EP4273370A2 - Turbine ring assembly for differential thermal expansion - Google Patents
Turbine ring assembly for differential thermal expansion Download PDFInfo
- Publication number
- EP4273370A2 EP4273370A2 EP23198187.9A EP23198187A EP4273370A2 EP 4273370 A2 EP4273370 A2 EP 4273370A2 EP 23198187 A EP23198187 A EP 23198187A EP 4273370 A2 EP4273370 A2 EP 4273370A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- ring
- sectors
- support structure
- annular
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000011153 ceramic matrix composite Substances 0.000 claims abstract description 5
- 238000009423 ventilation Methods 0.000 claims description 6
- 230000000284 resting effect Effects 0.000 abstract description 5
- 238000011144 upstream manufacturing Methods 0.000 description 24
- 238000009941 weaving Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000000429 assembly Methods 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- YPIMMVOHCVOXKT-UHFFFAOYSA-N Multisatin Natural products O=C1C(C)C2C=CC(=O)C2(C)C(OC(=O)C(C)=CC)C2C(=C)C(=O)OC21 YPIMMVOHCVOXKT-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229910001247 waspaloy Inorganic materials 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/246—Fastening of diaphragms or stator-rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/005—Selecting particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
- F05D2230/64—Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
- F05D2230/642—Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/11—Shroud seal segments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
- F05D2300/6033—Ceramic matrix composites [CMC]
Definitions
- a turbine ring assembly includes a plurality of ceramic matrix composite material ring sectors and a ring support structure.
- CMC materials have good mechanical properties making them suitable for constituting structural elements and advantageously retain these properties at high temperatures.
- the use of CMC materials has advantageously made it possible to reduce the cooling flow required during operation and therefore to increase the performance of the turbomachines.
- the use of CMC materials advantageously makes it possible to reduce the mass of the turbomachines and to reduce the hot expansion effect encountered with the metal parts.
- a turbine ring assembly comprising a plurality of ring sectors made of ceramic matrix composite material forming a turbine ring and a ring support structure, each sector ring having a part forming an annular base with an internal face defining the internal face of the turbine ring and an external face from which extends a part for hooking the ring sector to the support structure of ring, the ring support structure comprising two annular flanges between which the hooking part of each ring sector is held, the annular flanges of the ring support structure each having at least one inclined portion in support on the attachment parts of the ring sectors, said inclined portion forming, when observed in meridian section, a non-zero angle with respect to the radial direction and the axial direction.
- the radial direction corresponds to the direction along a radius of the turbine ring (straight line connecting the center of the turbine ring to its periphery).
- the axial direction corresponds to the direction along the axis of revolution of the turbine ring as well as to the direction of flow of the gas flow in the vein.
- At least one of the flanges of the ring support structure is elastically deformable.
- This advantageously makes it possible to even better compensate for the differential expansions between the attachment parts of the CMC ring sectors and the flanges of the metal ring support structure without significantly increasing the stress exerted "cold" by the flanges on the hooking parts of the ring sectors.
- the two flanges of the ring support structure are elastically deformable or only one of the two flanges of the ring support structure is elastically deformable.
- each of the annular flanges of the ring support structure may have a first and a second inclined portion bearing on the attachment parts of the ring sectors, said first and second inclined portions each forming, when observed in meridian section, a non-zero angle with respect to the radial direction and the axial direction.
- the first inclined portion can rest on the upper half of the attachment parts of the ring sectors and the second inclined portion can rest on the lower half of the attachment parts of the ring sectors.
- the upper half of a hooking part of a ring sector corresponds to the portion of said hooking part extending radially between the zone at mid-length of the hooking part and the end of the hooking part located on the side of the ring support structure.
- the lower half of a hooking part of a ring sector corresponds to the portion of the hooking part extending radially between the zone at mid-length of the hooking part and the end of the hooking part located on the side of the annular base.
- the ring support structure may have axial portions bearing on the attachment parts of the ring sectors, the axial portions each being able to extend parallel to the axial direction, these axial portions which can be formed by the annular flanges or by a plurality of added elements engaged without cold play through the annular flanges.
- the attachment parts of the ring sectors can be held to the ring support structure at such axial portions.
- the annular flanges of the ring support structure can grip the hooking parts of the ring sectors over at least half the length of said hooking parts.
- the annular flanges of the ring support structure can grip the hooking parts of the ring sectors at least at the level of the external radial ends of said hooking parts.
- the external radial end of a hooking part corresponds to the end of this hooking part located on the side opposite the flow path of the gas flow.
- the annular flanges of the ring support structure can grip the hooking parts of the ring sectors only at the level of the upper half of said hooking parts.
- each ring sector can be in the form of tabs extending radially.
- the external radial ends of the tabs of the ring sectors may not be in contact and the tabs of the ring sectors may define between them an interior ventilation volume for each of the ring sectors.
- the hooking portion of each of the ring sectors is in the form of a bulb.
- the ring sectors have a section substantially in the shape of ⁇ or substantially in the shape of ⁇ .
- the present invention also relates to a turbomachine comprising a turbine ring assembly as described above.
- the turbine ring assembly may be part of a gas turbine of an aeronautical engine or may alternatively be part of an industrial turbine.
- upstream and downstream are used here in reference to the direction of flow of the gas flow in the turbine (see arrow F in section figure 1 , For example).
- FIG. 1 shows a turbine ring sector 1 and a casing 2 made of metallic material constituting ring support structure.
- the ring support structure 2 is made of a metallic material such as Waspaloy ® alloy or Inconel ® 718 alloy.
- the set of ring sectors 1 is mounted on the casing 2 so as to form a turbine ring which surrounds a set of rotating blades 3.
- the arrow F represents the direction of flow of the gas flow in the turbine.
- the ring sectors 1 are in one piece and made of CMC.
- the use of a CMC material to produce the ring sectors 1 is advantageous in order to reduce the ventilation requirements of the ring.
- the ring sectors 1 have, in the example illustrated, a substantially ⁇ -shaped section with an annular base 5 whose radially internal face 6 coated with a layer 7 of abradable material defines the flow path of the gas flow in the turbine.
- the annular base 5 also has a radially external face 8 from which a hooking portion 9 extends.
- the hooking portion 9 is in the form of a solid bulb, Onne does not go beyond the scope of the invention when the hooking portion is in the form of a hollow bulb or when the latter is in another form as detailed below. Inter-sector sealing is ensured by sealing tabs (not shown) housed in facing grooves in the facing edges of two neighboring ring sectors.
- Each ring sector 1 described above is made of CMC by forming a fibrous preform having a shape close to that of the ring sector and densification of the ring sector by a ceramic matrix.
- ceramic fiber yarns can be used, for example SiC fiber yarns such as those marketed by the Japanese company Nippon Carbon under the name "Nicalon", or carbon fiber yarns.
- the fibrous preform is advantageously produced by three-dimensional weaving, or multilayer weaving. The weaving can be interlock type. Other three-dimensional or multi-layer weave weaves can be used, for example multi-canvas or multi-satin weaves. For this, we can refer to the document WO 2006/136755 .
- the blank can be shaped to obtain a ring sector preform which is then consolidated and densified by a ceramic matrix, the densification being able to be carried out in particular by chemical infiltration in the gas phase (CVI) which is well known. in itself.
- CVI gas phase
- the casing 2 comprises two annular radial flanges 11a and 11b made of metallic material extending radially towards a flow path of the gas flow.
- the annular flanges 11a and 11b of the casing 2 axially enclose the attachment parts 9 of the ring sectors 1.
- the hooking parts 9 of the ring sectors 1 are held between the annular flanges 11a and 11b, the hooking parts 9 being housed between the annular flanges 11a and 11b.
- ventilation holes 34 formed in the flange 11a make it possible to bring cooling air to the exterior side of the turbine ring 1.
- the annular flanges 11a and 11b each have two inclined portions bearing on the hooking parts 9 of the ring sectors 1 and ensuring their maintenance.
- the inclined portions of the flanges annular rings 11a and 11b are in contact with the attachment parts 9 of the ring sectors 1.
- the upstream annular flange 11a has a first inclined portion 12a as well as a second inclined portion 13a.
- the flange 11a furthermore has a third portion 15a extending in the radial direction R and located between the first 12a and the second inclined portion 13a.
- the downstream annular flange 11b also has a first inclined portion 12b as well as a second inclined portion 13b.
- the flange 11b also has a third portion 15b extending in the radial direction R and located between the first 12b and the second inclined portion 13b.
- the first inclined portion 12a of the upstream annular flange 11a forms a non-zero angle ⁇ 1 with the radial direction R and forms a non-zero angle ⁇ 2 with the axial direction A.
- the second inclined portion 13a of the upstream annular flange 11a forms a non-zero angle ⁇ 3 with the radial direction R and forms a non-zero angle ⁇ 4 with the axial direction A.
- first and second inclined portions 12b and 13b of the downstream annular flange 11b The same is true for the first and second inclined portions 12a and 13a of the downstream annular flange 11b.
- the first and second inclined portions 12a and 13a extend in non-parallel directions (they form a non-zero angle between them). It is the same for the first and second inclined portions 12b and 13b.
- the inclined portions of the annular flanges 11a and 11b extend forming a non-zero angle with the radial direction R and a non-zero angle with the axial direction A.
- the inclined portions of the annular flanges 11a and 11b each extend in a straight line.
- the inclined portions 12a, 12b, 13a and 13b each have an elongated shape.
- all or part of the inclined portions of the annular flanges 11a and 11b can form an angle of between 30° and 60° with the radial direction.
- the angle formed between its first inclined portion and the radial direction may or may not be equal to the angle formed between its second inclined portion and the radial direction, when the first and second inclined portions are observed in meridian section.
- the annular flanges 11a and 11b enclose the hooking parts 9 of the ring sectors over more than half of the length l of said hooking parts 9, in particular on at minus 75% of this length.
- the length l is measured in the radial direction R.
- the first inclined portions 12a and 12b are, when observed in meridian section, each resting on the upper half M 1 of the attachment parts 9 and the second inclined portions 13a and 13b are, when observed in meridian section, each resting on the lower half M 2 of the hooking parts 9.
- the upper half M 1 corresponds to the portion of the hooking part 9 extending radially between the zone Z at mid-length of the hooking part 9 and the end E 1 of the hooking part located on the side of the ring support structure 2 (external radial end).
- the lower half M 2 corresponds to the portion of the hooking part 9 extending radially between the zone Z at mid-length of the hooking part 9 and the end E 2 of the hooking part located on the side of the annular base 5 (internal radial end).
- the inclined portions of the annular flanges 11a and 11b define two hooks between which the hooking portions 9 of the ring sectors 1 are gripped axially.
- Each of these hooks has, in the example illustrated, substantially a C shape.
- annular flanges each have such first and second inclined portions. It will, in fact, be described below the case where each of the annular flanges has a single inclined portion bearing on the attachment parts of the ring sectors.
- the implementation of the inclined portions advantageously makes it possible to compensate for the differences in expansion between the annular flanges 11a and 11b, on the one hand, and the ring sectors 1, on the other hand, and thus to reduce the mechanical stresses to which the ring sectors 1 are subjected during operation.
- annular flanges flange 11b at the figure 1
- hook 25 whose function will be detailed below.
- the attachment part of the ring sectors 1a is in the form of tabs 9a and 9b extending radially from the external face 8 of the annular base 5.
- the external radial ends 10a and 10b of the tabs 9a and 9b of the ring sectors 1a are not in contact.
- the external radial end of a tab of a ring sector corresponds to the end of said tab located on the side opposite to the flow path of the gas flow.
- the external radial ends 10a and 10b are, in the example illustrated in Figure 3 , spaced along the axial direction A.
- the legs 9a and 9b of the ring sectors define between them an interior ventilation volume V for each of the ring sectors 1a. It is thus possible to ventilate the ring sectors 1a by sending cooling air towards their annular base 5 through the ventilation orifice 14 defined between the legs 9a and 9b.
- the ring sectors 1a of the Figure 3 substantially have an open ⁇ shape at its end located on the side of the ring support structure 2.
- the fibrous preform intended to form the ring sector 1a of the type illustrated in Figure 3 can be produced by three-dimensional weaving, or multilayer weaving with the provision of unbinding zones making it possible to separate the preform parts corresponding to the legs 9a and 9b from the preform part corresponding to the base 5.
- the preform parts corresponding to the legs can be made by weaving layers of wires crossing the preform part corresponding to the base 5.
- each of the annular flanges 21a and 21b has a single inclined portion 13a or 13b bearing on the lugs 19a or 19b of the ring sectors 1b and forming a non-zero angle with respect to the direction radial R and in the axial direction A.
- the axial portions 16a and 16b bear on the lugs 19a and 19b of the ring sectors.
- the tabs 19a and 19b forming the attachment part of the ring sectors 1b are held to the ring support structure 2 at the level of the axial portions 16a and 16b.
- the axial portions 16a and 16b formed by the annular flanges block the movement of the ring sectors 1b outwards in the radial direction R.
- the annular flanges 21a and 21b axially enclose the lugs 19a and 19b of the ring sectors 1b at level of their external radial end 20a and 20b.
- the inclined portion and the axial portion form for each of the annular flanges 21a and 21b a hook bearing on the lugs 19a and 19b of the ring sectors 1b.
- the tabs 19a and 19b of the ring sectors 1b are clamped axially between these two hooks formed by the annular flanges 21a and 21b.
- the ring sectors 1b have a substantially ⁇ -shaped section.
- the pins 35 each pass through respectively an orifice made in the annular upstream radial flange 31a and an orifice made in each upstream tab 29a, the orifices of the flange 31a and of the tabs 29a being aligned during the assembly of the ring sectors 1c on the ring support structure 2.
- pins 37 are engaged both in the annular downstream radial flange 31b of the ring support structure 2 and in the downstream tabs 29b of the ring sectors 1c .
- the pins 37 each respectively pass through an orifice made in the annular downstream radial flange 31b and an orifice made in each downstream tab 29b, the orifices of the flange 31b and of the tabs 29b being aligned during the assembly of the ring sectors 1c on the ring support structure 2.
- the pins 35 and 37 are engaged without cold play through the flanges 31a and 31b and the tabs 29a and 29b.
- the pins 35 and 37 make it possible to block the ring sectors 1c from rotating.
- the pins 35 and 37 block the movement of the ring sectors 1c inwards and outwards in the radial direction R.
- the annular flanges 31a and 31b each also have a single inclined portion 13a or 13b making it possible to reduce the stress applied to the ring sectors 1c during the expansion of the annular flanges 31a and 31b during operation.
- each ring sector 1c has a substantially ⁇ -shaped section with an annular base 5 whose internal face coated with a layer 7 of abradable material defines the gas flow path in the turbine .
- Upstream and downstream tabs 29a and 29b extend from the external face of the annular base 5 in the radial direction R.
- the ring support structure 2 is, in this exemplary embodiment, formed of two parts, namely a first part corresponding to an annular upstream radial flange 31a which is preferably formed integrally with a turbine casing and a second part corresponding to an annular retention flange 50 mounted on the turbine casing.
- the annular upstream radial flange 31a comprises an inclined portion 13a as described above resting on the upstream lugs 29a of the ring sectors 1c.
- the flange 50 comprises an annular web 57 which forms an annular downstream radial flange 54 comprising an inclined portion 13b as described above resting on the downstream lugs 29b of the ring sectors 1c.
- the flange 50 comprises an annular body 51 extending axially and comprising, on the upstream side, the annular web 57 and, on the downstream side, a first series of teeth 52 distributed circumferentially on the flange 50 and spaced from each other by of the first passages of engagement 53 ( Figure 7 ).
- the turbine casing comprises on the downstream side a second series of teeth 60 extending radially from the internal surface 38a of the shroud 38 of the turbine casing.
- the teeth 60 are distributed circumferentially on the internal surface 38a of the ferrule 38 and spaced from each other by second engagement passages 61 ( Figure 13 ).
- the teeth 52 and 60 cooperate with each other to form a circumferential clutch.
- each ring sector 1c are mounted in pre-tension between the annular flanges 31a and 54 so that the flanges exert, at least “cold”, that is to say at ambient temperature of approximately 25°C, a stress on the legs 29a and 29b. Furthermore, as in the example of realization of the Figure 5 , the ring sectors 1c are also held by blocking pins 35 and 37.
- At least one of the flanges of the ring support structure is elastically deformable, which makes it possible to even better compensate for the differential expansions between the tabs of the CMC ring sectors and the flanges of the metal ring support structure without significantly increasing the stress exerted “cold” by the flanges on the lugs of the ring sectors.
- annular boss 70 extending radially from the internal surface 38a of the shroud 38 of the turbine casing and of which the free end in contact with the surface of the body 51 of the flange 50.
- the spacing E between the annular upstream radial flange 31a and the annular downstream radial flange 31b at “rest”, that is to say when no ring sector is mounted between the flanges, is less than the distance D present between the external faces 29c and 29d of the upstream and downstream legs 29a and 29b of the ring sectors.
- the spacing E is measured between the ends of the inclined portions 13a and 13b of the annular flanges 31a and 31b.
- the ring support structure comprises at least one annular flange which is elastically deformable in the axial direction A of the ring.
- the annular downstream radial flange 31b is elastically deformable.
- the annular downstream radial flange 31b is pulled in the axial direction A as shown on the figures 9 And 10 in order to increase the spacing between the flanges 31a and 31b and allow the insertion of the tabs 29a and 29b between the flanges 31a and 31b without risk of damage.
- the flange 31b is released in order to maintain the ring sector.
- the latter comprises a plurality of hooks 25 distributed on its face 31c, face which is opposite to the face 31d of the flange 31b facing the downstream lugs 29b of the ring sectors 1c.
- the traction in the axial direction A of the ring exerted on the elastically deformable flange 31b is here carried out by means of a tool 250 comprising at least one arm 251 whose end comprises a hook 252 which is engaged in the hook 25 present on the external face 31c of the flange 31b.
- the number of hooks 25 distributed on the face 31c of the flange 31b is defined according to the number of traction points that we wish to have on the flange 31b. This number mainly depends on the elastic nature of the flange. Other shapes and arrangements of means making it possible to exert traction in the axial direction A on one of the flanges of the ring support structure can of course be envisaged.
- Each ring sector tab 29a or 29b may include one or more orifices for the passage of a blocking pin.
- the ring sectors 1c are first fixed by their upstream tab 29a to the annular upstream radial flange 31a of the ring support structure 2 by pins 35 which are engaged in the aligned orifices 35b and 35a provided respectively in the annular upstream radial flange 31a and in the upstream tab 29a.
- the spacing E' between the annular downstream radial flange 54 formed by the annular web 57 of the flange 50 and the external surface 52a of the teeth 52 of said flange is greater than the distance D' present between the face external 29d of the downstream tabs 29b of the ring sectors and the internal face 60a of the teeth 60 present on the turbine casing.
- the ring support structure comprises at least one annular flange which is elastically deformable in the axial direction A of the ring.
- it is the annular downstream radial flange 54 present on the flange 50 which is elastically deformable.
- the annular web 57 forming the annular downstream radial flange 54 of the ring support structure 2 has a reduced thickness compared to the annular upstream radial flange 31a, which gives it a certain elasticity.
- the flange 50 is mounted on the turbine casing by placing the teeth 52 present on the flange 50 opposite the engagement passages 61 provided on the turbine casing, the teeth 60 present on said turbine casing being also placed opposite the engagement passages 53 provided between the teeth 52 on the flange 50.
- the spacing E' being greater than the distance D', it is necessary to apply an axial force on the flange 50 in the direction indicated on the Figure 14 in order to engage the teeth 52 beyond the teeth 60 and allow rotation R' of the flange at an angle corresponding substantially to the width of the teeth 60 and 52. After this rotation, the flange 50 is released, the latter then being held in axial stress between the downstream tabs 29b of the ring sectors and the internal surface 60a of the teeth 60 of the turbine casing.
- each ring sector tab 29a or 29b may include one or more orifices for the passage of a blocking pin.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
La présente invention concerne un ensemble d'anneau de turbine comprenant une pluralité de secteurs d'anneau (1) en matériau composite à matrice céramique formant un anneau de turbine et une structure de support d'anneau (2), chaque secteur d'anneau (1) ayant une partie formant base annulaire (5) avec une face interne (6) définissant la face interne de l'anneau de turbine et une face externe (8) à partir de laquelle s'étend une partie d'accrochage (9) du secteur d'anneau à la structure de support d'anneau, la structure de support d'anneau (2) comprenant deux brides annulaires (11a ; 11b) entre lesquelles la partie d'accrochage de chaque secteur d'anneau est maintenue, les brides annulaires de la structure de support d'anneau présentant chacune au moins une portion inclinée (12a ; 12b ; 13a ; 13b) en appui sur les parties d'accrochage des secteurs d'anneau, ladite portion inclinée formant, lorsqu'observée en coupe méridienne, un angle non nul par rapport à la direction radiale (R) et à la direction axiale (A). The present invention relates to a turbine ring assembly comprising a plurality of ring sectors (1) of ceramic matrix composite material forming a turbine ring and a ring support structure (2), each ring sector (1) having an annular base portion (5) with an internal face (6) defining the internal face of the turbine ring and an external face (8) from which extends a hooking part (9 ) from the ring sector to the ring support structure, the ring support structure (2) comprising two annular flanges (11a; 11b) between which the hooking part of each ring sector is held, the annular flanges of the ring support structure each having at least one inclined portion (12a; 12b; 13a; 13b) resting on the attachment parts of the ring sectors, said inclined portion forming, when observed in meridian section, a non-zero angle with respect to the radial direction (R) and the axial direction (A).
Description
L'invention concerne un ensemble d'anneau de turbine comprenant une pluralité de secteurs d'anneau en matériau composite à matrice céramique ainsi qu'une structure de support d'anneau.A turbine ring assembly includes a plurality of ceramic matrix composite material ring sectors and a ring support structure.
Dans le cas d'ensembles d'anneau de turbine entièrement métalliques, il est nécessaire de refroidir tous les éléments de l'ensemble et en particulier l'anneau de turbine qui est soumis aux flux les plus chauds. Ce refroidissement a un impact significatif sur la performance du moteur puisque le flux de refroidissement utilisé est prélevé sur le flux principal du moteur. En outre, l'utilisation de métal pour l'anneau de turbine limite les possibilités d'augmenter la température au niveau de la turbine, ce qui permettrait pourtant d'améliorer les performances des moteurs aéronautiques.In the case of all-metallic turbine ring assemblies, it is necessary to cool all the elements of the assembly and in particular the turbine ring which is subjected to the hottest flows. This cooling has a significant impact on the performance of the engine since the cooling flow used is taken from the main flow of the engine. In addition, the use of metal for the turbine ring limits the possibilities of increasing the temperature at the turbine level, which would nevertheless improve the performance of aeronautical engines.
Afin de tenter de résoudre ces problèmes, il a été envisagé de réaliser des secteurs d'anneau de turbine en matériau composite à matrice céramique (CMC) afin de s'affranchir de la mise en oeuvre d'un matériau métallique.In order to try to resolve these problems, it was envisaged to produce turbine ring sectors in ceramic matrix composite material (CMC) in order to avoid the use of a metallic material.
Les matériaux CMC présentent de bonnes propriétés mécaniques les rendant aptes à constituer des éléments de structures et conservent avantageusement ces propriétés à températures élevées. La mise en oeuvre de matériaux CMC a avantageusement permis de réduire le flux de refroidissement à imposer lors du fonctionnement et donc à augmenter la performance des turbomachines. En outre, la mise en oeuvre de matériaux CMC permet avantageusement de diminuer la masse des turbomachines et de réduire l'effet de dilatation à chaud rencontré avec les pièces métalliques.CMC materials have good mechanical properties making them suitable for constituting structural elements and advantageously retain these properties at high temperatures. The use of CMC materials has advantageously made it possible to reduce the cooling flow required during operation and therefore to increase the performance of the turbomachines. In addition, the use of CMC materials advantageously makes it possible to reduce the mass of the turbomachines and to reduce the hot expansion effect encountered with the metal parts.
Toutefois, les solutions existantes proposées peuvent mettre en oeuvre un assemblage d'un secteur d'anneau en CMC avec des parties d'accrochage métalliques d'une structure de support d'anneau, ces parties d'accrochage étant soumises au flux chaud. Par conséquent, ces parties d'accrochage métalliques subissent des dilatations à chaud, ce qui peut conduire à une mise sous contrainte mécanique des secteurs d'anneau en CMC et à une fragilisation de ces derniers.However, the existing solutions proposed can implement an assembly of a CMC ring sector with metal attachment parts of a ring support structure, these attachment parts being subjected to the hot flow. Consequently, these metal attachment parts undergo hot expansion, which can lead to mechanical stress on the CMC ring sectors and a weakening of the latter.
On connaît par ailleurs les documents
Il existe un besoin pour améliorer les ensembles d'anneau de turbine existants mettant en oeuvre un matériau CMC afin de réduire l'intensité des contraintes mécaniques auxquelles les secteurs d'anneau en CMC sont soumis lors du fonctionnement.There is a need to improve existing turbine ring assemblies using a CMC material in order to reduce the intensity of the mechanical stresses to which the CMC ring sectors are subjected during operation.
A cet effet, l'invention propose, selon un premier aspect un ensemble d'anneau de turbine comprenant une pluralité de secteurs d'anneau en matériau composite à matrice céramique formant un anneau de turbine et une structure de support d'anneau, chaque secteur d'anneau ayant une partie formant base annulaire avec une face interne définissant la face interne de l'anneau de turbine et une face externe à partir de laquelle s'étend une partie d'accrochage du secteur d'anneau à la structure de support d'anneau, la structure de support d'anneau comprenant deux brides annulaires entre lesquelles la partie d'accrochage de chaque secteur d'anneau est maintenue, les brides annulaires de la structure de support d'anneau présentant chacune au moins une portion inclinée en appui sur les parties d'accrochage des secteurs d'anneau, ladite portion inclinée formant, lorsqu'observée en coupe méridienne, un angle non nul par rapport à la direction radiale et à la direction axiale.To this end, the invention proposes, according to a first aspect, a turbine ring assembly comprising a plurality of ring sectors made of ceramic matrix composite material forming a turbine ring and a ring support structure, each sector ring having a part forming an annular base with an internal face defining the internal face of the turbine ring and an external face from which extends a part for hooking the ring sector to the support structure of ring, the ring support structure comprising two annular flanges between which the hooking part of each ring sector is held, the annular flanges of the ring support structure each having at least one inclined portion in support on the attachment parts of the ring sectors, said inclined portion forming, when observed in meridian section, a non-zero angle with respect to the radial direction and the axial direction.
La direction radiale correspond à la direction selon un rayon de l'anneau de turbine (droite reliant le centre de l'anneau de turbine à sa périphérie). La direction axiale correspond à la direction selon l'axe de révolution de l'anneau de turbine ainsi qu'à la direction d'écoulement du flux gazeux dans la veine.The radial direction corresponds to the direction along a radius of the turbine ring (straight line connecting the center of the turbine ring to its periphery). The axial direction corresponds to the direction along the axis of revolution of the turbine ring as well as to the direction of flow of the gas flow in the vein.
La mise en oeuvre de telles portions inclinées au niveau des brides annulaires de la structure de support d'anneau permet avantageusement de compenser les différences de dilatation entre les brides annulaires et les parties d'accrochage des secteurs d'anneau et donc de réduire les contraintes mécaniques auxquelles les secteurs d'anneau sont soumis lors du fonctionnement.The implementation of such inclined portions at the level of the annular flanges of the ring support structure advantageously makes it possible to compensate for the differences in expansion between the annular flanges and the attachment parts of the ring sectors and therefore to reduce the stresses. mechanical stresses to which the ring sectors are subjected during operation.
De préférence, au moins une des brides de la structure de support d'anneau est élastiquement déformable. Cela permet avantageusement de compenser encore mieux les dilatations différentielles entre les parties d'accrochage des secteurs d'anneau en CMC et les brides de la structure de support d'anneau en métal sans augmenter significativement la contrainte exercée « à froid » par les brides sur les parties d'accrochage des secteurs d'anneau. En particulier, les deux brides de la structure de support d'anneau sont élastiquement déformables ou une seule des deux brides de la structure de support d'anneau est élastiquement déformable.Preferably, at least one of the flanges of the ring support structure is elastically deformable. This advantageously makes it possible to even better compensate for the differential expansions between the attachment parts of the CMC ring sectors and the flanges of the metal ring support structure without significantly increasing the stress exerted "cold" by the flanges on the hooking parts of the ring sectors. In particular, the two flanges of the ring support structure are elastically deformable or only one of the two flanges of the ring support structure is elastically deformable.
Dans un exemple de réalisation, chacune des brides annulaires de la structure de support d'anneau peut présenter une première et une deuxième portions inclinées en appui sur les parties d'accrochage des secteurs d'anneau, lesdites première et deuxième portions inclinées formant chacune, lorsqu'observées en coupe méridienne, un angle non nul par rapport à la direction radiale et à la direction axiale. En particulier, la première portion inclinée peut être en appui sur la moitié supérieure des parties d'accrochage des secteurs d'anneau et la deuxième portion inclinée peut être en appui sur la moitié inférieure des parties d'accrochage des secteurs d'anneau.In an exemplary embodiment, each of the annular flanges of the ring support structure may have a first and a second inclined portion bearing on the attachment parts of the ring sectors, said first and second inclined portions each forming, when observed in meridian section, a non-zero angle with respect to the radial direction and the axial direction. In particular, the first inclined portion can rest on the upper half of the attachment parts of the ring sectors and the second inclined portion can rest on the lower half of the attachment parts of the ring sectors.
La moitié supérieure d'une partie d'accrochage d'un secteur d'anneau correspond à la portion de ladite partie d'accrochage s'étendant radialement entre la zone à mi-longueur de la partie d'accrochage et l'extrémité de la partie d'accrochage située du côté de la structure de support d'anneau. La moitié inférieure d'une partie d'accrochage d'un secteur d'anneau correspond à la portion de la partie d'accrochage s'étendant radialement entre la zone à mi-longueur de la partie d'accrochage et l'extrémité de la partie d'accrochage située du côté de la base annulaire.The upper half of a hooking part of a ring sector corresponds to the portion of said hooking part extending radially between the zone at mid-length of the hooking part and the end of the hooking part located on the side of the ring support structure. The lower half of a hooking part of a ring sector corresponds to the portion of the hooking part extending radially between the zone at mid-length of the hooking part and the end of the hooking part located on the side of the annular base.
Dans un exemple de réalisation, la structure de support d'anneau peut présenter des portions axiales venant en appui sur les parties d'accrochage des secteurs d'anneau, les portions axiales pouvant s'étendre chacune parallèlement à la direction axiale, ces portions axiales pouvant être formées par les brides annulaires ou par une pluralité d'éléments rapportés engagés sans jeu à froid au travers des brides annulaires. En particulier, les parties d'accrochage des secteurs d'anneau peuvent être maintenues à la structure de support d'anneau au niveau de telles portions axiales.In an exemplary embodiment, the ring support structure may have axial portions bearing on the attachment parts of the ring sectors, the axial portions each being able to extend parallel to the axial direction, these axial portions which can be formed by the annular flanges or by a plurality of added elements engaged without cold play through the annular flanges. In particular, the attachment parts of the ring sectors can be held to the ring support structure at such axial portions.
Dans un exemple de réalisation, les brides annulaires de la structure de support d'anneau peuvent enserrer les parties d'accrochage des secteurs d'anneau sur au moins la moitié de la longueur desdites parties d'accrochage.In an exemplary embodiment, the annular flanges of the ring support structure can grip the hooking parts of the ring sectors over at least half the length of said hooking parts.
Dans un exemple de réalisation, les brides annulaires de la structure de support d'anneau peuvent enserrer les parties d'accrochage des secteurs d'anneau au moins au niveau des extrémités radiales externes desdites parties d'accrochage. L'extrémité radiale externe d'une partie d'accrochage correspond à l'extrémité de cette partie d'accrochage située du côté opposé à la veine d'écoulement du flux gazeux. En particulier, les brides annulaires de la structure de support d'anneau peuvent enserrer les parties d'accrochage des secteurs d'anneau uniquement au niveau de la moitié supérieure desdites parties d'accrochage.In an exemplary embodiment, the annular flanges of the ring support structure can grip the hooking parts of the ring sectors at least at the level of the external radial ends of said hooking parts. The external radial end of a hooking part corresponds to the end of this hooking part located on the side opposite the flow path of the gas flow. In particular, the annular flanges of the ring support structure can grip the hooking parts of the ring sectors only at the level of the upper half of said hooking parts.
Dans un exemple de réalisation, la partie d'accrochage de chaque secteur d'anneau peut être sous la forme de pattes s'étendant radialement. En particulier, les extrémités radiales externes des pattes des secteurs d'anneau peuvent ne pas être contact et les pattes des secteurs d'anneau peuvent définir entre elles un volume intérieur de ventilation pour chacun des secteurs d'anneau.In an exemplary embodiment, the hooking part of each ring sector can be in the form of tabs extending radially. In particular, the external radial ends of the tabs of the ring sectors may not be in contact and the tabs of the ring sectors may define between them an interior ventilation volume for each of the ring sectors.
Dans un exemple de réalisation, la portion d'accrochage de chacun des secteurs d'anneau est sous la forme d'un bulbe.In an exemplary embodiment, the hooking portion of each of the ring sectors is in the form of a bulb.
Dans un exemple de réalisation, les secteurs d'anneau ont une section sensiblement en forme de Ω ou sensiblement en forme de π.In an exemplary embodiment, the ring sectors have a section substantially in the shape of Ω or substantially in the shape of π.
La présente invention vise également une turbomachine comprenant un ensemble d'anneau de turbine tel que décrit plus haut.The present invention also relates to a turbomachine comprising a turbine ring assembly as described above.
L'ensemble d'anneau de turbine peut faire partie d'une turbine à gaz d'un moteur aéronautique ou peut, en variante, faire partie d'une turbine industrielle.The turbine ring assembly may be part of a gas turbine of an aeronautical engine or may alternatively be part of an industrial turbine.
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
- la
figure 1 est une vue en coupe méridienne montrant un mode de réalisation d'un ensemble d'anneau de turbine selon l'invention, - la
figure 2 représente un détail de lafigure 1 , - les
figures 3 à 6 sont des vues en coupe méridienne montrant des variantes de réalisation d'ensembles d'anneau de turbine selon l'invention, - la
figure 7 représente le flasque mis en oeuvre dans le mode de réalisation de lafigure 6 , - les
figures 8 à 10 illustrent le montage des secteurs d'anneau dans le cas de l'exemple de réalisation de lafigure 5 , et - les
figures 11 à 15 illustrent le montage des secteurs d'anneau dans le cas de l'exemple de réalisation de lafigure 6 .
- there
figure 1 is a meridian sectional view showing an embodiment of a turbine ring assembly according to the invention, - there
figure 2 represents a detail of thefigure 1 , - THE
figures 3 to 6 are views in meridian section showing alternative embodiments of turbine ring assemblies according to the invention, - there
Figure 7 represents the flange used in the embodiment of theFigure 6 , - THE
figures 8 to 10 illustrate the assembly of the ring sectors in the case of the example of realization of theFigure 5 , And - THE
figures 11 to 15 illustrate the assembly of the ring sectors in the case of the example of realization of theFigure 6 .
Dans la suite, les termes « amont » et « aval » sont utilisés ici en référence au sens d'écoulement du flux gazeux dans la turbine (voir flèche F à la
La
L'ensemble de secteurs d'anneau 1 est monté sur le carter 2 de sorte à former un anneau de turbine qui entoure un ensemble de pales rotatives 3. La flèche F représente le sens d'écoulement du flux gazeux dans la turbine. Les secteurs d'anneau 1 sont en une seule pièce et réalisés en CMC. La mise en oeuvre d'un matériau CMC pour réaliser les secteurs d'anneau 1 est avantageuse afin de réduire les besoins en ventilation de l'anneau. Les secteurs d'anneau 1 ont, dans l'exemple illustré, une section sensiblement en forme de Ω avec une base annulaire 5 dont la face radialement interne 6 revêtue d'une couche 7 de matériau abradable définit la veine d'écoulement du flux gazeux dans la turbine. La base annulaire 5 présente, en outre, une face radialement externe 8 à partir de laquelle s'étend une portion d'accrochage 9. Dans l'exemple illustré, la portion d'accrochage 9 est sous la forme d'un bulbe plein, on ne sort pas du cadre de l'invention lorsque la portion d'accrochage est sous la forme d'un bulbe creux ou lorsque cette dernière est sous une autre forme telle que détaillée plus bas. L'étanchéité inter-secteurs est assurée par des languettes d'étanchéité (non représentées) logées dans des rainures se faisant face dans les bords en regard de deux secteurs d'anneau voisin.The set of
Chaque secteur d'anneau 1 décrit ci-avant est réalisé en CMC par formation d'une préforme fibreuse ayant une forme voisine de celle du secteur d'anneau et densification du secteur d'anneau par une matrice céramique. Pour la réalisation de la préforme fibreuse, on peut utiliser des fils en fibres céramique, par exemple des fils en fibres SiC tels que ceux commercialisés par la société japonaise Nippon Carbon sous la dénomination "Nicalon", ou des fils en fibres de carbone. La préforme fibreuse est avantageusement réalisée par tissage tridimensionnel, ou tissage multicouches. Le tissage peut être de type interlock. D'autres armures de tissage tridimensionnel ou multicouches peuvent être utilisées comme par exemple des armures multi-toile ou multi-satin. On pourra pour cela se référer au document
Le carter 2 comprend deux brides radiales annulaires 11a et 11b en matériau métallique s'étendant radialement vers une veine d'écoulement du flux gazeux. Les brides annulaires 11a et 11b du carter 2 enserrent axialement les parties d'accrochage 9 des secteurs d'anneau 1. Ainsi, comme illustré à la
Les brides annulaires 11a et 11b présentent chacune deux portions inclinées en appui sur les parties d'accrochage 9 des secteurs d'anneau 1 et assurant leur maintien. Les portions inclinées des brides annulaires 11a et 11b sont au contact des parties d'accrochage 9 des secteurs d'anneau 1. La bride annulaire amont 11a présente une première portion inclinée 12a ainsi qu'une deuxième portion inclinée 13a. La bride 11a présente en outre une troisième portion 15a s'étendant selon la direction radiale R et située entre la première 12a et la deuxième 13a portion inclinée. La bride annulaire aval 11b présente aussi une première portion inclinée 12b ainsi qu'une deuxième portion inclinée 13b. La bride 11b présente elle aussi une troisième portion 15b s'étendant selon la direction radiale R et située entre la première 12b et la deuxième 13b portion inclinée. Lorsqu'observée en coupe méridienne et comme illustré aux
Dans l'exemple illustré, les brides annulaires 11a et 11b enserrent les parties d'accrochage 9 des secteurs d'anneau sur plus de la moitié de la longueur l desdites parties d'accrochage 9, notamment sur au moins 75% de cette longueur. La longueur l est mesurée selon la direction radiale R.In the example illustrated, the
Dans l'exemple illustré à la
L'invention n'est toutefois pas limitée au cas où les brides annulaires présentent chacune de telles première et deuxième portions inclinées. Il sera, en effet, décrit dans la suite le cas où chacune des brides annulaires présente une unique portion inclinée en appui sur les parties d'accrochage des secteurs d'anneau.The invention is however not limited to the case where the annular flanges each have such first and second inclined portions. It will, in fact, be described below the case where each of the annular flanges has a single inclined portion bearing on the attachment parts of the ring sectors.
Comme mentionné plus haut, la mise en oeuvre des portions inclinées permet avantageusement de compenser les différences de dilatation entre les brides annulaires 11a et 11b, d'une part, et les secteurs d'anneau 1, d'autre part, et ainsi de réduire les contraintes mécaniques auxquelles les secteurs d'anneau 1 sont soumis lors du fonctionnement.As mentioned above, the implementation of the inclined portions advantageously makes it possible to compensate for the differences in expansion between the
Dans les exemples de réalisation des
Dans l'exemple illustré à la
On a représenté à la
Les secteurs d'anneau 1a de la
La préforme fibreuse destinée à former le secteur d'anneau 1a du type illustré à la
On a représenté à la
Les modes de réalisation qui vont être décrits illustrés aux
On a représenté à la
La structure de support d'anneau 2 est, dans cet exemple de réalisation, formée de deux parties, à savoir une première partie correspondant à une bride radiale amont annulaire 31a qui est de préférence formée intégralement avec un carter de turbine et une deuxième partie correspondant à un flasque annulaire de rétention 50 monté sur le carter de turbine. La bride radiale amont annulaire 31a comporte une portion inclinée 13a telle que décrite plus haut en appui sur les pattes amont 29a des secteurs d'anneau 1c. Du côté aval, le flasque 50 comporte un voile annulaire 57 qui forme une bride radiale aval annulaire 54 comportant une portion inclinée 13b telle que décrite plus haut en appui sur les pattes aval 29b des secteurs d'anneau 1c. Le flasque 50 comprend un corps annulaire 51 s'étendant axialement et comprenant, du côté amont, le voile annulaire 57 et, du côté aval, une première série de dents 52 réparties de manière circonférentielle sur le flasque 50 et espacées les unes des autres par des premiers passages d'engagement 53 (
Les pattes 29a et 29b de chaque secteur d'anneau 1c sont montées en précontrainte entre les brides annulaires 31a et 54 de manière à ce que les brides exercent, au moins à « froid », c'est-à-dire à une température ambiante d'environ 25°C, une contrainte sur les pattes 29a et 29b. Par ailleurs, comme dans l'exemple de réalisation de la
Au moins une des brides de la structure de support d'anneau est élastiquement déformable, ce qui permet de compenser encore mieux les dilatations différentielles entre les pattes des secteurs d'anneau en CMC et les brides de la structure de support d'anneau en métal sans augmenter significativement la contrainte exercée « à froid » par les brides sur les pattes des secteurs d'anneau.At least one of the flanges of the ring support structure is elastically deformable, which makes it possible to even better compensate for the differential expansions between the tabs of the CMC ring sectors and the flanges of the metal ring support structure without significantly increasing the stress exerted “cold” by the flanges on the lugs of the ring sectors.
En outre, l'étanchéité entre l'amont et l'aval de l'ensemble d'anneau de turbine est assurée par un bossage annulaire 70 s'étendant radialement depuis la surface interne 38a de la virole 38 du carter de turbine et dont l'extrémité libre en en contact avec la surface du corps 51 du flasque 50.In addition, the seal between the upstream and downstream of the turbine ring assembly is ensured by an
Il va à présent être décrit deux méthodes de montage utilisables pour monter les secteurs d'anneau sur la structure de support d'anneau.Two mounting methods that can be used to mount the ring sectors on the ring support structure will now be described.
Les
La structure de support d'anneau comprend au moins une bride annulaire qui est élastiquement déformable dans la direction axiale A de l'anneau. Dans le présent exemple, la bride radiale aval annulaire 31b est élastiquement déformable. Lors du montage d'un secteur d'anneau 1c, la bride radiale aval annulaire 31b est tirée dans la direction axiale A comme montré sur les
Le nombre de crochets 25 répartis sur la face 31c de la bride 31b est défini en fonction du nombre de points de traction que l'on souhaite avoir sur la bride 31b. Ce nombre dépend principalement du caractère élastique de la bride. D'autres formes et dispositions de moyens permettant d'exercer une traction dans la direction axiale A sur une des brides de la structure de support d'anneau peuvent bien entendu être envisagées.The number of
Une fois le secteur d'anneau 1c inséré et positionné entre les brides 31a et 31b, des pions 35 sont engagés dans les orifices alignés 35b et 35a ménagés respectivement dans la bride radiale amont annulaire 31a et dans la patte amont 29a, et des pions 37 sont engagés dans les orifices alignés 37b et 37a ménagés respectivement dans la bride radiale aval annulaire 31b et dans la patte aval 29b. Chaque patte 29a ou 29b de secteur d'anneau peut comporter un ou plusieurs orifices pour le passage d'un pion de blocage.Once the
Une méthode analogue peut être utilisée pour réaliser le montage des secteurs d'anneau dans le cadre des exemples illustrés aux
On va à présent décrire le montage des secteurs d'anneau 1c dans le cas de l'exemple de réalisation de la
Une fois tous les secteurs d'anneau 1c ainsi fixés à la bride radiale amont annulaire 31a, on procède à l'assemblage par crabotage du flasque annulaire de rétention 50 entre le carter de turbine et les pattes aval des secteurs d'anneau 29b. Conformément au mode de réalisation décrit ici, l'écartement E' entre la bride radiale aval annulaire 54 formée par le voile annulaire 57 du flasque 50 et la surface externe 52a des dents 52 dudit flasque est supérieur à la distance D' présente entre la face externe 29d des pattes aval 29b des secteurs d'anneau et la face interne 60a des dents 60 présentes sur le carter de turbine. En définissant un écartement E' entre la bride radiale aval annulaire et la surface externe des dents du flasque supérieur à la distance D' entre la face externe des pattes aval des secteurs d'anneau et la face interne des dents présentes sur le carter de turbine, il est possible de monter les secteurs d'anneau en précontrainte entre les brides de la structure de support d'anneau.Once all the
La structure de support d'anneau comprend au moins une bride annulaire qui est élastiquement déformable dans la direction axiale A de l'anneau. Dans l'exemple décrit ici, c'est la bride radiale aval annulaire 54 présente sur le flasque 50 qui est élastiquement déformable. En effet, le voile annulaire 57 formant la bride radiale aval annulaire 54 de la structure de support d'anneau 2 présente une épaisseur réduite par rapport à la bride radiale amont annulaire 31a, ce qui lui confère une certaine élasticité.The ring support structure comprises at least one annular flange which is elastically deformable in the axial direction A of the ring. In the example described here, it is the annular downstream
Comme illustré sur les
Une fois le flasque ainsi mis en place, des pions 37 sont engagés dans les orifices alignés 56 et 37a ménagés respectivement dans la bride radiale aval annulaire 54 et dans la patte aval 29b. Chaque patte 29a ou 29b de secteur d'anneau peut comporter un ou plusieurs orifices pour le passage d'un pion de blocage.Once the flange is thus in place, pins 37 are engaged in the aligned
L'expression « compris(e) entre ... et ... » ou « allant de ... à ... » doit se comprendre comme incluant les bornes.The expression “between ... and ...” or “ranging from ... to ...” must be understood as including the limits.
Claims (8)
les parties d'accrochage (19a ; 19b ; 29a ; 29b) des secteurs d'anneau (1b ; 1c) étant maintenues à la structure de support d'anneau (2) au niveau de portions axiales (16a ; 16b) s'étendant chacune parallèlement à la direction axiale, ces portions axiales étant formées par les brides annulaires (21a ; 21b) ou par une pluralité d'éléments rapportés (35 ; 37) engagés sans jeu à froid au travers des brides annulaires.Turbine ring assembly comprising a plurality of ring sectors (1b; 1c) of ceramic matrix composite material forming a turbine ring and a ring support structure (2), each ring sector (1b; 1c) having an annular base portion (5) with an internal face (6) defining the internal face of the turbine ring and an external face (8) from which extends a hooking part (19a; 19b; 29a; 29b) from the ring sector to the ring support structure, the ring support structure (2) comprising two annular flanges (21a; 21b; 31a; 31b; 50) between which the part d The attachment of each ring sector is maintained, the annular flanges of the ring support structure each having at least one inclined portion (12a; 12b; 13a; 13b) bearing on the attachment parts of the sectors of the ring. ring, said inclined portion forming, when observed in meridian section, a non-zero angle with respect to the radial direction (R) and the axial direction (A),
the attachment parts (19a; 19b; 29a; 29b) of the ring sectors (1b; 1c) being held to the ring support structure (2) at the level of axial portions (16a; 16b) extending each parallel to the axial direction, these axial portions being formed by the annular flanges (21a; 21b) or by a plurality of attached elements (35; 37) engaged without cold clearance through the annular flanges.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1554626A FR3036435B1 (en) | 2015-05-22 | 2015-05-22 | TURBINE RING ASSEMBLY |
PCT/FR2016/051168 WO2016189223A1 (en) | 2015-05-22 | 2016-05-18 | Turbine ring assembly |
EP16726369.8A EP3298246B1 (en) | 2015-05-22 | 2016-05-18 | Turbine shroud assembly allowing a differential thermal expansion |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16726369.8A Division EP3298246B1 (en) | 2015-05-22 | 2016-05-18 | Turbine shroud assembly allowing a differential thermal expansion |
EP16726369.8A Division-Into EP3298246B1 (en) | 2015-05-22 | 2016-05-18 | Turbine shroud assembly allowing a differential thermal expansion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4273370A2 true EP4273370A2 (en) | 2023-11-08 |
EP4273370A3 EP4273370A3 (en) | 2024-02-14 |
Family
ID=53879645
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16726369.8A Active EP3298246B1 (en) | 2015-05-22 | 2016-05-18 | Turbine shroud assembly allowing a differential thermal expansion |
EP23198187.9A Pending EP4273370A3 (en) | 2015-05-22 | 2016-05-18 | Turbine ring assembly for differential thermal expansion |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16726369.8A Active EP3298246B1 (en) | 2015-05-22 | 2016-05-18 | Turbine shroud assembly allowing a differential thermal expansion |
Country Status (8)
Country | Link |
---|---|
US (2) | US10724401B2 (en) |
EP (2) | EP3298246B1 (en) |
CN (2) | CN108138579B (en) |
BR (1) | BR112017024871B1 (en) |
CA (2) | CA2986661C (en) |
FR (1) | FR3036435B1 (en) |
RU (1) | RU2741192C2 (en) |
WO (1) | WO2016189223A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3033825B1 (en) * | 2015-03-16 | 2018-09-07 | Safran Aircraft Engines | TURBINE RING ASSEMBLY OF CERAMIC MATRIX COMPOSITE MATERIAL |
US10100649B2 (en) * | 2015-03-31 | 2018-10-16 | Rolls-Royce North American Technologies Inc. | Compliant rail hanger |
FR3045715B1 (en) * | 2015-12-18 | 2018-01-26 | Safran Aircraft Engines | TURBINE RING ASSEMBLY WITH COLD AND HOT HOLDING |
FR3049003B1 (en) * | 2016-03-21 | 2018-04-06 | Safran Aircraft Engines | TURBINE RING ASSEMBLY WITHOUT COLD MOUNTING SET |
FR3055147B1 (en) | 2016-08-19 | 2020-05-29 | Safran Aircraft Engines | TURBINE RING ASSEMBLY |
FR3056632B1 (en) | 2016-09-27 | 2020-06-05 | Safran Aircraft Engines | TURBINE RING ASSEMBLY INCLUDING A COOLING AIR DISTRIBUTION ELEMENT |
US10697314B2 (en) | 2016-10-14 | 2020-06-30 | Rolls-Royce Corporation | Turbine shroud with I-beam construction |
FR3058756B1 (en) * | 2016-11-15 | 2020-10-16 | Safran Aircraft Engines | TURBINE FOR TURBOMACHINE |
FR3068071B1 (en) | 2017-06-26 | 2019-11-08 | Safran Aircraft Engines | ASSEMBLY FOR THE PALLET CONNECTION BETWEEN A TURBINE HOUSING AND AN ANNULAR TURBOMACHINE ELEMENT |
US10557365B2 (en) | 2017-10-05 | 2020-02-11 | Rolls-Royce Corporation | Ceramic matrix composite blade track with mounting system having reaction load distribution features |
US11035243B2 (en) * | 2018-06-01 | 2021-06-15 | Raytheon Technologies Corporation | Seal assembly for gas turbine engines |
US10934877B2 (en) * | 2018-10-31 | 2021-03-02 | Raytheon Technologies Corporation | CMC laminate pocket BOAS with axial attachment scheme |
US11008894B2 (en) | 2018-10-31 | 2021-05-18 | Raytheon Technologies Corporation | BOAS spring clip |
FR3090732B1 (en) * | 2018-12-19 | 2021-01-08 | Safran Aircraft Engines | Turbine ring assembly with indexed flanges. |
FR3093344B1 (en) * | 2019-03-01 | 2021-06-04 | Safran Ceram | SET FOR A TURBOMACHINE TURBINE |
US11761343B2 (en) * | 2019-03-13 | 2023-09-19 | Rtx Corporation | BOAS carrier with dovetail attachments |
US11015485B2 (en) | 2019-04-17 | 2021-05-25 | Rolls-Royce Corporation | Seal ring for turbine shroud in gas turbine engine with arch-style support |
US11021987B2 (en) * | 2019-05-15 | 2021-06-01 | Raytheon Technologies Corporation | CMC BOAS arrangement |
US11149563B2 (en) | 2019-10-04 | 2021-10-19 | Rolls-Royce Corporation | Ceramic matrix composite blade track with mounting system having axial reaction load distribution features |
US11174795B2 (en) * | 2019-11-26 | 2021-11-16 | Raytheon Technologies Corporation | Seal assembly with secondary retention feature |
US11230937B2 (en) * | 2020-05-18 | 2022-01-25 | Rolls-Royce North American Technologies Inc. | Turbine shroud assembly with dovetail retention system |
CN113882910B (en) * | 2020-07-03 | 2024-07-12 | 中国航发商用航空发动机有限责任公司 | Turbine outer ring connection assembly, gas turbine engine and connection method |
FR3127981A1 (en) * | 2021-10-08 | 2023-04-14 | Safran Aircraft Engines | TURBINE ANNULAR FERRULE |
US11885225B1 (en) * | 2023-01-25 | 2024-01-30 | Rolls-Royce Corporation | Turbine blade track with ceramic matrix composite segments having attachment flange draft angles |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1350927A2 (en) | 2002-03-28 | 2003-10-08 | General Electric Company | Shroud segment, manufacturing method for a shroud segment, as well as shroud assembly for a turbine engine |
WO2006136755A2 (en) | 2005-06-24 | 2006-12-28 | Snecma | Reinforcing fibrous structure for a composite material and a part containing said structure |
GB2480766A (en) | 2010-05-28 | 2011-11-30 | Gen Electric | Turbine shroud |
US20120027572A1 (en) | 2009-03-09 | 2012-02-02 | Snecma Propulsion Solide, Le Haillan | Turbine ring assembly |
US20140271145A1 (en) | 2013-03-12 | 2014-09-18 | Rolls-Royce Corporation | Turbine blade track assembly |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3501246A (en) * | 1967-12-29 | 1970-03-17 | Westinghouse Electric Corp | Axial fluid-flow machine |
FR2637650B1 (en) * | 1988-10-06 | 1990-11-16 | Alsthom Gec | DEVICES FOR REDUCING ARROWS AND STRESSES IN TURBINE DIAPHRAGMS |
US5961278A (en) * | 1997-12-17 | 1999-10-05 | Pratt & Whitney Canada Inc. | Housing for turbine assembly |
US6942203B2 (en) * | 2003-11-04 | 2005-09-13 | General Electric Company | Spring mass damper system for turbine shrouds |
US7771159B2 (en) * | 2006-10-16 | 2010-08-10 | General Electric Company | High temperature seals and high temperature sealing systems |
FR2942844B1 (en) * | 2009-03-09 | 2014-06-27 | Snecma | TURBINE RING ASSEMBLY WITH AXIAL STOP |
JP5962887B2 (en) * | 2012-02-02 | 2016-08-03 | 株式会社Ihi | Wing connection structure and jet engine using the same |
EP2801702B1 (en) * | 2013-05-10 | 2020-05-06 | Safran Aero Boosters SA | Inner shroud of turbomachine with abradable seal |
-
2015
- 2015-05-22 FR FR1554626A patent/FR3036435B1/en active Active
-
2016
- 2016-05-18 CA CA2986661A patent/CA2986661C/en active Active
- 2016-05-18 RU RU2017145079A patent/RU2741192C2/en active
- 2016-05-18 CN CN201680040291.4A patent/CN108138579B/en active Active
- 2016-05-18 WO PCT/FR2016/051168 patent/WO2016189223A1/en active Application Filing
- 2016-05-18 CN CN202010080478.5A patent/CN111188655B/en active Active
- 2016-05-18 EP EP16726369.8A patent/EP3298246B1/en active Active
- 2016-05-18 BR BR112017024871-9A patent/BR112017024871B1/en active IP Right Grant
- 2016-05-18 EP EP23198187.9A patent/EP4273370A3/en active Pending
- 2016-05-18 US US15/576,157 patent/US10724401B2/en active Active
- 2016-05-18 CA CA3228720A patent/CA3228720A1/en active Pending
-
2020
- 2020-05-28 US US16/886,331 patent/US11118477B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1350927A2 (en) | 2002-03-28 | 2003-10-08 | General Electric Company | Shroud segment, manufacturing method for a shroud segment, as well as shroud assembly for a turbine engine |
WO2006136755A2 (en) | 2005-06-24 | 2006-12-28 | Snecma | Reinforcing fibrous structure for a composite material and a part containing said structure |
US20120027572A1 (en) | 2009-03-09 | 2012-02-02 | Snecma Propulsion Solide, Le Haillan | Turbine ring assembly |
GB2480766A (en) | 2010-05-28 | 2011-11-30 | Gen Electric | Turbine shroud |
US20140271145A1 (en) | 2013-03-12 | 2014-09-18 | Rolls-Royce Corporation | Turbine blade track assembly |
Also Published As
Publication number | Publication date |
---|---|
EP3298246A1 (en) | 2018-03-28 |
RU2017145079A (en) | 2019-06-24 |
BR112017024871B1 (en) | 2023-03-07 |
CA2986661C (en) | 2024-06-18 |
WO2016189223A1 (en) | 2016-12-01 |
US10724401B2 (en) | 2020-07-28 |
FR3036435B1 (en) | 2020-01-24 |
RU2741192C2 (en) | 2021-01-22 |
RU2017145079A3 (en) | 2019-10-23 |
US20200291820A1 (en) | 2020-09-17 |
CN111188655A (en) | 2020-05-22 |
EP3298246B1 (en) | 2023-11-22 |
CA2986661A1 (en) | 2016-12-01 |
CA3228720A1 (en) | 2016-12-01 |
EP4273370A3 (en) | 2024-02-14 |
CN108138579A (en) | 2018-06-08 |
BR112017024871A2 (en) | 2018-08-07 |
FR3036435A1 (en) | 2016-11-25 |
CN111188655B (en) | 2022-06-24 |
US11118477B2 (en) | 2021-09-14 |
CN108138579B (en) | 2020-03-06 |
US20180156068A1 (en) | 2018-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3298246B1 (en) | Turbine shroud assembly allowing a differential thermal expansion | |
EP3298244B1 (en) | Turbine ring assembly with axial retention | |
EP3390783B1 (en) | Turbine shroud assembly and corresponding turbine | |
EP3390782B1 (en) | Turbine ring assembly, elastically retained in a cold-state | |
CA2986663C (en) | Turbine ring assembly supported by flanges | |
EP3433471B1 (en) | Turbine shroud seal assembly with specific support in cold conditions | |
EP2406466B1 (en) | Turbine ring assembly | |
CA2979474C (en) | Turbine ring assembly comprising a plurality of ring sectors made from ceramic matrix composite material | |
EP3298245B1 (en) | Turbine ring assembly retained in the manner of a dog clutch | |
FR2942844A1 (en) | High pressure turbine shroud assembly for e.g. aeronautical gas turbine engine, has ring sector axially maintained by mutual engagement of groove and rib on supporting surfaces opposite to anchoring tab and flange of support structure | |
EP3274565B1 (en) | Turbine ring assembly with specific holding device for ceramic matrix composite ring segments | |
FR3086327A1 (en) | ASSEMBLY FOR A TURBOMACHINE TURBINE | |
FR3041994A1 (en) | TURBINE RING ASSEMBLY | |
FR2942845A1 (en) | High pressure turbine ring assembly for gas turbine of aviation engine, has ring sectors with pie shaped section, and upstream and downstream end portions of tabs maintained without radial clearance by metallic ring support structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230919 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3298246 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: F01D0025240000 Ipc: F01D0011080000 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 25/24 20060101ALI20240105BHEP Ipc: F01D 11/08 20060101AFI20240105BHEP |