGX2
X2 can be any amino acid except Gly, but X2 is most preferred
Asp or Val.
5. A Peptide according to claim 2 characterised in that it is selected from the group consisting of: X3 EEYSAMRD GX3EEYSAMR
AGX3EEYSAM TAGX3 EEYSA DTAGX3EEYS
LDTAGX3EEY I LDTAGX3EE DILDTAGX3E
LDILDTAGX3
X3 can be any amino acid except Gln, but X3 is most preferred
Arg, Lys, His or Leu.
6. A pharmaceutical composition comprising at least one peptide according to any of the claims 1-5 and a pharmaceutically acceptable carrier or diluent.
7. A pharmaceutical composition according to claim 6 for the treatment of a human patient afflicted with a cancer associated with activated ras oncogenes.
8. A pharmaceutical composition according to claim 7 for the treatment of a patient afflicted with any of the following: pancreatic cancer, colo-rectal cancer, lung cancer, malignant melanoma, ovarial cancer, and biliary tract carcinomas.
9. A pharmaceutical composition according to claim 6 for the prophylactic treatment of a human being, to obtain resistance against a cancer associated with activated ras oncogenes.
10. A pharmaceutical composition according to claim 9 for the prophylactic treatment of a human being to obtain resistance against pancreatic cancer, colo-rectal cancer, lung cancer, malignant melanoma, ovarial cancer, and biliary tract carcinomas.
11. A pharmaceutical composition comprising a combination of at least one peptide according to claims 1-5 and at least one peptide according to PCT/NO92/00032.
12. Pharmaceutical composition comprising a mixture of peptides according to the claims 1-5.
13.Use of a peptide according to any of the claims 1-5 for the preparation of a pharmaceutical composition for eliciting specific cytotoxic (CD8+) T-cell responses in the treatment or prophylaxis of cancers associated with activated ras oncogenes.
14. Method for the treatment of a patient afflicted with cancer associated with p21 ras oncogenes, by eliciting specific cytotoxic (CD8+) T-cell responses through stimulating in vivo, ex vivo or in vitro with a peptide according to the claims 1-5.
15. Method for the vaccination of a human being in order to obtain resistance against cancers associated with activated ras oncogenes, by eliciting specific cytotoxic (CD8+) T-cell responses through stimulating in vivo, ex vivo or in vitro with a peptide according to the claims 1-5.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9718110A GB2328689A (en) | 1997-08-27 | 1997-08-27 | Peptides based on the p21 ras proto-oncogene protein for the treatment of cancer |
PCT/NO1998/000252 WO1999010382A1 (en) | 1997-08-27 | 1998-08-26 | Peptides which elicit cytotoxic t cellular immunity |
AU93677/98A AU9367798A (en) | 1997-08-27 | 1998-08-26 | Peptides which elicit cytotoxic t cellular immunity |
EP98946725A EP1009771A1 (en) | 1997-08-27 | 1998-08-26 | Peptides which elicit cytotoxic t cellular immunity |
JP2000507707A JP2001514190A (en) | 1997-08-27 | 1998-08-26 | Peptides that elicit cytotoxic T cell immunity |
CA002301840A CA2301840A1 (en) | 1997-08-27 | 1998-08-26 | Peptides which elicit cytotoxic t cellular immunity |
NO20000976A NO20000976L (en) | 1997-08-27 | 2000-02-25 | peptides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9718110A GB2328689A (en) | 1997-08-27 | 1997-08-27 | Peptides based on the p21 ras proto-oncogene protein for the treatment of cancer |
Publications (2)
Publication Number | Publication Date |
---|---|
GB9718110D0 GB9718110D0 (en) | 1997-10-29 |
GB2328689A true GB2328689A (en) | 1999-03-03 |
Family
ID=10818083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB9718110A Withdrawn GB2328689A (en) | 1997-08-27 | 1997-08-27 | Peptides based on the p21 ras proto-oncogene protein for the treatment of cancer |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1009771A1 (en) |
JP (1) | JP2001514190A (en) |
AU (1) | AU9367798A (en) |
CA (1) | CA2301840A1 (en) |
GB (1) | GB2328689A (en) |
WO (1) | WO1999010382A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001083538A1 (en) * | 2000-04-29 | 2001-11-08 | Shanghai Biowindow Gene Development Inc. | A novel polypeptide, a human k-ras gene protein 36 and the polynucleotide |
FR2836684A1 (en) * | 2002-03-04 | 2003-09-05 | Inst Nat Sante Rech Med | MUT REMOVED PEPTIDES AND THEIR USE IN IMMUNOTHERAPY |
WO2015086590A3 (en) * | 2013-12-09 | 2015-07-30 | Targovax As | A peptide mixture |
WO2016085904A1 (en) * | 2014-11-26 | 2016-06-02 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-mutated kras t cell receptors |
WO2016202937A1 (en) * | 2015-06-16 | 2016-12-22 | Targovax Asa | Mutated fragments of the ras protein |
US9757439B2 (en) | 2014-05-06 | 2017-09-12 | Targovax Asa | Peptide vaccine comprising mutant RAS peptide and chemotherapeutic agent |
US10881730B2 (en) | 2017-02-01 | 2021-01-05 | Modernatx, Inc. | Immunomodulatory therapeutic MRNA compositions encoding activating oncogene mutation peptides |
US11208456B2 (en) | 2016-08-02 | 2021-12-28 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-KRAS-G12D T cell receptors |
WO2023060148A1 (en) * | 2021-10-05 | 2023-04-13 | The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services | Augmentation of innate and adaptive immunity by inhibition of interaction of lilrbs with mhc-1 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO315238B1 (en) | 1998-05-08 | 2003-08-04 | Gemvax As | Peptides derived from reading frame shift mutations in the TBF <beta> II or BAX gene, and pharmaceutical compositions containing them, nucleic acid sequences encoding such peptides, plasmids, and virus vector-encompassing such nucleic acid |
NO309798B1 (en) * | 1999-04-30 | 2001-04-02 | Targovax As | Peptide composition, as well as pharmaceutical composition and cancer vaccine including the peptide composition |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992014756A1 (en) * | 1991-02-26 | 1992-09-03 | Norsk Hydro A.S | Therapeutically useful peptides and peptides fragments |
WO1997040156A1 (en) * | 1996-04-19 | 1997-10-30 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Mutated ras peptides for generation of cd8+ cytotoxic t lymphocytes |
-
1997
- 1997-08-27 GB GB9718110A patent/GB2328689A/en not_active Withdrawn
-
1998
- 1998-08-26 WO PCT/NO1998/000252 patent/WO1999010382A1/en not_active Application Discontinuation
- 1998-08-26 JP JP2000507707A patent/JP2001514190A/en not_active Withdrawn
- 1998-08-26 EP EP98946725A patent/EP1009771A1/en not_active Withdrawn
- 1998-08-26 AU AU93677/98A patent/AU9367798A/en not_active Abandoned
- 1998-08-26 CA CA002301840A patent/CA2301840A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992014756A1 (en) * | 1991-02-26 | 1992-09-03 | Norsk Hydro A.S | Therapeutically useful peptides and peptides fragments |
WO1997040156A1 (en) * | 1996-04-19 | 1997-10-30 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Mutated ras peptides for generation of cd8+ cytotoxic t lymphocytes |
Non-Patent Citations (9)
Title |
---|
Dev. Oncol. 1985, 28 (RNA tumor viruses, oncog. hum. cancer AIDS) pp 151-167 * |
Eur. J. Immunol., Vol. 23, No. 10, 1993, pp 2687-2691 * |
Eur. J. Immunol., Vol. 23, No. 3, 1993, pp 754-760 * |
Eur. J. Immunol., Vol. 26, 1996, pp 435-443 * |
Int. J. Cancer, Vol. 68, No. 4, 1996, pp 471-478 * |
Int. J. Cancer, Vol. 72, No. 5, 1997, pp 784-790 * |
International Immunology, Vol. 9, No. 8, 1997, pp 1085-1093 * |
Journal of Protein Chemistry, Vol. 8, No. 1, 1989, pp 79-86 * |
Proc. Natl. Acad. Sci., Vol. 81, No. 16, August 1984, pp 5227-5231 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001083538A1 (en) * | 2000-04-29 | 2001-11-08 | Shanghai Biowindow Gene Development Inc. | A novel polypeptide, a human k-ras gene protein 36 and the polynucleotide |
FR2836684A1 (en) * | 2002-03-04 | 2003-09-05 | Inst Nat Sante Rech Med | MUT REMOVED PEPTIDES AND THEIR USE IN IMMUNOTHERAPY |
US10335473B2 (en) | 2013-12-09 | 2019-07-02 | Targovax Asa | Peptide mixture |
EP3363458A2 (en) | 2013-12-09 | 2018-08-22 | Targovax Asa | A peptide |
WO2015086590A3 (en) * | 2013-12-09 | 2015-07-30 | Targovax As | A peptide mixture |
US10456457B2 (en) | 2013-12-09 | 2019-10-29 | Targovax Asa | Peptide mixture |
IL246007A (en) * | 2013-12-09 | 2016-07-31 | Targovax Asa | A peptide mixture |
IL246007B2 (en) * | 2013-12-09 | 2023-05-01 | Targovax Asa | A peptide mixture suitable for eliciting an immune response, t-cell mixture comprising t-cells specific for each of the peptides, pharmaceutical composition comprising same and their therapeutic uses. |
US9775892B2 (en) | 2013-12-09 | 2017-10-03 | Targovax Asa | Peptide mixture |
AU2019201937B2 (en) * | 2013-12-09 | 2020-05-28 | Targovax Solutions AS | A peptide mixture |
EP3357505A1 (en) | 2013-12-09 | 2018-08-08 | Targovax Asa | T-cell preparations and mixtures |
EP3363457A1 (en) | 2013-12-09 | 2018-08-22 | Targovax Asa | A peptide mixture |
US10596239B2 (en) | 2013-12-09 | 2020-03-24 | Targovax Asa | Peptide mixture |
EP3369432A1 (en) | 2013-12-09 | 2018-09-05 | Targovax Asa | A peptide mixture |
EP3363458A3 (en) * | 2013-12-09 | 2018-11-07 | Targovax Asa | A peptide |
AU2014363643B2 (en) * | 2013-12-09 | 2019-01-03 | Targovax Solutions AS | A peptide mixture |
US9757439B2 (en) | 2014-05-06 | 2017-09-12 | Targovax Asa | Peptide vaccine comprising mutant RAS peptide and chemotherapeutic agent |
CN113956349B (en) * | 2014-11-26 | 2024-09-06 | 美国卫生和人力服务部 | Anti-mutated KRAS T cell receptor |
US11207394B2 (en) | 2014-11-26 | 2021-12-28 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-mutated KRAS T cell receptors |
AU2015353720B2 (en) * | 2014-11-26 | 2020-02-27 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-mutated KRAS T cell receptors |
EP4286407A3 (en) * | 2014-11-26 | 2024-03-06 | The United States of America, as represented by The Secretary, Department of Health and Human Services | Anti-mutated kras t cell receptors |
EP3666288A1 (en) * | 2014-11-26 | 2020-06-17 | The United States of America, as represented by The Secretary, Department of Health and Human Services | Anti-mutated kras t cell receptors |
CN107223134A (en) * | 2014-11-26 | 2017-09-29 | 美国卫生和人力服务部 | The KRAS of anti-mutation φt cell receptor |
AU2020203465B2 (en) * | 2014-11-26 | 2022-11-17 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-mutated KRAS T cell receptors |
WO2016085904A1 (en) * | 2014-11-26 | 2016-06-02 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-mutated kras t cell receptors |
CN113956349A (en) * | 2014-11-26 | 2022-01-21 | 美国卫生和人力服务部 | T cell receptor for anti-mutated KRAS |
CN107922472A (en) * | 2015-06-16 | 2018-04-17 | 塔格瓦克斯公司 | The fragment of the mutation of RAS albumen |
WO2016202937A1 (en) * | 2015-06-16 | 2016-12-22 | Targovax Asa | Mutated fragments of the ras protein |
US11208456B2 (en) | 2016-08-02 | 2021-12-28 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-KRAS-G12D T cell receptors |
US11840561B2 (en) | 2016-08-02 | 2023-12-12 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-KRAS-G12D T cell receptors |
US11897933B2 (en) | 2016-08-02 | 2024-02-13 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-KRAS-G12D T cell receptors |
US10881730B2 (en) | 2017-02-01 | 2021-01-05 | Modernatx, Inc. | Immunomodulatory therapeutic MRNA compositions encoding activating oncogene mutation peptides |
WO2023060148A1 (en) * | 2021-10-05 | 2023-04-13 | The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services | Augmentation of innate and adaptive immunity by inhibition of interaction of lilrbs with mhc-1 |
Also Published As
Publication number | Publication date |
---|---|
WO1999010382A1 (en) | 1999-03-04 |
JP2001514190A (en) | 2001-09-11 |
EP1009771A1 (en) | 2000-06-21 |
CA2301840A1 (en) | 1999-03-04 |
AU9367798A (en) | 1999-03-16 |
GB9718110D0 (en) | 1997-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0529023B1 (en) | Therapeutically useful peptides and peptides fragments | |
US7192927B2 (en) | Peptides | |
AU755736B2 (en) | Frameshift mutants of beta-amyloid precursor protein and ubiquitin-B and their use | |
JP4422903B2 (en) | Cancer antigen based on the product of the tumor suppressor gene WT1 | |
AU4438900A (en) | Ras oncogen p21 peptide vaccines | |
GB2328689A (en) | Peptides based on the p21 ras proto-oncogene protein for the treatment of cancer | |
EP1670899A2 (en) | Vaccines for cancer, autoimmune disease and infections | |
JP4051602B2 (en) | Tumor antigen | |
JPH05506039A (en) | Peptides and peptide fragments useful in therapy | |
Takada et al. | Analysis of CD8 T‐cell response by IFNγ ELISPOT and H‐2Ld/pRL1a tetramer assays in pRL1a multiple antigen peptide‐immunized and RL male 1‐bearing BALB/c and (BALB/c× C57BL/6) F1 mice | |
Hampton | Identification and characterization of tumor-associated antigens | |
WO2001083689A2 (en) | PEPTIDES FROM FRAMESHIFT MUTATED DNA POLYMERASE δ GENE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |