EP4130298A1 - Gas compression in hydrogen-based direct reduction - Google Patents
Gas compression in hydrogen-based direct reduction Download PDFInfo
- Publication number
- EP4130298A1 EP4130298A1 EP21189193.2A EP21189193A EP4130298A1 EP 4130298 A1 EP4130298 A1 EP 4130298A1 EP 21189193 A EP21189193 A EP 21189193A EP 4130298 A1 EP4130298 A1 EP 4130298A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- compression
- plant
- compressed
- compressors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000006835 compression Effects 0.000 title claims abstract description 99
- 238000007906 compression Methods 0.000 title claims abstract description 99
- 239000007789 gas Substances 0.000 title description 293
- 239000001257 hydrogen Substances 0.000 title description 32
- 229910052739 hydrogen Inorganic materials 0.000 title description 32
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title description 26
- 230000003197 catalytic effect Effects 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 238000006073 displacement reaction Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 15
- 229910001868 water Inorganic materials 0.000 claims description 13
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 230000001276 controlling effect Effects 0.000 claims description 8
- 230000003134 recirculating effect Effects 0.000 claims 1
- 238000006722 reduction reaction Methods 0.000 description 71
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 35
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- 239000003345 natural gas Substances 0.000 description 17
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 150000002431 hydrogen Chemical class 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 230000003584 silencer Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0073—Selection or treatment of the reducing gases
Definitions
- the application relates to a direct reduction plant comprising a catalytic reformer and/or a gas furnace and a gas compression plant with one or more compressors, the gas compression plant comprising at least one compression stage and at least one gas cooler for compressed gas being present. It also relates to a method for operating a direct reduction plant comprising a catalytic reformer and/or a gas furnace and a gas compression plant with one or more compressors, the gas compression plant comprising at least one compression stage and at least one gas cooler for compressed gas being present, with reduction gas being produced after gas compression is introduced into a reduction unit.
- the economically available amount of hydrogen is small, which means that long-term operation with only hydrogen H2 as the reducing gas can hardly be guaranteed. Accordingly, the main focus is on the use of hydrogen H2, at least temporarily, together with other gases, for example natural gas-based reducing gases.
- the reduction gas or the precursors of the reduction gas When operating direct reduction systems, the reduction gas or the precursors of the reduction gas must be compressed before the reduction gas enters the reduction unit in order to overcome the pressure loss in the system.
- energy is introduced into the gas to be compressed, which also increases its temperature - compressors are thermally stressed as a result.
- the compressors are usually cooled, among other things, by injecting water into the gas to be compressed or into the compressor.
- gas compression should be possible economically over a wide range of gas densities, molecular weights, sound speeds, with existing gas compression systems previously used for natural gas-based reducing gas being at least partially usable.
- a direct reduction plant comprising a catalytic reformer and/or a gas furnace and a gas compression plant with one or more compressors, the gas compression plant comprising at least one, preferably at least two, compression stages, and at least one gas cooler for compressed gas being present, preferably at least behind the last compression stage seen in the flow direction of the gas, characterized in that from the gas compression system or the gas cooler there is a direct introduction for introducing gas directly into the reformer and/or into the gas furnace, and a bypass is provided on at least one of the compressors for the recirculation of at least a partial quantity of the gas compressed by the compressor.
- One or more gas coolers can be present, for example one gas cooler after each compression stage if there are several compression stages. Water vapor can be condensed out of the gas by means of the gas cooler. Accordingly, the gas cooler makes it possible to reduce the water vapor content of the reduction gas and/or to adjust the quality of the reduction gas.
- the direct reduction system also includes at least one reduction unit. It is used for the direct reduction of ore containing metal oxides, for example containing iron oxide.
- the reduction unit can, for example, comprise a reduction shaft, for example for fixed-bed operation, or a fluidized-bed reactor or a fluidized-bed reactor.
- the direct reduction system comprises a catalytic reformer for producing reducing gas—or reducing gas precursor gas, from which reducing gas is produced by taking further measures such as, for example, admixing additional gases or heating; the reducing gas is introduced into the reduction unit in order to carry out the direct reduction reactions for the production of sponge iron there.
- the direct reduction plant comprises a gas furnace; in this case gas heated in the gas furnace is reducing gas or reducing gas precursor gas.
- a gas furnace is a device for heating gas, for example process gas, using hot flue gas from the combustion of top gas or natural gas, or using electrical heating.
- the direct reduction plant can also include catalytic reformer and gas furnace.
- the gas furnace is preferably upstream of the catalytic reformer in the gas flow direction.
- gas exiting the gas compression plant and the compressed gas gas cooler, respectively is introduced directly into the catalytic reformer for reforming to produce reducing gas or reducing gas precursor gas, and/or into the gas furnace.
- Direct discharge means that the discharge takes place without the CO2 content being reduced. If necessary, there is also a direct introduction Temperature increase, for example in a gas-gas heat exchanger instead.
- direct discharge there is no CO2 removal - for example by means of chemical washing - such as MEA Monoethanolamine, KM CDR Kansai Mitsubishi carbon dioxide recovery -, VPSA vacuum pressure swing adsorption or PSA pressure swing adsorption, so it is discharged without CO2 removal .
- the direct introduction takes place via the direct introduction from the gas compression system or the gas cooler for introducing gas directly into the reformer and/or into the gas furnace. If the gas cooler is arranged after the last compression stage seen in the flow direction of the gas, the direct discharge starts from the gas cooler; if the gas cooler is not arranged behind the last compression stage seen in the flow direction of the gas, the direct introduction starts from the last compression stage seen in the flow direction of the gas. If the gas cooler is located after the last compression stage, seen in the direction of flow of the gas, it is not to be considered part of the gas compression system; if the gas cooler is not arranged downstream of the last compression stage, viewed in the direction of gas flow, it is to be regarded as part of the gas compression system.
- the gas compression system includes one or more compressors.
- a compressor has a gas inlet - for gas to be compressed - and a gas outlet - for compressed gas.
- a bypass By means of a bypass, a gas flow can be routed past the compressor and back to the suction side.
- at least one of the compressors is provided with a bypass connecting its gas inlet and gas outlet for the recirculation of at least a partial quantity of the gas compressed by the compressor.
- the bypass branches off behind the compressor, viewed in the flow direction of the gas Gas outlet and flows into the gas inlet in front of the compressor. This bypass enables the reduction gas quantity to be regulated precisely if the desired reduction gas quantity does not match the delivery quantity of the compressors.
- a compressor In the case of speed control of a compressor or several compressors, it may happen that the minimum speed for the compressor must not be undershot - for example 30% of the nominal speed - for reasons of compressor and/or engine lubrication or compressor and/or engine cooling. If a compressor is basically designed to be able to compress the gas quantities required for pure hydrogen operation, operation even at minimum speed with mixtures of hydrogen with natural gas, for example, may still pump volumes that are too high; In order not to deliver too much gas while maintaining the minimum speed, a portion of the compressed gas can be returned by means of a bypass and thus a variation in the delivery rate can be achieved.
- At least one gas cooler preferably has a bypass.
- a gas cooler has a gas inlet and a gas outlet.
- a bypass By means of a bypass, a gas stream can be routed past the gas cooler without passing through it.
- the bypass line branches off from the gas inlet before the gas cooler and opens into the gas outlet after the gas cooler. In this way, the water vapor content of the reducing gas can be easily varied.
- the gas flowing through the bypass line is not cooled in the gas cooler. Depending on how a gas flow is divided with regard to passing through the gas cooler or the bypass line, the water vapor content will be different after the combination.
- Partial streams downstream of the gas cooler have a lower water vapor content than if the quantitative ratios were reversed - because in the gas cooler more water is condensed out and removed from the gas stream in the first case than in the second case.
- the majority of the gas is routed through the gas cooler.
- the direct reduction plant there are preferably also one or more devices for injecting water into a gas stream to be compressed or into the compressor; they can be used to cool the compressors and/or adjust the water vapor content.
- the gas compression system preferably has a device for controlling and/or regulating the water vapor content in the gas stream exiting the gas compression system.
- a device for controlling and/or regulating the water vapor content in the gas stream exiting the gas compression system.
- Such a device can act, for example, on the distribution of a gas stream between the gas cooler and its bypass, or on a device for injecting water into a gas stream to be compressed or into the compressor, or on the addition of steam into a gas stream exiting a compressor, or on the cooling medium temperature of the gas cooler - in the case of gas coolers operated with cooling medium, for example cooling water, the cooling medium temperature influences the water vapor content - or it can - for example via corresponding sensors, data processing devices, actuators, valves et cetera - receive relevant control and/or regulation signals and /or process and/or output.
- the gas compression system includes one or more compressors. All of the compressors in the gas compression system are preferably positive displacement compressors. Preference is given to rotary lobe compressors, but other types such as reciprocating compressors or screw compressors, cellular wheel compressors or Wankel compressors can also be used. Positive displacement compressors easily adapt to changes in the operating conditions, such as gas composition, inlet and outlet temperature, etc., with corresponding changes until the application limits are reached, whereby the outlet pressure is not significantly dependent on the gas composition and thus the speed of sound as with centrifugal compressors is.
- Positive displacement compressors typically have mufflers. It is preferred that at least one of the gas coolers is integrated in a muffler of a positive displacement compressor. This reduces the space requirement and leads to lower costs, as only one pressure vessel is required.
- the gas compression system preferably has one or more frequency converter positive displacement compressors in at least one compression stage.
- a VFD positive displacement compressor has speed control via VFD control - in English: speed control via VFD control -; the pumped volume flow of the gas is essentially proportional to the speed of the compressor, which is controlled via the frequency of the AC voltage.
- a variable frequency drive positive displacement compressor can be operated at different speeds, which can be easily changed by adjusting the frequency using a frequency converter.
- positive displacement compressors are operated at a fixed speed or within a narrow range of speeds; this means that they can only be operated in an economically viable manner for a narrow range of gas densities, molecular weights, sound speeds and gas volume flows.
- a frequency converter positive displacement compressor allows operation in a comparatively broader range of speeds due to the frequency converter and can therefore be operated in an economically viable manner for a broader range of gas volume flows, gas densities, molecular weights, sound speeds.
- variable frequency drive positive displacement compressor thus makes it possible to respond to increasing hydrogen content of the reducing gas, since its operation can be easily adapted to changes in gas densities, molecular weights, sound velocities, gas flow rates.
- a continuous increase in the hydrogen content or the gas volume flows is possible, since only an increase in the compression frequency by means of control and/or regulation of the frequency converter is necessary for the adaptation.
- Compressors that may already be present in the compression stages can be retained and supplemented with frequency converter compression compressors. In this way, the adaptation of existing direct reduction systems working with natural gas-based reducing gas for hydrogen operation can be implemented easily, cost-effectively and in a resource-saving manner.
- variable frequency drive positive displacement compressor or compressors can be in the Compression stages can be connected in parallel or in series with one another or with other types of compressors.
- Varying the flow rate via frequency conversion is more energy-efficient than varying the flow rate by means of a bypass.
- a variation by means of a bypass and a variation via frequency conversion can complement each other well, for example in transitional areas in which the frequency control cannot be further reduced due to minimum speed restrictions, or when starting up volume conveyors.
- Another subject matter of the present application is a method for operating a direct reduction plant comprising a catalytic reformer and/or a gas furnace and a gas compression plant with one or more compressors, the gas compression plant comprising at least one compression stage and at least one gas cooler for compressed gas being present wherein after gas compression, reducing gas is introduced into a reduction unit, characterized in that at least a portion of the compressed gas is cooled, preferably at least after the last gas compression viewed in the direction of the reduction unit, and compressed gas from the gas compression system or the gas cooler directly into the reformer and/or the gas furnace is initiated, and at least temporarily a subset of a gas compressed by a compressor is recirculated by means of a bypass.
- a direct reduction plant can be operated as described above.
- a partial quantity of a gas compressed by a compressor is recirculated by means of a bypass to the suction side of the compressor.
- Gas is compressed in the gas compression system, and compressed gas is produced in the process.
- the compressed gas is cooled in the gas cooler.
- the compressed gas is reducing gas or reducing gas precursor gas.
- a subset of a compressed gas routed to a gas cooler is routed past the gas cooler by means of a bypass.
- a bypass For example, from 100 m3 of compressed gas, a portion of 80 m3 is cooled in a gas cooler, while 20 m3 is not cooled; these 20 m3 are routed past the gas cooler, which cools the 80 m3, via a bypass, for example.
- the water vapor content of the gas flow obtained during the gas compression is preferably controlled and/or regulated, preferably by injecting water into a gas flow to be compressed or into a compressor.
- the water vapor content can be adjusted by means of devices for injecting water into a gas stream to be compressed or into the compressor; thus, such devices can be used not only for cooling the compressors, but also for controlling and/or regulating the water vapor content.
- Gas compression preferably takes place in at least one compression stage by means of a frequency converter positive displacement compressor.
- figure 1 shows a schematic of a direct reduction plant 10.
- Metal oxide-containing material--in the illustrated case containing iron oxide--material--for example ore, pellets--20 is fed into a reduction unit 30 in order to be reduced therein by means of reducing gas.
- reduction gas is introduced into the reduction unit 30 after gas compression.
- a reduction gas line 40 is shown, through which the reduction gas is introduced into the reduction unit 30—here a reduction shaft.
- a gas compression system 50 ensures that the reduction gas or its precursors are compressed in order to have the pressure required for carrying out the direct reduction in the direct reduction system 10 .
- the representation of recirculation lines for top gas is omitted.
- the gas compression system 50 comprises at least one compression stage.
- the direct reduction system 10 there is at least one gas cooler 51 for compressed gas, here behind the last compression stage seen in the flow direction of the gas in the direction of the reduction unit 30 .
- an optionally available device 52 for controlling and/or regulating the water vapor content in the gas stream exiting from the gas compression system 50 .
- An existing catalytic reformer 60 is also shown, into which gas compressed in the gas compression system is introduced directly via a direct inlet 70 .
- the element with reference number 60 could also represent a gas oven.
- FIG. 13 shows a schematic view of a gas compression system 80 and a gas cooler 90.
- a gas cooler 90 is present behind the last compression stage, viewed in the flow direction of the gas—represented by the arrowheads.
- the gas cooler 90 has a bypass 100 shown in dashed lines.
- a gas stream can be routed past the gas cooler 90 by means of the bypass 100 without passing through it.
- the line of the bypass 100 branches off from the gas inlet 110 upstream of the gas cooler 90 and opens into the gas outlet line 120 after the gas cooler.
- the direct reduction system after gas compression, at least a portion of the compressed gas is cooled in gas cooler 90.
- Gas compression system 80 has a bypass 130, shown in dashed lines, which branches off from gas discharge line 140 on a compressor of compression stage B downstream of this compressor and upstream of the compressor opens into its gas inlet 150. With the bypass 130, at least a portion of the gas compressed in the compressor can be returned to the suction side of this compressor, at least temporarily.
- a device 160 for the injection of Water in a gas stream to be compressed or in a compressor is also shown schematically.
- the compressors shown are variable frequency drive positive displacement compressors 171, 171 per compression stage.
- FIG. 12 shows schematically how a gas cooler 180 is integrated into a muffler 190 of a positive displacement compressor 200.
- FIG. The compression part 210 of the positive displacement compressor 200 is followed by a sound-damping part 191 in the gas flow direction—indicated by arrowheads.
- the parts used for gas cooling such as the cooling water inlet 220, packing 230, cooling water outlet 240, and condensate drain 250 are integrated in the muffler 190.
- the muffler 190 has a cross-sectional constriction 260 for silencing.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
Direktreduktionsanlage (10) umfassend einen katalytischen Reformer (60) und/oder einen Gasofen sowie eine Gaskompressionsanlage (50) mit einem oder mehreren Kompressoren, wobei die Gaskompressionsanlage (50) zumindest eine Kompressionsstufe (A,B) umfasst, und wobei zumindest ein Gaskühler (51) für komprimiertes Gas vorhanden ist. Von der Gaskompressionsanlage (50) beziehungsweise dem Gaskühler (51) geht eine Direkteinleitung (70) zur Einleitung von Gas direkt in den Reformer (60) und/oder in den Gasofen aus. An zumindest einem der Kompressoren ist ein Bypass (130) vorgesehen. Beim Betrieb erfolgt Kühlung zumindest einer Teilmenge des komprimierten Gases und es wird komprimiertes Gas aus der Gaskompressionsanlage (50) oder dem Gaskühler (51) direkt in den Reformer (60) und/oder den Gasofen eingeleitet. Zumindest zeitweilig wird eine Teilmenge eines von einem Kompressor komprimierten Gases mittels Bypass (130) rückgeführt.Direct reduction plant (10) comprising a catalytic reformer (60) and/or a gas furnace and a gas compression plant (50) with one or more compressors, wherein the gas compression plant (50) comprises at least one compression stage (A, B), and wherein at least one gas cooler ( 51) for compressed gas. From the gas compression system (50) or the gas cooler (51) there is a direct inlet (70) for introducing gas directly into the reformer (60) and/or into the gas oven. A bypass (130) is provided on at least one of the compressors. During operation, at least a portion of the compressed gas is cooled and compressed gas from the gas compression system (50) or the gas cooler (51) is introduced directly into the reformer (60) and/or the gas furnace. At least temporarily, a portion of a gas compressed by a compressor is recirculated by means of a bypass (130).
Description
Die Anmeldung betrifft eine Direktreduktionsanlage umfassend einen katalytischen Reformer und/oder einen Gasofen sowie eine Gaskompressionsanlage mit einem oder mehreren Kompressoren, wobei die Gaskompressionsanlage zumindest eine Kompressionsstufen umfasst, und wobei zumindest ein Gaskühler für komprimiertes Gas vorhanden ist. Sie betrifft auch ein Verfahren zum Betrieb einer Direktreduktionsanlage umfassend einen katalytischen Reformer und/oder einen Gasofen sowie eine Gaskompressionsanlage mit einem oder mehreren Kompressoren, wobei die Gaskompressionsanlage zumindest eine Kompressionsstufe umfasst, und wobei zumindest ein Gaskühler für komprimiertes Gas vorhanden ist, wobei nach Gaskompression Reduktionsgas in ein Reduktionsaggregat eingeleitet wird.The application relates to a direct reduction plant comprising a catalytic reformer and/or a gas furnace and a gas compression plant with one or more compressors, the gas compression plant comprising at least one compression stage and at least one gas cooler for compressed gas being present. It also relates to a method for operating a direct reduction plant comprising a catalytic reformer and/or a gas furnace and a gas compression plant with one or more compressors, the gas compression plant comprising at least one compression stage and at least one gas cooler for compressed gas being present, with reduction gas being produced after gas compression is introduced into a reduction unit.
Es ist bekannt, metalloxidhältiges, beispielsweise eisenoxidhältiges, Erz mittels Direktreduktion in einem Reduktionsaggregat, wie beispielsweise einem Reduktionsschacht, mittels Reduktionsgases zu reduzieren. Bei derzeit großindustriell angewendeten, herkömmlichen Verfahren basiert das Reduktionsgas überwiegend auf Erdgas. Dabei fällt eine große Menge Kohlendioxid CO2 an, was unter anderem aus umweltpolitischen Gründen unerwünscht ist. Zur Verminderung des CO2-Ausstoßes bei Direktreduktion ist es bekannt, Wasserstoff als Reduktionsgas zu verwenden. Dabei kann Wasserstoff als einziges Reduktionsgas verwendet werden, oder in Kombination mit anderen Gasen, beispielsweise erdgasbasierten Reduktionsgasen. Je größer der Anteil von CO2 neutralem Wasserstoff H2 im Reduktionsgas ist, desto weniger CO2 wird emittiert.It is known to reduce metal oxide-containing, for example iron oxide-containing, ore by means of direct reduction in a reduction unit, such as a reduction shaft, using reducing gas. In the conventional processes currently used on a large industrial scale, the reducing gas is predominantly based on natural gas. This produces a large amount of carbon dioxide CO2, which is undesirable for environmental reasons, among other things. In order to reduce CO2 emissions in the case of direct reduction, it is known to use hydrogen as the reducing gas. In this case, hydrogen can be used as the only reducing gas, or in combination with other gases, for example natural gas-based reducing gases. The larger the proportion of CO2-neutral hydrogen H2 in the reducing gas, the less CO2 is emitted.
Derzeit ist die wirtschaftlich verfügbare Wasserstoffmenge jedoch gering, was dauerhaften Betrieb nur mit Wasserstoff H2 als Reduktionsgas kaum gewährleisten lässt. Entsprechend ist das Hauptaugenmerk auf die Verwendung von Wasserstoff H2 zumindest zeitweise gemeinsam mit anderen Gasen, beispielsweise erdgasbasierten Reduktionsgasen, gerichtet.At present, however, the economically available amount of hydrogen is small, which means that long-term operation with only hydrogen H2 as the reducing gas can hardly be guaranteed. Accordingly, the main focus is on the use of hydrogen H2, at least temporarily, together with other gases, for example natural gas-based reducing gases.
Grundsätzlich ist es daher wünschenswert, Direktreduktionsanlagen so auszulegen und zu betreiben, dass sie sowohl mit erdgasbasiertem Reduktionsgas arbeiten können als auch mit Wasserstoff sowie Mischungen von erdgasbasiertem Reduktionsgas und Wasserstoff. Dann kann je nach Verfügbarkeit der verschiedenen Reduktionsgase auf verschiedene Arten produziert werden.In principle, it is therefore desirable to design and operate direct reduction systems in such a way that they can work both with natural gas-based reducing gas and with hydrogen and mixtures of natural gas-based reducing gas and hydrogen. Depending on the availability of the various reducing gases, production can then take place in different ways.
Bei Betrieb von Direktreduktionsanlagen müssen das Reduktionsgas beziehungsweise die Vorläufer des Reduktionsgases vor dem Eintritt des Reduktionsgases in das Reduktionsaggregat zur Überwindung des Druckverlustes der Anlage komprimiert werden. Bei der Kompression beziehungsweise Verdichtung wird Energie in das zu komprimierende Gas eingebracht, wodurch auch seine Temperatur ansteigt - Kompressoren werden infolgedessen thermisch belastet. Üblicherweise erfolgt Kühlung der Kompressoren unter anderem durch Einspritzung von Wasser in das zu komprimierende Gas oder in den Kompressor.When operating direct reduction systems, the reduction gas or the precursors of the reduction gas must be compressed before the reduction gas enters the reduction unit in order to overcome the pressure loss in the system. During compression or compaction, energy is introduced into the gas to be compressed, which also increases its temperature - compressors are thermally stressed as a result. The compressors are usually cooled, among other things, by injecting water into the gas to be compressed or into the compressor.
Wasserstoff hat im Vergleich zu anderen Reduktionsgasen eine wesentlich geringere Dichte, ein geringes Molekulargewicht und hohe Schallgeschwindigkeit. Das führt dazu, dass an Kompressoren, die zur wirtschaftlichen Kompression von Wasserstoff geeignet sein sollen, andere Anforderungen gestellt werden als an Kompressoren, die dichtere Gase höheren Molekulargewichtes und geringerer Schallgeschwindigkeit - beispielsweise erdgasbasierte Reduktionsgase, bei denen auch das Molekulargewicht in einem relativ engen Bereich liegt - verarbeiten sollen. Bei Betrieb von Direktreduktionsanlagen in einer Weise, dass sie sowohl mit erdgasbasiertem Reduktionsgas als auch mit Wasserstoff sowie Mischungen von erdgasbasiertem Reduktionsgas und Wasserstoff arbeiten können, ist das zu beachten. Wenn die zur wirtschaftlichen Kompression von Wasserstoff geeigneten Kompressoren auch in der Lage sein sollen, andere Gase wirtschaftlich zu komprimieren, und daher einen breiten Molekulargewichtsbereich abdecken sollen - das ist beispielsweise der Fall, wenn Gasgemische von Wasserstoff mit anderen Gasen verwendet werden -, sind diese verschiedenen Anforderungen zu berücksichtigen. Entsprechend besteht Adaptionsbedarf des Gaskompressionssystems bestehender Direktreduktionsanlagen bei zunehmendem Anteil von Wasserstoff in Gasgemischen mit anderen Gasen, beispielsweise erdgasbasierten Reduktionsgasen.Compared to other reducing gases, hydrogen has a much lower density, a low molecular weight and a high speed of sound. As a result, different requirements are placed on compressors that are intended to be suitable for the economical compression of hydrogen than on compressors that process denser gases with a higher molecular weight and lower sound velocity - for example natural gas-based reducing gases, in which the molecular weight is also in a relatively narrow range - should process. When operating of direct reduction plants in such a way that they can work both with natural gas-based reducing gas and with hydrogen as well as mixtures of natural gas-based reducing gas and hydrogen, this must be taken into account. If the compressors suitable for compressing hydrogen economically are also to be able to compress other gases economically and therefore cover a wide range of molecular weights - this is the case, for example, when gas mixtures of hydrogen with other gases are used - these are different requirements to be taken into account. Accordingly, there is a need to adapt the gas compression system of existing direct reduction plants with an increasing proportion of hydrogen in gas mixtures with other gases, for example natural gas-based reduction gases.
Zudem ist bei Verwendung von Wasserstoff die Direktreduktion von oxidischen Erzen/Pellets endotherm. Um für wirtschaftliche Direktreduktion mit hoher Produktivität thermodynamisch notwendigen Wärmebedarf decken und Temperaturbedingungen im Reduktionsschacht sicherstellen zu können, sollte bei Wasserstoffbetrieb eine höhere spezifische Gasmenge - als für die Reduktion erforderlich - an Reduktionsgas als Träger von Wärmeenergie in das Reduktionsaggregat eingebracht werden, um Abkühlung aufgrund der endothermen Reaktionen auszugleichen.
Diese höhere Menge an Reduktionsgas, die zu einem hohen Anteil oder ganz aus Wasserstoff bestehen kann, kann man nach dem Durchlaufen des Reduktionsaggregats rezyklieren, gegebenenfalls unter Aufheizung.
Deshalb sind bei Wasserstoffnutzung im Vergleich zu herkömmlicher Betriebsweise mit exothermer Direktreduktion mit anderen Gasen, beispielsweise erdgasbasierten Reduktionsgasen, größere Reduktionsgasvolumenströme zu komprimieren. Entsprechend besteht Adaptionsbedarf des Gaskompressionssystems bestehender Direktreduktionsanlagen bei zunehmendem Anteil von Wasserstoff in Gasgemischen mit anderen Gasen, beispielsweise erdgasbasierten Reduktionsgasen.In addition, when using hydrogen, the direct reduction of oxidic ores/pellets is endothermic. In order to be able to cover the thermodynamically necessary heat requirement for economical direct reduction with high productivity and to ensure temperature conditions in the reduction shaft, a higher specific gas quantity - than required for the reduction - of reducing gas should be introduced into the reduction unit as a carrier of thermal energy in hydrogen operation in order to cool down due to the endothermic balance reactions.
This larger quantity of reducing gas, which can consist of a high proportion or all of hydrogen, can be recycled after it has passed through the reduction unit, optionally with heating.
Therefore, when using hydrogen, compared to conventional operation with exothermic direct reduction with other gases, for example natural gas-based reducing gases, larger reducing gas volume flows have to be compressed. Accordingly, there is a need to adapt the gas compression system of existing direct reduction plants with an increasing proportion of hydrogen in gas mixtures other gases, for example natural gas-based reducing gases.
Zudem gibt es auch bei geplanter Verwendung von Wasserstoff als alleinigem Reduktionsgas Betriebssituationen wie das Anfahren und Aufwärmen einer Direktreduktionsanlage, in denen nicht Wasserstoff, sondern ein anderes Gas - beispielsweise Stickstoff oder andere Inertgase - mit einem wesentlich höheren Molekulargewicht als Wasserstoff, zu fördern ist. An Kompressoren, die zur wirtschaftlichen Kompression solcher Gase geeignet sein sollen, werden daher auch andere Anforderungen gestellt als an Kompressoren, die Wasserstoff verarbeiten sollen.In addition, even when hydrogen is planned to be used as the sole reducing gas, there are operating situations such as starting up and heating up a direct reduction plant, in which it is not hydrogen but another gas - for example nitrogen or other inert gases - with a significantly higher molecular weight than hydrogen that is to be pumped. Compressors that are intended to be suitable for the economical compression of such gases are therefore subject to different requirements than compressors that are intended to process hydrogen.
Insgesamt ergibt sich also das Problem, dass aufgrund der verschiedenen zu komprimierenden Gase Gaskompression wirtschaftlich über einen breiten Bereich von Gasdichten, Molekulargewichten, Schallgeschwindigkeiten möglich sein soll, wobei gegebenenfalls bestehende, bisher für erdgasbasiertes Reduktionsgas genutzte Gaskompressionsanlagen zumindest teilweise weiter nutzbar sein sollten.Overall, the problem arises that due to the different gases to be compressed, gas compression should be possible economically over a wide range of gas densities, molecular weights, sound speeds, with existing gas compression systems previously used for natural gas-based reducing gas being at least partially usable.
Mit zunehmender Bedeutung der Reduktion mit Wasserstoff wirkt sich Vorhandensein von Wasserdampf im Reduktionsgas zunehmend nachteilig aus, da er das Reduktionspotential des Reduktionsgases verringert. Diese Problematik wird bei Rezirkulierung einer Teilmenge des aus dem Reduktionsaggregat entnommenen Topgases durch mit ansteigendem Wasserstoffanteil - und damit geringeren Erdgaseinsatz - im Reduktionsgas zunehmenden Wasserdampfgehalt des Topgases verschärft. Sie wird auch dadurch verschärft, dass zur Kühlung der Kompressoren Einspritzung von Wasser in das zu komprimierende Gas erfolgt, die notwendige Kühlleistung des Topgaswäschers aufgrund der höheren Gasmenge und höheren Wasserdampfgehaltes ansteigt und die Reduktionsgasqualität, also des Verhältnis von Reduktanten zu Oxidanten (CO+H2)/(CO2+H2O) und H2/H2O zur Kontrolle der Reformierung von Erdgas mit Wasserdampf (CH4+H20 → CO+3H2), der Reduktion und der Produktqualität eingestellt werden können muss.With the increasing importance of reduction with hydrogen, the presence of water vapor in the reducing gas has an increasingly disadvantageous effect, since it reduces the reduction potential of the reducing gas. This problem is exacerbated when a partial quantity of the top gas taken from the reduction unit is recirculated by the increasing hydrogen content—and thus lower use of natural gas—in the reduction gas of the top gas's increasing water vapor content. It is also aggravated by the fact that water is injected into the gas to be compressed to cool the compressors, the necessary cooling capacity of the top gas scrubber increases due to the higher gas volume and higher water vapor content and the reducing gas quality, i.e. the ratio of reductants to oxidants (CO+H2) /(CO2+H2O) and H2/H2O to control steam reforming of natural gas (CH4+H20 → CO+3H2), the reduction and the product quality must be adjustable.
Es ist die Aufgabe der vorliegenden Erfindung, eine Lösung für zumindest einige der vorgenannten Probleme vorzustellen.It is the object of the present invention to provide a solution to at least some of the aforementioned problems.
Die Aufgabe wird gelöst durch eine Direktreduktionsanlage umfassend einen katalytischen Reformer und/oder einen Gasofen sowie eine Gaskompressionsanlage mit einem oder mehreren Kompressoren, wobei die Gaskompressionsanlage zumindest eine, bevorzugterweise zumindest zwei Kompressionsstufen umfasst, und wobei zumindest ein Gaskühler für komprimiertes Gas vorhanden ist, vorzugsweise zumindest hinter der in Flussrichtung des Gases gesehen letzten Kompressionsstufe, dadurch gekennzeichnet, dass
von der Gaskompressionsanlage beziehungsweise dem Gaskühler eine Direkteinleitung zur Einleitung von Gas direkt in den Reformer und/oder in den Gasofen ausgeht,
und an zumindest einem der Kompressoren ein Bypass zur Rückführung zumindest einer Teilmenge des von dem Kompressor komprimierten Gases vorgesehen ist.The object is achieved by a direct reduction plant comprising a catalytic reformer and/or a gas furnace and a gas compression plant with one or more compressors, the gas compression plant comprising at least one, preferably at least two, compression stages, and at least one gas cooler for compressed gas being present, preferably at least behind the last compression stage seen in the flow direction of the gas, characterized in that
from the gas compression system or the gas cooler there is a direct introduction for introducing gas directly into the reformer and/or into the gas furnace,
and a bypass is provided on at least one of the compressors for the recirculation of at least a partial quantity of the gas compressed by the compressor.
Es können ein oder mehrere Gaskühler vorhanden sein, beispielsweise bei Vorhandensein mehrerer Kompressionsstufen hinter jeder Kompressionsstufe ein Gaskühler.
Mittels des Gaskühlers kann Wasserdampf aus dem Gas auskondensiert werden. Entsprechend erlaubt es der Gaskühler, den Wasserdampfgehalt des Reduktionsgases zu vermindern und/oder die Reduktionsgasqualität einzustellen.One or more gas coolers can be present, for example one gas cooler after each compression stage if there are several compression stages.
Water vapor can be condensed out of the gas by means of the gas cooler. Accordingly, the gas cooler makes it possible to reduce the water vapor content of the reduction gas and/or to adjust the quality of the reduction gas.
Die Direktreduktionsanlage umfasst auch zumindest ein Reduktionsaggregat. Sie dient zur Direktreduktion von metalloxidhältigem, beispielsweise eisenoxidhältigem, Erz. Das Reduktionsaggregat kann beispielweise einen Reduktionsschacht, beispielsweise für einen Festbettbetrieb, oder einen Wirbelschichtreaktor oder einen Fließbettreaktor umfassen.The direct reduction system also includes at least one reduction unit. It is used for the direct reduction of ore containing metal oxides, for example containing iron oxide. The reduction unit can, for example, comprise a reduction shaft, for example for fixed-bed operation, or a fluidized-bed reactor or a fluidized-bed reactor.
Nach einer Variante umfasst die Direktreduktionsanlage einen katalytischen Reformer zur Herstellung von Reduktionsgas - beziehungsweise Reduktionsgasvorläufergas, aus dem unter Vornahme weiterer Maßnahmen wie beispielsweise Zumischung zusätzlicher Gase, oder Aufheizung, Reduktionsgas hergestellt wird -; das Reduktionsgas wird in das Reduktionsaggregat eingeleitet, um dort die Direktreduktionsreaktionen zur Herstellung von Eisenschwamm vorzunehmen.According to one variant, the direct reduction system comprises a catalytic reformer for producing reducing gas—or reducing gas precursor gas, from which reducing gas is produced by taking further measures such as, for example, admixing additional gases or heating; the reducing gas is introduced into the reduction unit in order to carry out the direct reduction reactions for the production of sponge iron there.
Nach einer anderen Variante umfasst die Direktreduktionsanlage einen Gasofen; in diesem Fall ist im Gasofen erhitztes Gas Reduktionsgas oder Reduktionsgasvorläufergas. Ein Gasofen ist eine Vorrichtung zur Aufheizung von Gas, beispielsweise von Prozessgas, mittels heißen Rauchgases aus der Verbrennung von Topgas oder Erdgas, oder mittels elektrischer Heizung.According to another variant, the direct reduction plant comprises a gas furnace; in this case gas heated in the gas furnace is reducing gas or reducing gas precursor gas. A gas furnace is a device for heating gas, for example process gas, using hot flue gas from the combustion of top gas or natural gas, or using electrical heating.
Die Direktreduktionsanlage kann auch katalytischen Reformer und Gasofen umfassen. Dabei ist vorzugsweise der Gasofen dem katalytischen Reformer in Gasflussrichtung vorgelagert.The direct reduction plant can also include catalytic reformer and gas furnace. In this case, the gas furnace is preferably upstream of the catalytic reformer in the gas flow direction.
Gemäß der Erfindung wird Gas, das aus der Gaskompressionsanlage beziehungsweise aus dem Gaskühler für komprimiertes Gas austritt, direkt in den katalytischen Reformer zur Reformierung zwecks Herstellung von Reduktionsgas oder Reduktionsgasvorläufergas eingeleitet, und/oder in den Gasofen eingeleitet. Unter direkter Einleitung ist dabei zu verstehen, dass die Einleitung erfolgt, ohne dass der CO2-Gehalt vermindert wird. Gegebenenfalls findet bei direkter Einleitung auch Temperaturerhöhung, beispielsweise in einem Gas-Gas Wärmetauscher, statt. Bei direkter Einleitung findet also keine CO2-Entfernung - beispielsweise mittels chemischer Wäsche - wie beispielsweise MEA Monoethanolamine, KM CDR Kansai Mitsubishi carbon dioxide recovery -, VPSA vacuum pressure swing adsorption oder PSA pressure swing adsorption, statt, es wird also ohne CO2-Entfernung eingeleitet.
Die direkte Einleitung erfolgt über die von der Gaskompressionsanlage beziehungsweise dem Gaskühler ausgehende Direkteinleitung zur Einleitung von Gas direkt in den Reformer und/oder in den Gasofen.
Wenn der Gaskühler hinter der in Flussrichtung des Gases gesehen letzten Kompressionsstufe angeordnet ist, geht die Direkteinleitung vom Gaskühler aus; wenn der Gaskühler nicht hinter der in Flussrichtung des Gases gesehen letzten Kompressionsstufe angeordnet ist, geht die Direkteinleitung von der in Flussrichtung des Gases gesehen letzten Kompressionsstufe aus. Wenn der Gaskühler hinter der in Flussrichtung des Gases gesehen letzten Kompressionsstufe angeordnet ist, ist er nicht als Teil der Gaskompressionsanlage anzusehen; wenn der Gaskühler nicht hinter der in Flussrichtung des Gases gesehen letzten Kompressionsstufe angeordnet ist, ist er als Teil der Gaskompressionsanlage anzusehen.According to the invention, gas exiting the gas compression plant and the compressed gas gas cooler, respectively, is introduced directly into the catalytic reformer for reforming to produce reducing gas or reducing gas precursor gas, and/or into the gas furnace. Direct discharge means that the discharge takes place without the CO2 content being reduced. If necessary, there is also a direct introduction Temperature increase, for example in a gas-gas heat exchanger instead. In the case of direct discharge, there is no CO2 removal - for example by means of chemical washing - such as MEA Monoethanolamine, KM CDR Kansai Mitsubishi carbon dioxide recovery -, VPSA vacuum pressure swing adsorption or PSA pressure swing adsorption, so it is discharged without CO2 removal .
The direct introduction takes place via the direct introduction from the gas compression system or the gas cooler for introducing gas directly into the reformer and/or into the gas furnace.
If the gas cooler is arranged after the last compression stage seen in the flow direction of the gas, the direct discharge starts from the gas cooler; if the gas cooler is not arranged behind the last compression stage seen in the flow direction of the gas, the direct introduction starts from the last compression stage seen in the flow direction of the gas. If the gas cooler is located after the last compression stage, seen in the direction of flow of the gas, it is not to be considered part of the gas compression system; if the gas cooler is not arranged downstream of the last compression stage, viewed in the direction of gas flow, it is to be regarded as part of the gas compression system.
Die Gaskompressionsanlage umfasst einen oder mehrere Kompressoren. Ein Kompressor weist eine Gaseinleitung - für zu komprimierendes Gas - und eine Gasausleitung - für komprimiertes Gas - aus. Mittels Bypass' kann ein Gasstrom am Kompressor vorbei auf die Saugseite zurückgeleitet werden. Erfindungsgemäß ist an zumindest einem der Kompressoren ein seine Gaseinleitung und Gasausleitung verbindender Bypass zur Rückführung zumindest einer Teilmenge des von dem Kompressor komprimierten Gases vorgesehen. Der Bypass zweigt in Flussrichtung des Gases gesehen hinter dem Kompressor von der Gasausleitung ab und mündet vor dem Kompressor in die Gaseinleitung ein.
Durch diesen Bypass ist eine exakte Regelung der Reduktionsgasmenge möglich, falls die gewünschte Reduktionsgasmenge nicht mit der Fördermenge der Kompressoren übereinstimmt. Im Falle von Drehzahlregelung eines Kompressors oder mehrere Kompressoren kann der Fall eintreten, dass die für den Kompressor minimale Drehzahl nicht unterschritten werden darf - beispielsweise 30% der nominellen Drehzahl - aus Gründen der Kompressor- und/oder Motorschmierung oder Kompressor- und/oder Motorkühlung. Wenn ein Kompressor grundsätzlich so ausgelegt ist, die für reinen Wasserstoffbetrieb notwendigen Gasmengen komprimieren zu können, wird ein Betrieb selbst bei Minimaldrehzahl bei Mischungen von Wasserstoff mit beispielsweise Erdgas gegebenenfalls noch zu hohe Volumina fördern; um bei Einhaltung der Minimaldrehzahl trotzdem nicht zu viel Gas zu fördern, kann mittels Bypass ein Anteil des komprimierten Gases zurückgeführt werden und so eine Variation der Fördermenge erreicht werden.The gas compression system includes one or more compressors. A compressor has a gas inlet - for gas to be compressed - and a gas outlet - for compressed gas. By means of a bypass, a gas flow can be routed past the compressor and back to the suction side. According to the invention, at least one of the compressors is provided with a bypass connecting its gas inlet and gas outlet for the recirculation of at least a partial quantity of the gas compressed by the compressor. The bypass branches off behind the compressor, viewed in the flow direction of the gas Gas outlet and flows into the gas inlet in front of the compressor.
This bypass enables the reduction gas quantity to be regulated precisely if the desired reduction gas quantity does not match the delivery quantity of the compressors. In the case of speed control of a compressor or several compressors, it may happen that the minimum speed for the compressor must not be undershot - for example 30% of the nominal speed - for reasons of compressor and/or engine lubrication or compressor and/or engine cooling. If a compressor is basically designed to be able to compress the gas quantities required for pure hydrogen operation, operation even at minimum speed with mixtures of hydrogen with natural gas, for example, may still pump volumes that are too high; In order not to deliver too much gas while maintaining the minimum speed, a portion of the compressed gas can be returned by means of a bypass and thus a variation in the delivery rate can be achieved.
Vorzugsweise weist zumindest ein Gaskühler einen Bypass auf. Ein Gaskühler weist eine Gaseinleitung und eine Gasausleitung aus. Mittels Bypass' kann ein Gasstrom am Gaskühler vorbei geleitet werden, ohne ihn zu durchlaufen. Die Bypassleitung zweigt in Flussrichtung des Gases gesehen vor dem Gaskühler von der Gaseinleitung ab und mündet nach dem Gaskühler in die Gasausleitung ein.
Auf diese Weise kann der Wasserdampfgehalt des Reduktionsgases einfach variiert werden. Das Gas, welches durch die Bypassleitung strömt, wird nicht im Gaskühler gekühlt. Je nachdem, wie ein Gasstrom bezüglich Durchlaufens des Gaskühlers beziehungsweise der Bypassleitung aufgeteilt wird, wird nach der Vereinigung der Wasserdampfgehalt verschieden sein. Wenn beispielsweise ein Gasstrom zu 90% in eine erste, den Gaskühler durchlaufende Teilmenge, und zu 10% in eine zweite, die Bypassleitung durchlaufende Teilmenge aufgeteilt wird, liegt nach der Wiedervereinigung der beiden Teilströme hinter dem Gaskühler ein geringerer Wasserdampfgehalt vor, als wenn die Mengenverhältnisse umgekehrt wären - denn im Gaskühler wird im ersten Fall mehr Wasser auskondensiert und aus dem Gasstrom entfernt werden als im zweiten Fall.
Im Erdgasbetrieb wird wenig bis kein Gas über die Bypassleitung gefahren. Im reinen H2 Betrieb wird hingegen der Großteil des Gases über den Gaskühler geleitet.At least one gas cooler preferably has a bypass. A gas cooler has a gas inlet and a gas outlet. By means of a bypass, a gas stream can be routed past the gas cooler without passing through it. Viewed in the flow direction of the gas, the bypass line branches off from the gas inlet before the gas cooler and opens into the gas outlet after the gas cooler.
In this way, the water vapor content of the reducing gas can be easily varied. The gas flowing through the bypass line is not cooled in the gas cooler. Depending on how a gas flow is divided with regard to passing through the gas cooler or the bypass line, the water vapor content will be different after the combination. For example, if a gas stream is divided 90% into a first portion passing through the gas cooler and 10% into a second portion passing through the bypass line, after the two have been reunited Partial streams downstream of the gas cooler have a lower water vapor content than if the quantitative ratios were reversed - because in the gas cooler more water is condensed out and removed from the gas stream in the first case than in the second case.
In natural gas operation, little or no gas is fed through the bypass line. In pure H2 operation, on the other hand, the majority of the gas is routed through the gas cooler.
In der erfindungsgemäßen Direktreduktionsanlage sind vorzugsweise auch eine oder mehrere Vorrichtungen zur Einspritzung von Wasser in einen zu komprimierenden Gasstrom oder in den Kompressor vorhanden; mit ihnen kann Kühlung der Kompressoren und/oder Einstellung des Wasserdampfgehaltes vorgenommen werden.In the direct reduction plant according to the invention there are preferably also one or more devices for injecting water into a gas stream to be compressed or into the compressor; they can be used to cool the compressors and/or adjust the water vapor content.
Vorzugsweise weist die Gaskompressionsanlage eine Vorrichtung zum Steuern- und/oder Regeln des Wasserdampfgehaltes im aus der Gaskompressionsanlage austretenden Gasstrom auf.
So eine Vorrichtung kann beispielsweise auf die Verteilung eines Gasstromes zwischen Gaskühler und seinem Bypass wirken, oder auf eine Vorrichtung zur Einspritzung von Wasser in einen zu komprimierenden Gasstrom oder in den Kompressor, oder auf die Zugabe von Dampf in einen aus einem Kompressor austretenden Gasstrom, oder auf die Kühlmedium-Temperatur des Gaskühlers - bei mit Kühlmedium, beispielsweise Kühlwasser, betriebenen Gaskühlern beeinflusst die Kühlmediumtemperatur den Wasserdampfgehalt -, beziehungsweise kann sie - beispielsweise über entsprechende Sensoren, Datenverarbeitungsvorrichtungen, Aktuatoren, Ventile et cetera - diesbezügliche Steuer- und/oder Regelsignale empfangen und/oder verarbeiten und/oder ausgeben.
Vorzugsweise ist eine auch Vorrichtung zum Steuern und/oder Regeln des aus der Gaskompressionsanlage austretenden Gasstromes - der beispielsweise in einen katalytischen Reformer oder den Gasofen eingeleitet wird - mittels Flussmessungen dieses Gasstromes und Einwirkung auf einen oder mehrere Kompressoren, bevorzugt Frequenzumrichter-Verdrängungsverdichtungskompressoren, vorhanden.The gas compression system preferably has a device for controlling and/or regulating the water vapor content in the gas stream exiting the gas compression system.
Such a device can act, for example, on the distribution of a gas stream between the gas cooler and its bypass, or on a device for injecting water into a gas stream to be compressed or into the compressor, or on the addition of steam into a gas stream exiting a compressor, or on the cooling medium temperature of the gas cooler - in the case of gas coolers operated with cooling medium, for example cooling water, the cooling medium temperature influences the water vapor content - or it can - for example via corresponding sensors, data processing devices, actuators, valves et cetera - receive relevant control and/or regulation signals and /or process and/or output.
A device for controlling and/or regulating the gas flow emerging from the gas compression system—which is introduced, for example, into a catalytic reformer or the gas furnace—is preferably also a device for controlling and/or regulating the gas flow by means of flow measurements of this gas flow and acting on a or multiple compressors, preferably variable frequency drive positive displacement compressors.
Die Gaskompressionsanlage umfasst einen oder mehrere Kompressoren. Bevorzugt handelt es sich bei sämtlichen Kompressoren der Gaskompressionsanlage um Verdrängungsverdichtungskompressoren - Englisch: positive displacement compressors. Bevorzugt sind dabei Rotationskolbenverdichter - Englisch: rotary lobe compressors -, es kann sich aber auch um andere Arten wie Hubkolbenverdichter - Englisch: reciprocating compressors-oder Schraubenverdichter - Englisch: screw compressors -, Zellenradverdichter oder Wankelverdichter handeln. Verdrängungsverdichtungskompressoren passen sich an Veränderungen der Betriebsbedingungen, wie zum Beispiel, Gaszusammensetzung, Eintritts- und Austrittstemperatur, etc., unter entsprechenden Änderungen bis zum Erreichen der Einsatzgrenzen problemlos an, wobei der Austrittsdruck aber nicht wesentlich von der Gaszusammensetzung und somit der Schallgeschwindigkeit wie bei Radialverdichtern abhängig ist.The gas compression system includes one or more compressors. All of the compressors in the gas compression system are preferably positive displacement compressors. Preference is given to rotary lobe compressors, but other types such as reciprocating compressors or screw compressors, cellular wheel compressors or Wankel compressors can also be used. Positive displacement compressors easily adapt to changes in the operating conditions, such as gas composition, inlet and outlet temperature, etc., with corresponding changes until the application limits are reached, whereby the outlet pressure is not significantly dependent on the gas composition and thus the speed of sound as with centrifugal compressors is.
Verdrängungsverdichtungskompressoren weisen in der Regel Schalldämpfer auf. Bevorzugt ist es, dass zumindest einer der Gaskühler in einem Schalldämpfer eines Verdrängungsverdichtungskompressors integriert ist. Das senkt den Platzbedarf und führt zu geringeren Kosten, das nur ein Druckbehälter erforderlich ist.Positive displacement compressors typically have mufflers. It is preferred that at least one of the gas coolers is integrated in a muffler of a positive displacement compressor. This reduces the space requirement and leads to lower costs, as only one pressure vessel is required.
Bevorzugt weist die Gaskompressionsanlage in zumindest einer Kompressionsstufe einen oder mehrere Frequenzumrichter-Verdrängungsverdichtungskompressoren auf.The gas compression system preferably has one or more frequency converter positive displacement compressors in at least one compression stage.
Ein Frequenzumrichter-Verdrängungsverdichterkompressor hat eine Drehzahlregelung mittels Frequenzumrichterregelung - auf Englisch: speed control via VFD control -; der geförderte Volumenstrom des Gases ist im Wesentlichen proportional zur Drehzahl des Verdichters, die über die Frequenz der Wechselspannung geregelt wird. Ein Frequenzumrichter-Verdrängungsverdichtungskompressor kann mit verschiedenen Drehzahlen betrieben werden, die leicht änderbar sind durch Einstellung der Frequenz mittels Frequenzumrichter. In der Regel werden Verdrängungsverdichtungskompressoren mit einer fixen Drehzahl beziehungsweise innerhalb eines schmalen Bereiches von Drehzahlen betrieben; damit können sie auch nur für einen schmalen Bereich von Gasdichten, Molekulargewichten, Schallgeschwindigkeiten, Gasvolumenströmen wirtschaftlich sinnvoll betrieben werden. Ein Frequenzumrichter-Verdrängungsverdichtungskompressor hingegen erlaubt aufgrund des Frequenzumrichters Betrieb in einem vergleichsweise breiteren Spektrum von Drehzahlen und kann daher für einen breiteren Bereich von Gasvolumenströmen, Gasdichten, Molekulargewichten, Schallgeschwindigkeiten wirtschaftlich sinnvoll betrieben werden.A VFD positive displacement compressor has speed control via VFD control - in English: speed control via VFD control -; the pumped volume flow of the gas is essentially proportional to the speed of the compressor, which is controlled via the frequency of the AC voltage. A variable frequency drive positive displacement compressor can be operated at different speeds, which can be easily changed by adjusting the frequency using a frequency converter. Typically, positive displacement compressors are operated at a fixed speed or within a narrow range of speeds; this means that they can only be operated in an economically viable manner for a narrow range of gas densities, molecular weights, sound speeds and gas volume flows. A frequency converter positive displacement compressor, on the other hand, allows operation in a comparatively broader range of speeds due to the frequency converter and can therefore be operated in an economically viable manner for a broader range of gas volume flows, gas densities, molecular weights, sound speeds.
Das Vorhandensein eines Frequenzumrichter-Verdrängungsverdichtungskompressors erlaubt es also, auf zunehmenden Wasserstoffgehalt des Reduktionsgases zu reagieren, da sein Betrieb hinsichtlich Änderungen bei Gasdichten, Molekulargewichten, Schallgeschwindigkeiten, Gasvolumenströmen leicht adaptiert werden kann. Eine kontinuierliche Erhöhung des Wasserstoffgehaltes beziehungsweise der Gasvolumenströme ist möglich, da zur Adaptierung lediglich eine Erhöhung der Verdichtungsfrequenz mittels Steuerung und/oder Regelung des Frequenzumrichters notwendig ist.The presence of a variable frequency drive positive displacement compressor thus makes it possible to respond to increasing hydrogen content of the reducing gas, since its operation can be easily adapted to changes in gas densities, molecular weights, sound velocities, gas flow rates. A continuous increase in the hydrogen content or the gas volume flows is possible, since only an increase in the compression frequency by means of control and/or regulation of the frequency converter is necessary for the adaptation.
In den Kompressionsstufen gegebenenfalls schon vorhandene Kompressoren können beibehalten und um Frequenzumrichter-Verdichtungskompressoren ergänzt werden. Auf diese Weise ist die Adaptierung von bestehenden, mit erdgasbasiertem Reduktionsgas arbeitenden Direktreduktionsanlagen für Wasserstoffbetrieb einfach, kostengünstig und ressourcenschonend zu realisieren.Compressors that may already be present in the compression stages can be retained and supplemented with frequency converter compression compressors. In this way, the adaptation of existing direct reduction systems working with natural gas-based reducing gas for hydrogen operation can be implemented easily, cost-effectively and in a resource-saving manner.
Der oder die Frequenzumrichter-Verdrängungsverdichtungskompressoren können in den Kompressionsstufen parallel oder seriell zueinander beziehungsweise zu andersartigen Kompressoren geschaltet sein.The variable frequency drive positive displacement compressor or compressors can be in the Compression stages can be connected in parallel or in series with one another or with other types of compressors.
Eine Variation der Fördermenge über Frequenzumrichtung ist stromsparender als eine Variation der Fördermenge mittels Bypass'.
Eine Variation mittels Bypass' und eine Variation über Frequenzumrichtung können sich jedoch gut ergänzen, beispielsweise in Übergangsbereichen, in denen die Frequenzregelung wegen Mindestdrehzahlbeschränkungen nicht weiter herunterregeln kann, oder beim Anfahren von Volumenförderern.Varying the flow rate via frequency conversion is more energy-efficient than varying the flow rate by means of a bypass.
However, a variation by means of a bypass and a variation via frequency conversion can complement each other well, for example in transitional areas in which the frequency control cannot be further reduced due to minimum speed restrictions, or when starting up volume conveyors.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist ein Verfahren zum Betrieb einer Direktreduktionsanlage umfassend einen katalytischen Reformer und/oder einen Gasofen sowie eine Gaskompressionsanlage mit einem oder mehreren Kompressoren, wobei die Gaskompressionsanlage zumindest eine Kompressionsstufe umfasst, und wobei zumindest ein Gaskühler für komprimiertes Gas vorhanden ist, wobei nach Gaskompression Reduktionsgas in ein Reduktionsaggregat eingeleitet wird, dadurch gekennzeichnet, dass Kühlung zumindest einer Teilmenge des komprimierten Gases erfolgt, vorzugsweise zumindest nach der in Richtung Reduktionsaggregat gesehen letzten Gaskompression, und komprimiertes Gas aus der Gaskompressionsanlage oder dem Gaskühler direkt in den Reformer und/oder den Gasofen eingeleitet wird,
und zumindest zeitweilig eine Teilmenge eines von einem Kompressor komprimierten Gases mittels Bypass rückgeführt wird.Another subject matter of the present application is a method for operating a direct reduction plant comprising a catalytic reformer and/or a gas furnace and a gas compression plant with one or more compressors, the gas compression plant comprising at least one compression stage and at least one gas cooler for compressed gas being present wherein after gas compression, reducing gas is introduced into a reduction unit, characterized in that at least a portion of the compressed gas is cooled, preferably at least after the last gas compression viewed in the direction of the reduction unit, and compressed gas from the gas compression system or the gas cooler directly into the reformer and/or the gas furnace is initiated,
and at least temporarily a subset of a gas compressed by a compressor is recirculated by means of a bypass.
Mit so einem Verfahren kann beispielsweise eine Direktreduktionsanlage wie vorab beschrieben betrieben werden.With such a method, for example, a direct reduction plant can be operated as described above.
Die Rückführung einer Teilmenge eines von einem Kompressor komprimierten Gases mittels Bypass erfolgt zu der Saugseite des Kompressors.A partial quantity of a gas compressed by a compressor is recirculated by means of a bypass to the suction side of the compressor.
In der Gaskompressionsanlage wird Gas komprimiert, dabei wird komprimiertes Gas erzeugt. Das komprimierte Gas wird im Gaskühler gekühlt. Das komprimierte Gas ist Reduktionsgas oder Reduktionsgasvorläufergas.Gas is compressed in the gas compression system, and compressed gas is produced in the process. The compressed gas is cooled in the gas cooler. The compressed gas is reducing gas or reducing gas precursor gas.
Vorzugsweise wird zumindest zeitweilig eine Teilmenge eines zu einem Gaskühler geleiteten komprimierten Gases mittels Bypass an dem Gaskühler vorbeigeführt.
Beispielsweise wird von 100 m3 komprimiertem Gas eine Teilmenge von 80 m3 in einem Gaskühler gekühlt, während 20 m3 nicht gekühlt werden; diese 20 m3 werden beispielsweise über einen Bypass an dem Gaskühler, der die 80 m3 kühlt, vorbeigeleitet.Preferably, at least temporarily, a subset of a compressed gas routed to a gas cooler is routed past the gas cooler by means of a bypass.
For example, from 100 m3 of compressed gas, a portion of 80 m3 is cooled in a gas cooler, while 20 m3 is not cooled; these 20 m3 are routed past the gas cooler, which cools the 80 m3, via a bypass, for example.
Vorzugsweise erfolgt Steuerung und/oder Regelung des Wasserdampfgehaltes des bei der Gaskompression erhaltenen Gasstromes, bevorzugt durch Einspritzung von Wasser in einen zu komprimierenden Gasstrom oder in einen Kompressor. Mittels Vorrichtungen zur Einspritzung von Wasser in einen zu komprimierenden Gasstrom oder in den Kompressor kann Einstellung des Wasserdampfgehaltes vorgenommen werden; somit sind solche Vorrichtungen nicht nur zur Kühlung der Kompressoren einsetzbar, sondern auch zur Steuerung und/oder Regelung des Wasserdampfgehaltes.The water vapor content of the gas flow obtained during the gas compression is preferably controlled and/or regulated, preferably by injecting water into a gas flow to be compressed or into a compressor. The water vapor content can be adjusted by means of devices for injecting water into a gas stream to be compressed or into the compressor; thus, such devices can be used not only for cooling the compressors, but also for controlling and/or regulating the water vapor content.
Vorzugsweise erfolgt Gaskompression in zumindest einer Kompressionsstufe mittels Frequenzumrichter-Verdrängungsverdichtungskompressor.Gas compression preferably takes place in at least one compression stage by means of a frequency converter positive displacement compressor.
Nachfolgend wird die vorliegende Erfindung anhand mehrerer schematischer Figuren beispielhaft beschrieben.
-
Figur 1 zeigt schematisch eine erfindungsgemäße Direktreduktionsanlage. -
Figuren 2 zeigt schematisch Details einer Gaskompressionsanlage. -
Figuren 3 zeigt schematisch Integration eines Gaskühlers in einen Schalldämpfer.
-
figure 1 shows schematically a direct reduction plant according to the invention. -
figures 2 shows schematically details of a gas compression system. -
Figures 3 shows a schematic integration of a gas cooler in a silencer.
Dargestellt ist auch ein vorhandener katalytischer Reformer 60, in den in der Gaskompressionsanlage komprimiertes Gas über Direkteinleitung 70 direkt eingeleitet wird. Prinzipiell könnte das Element mit Bezugszeichen 60 auch einen Gasofen darstellen.An existing
Das erfindungsgemäße Detail, dass an zumindest einem der Kompressoren ein Bypass zur Rückführung zumindest einer Teilmenge des von dem Kompressor komprimierten Gases vorgesehen ist, wird in
Als Vorrichtung zur Steuerung und/oder Regelung des Wasserdampfgehaltes des bei der Gaskompression erhaltenen Gasstromes ist eine Vorrichtung 160 zur Einspritzung von Wasser in einen zu komprimierenden Gasstrom oder in einen Kompressor ist ebenfalls schematisch dargestellt.
Bei den dargestellten Kompressoren handelt es sich pro Kompressionsstufe um einen Frequenzumrichter-Verdrängungsverdichtungskompressor 171, 171.
As a device for controlling and / or regulating the water vapor content of the gas stream obtained during gas compression is a
The compressors shown are variable frequency drive
Selbstverständlich können grundsätzlich auch Vorrichtungen zum computerimplementierten Betreiben einer erfindungsgemäßen Direktreduktionsanlage beziehungsweise eines erfindungsgemäßen Verfahrens vorhanden sein; zur besseren Übersichtlichkeit wurde auf deren Darstellung in den Figuren verzichtet.Of course, in principle, devices for computer-implemented operation of a direct reduction plant according to the invention or a method according to the invention can also be present; for the sake of clarity, they are not shown in the figures.
- 1010
- Direktreduktionsanlagedirect reduction plant
- 2020
- Metalloxidhaltiges Materialmetal oxide containing material
- 3030
- Reduktionsaggregatreduction unit
- 4040
- Reduktionsgasleitungreducing gas line
- 5050
- Gaskompressionsanlagegas compression plant
- 5151
- Gaskühlergas cooler
- 5252
- Vorrichtung zum Steuern und/oder Regeln des WasserdampfgehaltesDevice for controlling and/or regulating the water vapor content
- 6060
- Katalytischer ReformerCatalytic Reformer
- 7070
- Direkteinleitungdirect discharge
- 8080
- Gaskompressionsanlagegas compression plant
- 9090
- Gaskühlergas cooler
- 100100
- Bypassbypass
- 110110
- Gaseinleitunggas discharge
- 120120
- Gasausleitunggas discharge
- 130130
- Bypassbypass
- 140140
- Gasausleitunggas discharge
- 150150
- Gaseinleitunggas discharge
- 160160
- Vorrichtung zur Einspritzung von Wasser in einen zu komprimierenden Gasstrom oder in einen KompressorDevice for injecting water into a gas flow to be compressed or into a compressor
- 170170
- Frequenzumrichter-VerdrängungsverdichtungskompressorVariable speed drive positive displacement compressor
- 171171
- Frequenzumrichter-VerdrängungsverdichtungskompressorVariable speed drive positive displacement compressor
- 180180
- Gaskühlergas cooler
- 190190
- Schalldämpfersilencer
- 191191
- Schalldämpfteilsilencer part
- 200200
- Verdrängungsverdichtungskompressorpositive displacement compressor
- 210210
- Kompressionsteilcompression part
- 220220
- Kühlwassereinlasscooling water inlet
- 230230
- Packungpack
- 240240
- Kühlwasserauslasscooling water outlet
- 250250
- Kondensatabflusscondensate drain
- 260260
- Querschnittsverengungconstriction
Claims (10)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21189193.2A EP4130298A1 (en) | 2021-08-02 | 2021-08-02 | Gas compression in hydrogen-based direct reduction |
EP22758232.7A EP4381109A1 (en) | 2021-08-02 | 2022-08-01 | Gas compression in hydrogen-based direct reduction |
PCT/EP2022/071573 WO2023012114A1 (en) | 2021-08-02 | 2022-08-01 | Gas compression in hydrogen-based direct reduction |
MX2024001393A MX2024001393A (en) | 2021-08-02 | 2022-08-01 | Gas compression in hydrogen-based direct reduction. |
CN202280053864.2A CN117836434A (en) | 2021-08-02 | 2022-08-01 | Gas compression in hydrogen-based direct reduction |
AU2022323317A AU2022323317A1 (en) | 2021-08-02 | 2022-08-01 | Gas compression in hydrogen-based direct reduction |
CA3226840A CA3226840A1 (en) | 2021-08-02 | 2022-08-01 | Gas compression in hydrogen-based direct reduction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21189193.2A EP4130298A1 (en) | 2021-08-02 | 2021-08-02 | Gas compression in hydrogen-based direct reduction |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4130298A1 true EP4130298A1 (en) | 2023-02-08 |
Family
ID=77179924
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21189193.2A Withdrawn EP4130298A1 (en) | 2021-08-02 | 2021-08-02 | Gas compression in hydrogen-based direct reduction |
EP22758232.7A Pending EP4381109A1 (en) | 2021-08-02 | 2022-08-01 | Gas compression in hydrogen-based direct reduction |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22758232.7A Pending EP4381109A1 (en) | 2021-08-02 | 2022-08-01 | Gas compression in hydrogen-based direct reduction |
Country Status (6)
Country | Link |
---|---|
EP (2) | EP4130298A1 (en) |
CN (1) | CN117836434A (en) |
AU (1) | AU2022323317A1 (en) |
CA (1) | CA3226840A1 (en) |
MX (1) | MX2024001393A (en) |
WO (1) | WO2023012114A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3748120A (en) * | 1971-04-15 | 1973-07-24 | Midland Ross Corp | Method of and apparatus for reducing iron oxide to metallic iron |
US20140217653A1 (en) * | 2011-09-13 | 2014-08-07 | Siemens Vai Metals Technologies Gmbh | System for energy optimization in a plant for producing direct-reduced metal ores |
CN107058664A (en) * | 2017-05-25 | 2017-08-18 | 江苏省冶金设计院有限公司 | A kind of system and method by direct reduction in shaft furnace |
CA3129493A1 (en) * | 2019-02-13 | 2020-08-20 | Danieli & C. Officine Meccaniche S.P.A. | Direct reduction system and related process |
-
2021
- 2021-08-02 EP EP21189193.2A patent/EP4130298A1/en not_active Withdrawn
-
2022
- 2022-08-01 AU AU2022323317A patent/AU2022323317A1/en active Pending
- 2022-08-01 CN CN202280053864.2A patent/CN117836434A/en active Pending
- 2022-08-01 WO PCT/EP2022/071573 patent/WO2023012114A1/en active Application Filing
- 2022-08-01 EP EP22758232.7A patent/EP4381109A1/en active Pending
- 2022-08-01 MX MX2024001393A patent/MX2024001393A/en unknown
- 2022-08-01 CA CA3226840A patent/CA3226840A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3748120A (en) * | 1971-04-15 | 1973-07-24 | Midland Ross Corp | Method of and apparatus for reducing iron oxide to metallic iron |
US20140217653A1 (en) * | 2011-09-13 | 2014-08-07 | Siemens Vai Metals Technologies Gmbh | System for energy optimization in a plant for producing direct-reduced metal ores |
CN107058664A (en) * | 2017-05-25 | 2017-08-18 | 江苏省冶金设计院有限公司 | A kind of system and method by direct reduction in shaft furnace |
CA3129493A1 (en) * | 2019-02-13 | 2020-08-20 | Danieli & C. Officine Meccaniche S.P.A. | Direct reduction system and related process |
Also Published As
Publication number | Publication date |
---|---|
WO2023012114A1 (en) | 2023-02-09 |
MX2024001393A (en) | 2024-02-27 |
AU2022323317A1 (en) | 2024-01-25 |
EP4381109A1 (en) | 2024-06-12 |
CA3226840A1 (en) | 2023-02-09 |
CN117836434A (en) | 2024-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010057767A9 (en) | Method and device for producing a raw synthesis gas | |
EP1836125A1 (en) | Method for producing hydrogen and power from a synthesis gas | |
DD153701A5 (en) | METHOD AND APPARATUS FOR REDUCING IRON OXIDE TO METALIZED IRON | |
DE102012014094A1 (en) | Method and plant for generating a H2 product stream and a CO product stream | |
DE3586161T2 (en) | METHOD FOR THE SYNTHESIS OF AMMONIA. | |
EP4097051A1 (en) | Process for ammonia synthesis and plant for preparation of ammonia | |
DE2405898B2 (en) | Process for the production of metal sponge | |
EP2496519B1 (en) | Method for producing nitric acid by means of a load-controllable production system | |
DE60113457T2 (en) | METHOD AND DEVICE FOR PRODUCING HEAVY WATER | |
DE102014114343B4 (en) | Process for the combined production of pig iron and an organic chemical product based on synthesis gas | |
EP4130298A1 (en) | Gas compression in hydrogen-based direct reduction | |
EP2598618B1 (en) | Method for producing substitute natural gas | |
EP2398574B1 (en) | Method and apparatus for separating a gaseous component | |
AT17155U1 (en) | Direct reduction system and associated process | |
EP3679165A1 (en) | Reduction gas extraction from saturated top gas | |
DE102017201681A1 (en) | Process for the treatment of a synthesis gas stream | |
WO2022253683A1 (en) | Method for the direct reduction of iron ore | |
DE69801883T2 (en) | OXYGEN AND NITROGEN ADDITIVES TO INCREASE THE YIELD OF PRODUCING AMMONIA | |
DE3881600T2 (en) | Chemical processes with exothermic reactions. | |
DD295741A7 (en) | METHOD FOR CONTROLLING THE METHANE AND EDEL GAS CONTENT OF AN AMMONIA-HYDROGEN RECYCLING-EDELGAS COMPLEX | |
BE1029985B1 (en) | Process for the synthesis of ammonia and plant for the production of ammonia | |
BE1029986B1 (en) | Method for operating an ammonia plant and plant for the production of ammonia | |
DE102021213799A1 (en) | Method for operating an ammonia plant and plant for the production of ammonia | |
WO2013153163A1 (en) | Method and device for producing liquid pig iron and/or sponge iron | |
WO2012136451A1 (en) | Device for producing synthesis gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20230809 |