FI91147C - Chlorine-based rocket propellant - Google Patents
Chlorine-based rocket propellant Download PDFInfo
- Publication number
- FI91147C FI91147C FI913396A FI913396A FI91147C FI 91147 C FI91147 C FI 91147C FI 913396 A FI913396 A FI 913396A FI 913396 A FI913396 A FI 913396A FI 91147 C FI91147 C FI 91147C
- Authority
- FI
- Finland
- Prior art keywords
- propellant
- propellants
- mixture
- pressure
- fire
- Prior art date
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Air Bags (AREA)
- Fire-Extinguishing Compositions (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
1 911471 91147
Kloraattipohjainen rakettiajoaine -Kloratbaserat raketdrivmedel Tåmå keksinto koskee parannusta knnteisiin rakettiajoaineisiin, joita kåytetåån maali-, ilotulitus-, pelastus-, valaisuraketeissa ja miden tapaisissa tai sotilaskåytosså, kuten tykisto- ja lento-konerakettien, ilmatoijunta-, merimaali-, ilmataisteluohjustentai muidensamantapaisten kåyttoai-neena. Mahdollisesti keksinnon mukaisia ajoaineita voisi kåyttaå myos peråvirtausammusten kaa-sunkehittimisså.The present invention relates to the improvement of solid rocket propellants used in paint, fireworks, rescue, lighting missiles and other types of aircraft, such as artillery or military use, such as artillery and aircraft. Possibly the propellants according to the invention could also be used in gas generators for overflow munitions.
Aikaisemmin tunnetaan kiinteitå rakettiajoaineita, jotka perustuvat perkloraattien, nitraattien, pik-raattien, nitramiinien, nitroyhdisteiden, oksidien ja typpihapon estereiden kåyttoon hapettimena. Esimerkkejå nåistå on mainittu runsaasti esimerkiksi seuraavissa låhteisså: George P. Sutton, Rocket Propulsion Elements (1990), 5th Edition, T.Urbanski, Chemistry and Technology of Explosives, vol. 3 (1967) and vol. 4 (1985), US-patentit 3725154, 3756874, 3722421, 3741830, 3779822, 3784422, 3734789, 3797238, 3753813 ja 3671341.Solid rocket propellants based on the use of perchlorates, nitrates, picrates, nitramines, nitro compounds, oxides and nitric acid esters as oxidants are previously known. Examples of these are extensively mentioned, for example, in George P. Sutton, Rocket Propulsion Elements (1990), 5th Edition, T. Urban, Chemistry and Technology of Explosives, vol. 3 (1967) and vol. 4 (1985), U.S. Pat. patents 3725154, 3756874, 3722421, 3741830, 3779822, 3784422, 3734789, 3797238, 3753813 and 3671341.
Useimmat nykyisistå ajoaineista perustuvat joko typpihapon estereihin (savuton ruuti) tai am-moniumperkloraattiin hapetusaineina. Sideaine on edellisisså selluloosanitraatti ja jålkimmåisisså jotakin, yleenså elastista polymeeriå, kuten polyuretaania, polyvinyylikloridia, polybutadieenia ja sen kopolymeereja, polysulfideja, polyisopreeniå, polyestereitå ja -eettereita, epoksipolymeerejå, polyamideja, polyvinyyliasetaattia tai -alkoholia, fluoripitoisia polymeerejå, kuten polytetra· fluoroetyleeniå, polyisobuteenia, polypropeenia, polyeteeniå, oksetaanin kopolymeereja, kuten bis-(atsidometyyli)oksetaani-styreeni kopolymeeriå tai muita mahdollisia nestemaisiå, jauhemaisia, plastisia tai termoplastisia polymeerejå.Most of the current propellants are based on either nitric acid esters (smokeless gunpowder) or ammonium perchlorate as oxidizing agents. The binder is in the foregoing cellulose nitrate and in the latter is a generally elastic polymer such as polyurethane, polyvinyl chloride, polybutadiene and its copolymers, polysulfides, polyisoprene, polyethylene ethers, polyesters and polyethers, polyoxyamides, polyoxy polymers, epoxy polymers, polypropylene, polyethylene, oxetane copolymers such as bis- (azidomethyl) oxetane-styrene copolymer or other possible liquid, powdery, plastic or thermoplastic polymers.
Yllå mainitut ajoaineet ovat tunnettuja korkeasta paine-eksponentistaan ja herkkyydeståån åkillisille palopaineen muutoksille. Korkean paine-eksponentin vuoksi ajoaine on herkkåå suuttimen poikkipinta-alan muutoksille, jollaisia voi tapahtua suuttimen eroosion tai karstaan- 2 tumisen seurauksena. Tail aiset tapahtumat saattavat johtaa åkillisiin palopaineen muutoksiin, joiden seurauksena yleensa on raketin sammuminen, palon muuttuminen epatasaiseksi (ys-kiminen), resonanssi-ilmiot tai jopa raketin råjåhtåminen.The above-mentioned propellants are known for their high pressure exponent and sensitivity to sudden changes in fire pressure. Due to the high pressure exponent, the propellant is sensitive to changes in the cross-sectional area of the nozzle, which can occur as a result of nozzle erosion or scaling. Such events can lead to sudden changes in fire pressure, which usually result in the rocket being extinguished, the fire becoming uneven (ying), resonant phenomena, or even the rocket exploding.
Tunnusomaista kiinteille ajoaineille on myos minimi palopaine ja siihen liittyva vaikea sytytetta-vyys. Minimi palopainetta alemmassa paineessa palaminen on epåtasaista tai ajoaine sammuu. Sytyttåmiseen tarvitaan siksi erityinen sytytin, jolla raketin kammiopaine nostetaan låhelle toimintapainetta ja samalla kehitetaan suuri måårå kuumia kaasuja ja hiukkasia, jotka sytyttåvåt ajoaineen. Kyseinen sytytin lisåa raketin monimutkaisuutta ja siten kustannuksia sekå vaikeuttaa raketin kåytånnon toteuttamista ja huonontaa raketin toimintavarmuutta.Solid propellants are also characterized by minimum fire pressure and associated difficult flammability. At a pressure below the minimum fire pressure, combustion is uneven or the propellant is extinguished. Ignition therefore requires a special igniter with which the chamber pressure of the rocket is brought close to the operating pressure and at the same time a large amount of hot gases and particles are generated which ignite the propellant. This igniter increases the complexity of the rocket and thus the cost, as well as makes it difficult to implement the rocket and impairs the reliability of the rocket.
Tunnetut ajoaineet sisåltåvåt myos poikkeuksetta palokatalysaattoreita ja ballistisia lisåaineita, joilla såådellåån palonopeutta ja sen paine- sekå låmpotilariippuvuuksia. Ajoaineen ominaisuudet ovat erityisen herkkiå juuri nåiden aineosien måarille, raekoolle, jopa niiden partikkelien muodolle. Nykyisin kåytetyt ballistiset lisåaineet ovat energiantuoton kannalta epåedullisia ja alentavat ajoaineen ominais- ja tilavuusimpulssia. Tunnetut lisåaineet tuottavat palamisessa vain murto-osan siitå energiasta, jonka hapettimen ja sideaineen reaktio tuottaa.Known propellants also invariably contain fire catalysts and ballistic additives to control the rate of fire and its pressure dependences. The properties of the propellant are particularly sensitive to the size of these ingredients, their grain size, and even the shape of their particles. The ballistic additives currently used are disadvantageous in terms of energy production and reduce the specific and volumetric impulse of the propellant. Known additives produce only a fraction of the energy produced by the reaction of an oxidant and a binder in combustion.
On tunnettua, ettå riittåvån palonopeuden aikaan saamiseksi on nykyisisså ajoaineissa kåytettåvån hapettimen raekoon oltava pieni tai hyvin pieni, tyypillisesti alle 25-50 mikrometriå. Pienestå raekoosta aiheutuu suuria vaikeuksia sekoittamisessa, sillå polymeerin ja hienojakoisen, kiinteån hapettimen seoksella on erittåin suuri viskositeetti. Raekoon pienuus aiheuttaa myos jauhatuksen tarpeen; yleisimman hapettimen, ammoniumperkloraatin, jauhatus puolestaan on råjåhdysvaarallinen toimenpide. Edelleen, hienojakoisesta hapettimesta sekoitettujen ajoaineiden sekoitus- ja palo-ominaisuudet ovat herkkiå raekoolle ja sen jakautumalle. Valmistusprosessi on siten tarkkaan kontrolloitava ja kåytånnosså vaikea suorittaa sekå komposiittiajoaineiden ettå my5s savuttomien ruutien tapauksessa.It is known that in order to obtain a sufficient rate of fire, the grain size of the oxidant used in current propellants must be small or very small, typically less than 25-50 micrometers. The small grain size causes great difficulties in mixing, as the mixture of polymer and finely divided solid oxidant has a very high viscosity. The small size of the grain also causes the need for grinding; Grinding the most common oxidant, ammonium perchlorate, is an explosive operation. Furthermore, the mixing and fire properties of propellants mixed from a finely divided oxidant are sensitive to the grain size and its distribution. The manufacturing process must therefore be precisely controlled and, in practice, difficult to carry out in the case of both composite propellants and smokeless powders.
Useimmin kåytetyille ajoaineille tunnusomaista on melko alhainen tiheys, joka vaihtelee useimmiten 1400 kg/m3:sta 1750 kg/m3:iin. Seurauksena saavutettava lataustiheys on varsin pieni, kun otetaan vielå huomioon, ettå palokaasujen virtauksellekin on jåtettåvå tilaa palokanavan muo-dossa tai ajoaineen ja astian våliin.The most commonly used propellants are characterized by a rather low density, which usually ranges from 1400 kg / m3 to 1750 kg / m3. The resulting charging density is quite small, considering that the flow of the flue gases must also be left in the form of a flue or between the propellant and the vessel.
IIII
3 911473,91147
Tunnettujen ajoaineiden epåkohtina ovat epåilemåttå hankalasti hallittava sisåballistiikka ja vaikea sytytettåvyys sekå vaativa valmistusprosessi. Keksinndn mukaisen ajoaineen avulla saadaan par annus tai ratkaiseva par annus kaikkiin edellå esitettyihin epåkohtiiiL Tåmån toteuttamiseksi keksinnon mukaiselle ajoaineelle on tunnusomaista se, mitå on esitetty patenttivaatimuksen 1 tunnusmerkkiosassa. Keksinndn mukaisen ajoaineen tårkeimmåt edut ovat parantuneet palo· ja syttymisominaisuudet, yksinkertaistunut ja helpottunut valmistusprosessi, suurempi tiheys ja tilavuusimpulssi sekå mekaaninen ja terminen epåherkkyys verrattuna tunnettuihin seoksiin.The disadvantages of the known propellants are undoubtedly the difficult ballast to be controlled and the difficult ignitability, as well as the demanding manufacturing process. The propellant according to the invention provides a par dose or a decisive par dose for all the above-mentioned disadvantages. In order to achieve this, the propellant according to the invention is characterized by what is stated in the characterizing part of claim 1. The main advantages of the propellant according to the invention are improved fire and ignition properties, a simplified and simplified manufacturing process, a higher density and volume impulse, and mechanical and thermal insensitivity compared to known mixtures.
Palamisominaisuuksiensa suhteen keksinnon mukaisella ajoaineella saavutetaan selviå etuja tunnettuihin ajoaineisiin verrattuna. Keksinndn mukainen ajoaine ei pyri tunnettujen tapaan sammumaan, jos kammiopaine vaihtelee, esimerkiksi suuttimen vaurioitumisen seurauksena. Nykyiset ajoaineet sammuvat, pyrldvåt yskimåån tai resonoimaan tai jopa detonoivat, jos paine vaihtelee nopeasti. Keksinndn mukaisella ajoaineella on tunnettuihin perkloraattiajoaineisiin verrattuna alempi tai sama paine-eksponentti, kuten esimerkkien 1 ja 2 sekå 3 ja 4 seoksia vertaamalla voidaan havaita. Esimerkeistå selviåå myds, ettå jo karkeallakin hapettimella saavutetaan suuri palonopeus. Palonopeutta on mahdollista kohottaa ainakin kaksinkertaiseksi pelkåståån hapettimen raekokoa pienentåmållå, jolloin tosin menetetåån etu helposta sekoitettavuudesta.In terms of its combustion properties, the propellant according to the invention has clear advantages over known propellants. The propellant according to the invention does not tend to be extinguished, as is known, if the chamber pressure varies, for example as a result of damage to the nozzle. Current propellants turn off, tend to cough or resonate, or even detonate if the pressure fluctuates rapidly. The propellant according to the invention has a lower or the same pressure exponent compared to known perchlorate propellants, as can be seen by comparing the mixtures of Examples 1 and 2 and 3 and 4. It is clear from the examples that even a coarse oxidant achieves a high fire rate. It is possible to increase the rate of combustion at least twice by reducing the grain size of the oxidant alone, although the advantage of easy mixing is lost.
Koska keksinndn mukainen ballistinen lisåaine itsessåån on tehokas hapetin, ei ominaisimpulssi juurikaan alene lisåyksestå toisin kuin kåytettåesså tunnettuja ballistisia lisåaineita, joita ovat esimerkiksi rauta(in)oksidi,lyijykromaatti,rauta(in)asetonyyliasetaatti,kuparikromiitti,raskasme-tallien, erityisesti kromin, lyijyn ja koboltin bentsoaatit, salisylaatit, naftaleenikarboksylaatit ja ftalaatit. Keksinndn mukaista lisåainetta kåytettåesså ajoaineen ominaisuudet eivåt ole herkkiå lisåaineen raekoolle tai pienille pitoisuuden muutoksille, sillå lisåainetta voidaan kåyttåa suurinakin pitoisuuksina. Kun lisåainetta on seoksessa paljon, aineen ominaisuuksien vaihtelu vaikuttaa suhteellisesti hyvin våhån seoksen ominaisuuksiin.Since the ballistic additive according to the invention is itself an effective oxidant, the specific impulse is not significantly reduced by the addition, unlike when known ballistic additives are used, such as iron (in) oxide, lead chromate, iron (in) acetonyl acetate, copper and chromite, especially copper chromite, heavy chromite, cobalt benzoates, salicylates, naphthalene carboxylates and phthalates. When using the additive according to the invention, the properties of the propellant are not sensitive to the grain size of the additive or to small changes in the concentration, since the additive can be used even in the highest concentrations. When there is a lot of additive in the mixture, the variation of the properties of the substance has a relatively small effect on the properties of the mixture.
Palonopeus esimerkin 1 mukaisella ajoaineella on 17 mm/s 70 bar paineessa. Paine-eksponentti on 0,44 kåytettåesså polyuretaania sideaineena. Kåyttåmållå tunnettuja ballistisia lisåaineita voidaan palonopeutta tåståkin vielå kasvattaa ja paine-eksponenttia jonkin verran laskea. Yleisimmin kåytetyllå hapettimella, ammoniumperkloraatilla, vastaavan palonopeuden saavuttaminen 4 esimerkisså kåytetyn sideaineen kanssa on vaikeaa ja vaatii hyvin hienojakoisen hapettimen kåyttåmistå. Esimerkkiå 1 vastaavan, tunnetun seoksen 2 palonopeus on 6 mm/s 70 bar paineessa ja paine-eksponentti 0,68.The burning rate of the propellant according to Example 1 is 17 mm / s at a pressure of 70 bar. The pressure exponent is 0.44 when polyurethane is used as a binder. By using known ballistic additives, the rate of fire can still be increased and the pressure exponent decreased somewhat. With the most commonly used oxidant, ammonium perchlorate, achieving the corresponding burning rate with the binder used in Example 4 is difficult and requires the use of a very fine oxidant. The fire rate of the known mixture 2 corresponding to Example 1 is 6 mm / s at a pressure of 70 bar and the pressure exponent is 0.68.
Valmistusprosessi yksinkertaistuu, sillå apuaineita ja hapettimen jauhamista ei vålttåmåttå tarvita, ellei haluta erittain nopeasti palavaa ajoainetta. Edelleen, keksinnon mukaisessa ajoaineessa kåytettåvån lisåaineen kidemuoto on hyvin edullinen sekoituksen kannalta. Lisaksi aineen kidetiheys on suuri, joten sen tilavuusosuus valmiissa seoksessa jåå pieneksi. Tålloin ajoaineseos on valuvaa ja helposti valettavaa, vaikka ajoaine sisåltåisi runsaastikin kiintoaineita. Samalla ajoaineen tiheys kasvaa, mika on hyvin edullista tilavuusimpulssin kannalta. Kostutusaineita tai hapettimen tiukkaa raekokojakautumaa ei sekoittamisen helpottamiseksi tarvitse kayttaa, ellei kiintoaineiden pitoisuus ole erittain suuri tai hapetin hyvin hienoksi jauhettua. Sekoittaminen on nåin olien helppoa, sillå seoksen viskositeetti pysyy pienenå. Esimerkin 1 mukainen ajoaine on tåysin juoksevaa vielåpå 86 %:n kiintoainepitoisuudellakin ilman kostutusaineiden kåyttoå. Jopa yli 90 %:n kiintoainepitoisuutta voidaan kåyttåa, mutta tålldin seos ei enåå ole vapaasti juoksevaa ja kostutusaineiden kaytto tulee tarpeelliseksi. Suuri lriintoainepitoisuus ja tiheå kiintoaine hel-pottavat myos kaasujen poistoa seoksesta.The manufacturing process is simplified, as auxiliaries and oxidant grinding are not necessarily required unless a very fast-burning propellant is desired. Furthermore, the crystalline form of the additive used in the propellant according to the invention is very advantageous for mixing. In addition, the crystal density of the substance is high, so its volume fraction in the finished mixture remains small. In this case, the propellant mixture is flowable and easy to cast, even if the propellant contains a lot of solids. At the same time, the density of the propellant increases, which is very advantageous in terms of volume impulse. Wetting agents or a tight grain size distribution of the oxidant do not need to be used to facilitate mixing unless the solids content is very high or the oxidant is very finely ground. Mixing is thus easy, as the viscosity of the mixture remains low. The propellant according to Example 1 is fully flowable even at a solids content of 86% without the use of wetting agents. Even a solids content of more than 90% can be used, but the alloy mixture is no longer free-flowing and the use of wetting agents becomes necessary. The high solids content and dense solids also facilitate the removal of gases from the mixture.
Keksinnon mukainen ajoaine on hyvin syttyvåå kåytettåesså sitå raketissa. Keksinndn mukaisesta ajoaineesta, kuten esimerkkien 1 ja 3 seoksista, valmistettu raketti ei vaadi erityistå sytytinta, vaan kåynnistyy luotettavasti pienellå maarållå jotakin sytytysmassaa, esimerkiksi mustaa ruutia. Myos-kåån paineen kohottamista tyopaineeseen ei vålttåmatta tarvitse suorittaa, sillå keksinndn mukaisella ajoaineella ei haluttaessa ole palamispaineen alarajaa, toisin kuin tunnetuilla ajoai-neilla. Ajoaine palaa stabiilisti normaalipaineesta alkaen. Ajoaineella ei myoskåån esiinny yskimistå kåynnistyksesså tai resonanssi-ilmioitå palamisen aikana låheskåån yhtå helposti kuin tunnetuilla ajoaineilla.The propellant according to the invention is highly flammable when used in a rocket. A rocket made of a propellant according to the invention, such as the mixtures of Examples 1 and 3, does not require a special igniter, but reliably starts with a small amount of an igniting mass, for example black powder. It is also not necessary to increase the working pressure to the working pressure, since the propellant according to the invention does not, if desired, have a lower limit of combustion pressure, unlike known propellants. The propellant burns stably from normal pressure. The propellant also does not cough at start-up or resonance during combustion nearly as easily as with known propellants.
Etua keksinndn mukaisella ajoaineella saavutetaan myds lataustiheydesså, sillå ajoaine on tunnettuja tiheåmpåa. Esimerkin 1 ajoaineen tiheys on 1910 kg/m3, esimerkin 3 ajoaineen 2090 kg/m3, kun vastaavien, tunnettujen seosten 2 ja 4 tiheydet ovat 1680 kg/m3 ja 1840 kg/m3. Mikåli kåytetåån raekooltaan sopivasti jakautunutta hapetinta ja våhemmån sideainetta, saadaan tiheyttå vielå suuremmaksi ja samalla sekoittaminenkin helpottuu. Kåytettåesså esimerkkien 1 ja 2 I! 5 91147 mukaista hapetinta ominaisimpulssi on suunnilleen sama kuin yleensåkin ammoniumperkloraatti-ajoaineilla , 2300 - 2600 Ns/kg. Tilavuusimpulssi on kuitenkin n. 10 % suurempi suuremman tiheyden ansiosta. Suuren tilavuusimpulssin merkitys korostuu erityisesti hitaasti lentåvisså raketeissa, kuten merimaaliohjuksissa, tykistdraketeissa ja monivaiheisen raketin ensimmåisisså vaiheissa. Keksinnon mukaista litiumsuolaa kåytettåesså saadaan suurempi ominaisimpulssi, 2400 -2800 Ns/kg sideaineen mukaan. Tilavuusimpulssi kasvaa myos samassa suhteessa, sillå tiheys li· tiumyhdistettå kåytettåesså on jokseenkin sama kuin esimerkkien 1 ja 2 hapettimellakin. Todellista impulssia lisåå myos palokaasujen sisal tåmån metallikloridin tiivis tyminen suuttimen låpi kulkiessaan, jolloin suolan latenttia låmpoenergiaa saadaan kåyttoon. Vastaavaa ilmiotå ei synny, jos virtaus on tåysin kaasumainen, kuten savuttomilla ruudeilla ja useilla tunnetuilla komposiittiajoaineilla.The advantage of the propellant according to the invention is also achieved in the loading density, since the propellant is denser than known. The density of the propellant of Example 1 is 1910 kg / m 3, of the propellant of Example 3 2090 kg / m 3, while the densities of the respective known mixtures 2 and 4 are 1680 kg / m 3 and 1840 kg / m 3. If an oxidant with a suitably distributed grain size and less binder is used, the density will be even higher and at the same time mixing will be easier. Using Examples 1 and 2 I! The specific impulse for the oxidants according to 5 91147 is approximately the same as for ammonium perchlorate propellants in general, 2300 to 2600 Ns / kg. However, the volume impulse is about 10% higher due to the higher density. The importance of a large volume impulse is particularly emphasized in slow-moving missiles, such as naval missiles, artillery missiles, and the early stages of a multi-stage missile. The use of the lithium salt according to the invention gives a higher specific impulse, 2400-2800 Ns / kg depending on the binder. The volume impulse also increases in the same proportion, since the density when using the lithium compound is approximately the same as with the oxidant of Examples 1 and 2. The real impulse is also increased by the condensation of the metal chloride contained in the combustion gases as it passes through the nozzle, whereby the latent thermal energy of the salt is used. A similar phenomenon does not occur if the flow is completely gaseous, as is the case with smokeless powders and several known composite propellants.
Toisin kuin hyvå syttyvyys antaisi olettaa, keksinnon mukainen ajoaine on epåherkempåå syttymåån mekaanisesta årsykkeestå kuin tunnetut ammoniumperkloraattiseokset tai muut ajoaineet, kuten savuttomat ruudit. Ajoaineen sekoittaminen voidaan siten suorittaa samoilla tai samanlaisilla vålineillå kuin tåhånastistenkin seosten. Termisesti keksinnon mukaiset ajoaineet ovat myos ruuteja ja tunnettuja perkloraattiajoaineita epåherkempiå, joten keksinnon mukaiset ajoaineet soveltuvat erinomaisesti myos nk. plastisolmenetelmållå valmistettaviksi. BAM:n (Bundesanstalt fur Materialpriifimg) mukaisella iskukokeella on saatu tunnetulle, ammoniumper-kloraatista, polybutadieenista ja alumiinijauheesta valmistetulle ajoaineelle iskuherkkyydeksi 25 cm yhden kilogramman vasaralla. Esimerkin 1 mukaisella seoksella iskuherkkyys yhden kilogramman vasaralla on 40 cm. BAM:n mukaisen hankausherkkyyskokeen kuormitus samalla ammoniumperkloraattiajoaineella on 18 kp, esimerkin 1 ajoaineella 22 kp. BAM:n mukainen humahduspiste ammoniumperkloraattiajoaineella on 260 °C, esimerkin 1 ajoaineella 330 °C. Savuttomien ruutien iskuherkkyydet vaihtelevat 5 cm:stå 20 cm:iin yhden kilogramman vasaralla, hankausherkkyydet 8 kp:sta 18 kp:iin ja humahduspisteet 160 °C:sta 190 °C:een BAM:n mukaisissa kokeissa. Suuren tiheyden ansiosta keksinndn mukaista ajoainetta on myos hyvin vaikea saada de-tonoimaan, mika edelleen lisåa sen kåyttdturvallisuutta.Contrary to good flammability, the propellant of the invention is less sensitive to ignition by mechanical stimuli than known ammonium perchlorate mixtures or other propellants such as smokeless gunpowder. The mixing of the propellant can thus be carried out with the same or similar means as the mixtures of the present. Thermally, the propellants according to the invention are also less sensitive to powders and known perchlorate propellants, so the propellants according to the invention are also excellently suitable for preparation by the so-called plastisol method. The impact test according to BAM (Bundesanstalt fur Materialpriifimg) has obtained an impact sensitivity of 25 cm for a known propellant made of ammonium perchlorate, polybutadiene and aluminum powder with a 1 kg hammer. With the mixture according to Example 1, the impact sensitivity with a one kilogram hammer is 40 cm. The load of the abrasion sensitivity test according to BAM with the same ammonium perchlorate propellant is 18 kp, with the propellant of Example 1 22 kp. The flash point according to BAM for the ammonium perchlorate propellant is 260 ° C, for the propellant of Example 1 330 ° C. The impact sensitivities of smokeless powders vary from 5 cm to 20 cm with a 1 kg hammer, the abrasion sensitivities from 8 kp to 18 kp and the bump points from 160 ° C to 190 ° C in BAM experiments. Due to the high density, the propellant according to the invention is also very difficult to detonate, which further increases its safety in use.
Etuina mainittakoot myos keksinnon mukaisen ajoaineen kotimaiset raaka-aineet. Savutonta ruutia lukuun ottamatta tunnettujen ajoaineiden raaka-aineet ovat tuonnin varassa. Keksinndn mukaisessa ajoaineessa kåytettåvå lisåaine on kotimaista. Lisåksi aine on halpaa, sen hinta on 6 1/2..1/10 tavallisesti kaytettavien materiaalien hinnasta. Jos lisaainetta kaytetaan suurina pitoisuuksina, myos ajoaine tulee edullisemmaksi. Esimerkkiseos 1 on alumiinia ja am-moniumperkloraattia lukuun ottamatta kotimaisista materiaaleista valmistettu, kun sideaine on polyuretaania.Advantages include the domestic raw materials of the propellant according to the invention. With the exception of smokeless gunpowder, the raw materials for known propellants are dependent on imports. The additive used in the propellant according to the invention is domestic. In addition, the substance is cheap, its price is 6 1 / 2..1 / 10 of the price of commonly used materials. If the additive is used in high concentrations, the propellant also becomes more advantageous. Example mixture 1 is made of domestic materials, with the exception of aluminum and ammonium perchlorate, when the binder is polyurethane.
Esimerkkeja keksinnon mnkaisista ja tunnetuista ajoaineista: 1. ammoniumperidoraatti 56,3 painoprosentda natriumkloraatti 10,7 alumiini 17,0 ” polyuretaani tai ΗΓΡΒ 15,5 "Examples of propellants according to the invention and known are: 1. ammonium peridorate 56.3% by weight sodium chlorate 10.7 aluminum 17.0 "polyurethane or ΗΓΡΒ 15.5"
Natriumkloraatin raekokojakautuma: yli 2 mm 35 painoprosenttia 1 - 2 mm 55 alle 1 mm 10Sodium chlorate grain size distribution: more than 2 mm 35% by weight 1 - 2 mm 55 less than 1 mm 10
Ammoniumperkloraatin raekokojakautuma: yli 1 mm 2 painoprosenttia 0,5 - 1 mm 13 0,25 - 0,5 mm 31 0,125 - 0,25 mm 42 0,067 - 0,125 mm 9 alle 0,067 mm 3Grain size distribution of ammonium perchlorate: more than 1 mm 2% by weight 0.5 to 1 mm 13 0.25 to 0.5 mm 31 0.125 to 0.25 mm 42 0.067 to 0.125 mm 9 less than 0.067 mm 3
Alumiinijauhe on noin 50 mikrometrin raekokoon jauhettua.The aluminum powder is ground to a grain size of about 50 micrometers.
Esimerkin 1 seoksen palonopeus 70 bar paineessa on 17 mm/s ja paine-eksponentti polyuretaania kaytettaesså 0,44 ja HTPB:ta kaytettaesså 0,06. Minimi palopaine on noin 3 bar polyuretaani sideaineena ja noin 2 bar HTPB sideaineena. Seoksen tiheys on 1910 kg/m3.The fire rate of the mixture of Example 1 at a pressure of 70 bar is 17 mm / s and the pressure exponent when polyurethane is 0.44 and when HTPB is 0.06. The minimum fire pressure is about 3 bar polyurethane as binder and about 2 bar HTPB as binder. The density of the mixture is 1910 kg / m3.
IIII
7 911477 91147
Huomautettakoon, ettå esimerkin 1 seoksessa natriumkloraatti ja ammoniumperkloraatti eivåt ole keskenåan yhteensopivia aineita. Siitå ei kuitenkaan ole haittaa, kunhan huolehditaan, etteivåt kyseiset aineet pååse keskenåan sekaisin, ts. niita ei lisåtå samanaikaisesti seokseen. Valmiin seoksen on erillisten ainesten yhteensopimattomuudesta huolimatta havaittu olevan hyvin pysyvåa, mita osoittavat aikaisemmin mainitut herkkyyskokeiden tuloksetkin.It should be noted that sodium chlorate and ammonium perchlorate are not compatible in the mixture of Example 1. However, this is not a disadvantage, as long as it is ensured that the substances in question do not get mixed up with each other, i.e. they are not added to the mixture at the same time. Despite the incompatibility of the individual materials, the finished mixture has been found to be very stable, as shown by the results of the previously mentioned sensitivity tests.
Tunnettu seos: 2. ammoniumperkloraatti 65,0 painoprosenttia polyuretaani tai HTPB 18,5 "Known mixture: 2. ammonium perchlorate 65.0% by weight polyurethane or HTPB 18.5 "
alumiini 16,0 Maluminum 16.0 M
kuparioksidi 0,4 " kaliumdikromaatti 0,6 "copper oxide 0.4 "potassium dichromate 0.6"
Esimerkin 2 ajoaineen palonopeus 70 bar paineessa on 6 mm/s ja paine-eksponentti on 0,68 kay-tettåesså polyuretaania ja 0,31 kåytettåesså HTPB:a. Alumiinin ja ammoniumperkloraatin raekoot ovat samat kuin edellå. Seoksen minimi palopaine on noin 15 bar polyuretaani sideaineena ja noin 10 bar HTPB sideaineena. Tiheys on 1680 kg/m3.The combustion rate of the propellant of Example 2 at 70 bar is 6 mm / s and the pressure exponent is 0.68 when polyurethane is used and 0.31 when HTPB is used. The grain sizes of aluminum and ammonium perchlorate are the same as above. The minimum fire pressure of the mixture is about 15 bar as polyurethane binder and about 10 bar as HTPB binder. The density is 1680 kg / m3.
3. kaliumperkloraatti 38,0 painoprosenttia natriumkloraatti 35,0 " alumiini 9,0 " epoksihartsi 18,0 "3. Potassium perchlorate 38.0 weight percent sodium chlorate 35.0 "aluminum 9.0" epoxy resin 18.0 "
Kaliumperkloraatin raekokojakautuma: yli 0,25 mm 6 painoprosenttia 0,25 - 0,125 mm 28 0,067 - 0,125 mm 54 alle 0,067 mm 12Grain size distribution of potassium perchlorate: more than 0.25 mm 6% by weight 0.25 to 0.125 mm 28 0.067 to 0.125 mm 54 less than 0.067 mm 12
Esimerkin 3 seos palaa 32 mm/s 70 bar paineessa ja seoksen paine-eksponentiksi on saatu 0,72. Minimi palopaine on noin 5 bar ja tiheys 2090 kg/m3. Natriumkloraatin raekokojakautuma on 8 s ama kuin edellåkin.The mixture of Example 3 burns at 32 mm / s at a pressure of 70 bar and the pressure exponent of the mixture is 0.72. The minimum fire pressure is about 5 bar and the density is 2090 kg / m3. The particle size distribution of sodium chlorate is 8 s ama as before.
Tunnettu seos: 4. kaliumperkloraatti 69,0 painoprosenttia alumiini 9,0 " epoksihartsi 22,0 "Known alloy: 4. potassium perchlorate 69.0 weight percent aluminum 9.0 "epoxy resin 22.0"
Esimerldn 4 seoksen palonopeus on n. 25 mm/s 70 bar paineessa ja paine-eksponentti 1,0 tai enemmån. Tarkkoja arvoja ei ole saatavissa, sillå niiden mittaaminen on erityisen hankalaa korkean paine-eksponentin ja minimin palopaineen takia. Minimi palopaine on n. 30 bar ja tiheys 1840 kg/m1.The fire rate of the mixture of Example 4 is about 25 mm / s at a pressure of 70 bar and the pressure exponent is 1.0 or more. Accurate values are not available, as they are particularly difficult to measure due to the high pressure exponent and minimum combustion pressure. The minimum fire pressure is about 30 bar and the density is 1840 kg / m1.
Esimerkkien polyuretaanina voidaan kåyttåå Neste Oy:n valmistamaa Civiol 7007 polyolia ja MDI:tå (metyleenibis(fenyyli-isosyanaatti)). HTPBmå voidaan kåyttåa esimerkiksi Arco:nPolyBD-resin R-45M:åå. Epoksihartsina kåy esimerkiksi Dow Chemicalin valmistama hartsi DER-332, jonka kovettimena toimii polyamiini ja pehmittimenå dibutyyliftalaatti.As the polyurethane of the examples, Civiol 7007 polyol and MDI (methylene bis (phenyl isocyanate)) manufactured by Neste Oy can be used. HTPB can be used, for example, in the R-45M of Arco's PolyBD resin. The epoxy resin used is, for example, DER-332 resin manufactured by Dow Chemical, the hardener of which is polyamine and the plasticizer of dibutyl phthalate.
Erityisesti on huomattava, ettå keksinnon mukaisessa ajoaineessa voidaan kåyttåa myos muita kuin esimerkeisså mainittuja ballistisia lisåaineita, jotka kuuluvat patenttivaatimuksen 1 tunnus-merkkiosan mååritelmåån. Lisåksi seoksissa voi olla muita kuin esimerkeisså mainittuja sideaineita ja hapettimia, ainakin niitå, joita on lueteltu tekniikan tason kuvauksen yhteydesså tåmån liitteen alussa. Edelleen, seokset voivat sisåltåå ajoaineena metallia sopivassa muodossa, stabilisaattoreita, flegmatointiaineita, tunnettuja ballistisia lisåaineita, kuten paine-eksponentin, palonopeuden låmpotilariippuvuuden ja eroosioilmioiden sååtelyaineita, pehmittimiå, kostutusaineita ja muita mahdollisia lisåaineita. Tållå ja mainituilla esimerkeillå ei haluta millåån tavoin rajoittaa keksintoå vain esimerkkejå koskevaksi, vaan keksinnon monet, mainitsemattomatkin muunnelmat ovat mahdollisia seuraavien patenttivaatimusten måårittelemån keksinnollisen ajatuksen puitteissa.In particular, it should be noted that ballistic additives other than those mentioned in the examples, which fall within the definition of the characterizing part of claim 1, can also be used in the propellant according to the invention. In addition, the compositions may contain binders and oxidants other than those mentioned in the examples, at least those listed in connection with the description of the prior art at the beginning of this appendix. Furthermore, the compositions may contain, as a propellant, metal in a suitable form, stabilizers, phlegmatizers, known ballistic additives such as pressure exponent, fire rate dependence and erosion control, plasticizers, wetting agents and other possible additives. In this and the mentioned examples, it is not intended to limit the invention in any way to the examples only, but many, not even mentioned, variations of the invention are possible within the scope of the inventive idea defined by the following claims.
IlIl
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI913396A FI91147C (en) | 1991-07-15 | 1991-07-15 | Chlorine-based rocket propellant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI913396A FI91147C (en) | 1991-07-15 | 1991-07-15 | Chlorine-based rocket propellant |
FI913396 | 1991-07-15 |
Publications (4)
Publication Number | Publication Date |
---|---|
FI913396A0 FI913396A0 (en) | 1991-07-15 |
FI913396A FI913396A (en) | 1993-01-16 |
FI91147B FI91147B (en) | 1994-02-15 |
FI91147C true FI91147C (en) | 1994-05-25 |
Family
ID=8532893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI913396A FI91147C (en) | 1991-07-15 | 1991-07-15 | Chlorine-based rocket propellant |
Country Status (1)
Country | Link |
---|---|
FI (1) | FI91147C (en) |
-
1991
- 1991-07-15 FI FI913396A patent/FI91147C/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
FI913396A (en) | 1993-01-16 |
FI91147B (en) | 1994-02-15 |
FI913396A0 (en) | 1991-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9199887B2 (en) | Propellant compositions including stabilized red phosphorus and methods of forming same | |
US5074938A (en) | Low pressure exponent propellants containing boron | |
US3257801A (en) | Pyrotechnic composition comprising solid oxidizer, boron and aluminum additive and binder | |
Dey et al. | Towards new directions in oxidizers/energetic fillers for composite propellants: an overview | |
US5567912A (en) | Insensitive energetic compositions, and related articles and systems and processes | |
US3006743A (en) | Solid composite propellants containing decaborane | |
US6309484B2 (en) | Propellent charge powder for barrel-type weapons | |
EP0520104A1 (en) | Non-self-deflagrating fuel compositions for high regression rate hybrid rocket motor application | |
US5472531A (en) | Insensitive explosive composition | |
US20010007913A1 (en) | Guanylurea dinitramide, an explosive, propellent. pocket motor charge and gas generator | |
US4570540A (en) | LOVA Type black powder propellant surrogate | |
US11112222B2 (en) | Propellant with pattern-controlled burn rate | |
FI91147C (en) | Chlorine-based rocket propellant | |
US3386868A (en) | Heat resistant propellants containing organic oxidizers | |
US3732131A (en) | Gun propellant containing nitroplasticized nitrocellulose and triaminoguanidine nitrate | |
US3834956A (en) | Solid propellant composition containing lead and lead compounds | |
US2995430A (en) | Composite propellant reinforced with | |
US3742859A (en) | Explosive charge | |
US4239073A (en) | Propellants in caseless ammunition | |
US2338120A (en) | Explosive composition | |
US3767489A (en) | Nitrasol propellant | |
US3954531A (en) | Composite double base propellant composition containing ferric fluoride | |
JP2562501B2 (en) | Rocket solid propellant | |
US10246428B2 (en) | Insensitive plasticizer and melt-castable energetic material | |
KR102633762B1 (en) | Insensitive smokeless solid propellant composition comprising N-Guanylurea dinitramide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
BB | Publication of examined application | ||
MM | Patent lapsed |