ES2312275B1 - SOLAR CONCENTRATION PLANT FOR OVERHEATED STEAM PRODUCTION. - Google Patents
SOLAR CONCENTRATION PLANT FOR OVERHEATED STEAM PRODUCTION. Download PDFInfo
- Publication number
- ES2312275B1 ES2312275B1 ES200701577A ES200701577A ES2312275B1 ES 2312275 B1 ES2312275 B1 ES 2312275B1 ES 200701577 A ES200701577 A ES 200701577A ES 200701577 A ES200701577 A ES 200701577A ES 2312275 B1 ES2312275 B1 ES 2312275B1
- Authority
- ES
- Spain
- Prior art keywords
- steam
- solar
- solar concentration
- evaporator
- superheater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 8
- 238000004326 stimulated echo acquisition mode for imaging Methods 0.000 title 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000013529 heat transfer fluid Substances 0.000 claims abstract 2
- 238000001704 evaporation Methods 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 7
- 229920006395 saturated elastomer Polymers 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 238000013021 overheating Methods 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/20—Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Planta de concentración solar para producción de vapor sobrecalentado.Solar concentration plant for production of superheated steam
Planta de concentración solar que utiliza como fluido caloportador agua/vapor, en cualquier ciclo termodinámico o sistema de aprovechamiento de calor de proceso, que comprende un evaporador dónde se produce vapor saturado en las condiciones de presión del sistema y un sobrecalentador a partir del cual el vapor alcanza las condiciones de presión y temperatura requeridas a la entrada de la turbina, separados físicamente y conectados entre si por un calderín en el cual se produce la separación agua-vapor, y en la que se realiza un control de estrategias de apunte del campo de helióstatos independiente para ambos subsistemas, subsistema evaporador y subsistema sobrecalentador.Solar concentration plant that uses as water / steam heat transfer fluid, in any thermodynamic cycle or process heat utilization system, which comprises a evaporator where saturated steam is produced under the conditions of system pressure and a superheater from which steam reaches the conditions of pressure and temperature required at turbine inlet, physically separated and connected to each other by a boiler in which separation occurs water-steam, and in which a control of point strategies of the independent heliostat field for both subsystems, evaporator subsystem and subsystem superheater
Description
Planta de concentración solar para producción de vapor sobrecalentado.Solar concentration plant for production of superheated steam
La presente invención se refiere a plantas de concentración solar con separación física del evaporador y el sobrecalentador y control dinámico adaptativo del campo de helióstatos, para obtener vapor sobrecalentado de una manera eficiente y controlada, para poder garantizar así la durabilidad y la operación normal continuadas de dicha planta solar en sus diferentes aplicaciones: producción de electricidad, producción de calor de proceso, producción de combustibles solares y aplicación a procesos termoquímicos.The present invention relates to plants of solar concentration with physical separation of the evaporator and the superheater and adaptive dynamic control of the field of heliostats, to get superheated steam in a way efficient and controlled, in order to guarantee durability and the normal continued operation of said solar plant in its Different applications: electricity production, production of process heat, production of solar fuels and application to thermochemical processes
Si bien la radiación solar es una fuente térmica de elevada temperatura y elevada energía en origen, la utilización de la misma en las condiciones del flujo que llega a la superficie terrestre destruye prácticamente todo su potencial de convertirse en trabajo, por la drástica reducción de la temperatura disponible en el fluido. Por esta razón, se hace uso en las centrales solares termoeléctricas (CST), de sistemas de concentración óptica, que permiten lograr mayores densidades de flujo y con ello temperaturas más elevadas.While solar radiation is a thermal source High temperature and high energy source, utilization of it in the conditions of the flow that reaches the surface terrestrial destroys virtually all of its potential to become work, for the drastic reduction in temperature available in the fluid For this reason, use is made in solar power plants thermoelectric (CST), optical concentration systems, which allow to achieve higher flow densities and with it temperatures higher.
En la actualidad existen principalmente tres tecnologías diferentes desarrolladas para su uso en Plantas Solares denominadas: de receptor central, colectores cilindro-parabólicos y discos Stirling. Todas ellas hacen uso solamente de la componente directa de la radiación solar, lo que les obliga a tener dispositivos de seguimiento solar:Currently there are mainly three Different technologies developed for use in Solar Plants called: central receiver, collectors parabolic trough and Stirling discs. All of them they make use only of the direct component of solar radiation, which forces them to have solar tracking devices:
1. Los sistemas de receptor central (3D) utilizan espejos de gran superficie (40-125 m^{2} por unidad) denominados helióstatos, que están dotados de un sistema de control para reflejar la radiación solar directa sobre un receptor central situado en la parte superior de una torre. En esta tecnología, la radiación solar concentrada calienta en el receptor un fluido a temperaturas de hasta 1000ºC, cuya energía térmica puede después utilizarse para la generación de electricidad.1. Central receiver systems (3D) use large surface mirrors (40-125 m2 per unit) called heliostats, which are equipped with a system control to reflect direct solar radiation on a central receiver located at the top of a tower. In this technology, concentrated solar radiation heats in the receiver a fluid at temperatures up to 1000 ° C, whose thermal energy can then used for electricity generation.
2. En los colectores cilindro-parabólicos (2D), la radiación solar directa es reflejada por espejos cilindro-parabólicos que la concentran en un tubo receptor o absorbedor por el que circula un fluido que se calienta como consecuencia de la radiación solar concentrada que incide sobre él a temperaturas máximas de 400ºC. De este modo, la radiación solar es convertida en energía térmica que se utiliza posteriormente para generar electricidad mediante un ciclo Rankine de agua/vapor.2. In the collectors parabolic trough (2D), solar radiation direct is reflected by mirrors parabolic trough that concentrates it in a tube receiver or absorber through which a fluid that heats up circulates as a consequence of the concentrated solar radiation that affects above it at maximum temperatures of 400 ° C. In this way, the solar radiation is converted into thermal energy that is used subsequently to generate electricity using a Rankine cycle of water / steam.
Una variación de esta tecnología son los sistemas lineales de concentración fresnel, en los que el espejo parabólico se sustituye por una discretización fresnel con espejos de menores dimensiones que pueden ser ya planos o disponer de una leve curvatura en su eje axial, y que mediante el control de su orientación axial permiten concentrar radiación solar sobre el tubo absorbedor, que en este tipo de aplicaciones suele permanecer fijo.A variation of this technology are the linear fresnel concentration systems, in which the mirror parabolic is replaced by a fresnel discretization with mirrors of smaller dimensions that can be already flat or have a slight curvature in its axial axis, and that by controlling its axial orientation allow to concentrate solar radiation on the tube absorber, which in this type of applications usually remains permanent.
3. Los sistemas de discos parabólicos Stirling (3D) utilizan una superficie de espejos montados sobre una parábola de revolución que reflejan y concentran los rayos del Sol en un foco puntual, donde se sitúa el receptor en el que se calienta el fluido de trabajo de un motor Stirling que, a su vez, acciona un pequeño generador eléctrico.3. Stirling parabolic disc systems (3D) use a surface of mirrors mounted on a parabola of revolution that reflect and concentrate the sun's rays in a spotlight, where the receiver in which the working fluid of a Stirling engine that, in turn, drives a Small electric generator
En los sistemas de receptor central la tecnología agua-vapor es actualmente la más convencional, habiendo sido utilizada en centrales como la española CESA-1 y la americana Solar One.In the central receiver systems the water-steam technology is currently the most conventional, having been used in plants such as the Spanish CESA-1 and the American Solar One.
El vapor es producido y sobrecalentado en el receptor solar a temperaturas de unos 500ºC y 10 Mpa (100 bar) y enviado directamente a la turbina. Para reducir el impacto de los transitorios (paso de nubes etc.) se utiliza un sistema de almacenamiento (sales fundidas en la planta CESA-1 y una termoclina aceite/rocas en Solar One). Este concepto fue el primero en ser probado por permitir la transposición de las técnicas habituales de las centrales térmicas y permitir el acceso directo del vapor que sale del receptor solar a la turbina.The steam is produced and overheated in the solar receiver at temperatures of about 500ºC and 10 Mpa (100 bar) and sent directly to the turbine. To reduce the impact of transient (passing clouds etc.) a system of storage (molten salts at the CESA-1 plant and an oil / rock thermocline in Solar One). This concept was the first to be tested for allowing the transposition of techniques usual thermal power plants and allow direct access of steam leaving the solar receiver to the turbine.
El uso de vapor sobrecalentado puede permitir la implementación de ciclos termodinámicos de mayor eficiencia en las plantas.The use of superheated steam may allow implementation of thermodynamic cycles of greater efficiency in plants.
La dificultad de la tecnológica solar para la producción de vapor sobrecalentado radica en las exigentes condiciones de temperatura a las que se hace trabajar el receptor. Las paredes de sus tubos se someten a ciclos térmicos de forma continuada entre la temperatura ambiente, la temperatura del vapor con que se alimenta este receptor, (250 a 310ºC), y la temperatura necesaria en pared para la generación de vapor sobrecalentado a 540ºC próxima a 600ºC. A diferencia de los receptores generadores de vapor saturado que trabajan a una temperatura casi común para todas sus partes (330ºC), los receptores de vapor sobrecalentado incrementan la temperatura de sus tubos conforme mayor es la proximidad a la zona de salida de vapor.The difficulty of solar technology for the superheated steam production lies in the demanding temperature conditions at which the receiver is operated. The walls of its tubes undergo thermal cycles of form continued between room temperature, steam temperature with which this receiver is fed, (250 to 310ºC), and the temperature necessary on the wall for steam generation superheated to 540ºC near 600ºC. Unlike generator receivers of saturated steam that work at an almost common temperature to all parts (330ºC), superheated steam receivers they increase the temperature of their tubes as the higher the proximity to the steam outlet zone.
Las Dificultades encontradas en las experiencias de los años 80, en los receptores de vapor sobrecalentado CESA 1 y Solar One se centraron principalmente en dos aspectos:Difficulties encountered in the experiences from the 80s, in CESA 1 superheated steam receivers and Solar One focused mainly on two aspects:
- \bullet?
- Falta de controlabilidad del sistema especialmente ante transitorios, paso de nubes etc. debido principalmente a las malas propiedades térmicas del vapor.Lack of controllability of system especially before transients, passing clouds etc. due mainly to the bad thermal properties of steam.
- \bullet?
- En ambos receptores el fallo estructural más frecuente fue la aparición de grietas. La tensión térmica debida a las grandes diferencias de temperatura provocó la aparición de grietas en la soldadura intersticial entre subpaneles. Esta situación se daba fundamentalmente en las paradas, cuando el agua en un subpanel, a la temperatura de saturación, fluía hacia la parte superior, donde la temperatura era todavía la del vapor sobrecalentado, mientras que en el subpanel adyacente no se daba este fenómeno.In both receivers the fault The most frequent structural was the appearance of cracks. The tension thermal due to large temperature differences caused the appearance of cracks in interstitial welding between subpanels. This situation was mainly at the stops, when the water in a subpanel, at saturation temperature, flowed to the top, where the temperature was still that of steam overheated, while in the adjacent subpanel there was no this phenomenon.
- \bullet?
- Problema de trabajar a altas presiones, lo cual exige espesores de pared de tubo mayores, que a la hora de transferir altas densidades de potencia, al fluido caloportador, implica necesariamente altos gradientes térmicos.Problem of working at high pressures, which requires larger tube wall thicknesses than when transferring high power densities, to the fluid heat transfer, necessarily implies high gradients thermal.
La invención que a continuación se plantea, trata pues de aglutinar las ventajas de la utilización de vapor a alta temperatura, solventando los riesgos existentes, consiguiendo un mayor control de la planta y favoreciendo de esta manera la estabilidad y durabilidad de ésta.The invention that follows, try to bring together the advantages of using steam to high temperature, solving existing risks, getting greater control of the plant and thus favoring the stability and durability of it.
En relación a otras propuestas anteriores que ubicaban los módulos del receptor sobrecalentador físicamente muy próximos (cuando no superpuestos) a los módulos del receptor evaporador, el desarrollo estratégico que se propone ahora se basa en separar de forma físicamente independiente evaporador y sobrecalentador.In relation to other previous proposals that they located the superheater receiver modules physically very next (when not superimposed) to the receiver modules evaporator, the strategic development proposed now is based in physically separate independently evaporator and superheater
El hecho de separar la etapa de evaporación de la de sobrecalentamiento reduce el riesgo tecnológico ya que al no existir cambio de fase en el mismo receptor, tampoco existen los problemas de altos gradientes térmicos derivados de los diferentes coeficientes de película de ambas fases. Además los problemas de control asociados a la variabilidad del recurso solar tal y como se constataron en las experiencias del proyecto CESA-1 en la Plataforma Solar de Almería PSA se reducen también drásticamente.The fact of separating the evaporation stage from overheating reduces the technological risk since not there is a phase change in the same receiver, there are also no problems of high thermal gradients derived from the different film coefficients of both phases. Besides the problems of control associated with the variability of the solar resource as it is verified in the experiences of the CESA-1 project in the Solar Platform of Almería PSA are also reduced drastically.
La invención que a continuación se plantea además de separar de manera físicamente independiente evaporador y sobrecalentador mediante la incursión de un calderín intermedio, incluye el hecho de llevar acabo un control de estrategias de apunte del campo de helióstatos independiente para ambos subsistemas, subsistema evaporador y subsistema sobrecalentador.The invention that follows in addition to physically separate independently evaporator and superheater through the incursion of an intermediate boiler, includes the fact of carrying out a control of aiming strategies from the independent heliostat field for both subsystems, evaporator subsystem and superheater subsystem.
Esta estrategia de control consistirá en un control dinámico adaptativo del campo de helióstatos, con el fin de que tras su aporte de energía se consigan mantener estables las condiciones de presión y temperatura óptimas para la entrada en la turbina. Para ello el campo de helióstatos se apunta a uno u otro receptor (evaporador o sobrecalentador) dependiendo de las necesidades existentes. De esta manera parte del campo de helióstatos se enfocará al evaporador y otra parte al sobrecalentador, consiguiendo así un mayor control de la planta y una mayor estabilidad en ésta.This control strategy will consist of a adaptive dynamic control of the heliostat field, in order to that after their contribution of energy they manage to keep the optimal pressure and temperature conditions for entry into the turbine. For this, the heliostat field points to one or the other. receiver (evaporator or superheater) depending on the existing needs In this way part of the field of heliostats will focus on the evaporator and another part on superheater, thus achieving greater control of the plant and greater stability in it.
En la tecnología de receptor Central, el receptor se sitúa en lo alto de la torre, y los helióstatos concentran la energía solar sobre éste. En el receptor se produce el intercambio energético transfiriéndose la energía fotónica del haz de luz concentrado proveniente del campo de helióstatos a un fluido caloportador aumentando su temperatura. Hay muchas maneras diferentes de clasificar los receptores. Si clasificamos los receptores de acuerdo a su geometría, podemos definir los receptores de tipo "Cavidad" como aquellos que se sitúan en lo alto de la torre dentro de un "hueco o cavidad", de esta manera se minimizan las pérdidas térmicas por radiación y convección. Los receptores pueden estar constituidos de diferentes maneras, siendo los de paneles de tubos los más comunes para la generación directa de vapor en sistemas de receptor central.In Central receiver technology, the receiver sits high on the tower, and heliostats They concentrate solar energy on it. In the receiver the energy exchange transferring the photonic energy of the beam of concentrated light from the field of heliostats to a fluid heat carrier increasing its temperature. There are many ways different from classifying the receptors. If we classify the receivers according to their geometry, we can define the receivers of type "Cavity" as those that are located at the top of the tower inside a "hollow or cavity", in this way it Minimize thermal losses by radiation and convection. The receivers can be constituted in different ways, being those of tube panels the most common for direct generation of steam in central receiver systems.
Este receptor se diseña de acuerdo a una configuración geométrica determinada definida generalmente por una serie de subpaneles constituidos por el propio haz de tubos que forman el evaporador o el sobrecalentador.This receiver is designed according to a determined geometric configuration generally defined by a series of subpanels constituted by the tube bundle itself that They form the evaporator or superheater.
Para complementar la descripción que antecede y con objeto de ayudar a una mejor comprensión de las características de la invención, se va a realizar una descripción detallada de una realización preferida, en base a un juego de dibujos que se acompañan a esta memoria descriptiva y en donde con carácter meramente orientativo y no limitativo se ha representado lo siguiente:To complement the description above and in order to help a better understanding of the characteristics of the invention, a detailed description of a preferred embodiment, based on a set of drawings that accompany this descriptive report and where with character merely indicative and not limiting what has been represented next:
La Figura 1 muestra un Esquema de una Torre de dos cavidades con un sobrecalentador.Figure 1 shows a Scheme of a Tower of Two cavities with a superheater.
La Figura 2 muestra en detalle el Esquema de una Torre con dos cavidades con dos sobrecalentadotes.Figure 2 shows in detail the Scheme of a Tower with two cavities with two superheats.
En la anterior figura, las referencias numéricas corresponden a las siguientes partes y elementos.In the previous figure, the numerical references correspond to the following parts and elements.
1.- Helióstatos.1.- Heliostats.
2.- Torre Central.2.- Central Tower.
3.- Cavidad.3.- Cavity.
4.- Evaporador.4.- Evaporator.
5.- Calderín.5.- Calderín.
6.- Sobrecalentador primario.6.- Primary superheater.
7.- Sobrecalentador secundario.7.- Secondary superheater.
8.- Sistema de apoyo fósil8.- Fossil support system
En la aplicación del concepto de planta de la invención se empleará tecnología de torre y receptor central para llevar acabo un proceso de sobrecalentamiento solar de un vapor que está húmedo o saturado.In the application of the plant concept of the invention tower and central receiver technology will be used to carry out a process of solar superheating of a steam that It is moist or saturated.
Como puede verse en la figura 1, esta planta solar está compuesta por un sistema de concentración solar tridimensional con una torre central (2) que incluye dos cavidades (3) una de ellas con un evaporador (4) para la evaporación de agua y otra con un sobrecalentador (6) para el sobrecalentamiento del vapor producido, y un campo de helióstatos (1).As can be seen in figure 1, this plant solar is composed of a solar concentration system three-dimensional with a central tower (2) that includes two cavities (3) one of them with an evaporator (4) for the evaporation of water and another with a superheater (6) for overheating the produced steam, and a field of heliostats (1).
Para cumplir con el objetivo de sobrecalentamiento se propone llevar acabo una serie de estrategias de apunte de los helióstatos a través de un sistema de control dinámico adaptativo del campo de helióstatos de manera que se puedan mantener constantes las condiciones de presión y temperatura del vapor a la entrada de la turbina dirigiendo parte del campo de helióstatos al evaporador (4) y parte al sobrecalentador (6). Es decir, se propone el uso de radiación concentrada por parte de un tanto por ciento del campo de helióstatos para la fase de evaporación, y la utilización del resto del campo para la concentración de radiación destinada al sobrecalentador (6) de vapor hasta alcanzar temperaturas incluso por encima de 550C; de manera que los dos subsistemas (evaporador y sobrecalentador) se encuentren de manera separada en el receptor. Para el precalentamiento del agua que va a ser evaporada se incorpora un sistema de apoyo fósil (8).To meet the objective of overheating is proposed to carry out a series of strategies aiming of heliostats through a control system adaptive dynamic of the heliostat field so that it can keep pressure and temperature conditions constant of steam to the turbine inlet directing part of the field of evaporator heliostats (4) and part to the superheater (6). Is that is, the use of concentrated radiation by a percent of the heliostat field for the phase of evaporation, and the use of the rest of the field for radiation concentration for the steam superheater (6) to reach temperatures even above 550C; by way of that the two subsystems (evaporator and superheater) are find separately in the receiver. For him preheating of the water to be evaporated incorporates a fossil support system (8).
En la figura 2, se puede observar un detalle de un receptor con dos cavidades en el que el sobrecalentamiento se realiza en dos etapas, mediante un sobrecalentador primario (6) y otro secundario (7) ambos colocados en una segunda cavidad (3). El vapor que proviene del evaporador (4), situado en una primera cavidad (3) en el que el agua alcanza su temperatura de saturación pasando a fase vapor, es sobrecalentado en el sobrecalentador hasta temperaturas del orden de 550ºC. Situado entre ambos elementos (evaporador (4) y sobrecalentadores (6) y (7)) se contará con un calderín (5) cuya finalidad consistirá en separar el agua en fase líquida del vapor de agua que entrará en el sobrecalentador.In Figure 2, a detail of a receiver with two cavities in which overheating is performed in two stages, using a primary superheater (6) and another secondary (7) both placed in a second cavity (3). He steam that comes from the evaporator (4), located in a first cavity (3) in which the water reaches its saturation temperature going to steam phase, it is superheated in the superheater until temperatures of the order of 550ºC. Located between both elements (evaporator (4) and superheaters (6) and (7)) there will be a boiler (5) whose purpose will be to separate the water in phase water vapor liquid that will enter the superheater.
Esta instalación anteriormente descrita pretende un resultado más eficiente y menos costoso de las actuales tecnologías de concentración solar mejorando claramente la controlabilidad de la planta ante transitorios, la durabilidad y la estabilidad de ésta.This installation described above is intended a more efficient and less expensive result than today solar concentration technologies clearly improving the controllability of the plant to transients, durability and stability of this one.
Su aplicación esta especialmente indicada en los campos de la producción de electricidad, calor de proceso, y combustibles solares, así como en los procesos termoquímicos.Its application is especially indicated in the fields of electricity production, process heat, and solar fuels, as well as in thermochemical processes.
Claims (5)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200701577A ES2312275B1 (en) | 2007-06-07 | 2007-06-07 | SOLAR CONCENTRATION PLANT FOR OVERHEATED STEAM PRODUCTION. |
ES08380170.4T ES2547359T3 (en) | 2007-06-07 | 2008-06-04 | Solar concentration plant for superheated steam production |
EP08380170.4A EP2000669B1 (en) | 2007-06-07 | 2008-06-04 | Solar concentration plant for the production of superheated steam |
US12/156,816 US8181641B2 (en) | 2007-06-07 | 2008-06-05 | Solar concentration plant for the production of superheated steam |
US13/200,762 US8365720B2 (en) | 2007-06-07 | 2011-09-30 | Solar concentration plant for the production of superheated steam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200701577A ES2312275B1 (en) | 2007-06-07 | 2007-06-07 | SOLAR CONCENTRATION PLANT FOR OVERHEATED STEAM PRODUCTION. |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2312275A1 ES2312275A1 (en) | 2009-02-16 |
ES2312275B1 true ES2312275B1 (en) | 2009-12-29 |
Family
ID=40339481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES200701577A Expired - Fee Related ES2312275B1 (en) | 2007-06-07 | 2007-06-07 | SOLAR CONCENTRATION PLANT FOR OVERHEATED STEAM PRODUCTION. |
Country Status (1)
Country | Link |
---|---|
ES (1) | ES2312275B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2347752B1 (en) * | 2009-04-06 | 2011-09-22 | Abengoa Solar New Technologies, S.A | SOLAR RECEIVER WITH NATURAL CIRCULATION FOR SATURATED VAPOR GENERATION. |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4117682A (en) * | 1976-11-01 | 1978-10-03 | Smith Otto J M | Solar collector system |
IT1118685B (en) * | 1979-05-17 | 1986-03-03 | Francia Giovanni | REGULATION SYSTEM FOR A SOLAR ENERGY BOILER |
FR2539851A1 (en) * | 1983-01-24 | 1984-07-27 | Afian Viktor | Solar electric power plant with concentration of the solar energy by a field of heliostats |
WO1995011371A1 (en) * | 1993-10-21 | 1995-04-27 | Compañia Sevillana De Electricidad, S.A. | Method for improving electric plants of combined cycle with solar support |
JPH10501600A (en) * | 1995-04-03 | 1998-02-10 | カンパーニャ セビラーナ デ エレクトリシダッド エス.エー. | Thermal power plant integrating solar energy |
-
2007
- 2007-06-07 ES ES200701577A patent/ES2312275B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
ES2312275A1 (en) | 2009-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2547359T3 (en) | Solar concentration plant for superheated steam production | |
ES2608490T3 (en) | Solar thermal power plants | |
ES2531451T3 (en) | Solar concentration plant | |
ES2731134T3 (en) | Gas and steam power plant operated in solar hybrid form | |
ES2568211T3 (en) | Thermoelectric power plant with solar collectors | |
CN103189603B (en) | Be integrated with the direct current cooker of reheater | |
US20120186251A1 (en) | Solar power plant | |
WO2011067773A1 (en) | Thermal generation systems | |
US20130111902A1 (en) | Solar power system and method of operating a solar power system | |
WO1996031697A1 (en) | System for the integration of solar energy in a conventional thermal power plant generating electric energy | |
EP2871359B1 (en) | Auxiliary steam supply system in solar power plants | |
ES2775004T3 (en) | A solar thermal power plant and a method of operating a solar thermal power plant | |
CN105736268B (en) | A kind of efficient tower type solar generating system and method based on dual chamber formula heat collector | |
ES2312275B1 (en) | SOLAR CONCENTRATION PLANT FOR OVERHEATED STEAM PRODUCTION. | |
ES2382707B1 (en) | TOWER RECEIVER CONFIGURATION FOR HIGH POWER. | |
ES2350668A1 (en) | Superheated steam solar receiver | |
ITBO20080359A1 (en) | ENERGY GENERATOR FROM THE SUN | |
ES2360992B1 (en) | IMPROVEMENTS TO THE MAIN PATENT N. P200701577 BY: "SOLAR CONCENTRATION PLANT FOR OVERHEATED STEAM PRODUCTION". | |
ES2345379B1 (en) | SOLAR PLANT COMBINED AIR AND STEAM TECHNOLOGY. | |
CN110044080A (en) | A kind of tower-type solar thermal power generating system based on chamber pillar heat collector | |
CN107676759A (en) | Solar power station live (open) steam overheats generation method and equipment | |
WO2013079744A1 (en) | Configuration of the receivers in concentrated solar plants with towers | |
ES2665330B2 (en) | PROCEDURE TO ADJUST THE PRESSURE OF A STEAM GENERATOR IN A SOLAR POWER PLANT | |
WO2015181416A1 (en) | Solar thermal plant including a combined supercritical steam generator | |
Kalbhor | Modified solar central receiver in concentrated solar power systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EC2A | Search report published |
Date of ref document: 20090216 Kind code of ref document: A1 |
|
FD2A | Announcement of lapse in spain |
Effective date: 20211117 |