EP4128326A2 - Method for contacting a power semiconductor with a substrate, and power semiconductor module having a power semiconductor and a substrate - Google Patents

Method for contacting a power semiconductor with a substrate, and power semiconductor module having a power semiconductor and a substrate

Info

Publication number
EP4128326A2
EP4128326A2 EP21725421.8A EP21725421A EP4128326A2 EP 4128326 A2 EP4128326 A2 EP 4128326A2 EP 21725421 A EP21725421 A EP 21725421A EP 4128326 A2 EP4128326 A2 EP 4128326A2
Authority
EP
European Patent Office
Prior art keywords
power semiconductor
substrate
sintered
layer
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21725421.8A
Other languages
German (de)
French (fr)
Inventor
Claus Florian Wagner
Michael Woiton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP4128326A2 publication Critical patent/EP4128326A2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the bump preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/111Manufacture and pre-treatment of the bump connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1131Manufacturing methods by local deposition of the material of the bump connector in liquid form
    • H01L2224/1132Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11332Manufacturing methods by local deposition of the material of the bump connector in solid form using a powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • H01L2224/11901Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • H01L2224/11901Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • H01L2224/11902Multiple masking steps
    • H01L2224/11903Multiple masking steps using different masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13157Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13169Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/1318Molybdenum [Mo] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13199Material of the matrix
    • H01L2224/13294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/132 - H01L2224/13291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1412Layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27332Manufacturing methods by local deposition of the material of the layer connector in solid form using a powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27334Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/27848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/279Methods of manufacturing layer connectors involving a specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/279Methods of manufacturing layer connectors involving a specific sequence of method steps
    • H01L2224/27901Methods of manufacturing layer connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/279Methods of manufacturing layer connectors involving a specific sequence of method steps
    • H01L2224/27901Methods of manufacturing layer connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • H01L2224/27902Multiple masking steps
    • H01L2224/27903Multiple masking steps using different masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29157Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29169Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/2918Molybdenum [Mo] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • H01L2224/3001Structure
    • H01L2224/3003Layer connectors having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • H01L2224/3005Shape
    • H01L2224/30051Layer connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • H01L2224/301Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • H01L2224/301Disposition
    • H01L2224/3012Layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • H01L2224/301Disposition
    • H01L2224/3012Layout
    • H01L2224/3016Random layout, i.e. layout with no symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8184Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Definitions

  • the invention relates to a method for making contact with a power semiconductor on a substrate.
  • the invention also relates to a power semiconductor module with a power semiconductor and a substrate.
  • the invention also relates to a power converter with at least one power semiconductor module of this type.
  • semiconductor components for example switching elements
  • a converter is to be understood as meaning, for example, a rectifier, an inverter, a converter or a DC voltage converter.
  • switching elements are, for example, transistors, in particular as insulated gate bipolar transistors (IGBTs), as metal oxide semiconductor field effect transistors (MOSFETs) or as field effect transistors.
  • IGBTs insulated gate bipolar transistors
  • MOSFETs metal oxide semiconductor field effect transistors
  • the semiconductor components are usually contacted by means of specific wire bonding technologies and the power modules are attached to a circuit carrier, for example by means of soldering, spring or press connections.
  • the use of bonding wires limits the maximum permissible current density.
  • bonding wires generate parasitic inductances, which limit a maximum achievable switching speed of the switching elements.
  • the laid-open specification EP 3 105 784 A1 describes a method for mounting an electrical component on a substrate. Joining is simplified by a hood in that a contacting structure is provided in this hood and this is joined simultaneously with an additional material when the hood is placed on different joint levels.
  • the laid-open specification DE 2020 12 004 434 Ul describes a shaped metal body to create a connection of a power semiconductor with potential surfaces on the top to form thick wires or ribbons, characterized by a shaped metal body (6a, 6b) that protrudes above one or more potential surfaces, and from which electrical from the rest Metal molded body is separated at least one segment (6b), which extends from a contacting section on a potential surface of the power semiconductor to a laterally spaced apart fastening section for thick wires.
  • the laid-open specification DE 102014 222 819 A1 describes a method for forming a power semiconductor contact structure in a power semiconductor module, which has a substrate and a molded metal body.
  • the formation of the power semiconductor contact structure is first carried out by applying a layer of sintered material with a locally varying thickness on either the shaped metal body or the substrate, followed by sintering the contacting film with the substrate via the properties of the sintered material layer which promote the connection, the contacting film corresponding to the varying thickness of the layer of sintered material gets its shape pronounced.
  • the laid-open specification US 2018/0374813 A1 describes an arrangement with at least one first element that comprises at least one first electrical contacting field; at least one second element which comprises at least one second electrical contact-making field; electrical and mechanical connection means, the electrical and mechanical connection means comprising at least: at least one first metallic interconnection element on the surface of at least the first electrical contact pad; at least one sintered compound of metallic microparticles or nanoparticles, which is stacked with the first metallic interconnection element; where the melting point of the first metallic interconnection elements is higher than the sintering temperature of the metallic microparticles or nanoparticles.
  • EP 0242 626 A2 describes a process for fastening electronic components on a substrate by pressure sintering.
  • the object is achieved according to the invention by a method for contacting a power semiconductor on a substrate, the power semiconductor having at least two electrically isolated contact areas on a side facing the substrate, the at least two electrically isolated contact areas of the power semiconductor using a structured metallic, connecting layer, which comprises at least two essentially closed sintered layers, are firmly bonded to the substrate, the essentially closed sintered layers being applied via a template
  • a first sintered layer is applied to the substrate and at least partially dried, at least one second sintered layer being applied to the first sintered layer and at least partially dried, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer , in particular by pressing, and then by sintering the at least two sintered layers firmly bonded to the substrate, the first sintered layer being applied using a first template, the second sintered layer being applied using a second template and the second template is thicker than the first stencil.
  • the object is achieved according to the invention by a method for producing a power semiconductor module with a power semiconductor and a substrate, the power semiconductor having at least two electrically isolated contact areas on a side facing the substrate, the at least two electrically isolated contact areas of the power semiconductor by means of a structured metallic connecting layer, which comprises at least two essentially closed sintered layers, are materially connected to the substrate, wherein the essentially closed sintered layers are applied via a template, wherein a first sintered layer is applied to the substrate and at least partially dried, wherein at least one second sintered layer is applied to a transfer unit and at least partially dried, wherein the at least partially dried second sintered layer of de
  • the transfer unit is transferred to the first sintered layer, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer being contacted, in particular by pressing, and then being firmly connected to the substrate by sintering the at least two sintered layers.
  • the object is achieved according to the invention by a method for producing a power semiconductor module with a power semiconductor and a substrate, the power semiconductor having at least two electrically isolated contact areas on a side facing the substrate, the at least two electrically isolated contact areas of the power semiconductor by means of a structured metallic connecting layer, which comprises at least two substantially closed sintered layers, are connected to the substrate (4) in a materially bonded manner, the substantially closed sintered layers being applied via a template, a first sintered layer being applied to the substrate and at least one is at least partially dried, at least one second sintered layer being applied to a shaped metal body and at least partially dried, the shaped metal body with one of the at least partially g
  • the dried second sintered layer facing away from the first sintered layer is placed, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer being contacted, in particular by pressing, and then being firmly connected to the substrate by sintering the at least two sintered layers.
  • the object is achieved according to the invention by a method for producing a power semiconductor module with a power semiconductor and a substrate, the power semiconductor having at least two electrically isolated contact areas on a side facing the substrate, the at least two electrically isolated contact areas of the power semiconductor by means of a structured metallic connecting layer, which comprises at least two essentially closed sintered layers, are firmly bonded to the substrate, wherein the essentially closed sintered layers are applied via a template, wherein a first sintered layer is applied to the substrate and at least is partially dried, a metal molded body coated with a second sintered layer being provided, the metal molded body being placed on the first sintered layer with a side facing away from the second sintered layer, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer, in particular by pressing, contacted and then by sintering the at least two sintered layers cohesively connected to the substrate.
  • a structured metallic connecting layer which comprises at least two essentially closed sintered layers
  • a power semiconductor module with a power semiconductor and a substrate, the power semiconductor having at least two electrically isolated contact areas on the side facing the substrate, the at least two electrically isolated contact areas of the power semiconductor by means of a structured metallic Connection layer, which comprises at least two essentially closed sintered layers, are firmly bonded to the substrate, the essentially closed sintered layers being carried over a template, with at least one second sintered layer being applied to a molded metal body, the molded metal body is placed with a side facing away from the second sintered layer on the first sintered layer, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer Contacted r km, in particular by pressing, and then by sintering the at least two sintered layers firmly connected to the substrate.
  • a structured metallic Connection layer which comprises at least two essentially closed sintered layers
  • the object is achieved according to the invention by a power converter with at least one power semiconductor module.
  • the invention is based on the idea of applying a power semiconductor, which has at least two electrically isolated contact areas on a side facing a substrate, to a substrate by sintering in order to achieve improved switching behavior and a higher maximum current density.
  • Examples of such power semiconductors are triacs, transistors or thyristors.
  • the transistors are designed, for example, as insulated gate bipolar transistors (IGBTs), as metal oxide semiconductor field effect transistors (MOSFETs) or as field effect transistors.
  • a substrate is to be understood as a dielectric material which, at least on a side facing the power semiconductor, has an at least partially structured metallization for contacting the power semiconductor.
  • the substrate is designed as a DCB ceramic substrate, which in particular contains special aluminum oxide and / or aluminum nitride and has a copper metallization.
  • the power semiconductor is applied in a flip-chip arrangement on the substrate.
  • the at least two electrically isolated contact areas of the power semiconductor are materially connected to the substrate by means of a structured, in particular metallic, connection layer, the connection layer comprising at least two essentially closed sintered layers.
  • An essentially closed sintered layer is understood to mean a layer which, in contrast to screen printing, is applied with a stencil without a supporting screen, so that there are no functionally identifiable cavities in the connecting layer.
  • An essentially closed sintered layer achieves a high conductivity and a high current-carrying capacity of the connecting layer.
  • the power semiconductor is contacted by the connecting layer at least 70 gm, in particular at least 200 gm, spaced from the substrate. Such a distance ensures that electromagnetic fields occurring on the power semiconductor, which occur for example in the area of a guard ring, do not noticeably interact with the substrate, so that the switching behavior of the power semiconductor and insulation in the edge area are too close to the Substrate is not noticeably influenced, which leads to an increase in service life.
  • the at least two essentially closed sintered layers are produced from a suspension which, in particular, contains metallic, solid particles and a binding agent.
  • a suspension which, in particular, contains metallic, solid particles and a binding agent.
  • silver sinter paste is used.
  • Such a suspension achieves a high conductivity and a high current-carrying capacity of the connecting layer.
  • a first sintered layer is applied to the substrate and at least partially dried, at least one second sintered layer being applied to the first sintered layer and at least partially dried, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer, in particular by pressing, and then by sintering the at least two sintered layers firmly connected to the substrate.
  • drying which takes place, for example, at a temperature between 100 ° C. and 150 ° C., in particular between 115 ° C. and 125 ° C.
  • a binder for example, is at least partially removed.
  • the sintering temperature is, for example when using Silver sintering paste, between 220 ° C and 260 ° C, especially between 235 ° C and 245 ° C.
  • an improved structuring in particular in a direction orthogonal to the substrate surface, is sufficient.
  • an improved wall steepness of the connecting layer is achieved when printing several thin layers.
  • Such a multi-layer printing process therefore prevents the at least two electrically isolated contact areas from influencing each other electrically and / or magnetically or even being short-circuited, even with a layer thickness of, for example, at least 70 ⁇ m.
  • the first sintered layer is applied by means of a first template, the second sintered layer being applied by means of a second template and the second template being thicker than the first template.
  • the second template is essentially twice as thick as the first template.
  • the templates are designed in such a way that they rest on the substrate, in particular flat, during the application of the respective sintered layer. The use of such templates prevents the first sintered layer from deforming when the second sintered layer is applied.
  • a first sintered layer is applied to the substrate and at least partially dried, at least one second sintered layer being applied to a transfer unit and at least partially dried, the at least partially dried second sintered layer from the transfer unit the first sintered layer is transferred, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer, in particular by pressing, contacted and then by sintering the at least two sintered layers are firmly bonded to the substrate.
  • the first sintered layer is applied to the substrate by means of a first template, the second sintered layer being applied with the first template, which is arranged in an inverted manner.
  • the transfer unit is designed, for example, as a Teflon-coated sheet metal, in particular sheet aluminum, in order to enable a multiple transfer of the at least one second sintered layer.
  • the transfer takes place by means of pressure and an, in particular slight, increase in temperature, where the temperature for transferring the at least one second sintered layer is significantly below the sintering temperature.
  • the first sintered layer is applied to the substrate by means of a first template, the second sintered layer being applied to the transfer unit by means of a template which is mirror-symmetrical to the first template.
  • the application by means of the mirror-symmetrical template takes place in particular in parallel in time, which saves time.
  • any number of sintered layers can be produced on transfer units.
  • a first sintered layer is applied to the substrate and at least partially dried, at least one second sintered layer being applied to a metal molding and at least partially dried, the metal molding with one of the at least partially dried second sinters
  • the side facing away from the layer is placed on the first sintered layer, the at least two electrically insulated contact areas of the power semiconductor on the second sintered layer, in particular by pressing, contacted and then firmly connected to the substrate by sintering the at least two sintered layers.
  • the shaped metal body is made, for example, of an electrically and thermally conductive material such as copper, silver, gold, aluminum, cobalt, platinum, molybdenum and / or their alloys.
  • the metal molding achieves an improved wall steepness of the connecting layer and simplifies sintering, in particular for thick layers, for example of at least 70 ⁇ m.
  • the metal molded body comprises at least two metal plates, the at least one second sintered layer being applied to the at least two metal plates of the metal molded body by means of at least one first template.
  • the metal plates are made, for example, from an electrically and thermally conductive material such as copper, silver, gold, aluminum, cobalt, platinum and / or their alloys.
  • the metal platelets achieve an improved wall steepness of the connec tion layer and simplify the sintering, especially for thick layers, for example of at least 70 ⁇ m.
  • a further embodiment provides that a first sintered layer is applied to the substrate and at least partially dried, a metal molded body with a second sintered layer being provided, the metal molded body being placed on the first sintered layer with a side facing away from the second sintered layer, wherein the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer are contacted, in particular by pressing, and thereupon are firmly connected to the substrate by sintering the at least two sintered layers.
  • the provision of a shaped metal body with a sintered layer saves time.
  • FIG. 1 shows a schematic representation of a first embodiment of a method for contacting a power semiconductor on a substrate
  • FIG. 2 shows a schematic sectional illustration of a first embodiment of a template
  • FIG. 3 shows a schematic sectional illustration of a second embodiment of a template
  • FIG. 4 shows a schematic representation of a second embodiment of a method for contacting a power semiconductor on a substrate
  • FIG. 5 shows a schematic representation of a third embodiment of a method for contacting a power semiconductor on a substrate
  • FIG. 6 shows a schematic representation of a fourth embodiment of a method for contacting a power semiconductor on a substrate
  • FIG. 7 shows a schematic illustration of a power semiconductor module.
  • the described components of the embodiments each represent individual features of the invention that are to be considered independently of one another, which also further develop the invention independently of one another and are therefore to be regarded as part of the invention individually or in a combination other than the one shown . Furthermore, the described embodiments can also be supplemented by further features of the invention already described.
  • the substrate is designed as a DCB ceramic substrate, which contains, for example, aluminum oxide and / or aluminum nitride and an at least partially structured metallization 6, in particular Kup fermetallmaschine having.
  • the power semiconductor 2 is exemplified as an IGBT (Insulated Gate Bipolar Transistor) and is applied to the substrate 4 in a flip-chip arrangement.
  • the IGBT has two electrically mutually insulated contact areas 10, 12, the first contact area 10 being designed as an emitter contact E and the second contact area 12 being designed as a gate contact G.
  • the contact areas are designed in particular as pads and have a metallization.
  • a third contact area 14, which is designed as a collector contact C, is located on a side 16 facing away from the substrate 4.
  • the power semiconductor 2 has an electrically insulating intermediate area 2a between the contact areas 10, 12.
  • the power semiconductor 2 has a guard ring 2b, which comprises, for example, a glass or polyamide cover with a thickness of 10-15 ⁇ m.
  • the power semiconductor 2 can for example also be designed as a field effect transistor or bipolar transistor.
  • a closed first sintered layer 20 is applied to the substrate 4 by means of a first template 18 and at least partially dried after removing the first template 18.
  • the first template 18 has, for example, a first thickness dl of 80-100 ⁇ m and is located during the application of the first sintered layer 20, in particular more planar, on the substrate 4.
  • the first sintered layer 20 is made, for example, from a suspension which contains metallic solid particles and an, in particular organic, binder.
  • silver sintering paste is used for the first sintered layer.
  • the binder is at least partially removed by drying at a temperature between 100 ° C. and 150 ° C., in particular between 115 ° C. and 125 ° C.
  • a closed second sintered layer 24 is applied to the first sintered layer 20 by means of a second template 22 and, after the removal of the second template 22, is at least partially dried.
  • the second sintered layer 24 is made of the same material as the first sintered layer 20 and is dried analogously to the first sintered layer 20.
  • the second template 22 has, for example, a second thickness d2 of 120-200 ⁇ m.
  • the second template 22 rests on the substrate 4, in particular over a large area, during the application of the second sintered layer 24.
  • the two contact areas 10, 12 of the power semiconductor 2, which are electrically isolated from one another, are contacted on the second sintered layer 24, in particular by being pressed on.
  • the power semiconductor 2 is then firmly connected to the substrate 4 by sintering the sintered layers 20, 24.
  • the sintering temperature for example when using silver sintering paste, is between 220 ° C and 260 ° C, in particular between 235 ° C and 245 ° C. Both during drying and during sintering, the dimensions of the sintered layers 20, 24 are reduced depending on the material used. This effect is not shown in the schematic representation in FIG.
  • the sintering produces a connecting layer 26 through which the power semiconductor 2 is contacted at a distance D of at least 70 ⁇ m, in particular at least 200 ⁇ m, from the substrate 4.
  • 2 shows a schematic sectional illustration of a first embodiment of a first template 18.
  • the first template 18 comprises a first recess 28, for example for an emitter contact E, and a second recess 30, for example for a gate contact G.
  • the second recess 30 is arranged in a corner region of the first recess 28, where the first template 18 comprises two orthogonally arranged connecting webs 32 which connect the second recess 30 to the first recess.
  • the first template 18 is designed in one piece for both recesses 28, 30.
  • the further embodiment of the first template 18 in FIG. 2 corresponds to that in FIG. 1.
  • FIG. 3 shows a schematic sectional illustration of a second embodiment of a first template 18, the second recess 30 being arranged essentially in the center with respect to a longitudinal side of the first recess 28.
  • the first template 18 comprises three orthogonally arranged connecting webs 32 which connect the second recess 30 to the first recess 28.
  • the further embodiment of the first template 18 in FIG. 3 corresponds to that in FIG.
  • FIG. 4 shows a schematic representation of a second embodiment of a method for contacting a power semiconductor 2 on a substrate 4.
  • a closed third sintered layer 36 is applied to the second sintered layer 24 by means of a third template 34 and after removing the third template 34 at least partially dried.
  • the third sintered layer 36 is made of the same material as the first sintered layer 20 and the second sintered layer 24. Like the second sintered layer 24, it is dried analogously to the first sintered layer 20.
  • the two electrically insulated contact areas 10, 12 of the power semiconductor 2 on the third sintered layer 36 are contacted, in particular by being pressed on.
  • the power semiconductor 2 is then sintered by sintering the sintered layers 20, 24, 36 Cohesively connected to the substrate 4.
  • the sintering produces a connecting layer 26 through which the power semiconductor 2 is contacted at a distance D of at least 70 ⁇ m, in particular at least 200 ⁇ m, from the substrate 4.
  • the further method for making contact with the power semiconductor 2 in FIG. 4 corresponds to the method in FIG.
  • FIG. 5 shows a schematic representation of a third embodiment of a method for contacting a power semiconductor 2 on a substrate 4.
  • a closed first sintered layer 20 is applied to the substrate 4 and, after the first stencil 18 has been removed, at least partially dried .
  • at least one second sintered layer 24 is applied to a transfer unit 38 and at least partially dried.
  • the second sintered layer 24 is applied by means of a template 40 which is mirror-symmetrical to the first template 18.
  • the second sintered layer 24 is applied with the first template 18 arranged in an inverted manner.
  • the transfer unit 38 is, for example, Teflon-coated in order to allow easy transfer of the second sintered layer 24.
  • the at least partially dried second sintered layer 24 is then transferred from the transfer unit 38 to the first sintered layer 20.
  • the transfer takes place by pressure and an, in particular small, increase in temperature, where the temperature for transferring the second sintered layer 24 is well below the sintering temperature.
  • further sintered layers are transferred analogously to the second sintered layer 24 from a transfer unit 38.
  • the two contact areas 10, 12 of the power semiconductor 2, which are electrically isolated from one another, are contacted on the second sintered layer 24, in particular by being pressed on.
  • the power semiconductor 2 is then made of material by sintering the sintered layers 20, 24 closely connected to the substrate 4.
  • the sintering produces a connecting layer 26 through which the power semiconductor 2 is contacted at a distance D of at least 70 ⁇ m, in particular at least 200 ⁇ m, from the substrate 4.
  • the further method for making contact with the power semiconductor 2 in FIG. 5 corresponds to the method in FIG.
  • FIG. 6 shows a schematic representation of a fourth embodiment of a method for contacting a power semiconductor 2 on a substrate 4.
  • a closed first sintered layer 20 is applied to the substrate 4 using a first template 18 and at least partially dried after the first template 18 has been removed .
  • at least one second sintered layer 24 is applied to a metal molded body 42 and at least partially dried.
  • the metal molded body 42 is divided into two metal plates 42a, 42b, which are electrically insulated from one another and are made from a material such as copper, silver, gold, aluminum, cobalt, platinum and / or their alloys with good electrical and thermal conductivity.
  • the metal plates 42a, 42b of the metal molding 42 each have a thickness of 10 gm to 200 gm, a first metal plate 42a having a contour that is adapted to the first contact area 10 of the power semiconductor 2 and a second metal plate 42b Has contour which is adapted to the second contact area 12 of the power semiconductor 2.
  • the shaped metal body 42 can also comprise just one metal plate 42a, which is connected to the contact area 10, 12 of the power semiconductor 2, which has the larger area.
  • one metal plate 42a is connected to the emitter contact E, while the gate contact G is connected to the substrate 4 by means of dispensing or by means of jetting.
  • a shaped metal body already coated with the second sintered layer 24 is provided by 42.
  • the shaped metal body 42 is then arranged with a side facing away from the at least partially dried second sintered layer on the first sintered layer 20, so that the second sintered layer 24 forms the topmost layer.
  • the molded metal body 42 is contacted by being pressed onto the first sintered layer 20.
  • the two contact areas 10, 12 of the power semiconductor 2, which are electrically isolated from one another, are contacted on the second sintered layer 24, in particular by being pressed on.
  • the power semiconductor 2 is then firmly connected to the substrate 4 by sintering the sintered layers 20, 24.
  • the sintering produces a connecting layer 26 through which the power semiconductor 2 is contacted at a distance D of at least 70 ⁇ m, in particular at least 200 ⁇ m, from the substrate 4.
  • the connecting layer 26 in FIG. 6 comprises the shaped metal body 42.
  • the further method for contacting the power semiconductor 2 in FIG. 6 corresponds to the method in FIG.
  • FIG. 7 shows a schematic representation of a power semiconductor module 44, with the power semiconductor 2 being contacted, for example, as described in FIG.
  • the third contact area 14, designed as collector contact C is firmly connected via a further connecting layer 46 to an, in particular multi-layer, further substrate 48, which has an, in particular multi-layer, structured metallization 6, in particular copper metallization.
  • the further connecting layer 46 has, for example, at least one sintered layer.
  • the power semiconductor module 44 comprises connecting elements 50, 52 for producing a connection between the metalizations 6 of the substrates 4, 48.
  • the first contact area 10 embodied as an emitter contact E is connected to the first connecting element 50
  • the te contact G executed second contact region 12 is connected to the second connecting element 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

The invention relates to a method for contacting a power semiconductor device (2) on a substrate (4). In order to achieve improved switching behaviour and a higher maximum current density, according to the invention the power semiconductor device (2) has, on a side (8) facing the substrate (4), at least two contact regions (10, 12) which are electrically isolated from one another, and the at least two contact regions (10, 12) of the power semiconductor device (2) which are electrically isolated from from one another are integrally bonded to the substrate (4) by means of a structured, in particular metal, connecting layer (26) which comprises at least two substantially closed sintered layers (20, 24, 36).

Description

Beschreibung description
Verfahren zur Kontaktierung eines Leistungshalbleiters auf einem Substrat Method for contacting a power semiconductor on a substrate
Die Erfindung betrifft ein Verfahren zur Kontaktierung eines Leistungshalbleiters auf einem Substrat. The invention relates to a method for making contact with a power semiconductor on a substrate.
Ferner betrifft die Erfindung ein Leistungshalbleitermodul mit einem Leistungshalbleiter und einem Substrat. The invention also relates to a power semiconductor module with a power semiconductor and a substrate.
Darüber hinaus betrifft die Erfindung einen Stromrichter mit mindestens einem derartigen Leistungshalbleitermodul. The invention also relates to a power converter with at least one power semiconductor module of this type.
In derartigen Stromrichtern liegen Halbleiterbauelemente, beispielsweise Schaltelemente, in der Regel in Form von Leis tungsmodulen oder in Form von diskreten Packages vor. Unter einem Stromrichter ist beispielsweise ein Gleichrichter, ein Wechselrichter, ein Umrichter oder ein Gleichspannungswandler zu verstehen. Derartige Schaltelemente sind beispielsweise Transistoren, insbesondere als Insulated-Gate-Bipolar- Transistoren (IGBTs), als Metalloxide-Semiconductor-Field- Effect-Transistoren (MOSFETs) oder als ein Feldeffekttransis toren, ausgeführt. Gewöhnlich sind die Halbleiterbauelemente mittels spezifischer Drahtbondtechnologien kontaktiert und die Leistungsmodule werden zum Beispiel mittels Löt-, Feder oder Pressverbindungen an einem Schaltungsträger befestigt. Durch die Verwendung von Bonddrähten wird die maximal zuläs sige Stromdichte limitiert. Außerdem erzeugen Bonddrähte pa rasitären Induktivitäten, welche eine maximal erzielbare Schaltgeschwindigkeit der Schaltelemente begrenzt. In such converters, semiconductor components, for example switching elements, are usually in the form of power modules or in the form of discrete packages. A converter is to be understood as meaning, for example, a rectifier, an inverter, a converter or a DC voltage converter. Such switching elements are, for example, transistors, in particular as insulated gate bipolar transistors (IGBTs), as metal oxide semiconductor field effect transistors (MOSFETs) or as field effect transistors. The semiconductor components are usually contacted by means of specific wire bonding technologies and the power modules are attached to a circuit carrier, for example by means of soldering, spring or press connections. The use of bonding wires limits the maximum permissible current density. In addition, bonding wires generate parasitic inductances, which limit a maximum achievable switching speed of the switching elements.
Die Offenlegungsschrift EP 3 105 784 Al beschreibt ein Ver fahren zum Montieren eines elektrischen Bauelements auf einem Substrat. Das Fügen wird durch eine Haube vereinfacht, indem in diese Haube eine Kontaktierungsstruktur vorgesehen ist und diese beim Aufsetzen der Haube auf verschiedenen Fügeleveln gleichzeitig mit einem Zusatzwerkstoff gefügt wird. Die Offenlegungsschrift DE 2020 12 004 434 Ul beschreibt ei nen Metallformkörper zur Schaffung einer Verbindung eines Leistungshalbleiters mit oberseitigen Potentialflächen zu Dickdrähten oder Bändchen, gekennzeichnet durch einen Metall formkörper (6a, 6b), der eine oder mehrere Potentialflächen überragt, und aus dem elektrisch vom übrigen Metallformkörper getrennt wenigstens ein Segment (6b) abgeteilt ist, das von einem Kontaktierungsabschnitt an eine Potentialfläche des Leistungshalbleiters zu einem davon lateral beabstandeten Be festigungsabschnitt für Dickdrähte reicht. The laid-open specification EP 3 105 784 A1 describes a method for mounting an electrical component on a substrate. Joining is simplified by a hood in that a contacting structure is provided in this hood and this is joined simultaneously with an additional material when the hood is placed on different joint levels. The laid-open specification DE 2020 12 004 434 Ul describes a shaped metal body to create a connection of a power semiconductor with potential surfaces on the top to form thick wires or ribbons, characterized by a shaped metal body (6a, 6b) that protrudes above one or more potential surfaces, and from which electrical from the rest Metal molded body is separated at least one segment (6b), which extends from a contacting section on a potential surface of the power semiconductor to a laterally spaced apart fastening section for thick wires.
Die Offenlegungsschrift DE 102014 222 819 Al beschreibt ein Verfahren zum Ausbilden einer Leistungshalbleiterkontakt struktur in einem Leistungshalbleitermodul, welches ein Sub strat und einen Metallformkörper aufweist. Das Ausbilden der Leistungshalbleiterkontaktstruktur erfolgt zunächst durch Aufbringen einer Schicht aus Sintermaterial mit lokal variie render Dicke auf entweder den Metallformkörper oder das Sub strat, gefolgt von einem Zusammensintern der Kontaktierungs folie mit dem Substrat über die verbindungsfördernden Eigen schaften der Sintermaterialschicht, wobei die Kontaktierungs folie entsprechend der variierenden Dicke der Schicht des Sintermaterials ihre Form ausgeprägt bekommt. The laid-open specification DE 102014 222 819 A1 describes a method for forming a power semiconductor contact structure in a power semiconductor module, which has a substrate and a molded metal body. The formation of the power semiconductor contact structure is first carried out by applying a layer of sintered material with a locally varying thickness on either the shaped metal body or the substrate, followed by sintering the contacting film with the substrate via the properties of the sintered material layer which promote the connection, the contacting film corresponding to the varying thickness of the layer of sintered material gets its shape pronounced.
Die Offenlegungsschrift US 2018/0374813 Al beschreibt eine Anordnung mit mindestens einem ersten Element, dass mindes tens ein erstes elektrisches Kontaktierungsfeld umfasst; min destens einem zweiten Element, das mindestens ein zweites elektrisches Kontaktierungsfeld umfasst; elektrischen und me chanischen Verbindungsmitteln, wobei die elektrischen und me chanischen Verbindungsmittel mindestens Folgendes umfassen: mindestens ein erstes metallisches Zwischenverbindungselement auf der Oberfläche mindestens des ersten elektrischen Kon taktflecks; mindestens eine gesinterte Verbindung aus metal lischen Mikropartikeln oder Nanopartikeln, die mit dem ersten metallischen Zwischenverbindungselement gestapelt ist; wobei der Schmelzpunkt des ersten metallischen Zwischenverbindungs- elements größer ist als die Sintertemperatur der metallischen Mikropartikel oder Nanopartikel. The laid-open specification US 2018/0374813 A1 describes an arrangement with at least one first element that comprises at least one first electrical contacting field; at least one second element which comprises at least one second electrical contact-making field; electrical and mechanical connection means, the electrical and mechanical connection means comprising at least: at least one first metallic interconnection element on the surface of at least the first electrical contact pad; at least one sintered compound of metallic microparticles or nanoparticles, which is stacked with the first metallic interconnection element; where the melting point of the first metallic interconnection elements is higher than the sintering temperature of the metallic microparticles or nanoparticles.
Die Veröffentlichung Cao X et al: "Height Optimization for a Medium-Voltage Planar Package" beschreibt eine Methode zur Optimierung der Verbindungshöhe in einem Leistungsmodul, die auf dem Kompromiss zwischen thermomechanischer Leistung und dielektrischer Leistung des Leistungsmoduls basiert. The publication Cao X et al: "Height Optimization for a Medium-Voltage Planar Package" describes a method for optimizing the connection height in a power module that is based on the trade-off between thermomechanical performance and dielectric performance of the power module.
Die Veröffentlichung Jiang L et al: "Evaluation of Thermal Cycling Reliability of Sintered Nanosilver Versus Soldered Joints by Curvature Measurement" beschreibt eine Niedertempe ratur-Silbersintertechnologie, welche als eine bleifreie Chipbefestigungslösung angewendet wird, die die Wärmeablei tung und Zuverlässigkeit von Leistungsgeräten und Modulen, die mit Lötlegierungen verbunden sind, deutlich verbessert. The publication Jiang L et al: "Evaluation of Thermal Cycling Reliability of Sintered Nanosilver Versus Soldered Joints by Curvature Measurement" describes a low temperature silver sintering technology that is used as a lead-free die attach solution that improves the heat dissipation and reliability of power devices and modules that are connected with solder alloys, significantly improved.
Die Offenlegungsschrift EP 0242 626 A2 beschreibt ein Ver fahren zur Befestigung von elektronischen Bauelementen auf einem Substrat durch Drucksintern. The laid-open specification EP 0242 626 A2 describes a process for fastening electronic components on a substrate by pressure sintering.
Vor diesem Hintergrund ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren zur Kontaktierung eines Leistungs halbleiters auf einem Substrat anzugeben, durch welches ein verbessertes Schaltverhalten und eine höhere maximale Strom dichte erreicht wird. Against this background, it is an object of the present invention to provide a method for contacting a power semiconductor on a substrate, by means of which an improved switching behavior and a higher maximum current density is achieved.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren zur Kon taktierung eines Leistungshalbleiters auf einem Substrat ge löst, wobei der Leistungshalbleiter auf einer dem Substrat zugewandten Seite mindestens zwei elektrisch voneinander iso lierte Kontaktbereiche aufweist, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche des Leis tungshalbleiters mittels einer strukturierten metallischen, Verbindungsschicht, welche mindestens zwei im Wesentlichen geschlossene Sinterschichten umfasst, mit dem Substrat stoff schlüssig verbunden werden, wobei die im Wesentlichen ge schlossene Sinterschichten über eine Schablone aufgetragen werden, wobei eine erste Sinterschicht auf das Substrat auf getragen und zumindest teilweise getrocknet wird, wobei zu mindest eine zweite Sinterschicht auf die erste Sinterschicht aufgetragen und zumindest teilweise getrocknet wird, wobei die mindestens zwei elektrisch voneinander isolierten Kon taktbereiche des Leistungshalbleiters auf der zweiten Sinter schicht, insbesondere durch Anpressen, kontaktiert und da raufhin durch Sintern der zumindest zwei Sinterschichten stoffschlüssig mit dem Substrat verbunden werden, wobei die erste Sinterschicht mittels einer ersten Schablone aufgetra gen wird, wobei die zweite Sinterschicht mittels einer zwei ten Schablone aufgetragen wird und wobei die zweite Schablone dicker als die erste Schablone ist. The object is achieved according to the invention by a method for contacting a power semiconductor on a substrate, the power semiconductor having at least two electrically isolated contact areas on a side facing the substrate, the at least two electrically isolated contact areas of the power semiconductor using a structured metallic, connecting layer, which comprises at least two essentially closed sintered layers, are firmly bonded to the substrate, the essentially closed sintered layers being applied via a template A first sintered layer is applied to the substrate and at least partially dried, at least one second sintered layer being applied to the first sintered layer and at least partially dried, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer , in particular by pressing, and then by sintering the at least two sintered layers firmly bonded to the substrate, the first sintered layer being applied using a first template, the second sintered layer being applied using a second template and the second template is thicker than the first stencil.
Darüber hinaus wird die Aufgabe erfindungsgemäß gelöst durch ein Verfahren zur Herstellung eines Leistungshalbleitermoduls mit einem Leistungshalbleiter und einem Substrat, wobei der Leistungshalbleiter auf einer dem Substrat zugewandten Seite mindestens zwei elektrisch voneinander isolierte Kontaktbe reiche aufweist, wobei die mindestens zwei elektrisch vonei nander isolierten Kontaktbereiche des Leistungshalbleiters mittels einer strukturierten metallischen Verbindungsschicht, welche mindestens zwei im Wesentlichen geschlossene Sinter schichten umfasst, mit dem Substrat stoffschlüssig verbunden werden, wobei die im Wesentlichen geschlossene Sinterschich ten über eine Schablone aufgetragen werden, wobei eine erste Sinterschicht auf das Substrat aufgetragen und zumindest teilweise getrocknet wird, wobei zumindest eine zweite Sin terschicht auf eine Transfereinheit aufgetragen und zumindest teilweise getrocknet wird, wobei die zumindest teilweise ge trocknete zweite Sinterschicht von der Transfereinheit auf die erste Sinterschicht übertragen wird, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche des Leistungshalbleiters auf der zweiten Sinterschicht, insbeson dere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten stoffschlüssig mit dem Substrat verbunden werden. Darüber hinaus wird die Aufgabe erfindungsgemäß gelöst durch ein Verfahren zur Herstellung eines Leistungshalbleitermoduls mit einem Leistungshalbleiter und einem Substrat, wobei der Leistungshalbleiter auf einer dem Substrat zugewandten Seite mindestens zwei elektrisch voneinander isolierte Kontaktbe reiche aufweist, wobei die mindestens zwei elektrisch vonei nander isolierten Kontaktbereiche des Leistungshalbleiters mittels einer strukturierten metallischen Verbindungsschicht, welche mindestens zwei im Wesentlichen geschlossene Sinter schichten umfasst, mit dem Substrat (4) stoffschlüssig ver bunden werden, wobei die im Wesentlichen geschlossene Sinter schichten über eine Schablone aufgetragen werden, wobei eine erste Sinterschicht auf das Substrat aufgetragen und zumin dest teilweise getrocknet wird, wobei zumindest eine zweite Sinterschicht auf einen Metallformkörper aufgetragen und zu mindest teilweise getrocknet wird, wobei der Metallformkörper mit einer der zumindest teilweise getrockneten zweiten Sin terschicht abgewandten Seite auf der ersten Sinterschicht platziert wird, wobei die mindestens zwei elektrisch vonei nander isolierten Kontaktbereiche des Leistungshalbleiters auf der zweiten Sinterschicht, insbesondere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten stoffschlüssig mit dem Substrat verbunden werden. In addition, the object is achieved according to the invention by a method for producing a power semiconductor module with a power semiconductor and a substrate, the power semiconductor having at least two electrically isolated contact areas on a side facing the substrate, the at least two electrically isolated contact areas of the power semiconductor by means of a structured metallic connecting layer, which comprises at least two essentially closed sintered layers, are materially connected to the substrate, wherein the essentially closed sintered layers are applied via a template, wherein a first sintered layer is applied to the substrate and at least partially dried, wherein at least one second sintered layer is applied to a transfer unit and at least partially dried, wherein the at least partially dried second sintered layer of de The transfer unit is transferred to the first sintered layer, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer being contacted, in particular by pressing, and then being firmly connected to the substrate by sintering the at least two sintered layers. In addition, the object is achieved according to the invention by a method for producing a power semiconductor module with a power semiconductor and a substrate, the power semiconductor having at least two electrically isolated contact areas on a side facing the substrate, the at least two electrically isolated contact areas of the power semiconductor by means of a structured metallic connecting layer, which comprises at least two substantially closed sintered layers, are connected to the substrate (4) in a materially bonded manner, the substantially closed sintered layers being applied via a template, a first sintered layer being applied to the substrate and at least one is at least partially dried, at least one second sintered layer being applied to a shaped metal body and at least partially dried, the shaped metal body with one of the at least partially g The dried second sintered layer facing away from the first sintered layer is placed, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer being contacted, in particular by pressing, and then being firmly connected to the substrate by sintering the at least two sintered layers.
Darüber hinaus wird die Aufgabe erfindungsgemäß gelöst durch ein Verfahren zur Herstellung eines Leistungshalbleitermoduls mit einem Leistungshalbleiter und einem Substrat, wobei der Leistungshalbleiter auf einer dem Substrat zugewandten Seite mindestens zwei elektrisch voneinander isolierte Kontaktbe reiche aufweist, wobei die mindestens zwei elektrisch vonei nander isolierten Kontaktbereiche des Leistungshalbleiters mittels einer strukturierten metallischen Verbindungsschicht, welche mindestens zwei im Wesentlichen geschlossene Sinter schichten umfasst, mit dem Substrat stoffschlüssig verbunden werden, wobei die im Wesentlichen geschlossene Sinterschich ten über eine Schablone aufgetragen werden, wobei eine erste Sinterschicht auf das Substrat aufgetragen und zumindest teilweise getrocknet wird, wobei ein mit einer zweiten Sin terschicht beschichteter Metallformkörper bereitgestellt wird, wobei der Metallformkörper mit einer der zweiten Sin terschicht abgewandten Seite auf der ersten Sinterschicht platziert wird, wobei die mindestens zwei elektrisch vonei nander isolierten Kontaktbereiche des Leistungshalbleiters auf der zweiten Sinterschicht, insbesondere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten stoffschlüssig mit dem Substrat verbunden werden. In addition, the object is achieved according to the invention by a method for producing a power semiconductor module with a power semiconductor and a substrate, the power semiconductor having at least two electrically isolated contact areas on a side facing the substrate, the at least two electrically isolated contact areas of the power semiconductor by means of a structured metallic connecting layer, which comprises at least two essentially closed sintered layers, are firmly bonded to the substrate, wherein the essentially closed sintered layers are applied via a template, wherein a first sintered layer is applied to the substrate and at least is partially dried, a metal molded body coated with a second sintered layer being provided, the metal molded body being placed on the first sintered layer with a side facing away from the second sintered layer, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer, in particular by pressing, contacted and then by sintering the at least two sintered layers cohesively connected to the substrate.
Ferner wird die Aufgabe erfindungsgemäß gelöst durch ein Leistungshalbleitermodul mit einem Leistungshalbleiter und einem Substrat, wobei der Leistungshalbleiter auf der dem Substrat zugewandten Seite mindestens zwei elektrisch vonei nander isolierte Kontaktbereiche aufweist, wobei die mindes tens zwei elektrisch voneinander isolierten Kontaktbereiche des Leistungshalbleiters mittels einer strukturierten metal lischen, Verbindungsschicht, welche mindestens zwei im We sentlichen geschlossene Sinterschichten umfasst, mit dem Sub strat stoffschlüssig verbunden sind, wobei die im Wesentli chen geschlossene Sinterschichten über eine Schablone aufge tragen sind, wobei zumindest eine zweite Sinterschicht auf einen Metallformkörper aufgetragen ist, wobei der Metallform körper mit einer der zweiten Sinterschicht abgewandten Seite auf der ersten Sinterschicht platziert ist, wobei die mindes tens zwei elektrisch voneinander isolierten Kontaktbereiche des Leistungshalbleiters auf der zweiten Sinterschicht, ins besondere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten stoffschlüssig mit dem Substrat verbunden sind. Furthermore, the object is achieved according to the invention by a power semiconductor module with a power semiconductor and a substrate, the power semiconductor having at least two electrically isolated contact areas on the side facing the substrate, the at least two electrically isolated contact areas of the power semiconductor by means of a structured metallic Connection layer, which comprises at least two essentially closed sintered layers, are firmly bonded to the substrate, the essentially closed sintered layers being carried over a template, with at least one second sintered layer being applied to a molded metal body, the molded metal body is placed with a side facing away from the second sintered layer on the first sintered layer, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer Contacted rschicht, in particular by pressing, and then by sintering the at least two sintered layers firmly connected to the substrate.
Darüber hinaus wird die Aufgabe erfindungsgemäß gelöst durch einen Stromrichter mit mindestens einem Leistungshalbleiter modul. In addition, the object is achieved according to the invention by a power converter with at least one power semiconductor module.
Die in Bezug auf das Verfahren nachstehend angeführten Vor teile und bevorzugten Ausgestaltungen lassen sich sinngemäß auf das Leistungshalbleitermodul und den Stromrichter über tragen. The advantages and preferred embodiments listed below with regard to the method can be used accordingly on the power semiconductor module and the converter.
Der Erfindung liegt die Überlegung zugrunde, einen Leistungs halbleiter, welcher auf einer einem Substrat zugewandten Sei te mindestens zwei elektrisch voneinander isolierte Kontakt bereiche aufweist, durch Sintern auf ein Substrat aufzubrin gen, um ein verbessertes Schaltverhalten und eine höhere ma ximale Stromdichte zu erreichen. Beispiele für derartige Leistungshalbleiter sind Triacs, Transistoren oder Thyristo ren. Die Transistoren sind beispielsweise als Insulated-Gate- Bipolar-Transistoren (IGBTs), als Metalloxide-Semiconductor- Field-Effect-Transistoren (MOSFETs) oder als ein Feldeffekt transistoren ausgeführt. Unter einem Substrat ist ein die lektrischer Werkstoff zu verstehen, der zumindest auf einer dem Leistungshalbleiter zugewandten Seite eine zumindest teilweise strukturierte Metallisierung zur Kontaktierung des Leistungshalbleiters aufweist. Beispielsweise ist das Sub strat als ein DCB-Keramiksubstrat ausgeführt, welches insbe sondere Aluminiumoxid und/oder Aluminiumnitrid enthält und eine Kupfermetallisierung aufweist. Insbesondere wird der Leistungshalbleiter in einer Flip-Chip-Anordnung auf dem Sub strat aufgebracht. Die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche des Leistungshalbleiters werden mittels einer strukturierten, insbesondere metallischen, Ver bindungsschicht mit dem Substrat stoffschlüssig verbunden, wobei die Verbindungsschicht mindestens zwei im Wesentlichen geschlossene Sinterschichten umfasst. Unter einer im Wesent lichen geschlossenen Sinterschicht ist eine Schicht zu ver stehen, die, im Gegensatz zum Siebdruck, mit einer Schablone ohne tragendes Sieb aufgetragen wird, sodass keine funktional feststellbaren Hohlräume in der Verbindungsschicht vorhanden sind. Durch eine im Wesentlichen geschlossene Sinterschicht werden ein hoher Leitwert sowie eine hohe Stromtragfähigkeit der Verbindungsschicht erreicht. Um beispielsweise eine Zi pfelbildung (doggy ears) zu vermeiden und eine stabile Schichtdicke zu erreichen, werden mindestens zwei im Wesent lichen geschlossene Sinterschichten, in einer auf einer Sub- stratflache orthogonalen Richtung übereinander angeordnet. Dadurch wird ein Schiefstand des Chips und damit eine mögli che Zerstörung beim Sintern vermieden. The invention is based on the idea of applying a power semiconductor, which has at least two electrically isolated contact areas on a side facing a substrate, to a substrate by sintering in order to achieve improved switching behavior and a higher maximum current density. Examples of such power semiconductors are triacs, transistors or thyristors. The transistors are designed, for example, as insulated gate bipolar transistors (IGBTs), as metal oxide semiconductor field effect transistors (MOSFETs) or as field effect transistors. A substrate is to be understood as a dielectric material which, at least on a side facing the power semiconductor, has an at least partially structured metallization for contacting the power semiconductor. For example, the substrate is designed as a DCB ceramic substrate, which in particular contains special aluminum oxide and / or aluminum nitride and has a copper metallization. In particular, the power semiconductor is applied in a flip-chip arrangement on the substrate. The at least two electrically isolated contact areas of the power semiconductor are materially connected to the substrate by means of a structured, in particular metallic, connection layer, the connection layer comprising at least two essentially closed sintered layers. An essentially closed sintered layer is understood to mean a layer which, in contrast to screen printing, is applied with a stencil without a supporting screen, so that there are no functionally identifiable cavities in the connecting layer. An essentially closed sintered layer achieves a high conductivity and a high current-carrying capacity of the connecting layer. For example, to avoid doggy ears and to achieve a stable layer thickness, at least two essentially closed sintered layers, in one on a sub- stratflache orthogonal direction arranged one above the other. This avoids an inconsistent position of the chip and thus possible destruction during sintering.
Eine weitere Ausführungsform sieht vor, dass der Leistungs halbleiter durch die Verbindungsschicht mindestens 70 gm, insbesondere mindestens 200 gm, vom Substrat beabstandet kon taktiert wird. Durch einen derartigen Abstand wird erreicht, dass auf dem Leistungshalbleiter auftretende elektromagneti sche Felder, welche beispielsweise im Bereich eines Guard- rings auftreten, nicht merklich mit dem Substrat interagie ren, sodass das Schaltverhalten des Leistungshalbleiters und eine Isolation im Randbereich durch eine zu große Nähe zum Substrat nicht merklich beeinflusst wird, was zu einer Erhö hung der Lebensdauer führt. Another embodiment provides that the power semiconductor is contacted by the connecting layer at least 70 gm, in particular at least 200 gm, spaced from the substrate. Such a distance ensures that electromagnetic fields occurring on the power semiconductor, which occur for example in the area of a guard ring, do not noticeably interact with the substrate, so that the switching behavior of the power semiconductor and insulation in the edge area are too close to the Substrate is not noticeably influenced, which leads to an increase in service life.
Eine weitere Ausführungsform sieht vor, dass die mindestens zwei im Wesentlichen geschlossene Sinterschichten aus einer Suspension, die, insbesondere metallische, Festkörperpartikel und ein Bindemittel enthält, hergestellt werden. Beispiels weise wird Silber-Sinterpaste verwendet. Durch eine derartige Suspension werden ein hoher Leitwert sowie eine hohe Strom tragfähigkeit der Verbindungsschicht erreicht. Another embodiment provides that the at least two essentially closed sintered layers are produced from a suspension which, in particular, contains metallic, solid particles and a binding agent. For example, silver sinter paste is used. Such a suspension achieves a high conductivity and a high current-carrying capacity of the connecting layer.
Eine weitere Ausführungsform sieht vor, dass eine erste Sin terschicht auf das Substrat aufgetragen und zumindest teil weise getrocknet wird, wobei zumindest eine zweite Sinter schicht auf die erste Sinterschicht aufgetragen und zumindest teilweise getrocknet wird, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche des Leis tungshalbleiters auf der zweiten Sinterschicht, insbesondere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten stoffschlüssig mit dem Sub strat verbunden werden. Durch Trocknen, das zum Beispiel bei einer Temperatur zwischen 100°C und 150°C, insbesondere zwi schen 115°C und 125°C, stattfindet, wird beispielsweise ein Bindemittel zumindest teilweise entfernt. Insbesondere liegt die Sintertemperatur, zum Beispiel bei einer Verwendung von Silbersinterpaste, zwischen 220°C und 260°C, insbesondere zwischen 235°C und 245°C. Durch das Sintern von zumindest zwei Schichten wird, insbesondere im Vergleich zu einer di ckeren Schicht, eine verbesserte Strukturierung, insbesondere in einer auf der Substratfläche orthogonalen Richtung, er reicht. Durch das Vermeiden von Auswölbungen, welche bei di cken Schichten entstehen, wird beim Drucken von mehreren dün nen Schichten eine verbesserte Wandsteilheit der Verbindungs schicht erreicht. Daher wird durch ein derartiges Mehr schicht-Druckverfahren vermieden, dass sich die mindestens zwei elektrisch voneinander isolierte Kontaktbereiche, auch bei einer Schichtdicke von beispielsweise mindestens 70 gm, nicht elektrisch und/oder magnetisch beeinflussen oder gar kurzgeschlossen werden. Another embodiment provides that a first sintered layer is applied to the substrate and at least partially dried, at least one second sintered layer being applied to the first sintered layer and at least partially dried, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer, in particular by pressing, and then by sintering the at least two sintered layers firmly connected to the substrate. By drying, which takes place, for example, at a temperature between 100 ° C. and 150 ° C., in particular between 115 ° C. and 125 ° C., a binder, for example, is at least partially removed. In particular, the sintering temperature is, for example when using Silver sintering paste, between 220 ° C and 260 ° C, especially between 235 ° C and 245 ° C. By sintering at least two layers, in particular in comparison to a thicker layer, an improved structuring, in particular in a direction orthogonal to the substrate surface, is sufficient. By avoiding bulges, which arise with thick layers, an improved wall steepness of the connecting layer is achieved when printing several thin layers. Such a multi-layer printing process therefore prevents the at least two electrically isolated contact areas from influencing each other electrically and / or magnetically or even being short-circuited, even with a layer thickness of, for example, at least 70 μm.
Eine weitere Ausführungsform sieht vor, dass die erste Sin terschicht mittels einer ersten Schablone aufgetragen wird, wobei die zweite Sinterschicht mittels einer zweiten Schablo ne aufgetragen wird und wobei die zweite Schablone dicker als die erste Schablone ist. Insbesondere ist die zweite Schablo ne im Wesentlichen doppelt so dick wie die erste Schablone. Beispielsweise sind die Schablonen derartig ausgeführt, dass diese während des Auftragens der jeweiligen Sinterschicht, insbesondere flächig, auf dem Substrat aufliegen. Durch die Verwendung derartiger Schablonen wird vermieden, dass sich die erste Sinterschicht beim Aufträgen der zweiten Sinter schicht verformt. Another embodiment provides that the first sintered layer is applied by means of a first template, the second sintered layer being applied by means of a second template and the second template being thicker than the first template. In particular, the second template is essentially twice as thick as the first template. For example, the templates are designed in such a way that they rest on the substrate, in particular flat, during the application of the respective sintered layer. The use of such templates prevents the first sintered layer from deforming when the second sintered layer is applied.
Eine weitere Ausführungsform sieht vor, dass eine erste Sin terschicht auf das Substrat aufgetragen und zumindest teil weise getrocknet wird, wobei zumindest eine zweite Sinter schicht auf eine Transfereinheit aufgetragen und zumindest teilweise getrocknet wird, wobei die zumindest teilweise ge trocknete zweite Sinterschicht von der Transfereinheit auf die erste Sinterschicht übertragen wird, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche des Leistungshalbleiters auf der zweiten Sinterschicht, insbeson dere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten stoffschlüssig mit dem Substrat verbunden werden. Beispielsweise wird die erste Sin terschicht mittels einer ersten Schablone auf das Substrat aufgetragen, wobei die zweite Sinterschicht mit der inver tiert angeordneten ersten Schablone aufgetragen wird. Die Transfereinheit ist beispielsweise als teflonbeschichtetes Metallblech, insbesondere Alublech, ausgeführt, um einen ein fachen Transfer der zumindest einen zweiten Sinterschicht zu ermöglichen. Beispielsweise erfolgt die Übertragung durch Druck und eine, insbesondere geringe, Temperaturerhöhung, wo bei die Temperatur zum Übertragen der zumindest einen zweiten Sinterschicht deutlich unterhalb der Sintertemperatur liegt. Durch die Verwendung einer Transfereinheit sind beliebig vie le Sinterschichten ohne zusätzliche Schablonen auftragbar, was Kosten bei der Herstellung einspart. Another embodiment provides that a first sintered layer is applied to the substrate and at least partially dried, at least one second sintered layer being applied to a transfer unit and at least partially dried, the at least partially dried second sintered layer from the transfer unit the first sintered layer is transferred, the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer, in particular by pressing, contacted and then by sintering the at least two sintered layers are firmly bonded to the substrate. For example, the first sintered layer is applied to the substrate by means of a first template, the second sintered layer being applied with the first template, which is arranged in an inverted manner. The transfer unit is designed, for example, as a Teflon-coated sheet metal, in particular sheet aluminum, in order to enable a multiple transfer of the at least one second sintered layer. For example, the transfer takes place by means of pressure and an, in particular slight, increase in temperature, where the temperature for transferring the at least one second sintered layer is significantly below the sintering temperature. By using a transfer unit, any number of sintered layers can be applied without additional templates, which saves manufacturing costs.
Eine weitere Ausführungsform sieht vor, dass die erste Sin terschicht mittels einer ersten Schablone auf das Substrat aufgetragen wird, wobei die zweite Sinterschicht mittels ei ner zur ersten Schablone spiegelsymmetrischen Schablone auf die Transfereinheit aufgetragen wird. Das Aufträgen mittels der spiegelsymmetrischen Schablone erfolgt insbesondere zeit lich parallel, was zu einer Zeitersparnis führt. Mit Hilfe der spiegelsymmetrischen Schablone sind beliebig viele Sin terschichten auf Transfereinheiten herstellbar. Another embodiment provides that the first sintered layer is applied to the substrate by means of a first template, the second sintered layer being applied to the transfer unit by means of a template which is mirror-symmetrical to the first template. The application by means of the mirror-symmetrical template takes place in particular in parallel in time, which saves time. With the help of the mirror-symmetrical template, any number of sintered layers can be produced on transfer units.
Eine weitere Ausführungsform sieht vor, dass eine erste Sin terschicht auf das Substrat aufgetragen und zumindest teil weise getrocknet wird, wobei zumindest eine zweite Sinter schicht auf einen Metallformkörper aufgetragen und zumindest teilweise getrocknet wird, wobei der Metallformkörper mit ei ner der zumindest teilweise getrockneten zweiten Sinter schicht abgewandten Seite auf der ersten Sinterschicht plat ziert wird, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche des Leistungshalbleiters auf der zweiten Sinterschicht, insbesondere durch Anpressen, kontak tiert und daraufhin durch Sintern der zumindest zwei Sinter schichten stoffschlüssig mit dem Substrat verbunden werden. Der Metallformkörper ist zum Beispiel aus einem elektrisch und thermisch leitfähigen Werkstoff wie Kupfer, Silber, Gold, Aluminium, Kobalt, Platin, Molybdän und/oder deren Legierun gen hergestellt. Durch den Metallformkörper wird eine verbes serte Wandsteilheit der Verbindungsschicht erreicht und das Sintern, insbesondere für große Schichtdicken, beispielsweise von mindestens 70 gm, vereinfacht. Another embodiment provides that a first sintered layer is applied to the substrate and at least partially dried, at least one second sintered layer being applied to a metal molding and at least partially dried, the metal molding with one of the at least partially dried second sinters The side facing away from the layer is placed on the first sintered layer, the at least two electrically insulated contact areas of the power semiconductor on the second sintered layer, in particular by pressing, contacted and then firmly connected to the substrate by sintering the at least two sintered layers. The shaped metal body is made, for example, of an electrically and thermally conductive material such as copper, silver, gold, aluminum, cobalt, platinum, molybdenum and / or their alloys. The metal molding achieves an improved wall steepness of the connecting layer and simplifies sintering, in particular for thick layers, for example of at least 70 μm.
Eine weitere Ausführungsform sieht vor, dass der Metallform körper zumindest zwei Metallplättchen umfasst, wobei die zu mindest eine zweite Sinterschicht mittels zumindest einer ersten Schablone auf die zumindest zwei Metallplättchen des Metallformkörpers aufgetragen werden. Die Metallplättchen sind zum Beispiel aus einem elektrisch und thermisch leitfä higen Werkstoff wie Kupfer, Silber, Gold, Aluminium, Kobalt, Platin und/oder deren Legierungen hergestellt. Durch die Me tallplättchen wird eine verbesserte Wandsteilheit der Verbin dungsschicht erreicht und das Sintern, insbesondere für große Schichtdicken, beispielsweise von mindestens 70 gm, verein facht. Another embodiment provides that the metal molded body comprises at least two metal plates, the at least one second sintered layer being applied to the at least two metal plates of the metal molded body by means of at least one first template. The metal plates are made, for example, from an electrically and thermally conductive material such as copper, silver, gold, aluminum, cobalt, platinum and / or their alloys. The metal platelets achieve an improved wall steepness of the connec tion layer and simplify the sintering, especially for thick layers, for example of at least 70 μm.
Eine weitere Ausführungsform sieht vor, dass eine erste Sin terschicht auf das Substrat aufgetragen und zumindest teil weise getrocknet wird, wobei ein Metallformkörper mit einer zweiten Sinterschicht bereitgestellt wird, wobei der Metall formkörper mit einer der zweiten Sinterschicht abgewandten Seite auf der ersten Sinterschicht platziert wird, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbe reiche des Leistungshalbleiters auf der zweiten Sinter schicht, insbesondere durch Anpressen, kontaktiert und da raufhin durch Sintern der zumindest zwei Sinterschichten stoffschlüssig mit dem Substrat verbunden werden. Die Bereit stellung eines Metallformkörpers mit einer Sinterschicht führt zu einer Zeitersparnis. A further embodiment provides that a first sintered layer is applied to the substrate and at least partially dried, a metal molded body with a second sintered layer being provided, the metal molded body being placed on the first sintered layer with a side facing away from the second sintered layer, wherein the at least two electrically isolated contact areas of the power semiconductor on the second sintered layer are contacted, in particular by pressing, and thereupon are firmly connected to the substrate by sintering the at least two sintered layers. The provision of a shaped metal body with a sintered layer saves time.
Im Folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und er läutert. Es zeigen: In the following, the invention is described and explained in more detail using the exemplary embodiments shown in the figures. Show it:
FIG 1 eine schematische Darstellung einer ersten Ausführung eines Verfahrens zur Kontaktierung eines Leistungs halbleiters auf einem Substrat, 1 shows a schematic representation of a first embodiment of a method for contacting a power semiconductor on a substrate,
FIG 2 eine schematische Schnittdarstellung einer ersten Ausführung einer Schablone, FIG. 2 shows a schematic sectional illustration of a first embodiment of a template,
FIG 3 eine schematische Schnittdarstellung einer zweiten Ausführung einer Schablone, 3 shows a schematic sectional illustration of a second embodiment of a template,
FIG 4 eine schematische Darstellung einer zweiten Ausfüh rung eines Verfahrens zur Kontaktierung eines Leis tungshalbleiters auf einem Substrat, 4 shows a schematic representation of a second embodiment of a method for contacting a power semiconductor on a substrate,
FIG 5 eine schematische Darstellung einer dritten Ausfüh rung eines Verfahrens zur Kontaktierung eines Leis tungshalbleiters auf einem Substrat, 5 shows a schematic representation of a third embodiment of a method for contacting a power semiconductor on a substrate,
FIG 6 eine schematische Darstellung einer vierten Ausfüh rung eines Verfahrens zur Kontaktierung eines Leis tungshalbleiters auf einem Substrat und 6 shows a schematic representation of a fourth embodiment of a method for contacting a power semiconductor on a substrate and
FIG 7 eine schematische Darstellung eines Leistungshalb leitermoduls. 7 shows a schematic illustration of a power semiconductor module.
Bei den im Folgenden erläuterten Ausführungsbeispielen han delt es sich um bevorzugte Ausführungsformen der Erfindung. Bei den Ausführungsbeispielen stellen die beschriebenen Kom ponenten der Ausführungsformen jeweils einzelne, unabhängig voneinander zu betrachtende Merkmale der Erfindung dar, wel che die Erfindung jeweils auch unabhängig voneinander weiter bilden und damit auch einzeln oder in einer anderen als der gezeigten Kombination als Bestandteil der Erfindung anzusehen sind. Des Weiteren sind die beschriebenen Ausführungsformen auch durch weitere der bereits beschriebenen Merkmale der Er findung ergänzbar. The exemplary embodiments explained below are preferred embodiments of the invention. In the exemplary embodiments, the described components of the embodiments each represent individual features of the invention that are to be considered independently of one another, which also further develop the invention independently of one another and are therefore to be regarded as part of the invention individually or in a combination other than the one shown . Furthermore, the described embodiments can also be supplemented by further features of the invention already described.
Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung. The same reference symbols have the same meaning in the various figures.
FIG 1 zeigt eine schematische Darstellung einer ersten Aus führung eines Verfahrens zur Kontaktierung eines Leistungs halbleiters 2 auf einem Substrat 4. Das Substrat ist als DCB- Keramiksubstrat ausgeführt, welches beispielsweise Alumini umoxid und/oder Aluminiumnitrid enthält und eine zumindest teilweise strukturierte Metallisierung 6, insbesondere Kup fermetallisierung, aufweist. Der Leistungshalbleiter 2 ist beispielhaft als IGBT (Insulated-Gate Bipolar Transistor) ausgeführt und wird in einer Flip-Chip-Anordnung auf das Sub strat 4 aufgebracht. Entsprechend weist der IGBT auf einer dem Substrat 4 zugewandten Seite 8 zwei elektrisch voneinan der isolierte Kontaktbereiche 10, 12 auf, wobei der erste Kontaktbereich 10 als Emitter-Kontakt E und der zweite Kon taktbereich 12 als Gate-Kontakt G ausgeführt ist. Die Kon taktbereiche sind insbesondere als Pads ausgeführt und weisen eine Metallisierung auf. Ein dritter Kontaktbereich 14, wel cher als Kollektor-Kontakt C ausgeführt ist, befindet sich auf einer dem Substrat 4 abgewandten Seite 16. Ferner weist der Leistungshalbleiter 2 zwischen den Kontaktberei chen 10, 12 einen elektrisch isolierenden Zwischenbereich 2a auf. Darüber hinaus weist der Leistungshalbleiter 2 einen Gu- ardring 2b auf, der beispielsweise eine Glas- oder Polyamid abdeckung mit einer Dicke von 10-15pm umfasst. Der Leistungs halbleiter 2 kann beispielsweise auch als Feldeffekttransis tor oder Bipolartransistor ausgeführt sein. 1 shows a schematic representation of a first embodiment of a method for contacting a power semiconductor 2 on a substrate 4. The substrate is designed as a DCB ceramic substrate, which contains, for example, aluminum oxide and / or aluminum nitride and an at least partially structured metallization 6, in particular Kup fermetallisierung having. The power semiconductor 2 is exemplified as an IGBT (Insulated Gate Bipolar Transistor) and is applied to the substrate 4 in a flip-chip arrangement. Correspondingly, on a side 8 facing the substrate 4, the IGBT has two electrically mutually insulated contact areas 10, 12, the first contact area 10 being designed as an emitter contact E and the second contact area 12 being designed as a gate contact G. The contact areas are designed in particular as pads and have a metallization. A third contact area 14, which is designed as a collector contact C, is located on a side 16 facing away from the substrate 4. Furthermore, the power semiconductor 2 has an electrically insulating intermediate area 2a between the contact areas 10, 12. In addition, the power semiconductor 2 has a guard ring 2b, which comprises, for example, a glass or polyamide cover with a thickness of 10-15 μm. The power semiconductor 2 can for example also be designed as a field effect transistor or bipolar transistor.
Zunächst wird mittels einer ersten Schablone 18 eine ge schlossene erste Sinterschicht 20 auf das Substrat 4 aufge tragen und nach dem Entfernen der ersten Schablone 18 zumin dest teilweise getrocknet. Die erste Schablone 18 weist bei spielsweise eine erste Dicke dl von 80-100 pm auf und liegt während des Auftragens der ersten Sinterschicht 20, insbeson- dere flächig, auf dem Substrat 4 auf. Die erste Sinter schicht 20 wird beispielsweise aus einer Suspension, die me tallische Festkörperpartikel und ein, insbesondere organi sches, Bindemittel enthält, hergestellt. Beispielsweise wird für die erste Sinterschicht Silber-Sinterpaste verwendet. Durch Trocknen bei einer Temperatur zwischen 100°C und 150°C, insbesondere zwischen 115°C und 125°C, wird das Bindemittel zumindest teilweise entfernt. First, a closed first sintered layer 20 is applied to the substrate 4 by means of a first template 18 and at least partially dried after removing the first template 18. The first template 18 has, for example, a first thickness dl of 80-100 μm and is located during the application of the first sintered layer 20, in particular more planar, on the substrate 4. The first sintered layer 20 is made, for example, from a suspension which contains metallic solid particles and an, in particular organic, binder. For example, silver sintering paste is used for the first sintered layer. The binder is at least partially removed by drying at a temperature between 100 ° C. and 150 ° C., in particular between 115 ° C. and 125 ° C.
Daraufhin wird mittels einer zweiten Schablone 22 eine ge schlossene zweite Sinterschicht 24 auf die erste Sinter schicht 20 aufgetragen und nach dem Entfernen der zweiten Schablone 22 zumindest teilweise getrocknet. Die zweite Sin terschicht 24 ist aus demselben Werkstoff hergestellt wie die erste Sinterschicht 20 und wird analog zur ersten Sinter schicht 20 getrocknet. Die zweite Schablone 22 weist bei spielsweise eine zweite Dicke d2 von 120-200 pm auf. Insbe sondere liegt die zweite Schablone 22 während des Auftragens der zweiten Sinterschicht 24, insbesondere flächig, auf dem Substrat 4 auf. Then a closed second sintered layer 24 is applied to the first sintered layer 20 by means of a second template 22 and, after the removal of the second template 22, is at least partially dried. The second sintered layer 24 is made of the same material as the first sintered layer 20 and is dried analogously to the first sintered layer 20. The second template 22 has, for example, a second thickness d2 of 120-200 μm. In particular, the second template 22 rests on the substrate 4, in particular over a large area, during the application of the second sintered layer 24.
In einem weiteren Schritt werden die beiden elektrisch vonei nander isolierten Kontaktbereiche 10, 12 des Leistungshalb leiters 2 auf der zweiten Sinterschicht 24, insbesondere durch Anpressen, kontaktiert. Daraufhin wird der Leistungs halbleiter 2 durch Sintern der Sinterschichten 20, 24 stoff schlüssig mit dem Substrat 4 verbunden. Die Sintertemperatur liegt, beispielsweise bei Verwendung von Silbersinterpaste, zwischen 220°C und 260°C, insbesondere zwischen 235°C und 245°C. Sowohl beim Trocknen als auch bei Sintern reduzieren sich die Abmessungen der Sinterschichten 20, 24 abhängig vom verwendeten Material. Dieser Effekt wird in der schematischen Darstellung in FIG 1 nicht abgebildet. Durch das Sintern wird eine Verbindungsschicht 26 hergestellt, durch die der Leis tungshalbleiter 2 mit einem Abstand D von mindestens 70 pm, insbesondere mindestens 200 pm, vom Substrat 4 beabstandet kontaktiert wird. FIG 2 zeigt eine schematische Schnittdarstellung einer ersten Ausführung einer ersten Schablone 18. Die erste Schablone 18 umfasst eine erste Aussparung 28, beispielsweise für einen Emitter-Kontakt E, und eine zweite Aussparung 30, beispiels weise für einen Gate-Kontakt G. Die zweite Aussparung 30 ist in einem Eckbereich der ersten Aussparung 28 angeordnet, wo bei die erste Schablone 18 zwei orthogonal angeordnete Ver bindungsstege 32 umfasst, welche die zweite Aussparung 30 mit der ersten Aussparung verbinden. Die erste Schablone 18 ist für beide Aussparungen 28, 30 einstückig ausgebildet. Die weitere Ausführung der ersten Schablone 18 in FIG 2 ent spricht der in FIG 1. In a further step, the two contact areas 10, 12 of the power semiconductor 2, which are electrically isolated from one another, are contacted on the second sintered layer 24, in particular by being pressed on. The power semiconductor 2 is then firmly connected to the substrate 4 by sintering the sintered layers 20, 24. The sintering temperature, for example when using silver sintering paste, is between 220 ° C and 260 ° C, in particular between 235 ° C and 245 ° C. Both during drying and during sintering, the dimensions of the sintered layers 20, 24 are reduced depending on the material used. This effect is not shown in the schematic representation in FIG. The sintering produces a connecting layer 26 through which the power semiconductor 2 is contacted at a distance D of at least 70 μm, in particular at least 200 μm, from the substrate 4. 2 shows a schematic sectional illustration of a first embodiment of a first template 18. The first template 18 comprises a first recess 28, for example for an emitter contact E, and a second recess 30, for example for a gate contact G. The second recess 30 is arranged in a corner region of the first recess 28, where the first template 18 comprises two orthogonally arranged connecting webs 32 which connect the second recess 30 to the first recess. The first template 18 is designed in one piece for both recesses 28, 30. The further embodiment of the first template 18 in FIG. 2 corresponds to that in FIG. 1.
FIG 3 zeigt eine schematische Schnittdarstellung einer zwei ten Ausführung einer ersten Schablone 18, wobei die zweite Aussparung 30, bezogen auf eine Längsseite der ersten Ausspa rung 28, im Wesentlichen mittig angeordnet ist. Die erste Schablone 18 umfasst drei orthogonal angeordnete Verbindungs stege 32, welche die zweite Aussparung 30 mit der ersten Aus sparung 28 verbinden. Die weitere Ausführung der ersten Schablone 18 in FIG 3 entspricht der in FIG 2. FIG. 3 shows a schematic sectional illustration of a second embodiment of a first template 18, the second recess 30 being arranged essentially in the center with respect to a longitudinal side of the first recess 28. The first template 18 comprises three orthogonally arranged connecting webs 32 which connect the second recess 30 to the first recess 28. The further embodiment of the first template 18 in FIG. 3 corresponds to that in FIG.
FIG 4 zeigt eine schematische Darstellung einer zweiten Aus führung eines Verfahrens zur Kontaktierung eines Leistungs halbleiters 2 auf einem Substrat 4. Nach dem Aufträgen und Trocknen der zweiten Sinterschicht 24 wird mittels einer dritten Schablone 34 eine geschlossene dritte Sinter schicht 36 auf die zweite Sinterschicht 24 aufgetragen und nach dem Entfernen der dritten Schablone 34 zumindest teil weise getrocknet. Die dritte Sinterschicht 36 ist aus demsel ben Werkstoff hergestellt wie die erste Sinterschicht 20 und die zweite Sinterschicht 24. Sie wird, wie die die zweite Sinterschicht 24, analog zur ersten Sinterschicht 20 getrock net. In einem weiteren Schritt werden die beiden elektrisch voneinander isolierten Kontaktbereiche 10, 12 des Leistungs halbleiters 2 auf der dritten Sinterschicht 36, insbesondere durch Anpressen, kontaktiert. Daraufhin wird der Leistungs halbleiter 2 durch Sintern der Sinterschichten 20, 24, 36 Stoffschlüssig mit dem Substrat 4 verbunden. Durch das Sin tern wird eine Verbindungsschicht 26 hergestellt, durch die der Leistungshalbleiter 2 mit einem Abstand D von mindestens 70 gm, insbesondere mindestens 200 gm, vom Substrat 4 beab- standet kontaktiert wird. Das weitere Verfahren zur Kontak tierung des Leistungshalbleiters 2 in FIG 4 entspricht dem Verfahren in FIG 1. 4 shows a schematic representation of a second embodiment of a method for contacting a power semiconductor 2 on a substrate 4. After the application and drying of the second sintered layer 24, a closed third sintered layer 36 is applied to the second sintered layer 24 by means of a third template 34 and after removing the third template 34 at least partially dried. The third sintered layer 36 is made of the same material as the first sintered layer 20 and the second sintered layer 24. Like the second sintered layer 24, it is dried analogously to the first sintered layer 20. In a further step, the two electrically insulated contact areas 10, 12 of the power semiconductor 2 on the third sintered layer 36 are contacted, in particular by being pressed on. The power semiconductor 2 is then sintered by sintering the sintered layers 20, 24, 36 Cohesively connected to the substrate 4. The sintering produces a connecting layer 26 through which the power semiconductor 2 is contacted at a distance D of at least 70 μm, in particular at least 200 μm, from the substrate 4. The further method for making contact with the power semiconductor 2 in FIG. 4 corresponds to the method in FIG.
FIG 5 zeigt eine schematische Darstellung einer dritten Aus führung eines Verfahrens zur Kontaktierung eines Leistungs halbleiters 2 auf einem Substrat 4. Mittels einer ersten Schablone 18 wird eine geschlossene erste Sinterschicht 20 auf das Substrat 4 aufgetragen und nach dem Entfernen der ersten Schablone 18 zumindest teilweise getrocknet. Ferner wird zumindest eine zweite Sinterschicht 24 auf eine Trans fereinheit 38 aufgetragen und zumindest teilweise getrocknet. Die zweite Sinterschicht 24 wird mittels einer zur ersten Schablone 18 spiegelsymmetrischen Schablone 40 aufgetragen. Alternativ wird die zweite Sinterschicht 24 mit der inver tiert angeordneten ersten Schablone 18 aufgetragen. Die Transfereinheit 38 ist beispielsweise teflonbeschichtet, um einen einfachen Transfer der zweiten Sinterschicht 24 zu er möglichen. 5 shows a schematic representation of a third embodiment of a method for contacting a power semiconductor 2 on a substrate 4. Using a first stencil 18, a closed first sintered layer 20 is applied to the substrate 4 and, after the first stencil 18 has been removed, at least partially dried . Furthermore, at least one second sintered layer 24 is applied to a transfer unit 38 and at least partially dried. The second sintered layer 24 is applied by means of a template 40 which is mirror-symmetrical to the first template 18. Alternatively, the second sintered layer 24 is applied with the first template 18 arranged in an inverted manner. The transfer unit 38 is, for example, Teflon-coated in order to allow easy transfer of the second sintered layer 24.
Daraufhin wird die zumindest teilweise getrocknete zweite Sinterschicht 24 von der Transfereinheit 38 auf die erste Sinterschicht 20 übertragen. Die Übertragung erfolgt durch Druck und eine, insbesondere geringe, Temperaturerhöhung, wo bei die Temperatur zum Übertragen der zweiten Sinter schicht 24 deutlich unterhalb der Sintertemperatur liegt. Op tional werden weitere Sintersichten analog zur zweiten Sin terschicht 24 von einer Transfereinheit 38 übertragen. The at least partially dried second sintered layer 24 is then transferred from the transfer unit 38 to the first sintered layer 20. The transfer takes place by pressure and an, in particular small, increase in temperature, where the temperature for transferring the second sintered layer 24 is well below the sintering temperature. Optionally, further sintered layers are transferred analogously to the second sintered layer 24 from a transfer unit 38.
In einem weiteren Schritt werden die beiden elektrisch vonei nander isolierten Kontaktbereiche 10, 12 des Leistungshalb leiters 2 auf der zweiten Sinterschicht 24, insbesondere durch Anpressen, kontaktiert. Daraufhin wird der Leistungs halbleiter 2 durch Sintern der Sinterschichten 20, 24 stoff- schlüssig mit dem Substrat 4 verbunden. Durch das Sintern wird eine Verbindungsschicht 26 hergestellt, durch die der Leistungshalbleiter 2 mit einem Abstand D von mindestens 70 gm, insbesondere mindestens 200 gm, vom Substrat 4 beab- standet kontaktiert wird. Das weitere Verfahren zur Kontak tierung des Leistungshalbleiters 2 in FIG 5 entspricht dem Verfahren in FIG 1. In a further step, the two contact areas 10, 12 of the power semiconductor 2, which are electrically isolated from one another, are contacted on the second sintered layer 24, in particular by being pressed on. The power semiconductor 2 is then made of material by sintering the sintered layers 20, 24 closely connected to the substrate 4. The sintering produces a connecting layer 26 through which the power semiconductor 2 is contacted at a distance D of at least 70 μm, in particular at least 200 μm, from the substrate 4. The further method for making contact with the power semiconductor 2 in FIG. 5 corresponds to the method in FIG.
FIG 6 zeigt eine schematische Darstellung einer vierten Aus führung eines Verfahrens zur Kontaktierung eines Leistungs halbleiters 2 auf einem Substrat 4. Eine geschlossene erste Sinterschicht 20 wird mittels einer ersten Schablone 18 auf das Substrat 4 aufgetragen und nach dem Entfernen der ersten Schablone 18 zumindest teilweise getrocknet. Ferner wird zu mindest eine zweite Sinterschicht 24 auf einen Metallformkör per 42 aufgetragen und zumindest teilweise getrocknet. Der Metallformkörper 42 ist beispielsweise in zwei voneinander elektrisch isolierte Metallplättchen 42a, 42b aufgeteilt, die aus einem elektrisch und thermisch gut leitfähigen Werkstoff wie Kupfer, Silber, Gold, Aluminium, Kobalt, Platin und/oder deren Legierungen hergestellt sind. Die Metallplätt chen 42a, 42b des Metallformkörpers 42 weisen jeweils eine Stärke von 10 gm bis 200 gm auf, wobei ein erstes Metall plättchen 42a eine Kontur aufweist, die an den ersten Kon taktbereich 10 des Leistungshalbleiters 2 angepasst ist und wobei ein zweites Metallplättchen 42b eine Kontur aufweist, die an den zweiten Kontaktbereich 12 des Leistungshalblei ters 2 angepasst ist. Der Metallformkörper 42 kann auch nur ein Metallplättchen 42a umfassen, welches mit dem Kontaktbe reich 10, 12 des Leistungshalbleiters 2, welcher die größere Fläche aufweist, verbunden wird. Beispielsweise bei dem in FIG 6 dargestellten IGBT wird das eine Metallplättchen 42a mit dem Emitter-Kontakt E verbunden, während der Gate- Kontakt G mittels Dispensing oder mittels Jetting mit dem Substrat 4 verbunden wird. Alternativ wird ein bereits mit der zweiten Sinterschicht 24 beschichteter Metallformkör per 42 bereitgestellt. Daraufhin wird der Metallformkörper 42 mit einer der zumin dest teilweise getrockneten zweiten Sinterschicht abgewandten Seite auf der ersten Sinterschicht 20 angeordnet, sodass die zweite Sinterschicht 24 die oberste Lage bildet. Insbesondere wird der Metallformkörper 42 durch Anpressen auf der ersten Sinterschicht 20 kontaktiert. 6 shows a schematic representation of a fourth embodiment of a method for contacting a power semiconductor 2 on a substrate 4. A closed first sintered layer 20 is applied to the substrate 4 using a first template 18 and at least partially dried after the first template 18 has been removed . Furthermore, at least one second sintered layer 24 is applied to a metal molded body 42 and at least partially dried. The metal molded body 42 is divided into two metal plates 42a, 42b, which are electrically insulated from one another and are made from a material such as copper, silver, gold, aluminum, cobalt, platinum and / or their alloys with good electrical and thermal conductivity. The metal plates 42a, 42b of the metal molding 42 each have a thickness of 10 gm to 200 gm, a first metal plate 42a having a contour that is adapted to the first contact area 10 of the power semiconductor 2 and a second metal plate 42b Has contour which is adapted to the second contact area 12 of the power semiconductor 2. The shaped metal body 42 can also comprise just one metal plate 42a, which is connected to the contact area 10, 12 of the power semiconductor 2, which has the larger area. For example, in the case of the IGBT shown in FIG. 6, one metal plate 42a is connected to the emitter contact E, while the gate contact G is connected to the substrate 4 by means of dispensing or by means of jetting. Alternatively, a shaped metal body already coated with the second sintered layer 24 is provided by 42. The shaped metal body 42 is then arranged with a side facing away from the at least partially dried second sintered layer on the first sintered layer 20, so that the second sintered layer 24 forms the topmost layer. In particular, the molded metal body 42 is contacted by being pressed onto the first sintered layer 20.
In einem weiteren Schritt werden die beiden elektrisch vonei nander isolierten Kontaktbereiche 10, 12 des Leistungshalb leiters 2 auf der zweiten Sinterschicht 24, insbesondere durch Anpressen, kontaktiert. Daraufhin wird der Leistungs halbleiter 2 durch Sintern der Sinterschichten 20, 24 stoff schlüssig mit dem Substrat 4 verbunden. Durch das Sintern wird eine Verbindungsschicht 26 hergestellt, durch die der Leistungshalbleiter 2 mit einem Abstand D von mindestens 70 gm, insbesondere mindestens 200 gm, vom Substrat 4 beab- standet kontaktiert wird. Die Verbindungsschicht 26 in FIG 6 umfasst, neben den Sinterschichten 20, 24, den Metallformkör per 42. Das weitere Verfahren zur Kontaktierung des Leis tungshalbleiters 2 in FIG 6 entspricht dem Verfahren in FIG 1. In a further step, the two contact areas 10, 12 of the power semiconductor 2, which are electrically isolated from one another, are contacted on the second sintered layer 24, in particular by being pressed on. The power semiconductor 2 is then firmly connected to the substrate 4 by sintering the sintered layers 20, 24. The sintering produces a connecting layer 26 through which the power semiconductor 2 is contacted at a distance D of at least 70 μm, in particular at least 200 μm, from the substrate 4. In addition to the sintered layers 20, 24, the connecting layer 26 in FIG. 6 comprises the shaped metal body 42. The further method for contacting the power semiconductor 2 in FIG. 6 corresponds to the method in FIG.
FIG 7 zeigt eine schematische Darstellung eines Leistungs halbleitermoduls 44, wobei der Leistungshalbleiter 2 bei spielhaft, wie in FIG 1 beschrieben, kontaktiert wurde. Dar über hinaus ist der als Kollektor-Kontakt C ausgeführte drit te Kontaktbereich 14 über eine weitere Verbindungsschicht 46 mit einem, insbesondere mehrlagigen, weiteren Substrat 48, das eine, insbesondere mehrlagige, strukturierte Metallisie rung 6, insbesondere Kupfermetallisierung, aufweist, stoff schlüssig verbunden. Die weitere Verbindungsschicht 46 weist beispielweise mindestens eine Sinterschicht auf. Ferner um fasst das Leistungshalbleitermodul 44 Verbindungselemen te 50, 52 zur Herstellung einer Verbindung zwischen den Me tallisierungen 6 der Substrate 4, 48. Insbesondere ist der als Emitter-Kontakt E ausgeführte erste Kontaktbereich 10 mit dem ersten Verbindungselement 50 verbunden, wobei der als Ga- te-Kontakt G ausgeführte zweite Kontaktbereich 12 mit dem zweiten Verbindungselement 52 verbunden ist. FIG. 7 shows a schematic representation of a power semiconductor module 44, with the power semiconductor 2 being contacted, for example, as described in FIG. In addition, the third contact area 14, designed as collector contact C, is firmly connected via a further connecting layer 46 to an, in particular multi-layer, further substrate 48, which has an, in particular multi-layer, structured metallization 6, in particular copper metallization. The further connecting layer 46 has, for example, at least one sintered layer. In addition, the power semiconductor module 44 comprises connecting elements 50, 52 for producing a connection between the metalizations 6 of the substrates 4, 48. In particular, the first contact area 10 embodied as an emitter contact E is connected to the first connecting element 50, the te contact G executed second contact region 12 is connected to the second connecting element 52.

Claims

Patentansprüche Claims
1. Verfahren zur Herstellung eines Leistungshalbleitermo duls (44) mit einem Leistungshalbleiter (2) und einem Sub strat (4), wobei der Leistungshalbleiter (2) auf einer dem Substrat (4) zugewandten Seite (8) mindestens zwei elektrisch voneinander isolierte Kontaktbereiche (10, 12) aufweist, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche (10, 12) des Leistungshalbleiters (2) mittels einer strukturierten metallischen Verbindungsschicht (26), welche mindestens zwei im Wesentlichen geschlossene Sinter schichten (20, 24, 36) umfasst, mit dem Substrat (4) stoff schlüssig verbunden werden, wobei die im Wesentlichen geschlossene Sinterschich ten (20, 24, 36) über eine Schablone aufgetragen werden, wobei eine erste Sinterschicht (20) auf das Substrat (4) auf getragen und zumindest teilweise getrocknet wird, wobei zumindest eine zweite Sinterschicht (24) auf die erste Sinterschicht (20) aufgetragen und zumindest teilweise ge trocknet wird, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche (10, 12) des Leistungshalbleiters (2) auf der zweiten Sinterschicht (24), insbesondere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten (20, 24, 36) stoffschlüssig mit dem Sub strat (4) verbunden werden, wobei die erste Sinterschicht (20) mittels einer ersten Schablone (18) aufgetragen wird, wobei die zweite Sinterschicht (24) mittels einer zweiten Schablone (22) aufgetragen wird und wobei die zweite Schablone (22) dicker als die erste Schablo ne (18) ist. 1. A method for producing a power semiconductor module (44) with a power semiconductor (2) and a substrate (4), the power semiconductor (2) on a side (8) facing the substrate (4) having at least two electrically isolated contact areas ( 10, 12), the at least two electrically isolated contact areas (10, 12) of the power semiconductor (2) by means of a structured metallic connecting layer (26) which comprises at least two essentially closed sintered layers (20, 24, 36), are firmly connected to the substrate (4), the essentially closed sintered layers (20, 24, 36) being applied via a template, a first sintered layer (20) being applied to the substrate (4) and at least partially dried is, wherein at least one second sintered layer (24) is applied to the first sintered layer (20) and is at least partially dried, the at least two electrically isolated contact areas (10, 12) of the power semiconductor (2) on the second sintered layer (24), in particular by pressing, contacted and then by sintering the at least two sintered layers (20, 24, 36) cohesively with the substrate (4) are connected, the first sintered layer (20) being applied by means of a first template (18), the second sintered layer (24) being applied by means of a second template (22) and the second template (22) being thicker than the first template (18) is.
2. Verfahren zur Herstellung eines Leistungshalbleitermo duls (44) mit einem Leistungshalbleiter (2) und einem Sub strat (4), wobei der Leistungshalbleiter (2) auf einer dem Substrat (4) zugewandten Seite (8) mindestens zwei elektrisch voneinander isolierte Kontaktbereiche (10, 12) aufweist, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche (10, 12) des Leistungshalbleiters (2) mittels einer strukturierten metallischen Verbindungsschicht (26), welche mindestens zwei im Wesentlichen geschlossene Sinter schichten (20, 24, 36) umfasst, mit dem Substrat (4) stoff schlüssig verbunden werden, wobei die im Wesentlichen geschlossene Sinterschichten (20, 24, 36) über eine Schablone aufgetragen werden, wobei eine erste Sinterschicht (20) auf das Substrat (4) auf getragen und zumindest teilweise getrocknet wird, wobei zumindest eine zweite Sinterschicht (24) auf eine Transfereinheit (38) aufgetragen und zumindest teilweise ge trocknet wird, wobei die zumindest teilweise getrocknete zweite Sinter schicht (24) von der Transfereinheit (38) auf die erste Sin terschicht (20) übertragen wird, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche (10, 12) des Leistungshalbleiters (2) auf der zweiten Sinterschicht (24), insbesondere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten (20, 24, 36) stoffschlüssig mit dem Sub strat (4) verbunden werden. 2. A method for producing a power semiconductor module (44) with a power semiconductor (2) and a substrate (4), wherein the power semiconductor (2) has at least two electrically isolated contact areas (10, 12) on a side (8) facing the substrate (4), the at least two electrically isolated contact areas (10, 12) of the power semiconductor (2) by means of a structured metallic connecting layer (26), which comprises at least two essentially closed sintered layers (20, 24, 36), are firmly connected to the substrate (4), the essentially closed sintered layers (20, 24, 36) overlying a stencil can be applied, a first sintered layer (20) being applied to the substrate (4) and at least partially dried, at least a second sintered layer (24) being applied to a transfer unit (38) and at least partially being dried, the at least partially dried second sinter layer (24) is transferred from the transfer unit (38) to the first sinter layer (20), wherein d ie at least two electrically isolated contact areas (10, 12) of the power semiconductor (2) on the second sintered layer (24), in particular by pressing, contacted and then by sintering the at least two sintered layers (20, 24, 36) cohesively with the substrate (4) to be connected.
3. Verfahren zur Herstellung eines Leistungshalbleitermo duls (44) mit einem Leistungshalbleiter (2) und einem Sub strat (4), wobei der Leistungshalbleiter (2) auf einer dem Substrat (4) zugewandten Seite (8) mindestens zwei elektrisch voneinander isolierte Kontaktbereiche (10, 12) aufweist, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche (10, 12) des Leistungshalbleiters (2) mittels einer strukturierten metallischen Verbindungsschicht (26), welche mindestens zwei im Wesentlichen geschlossene Sinter schichten (20, 24, 36) umfasst, mit dem Substrat (4) stoff schlüssig verbunden werden, wobei die im Wesentlichen geschlossene Sinterschichten (20, 24, 36) über eine Schablone aufgetragen werden, wobei eine erste Sinterschicht (20) auf das Substrat (4) auf getragen und zumindest teilweise getrocknet wird, wobei zumindest eine zweite Sinterschicht (24) auf einen Me tallformkörper (42) aufgetragen und zumindest teilweise ge trocknet wird, wobei der Metallformkörper (42) mit einer der zumindest teil weise getrockneten zweiten Sinterschicht abgewandten Seite auf der ersten Sinterschicht (20) platziert wird, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche (10, 12) des Leistungshalbleiters (2) auf der zweiten Sinterschicht (24), insbesondere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten (20, 24, 36) stoffschlüssig mit dem Sub strat (4) verbunden werden. 3. A method for producing a power semiconductor module (44) with a power semiconductor (2) and a substrate (4), the power semiconductor (2) on a side (8) facing the substrate (4) having at least two electrically isolated contact areas ( 10, 12), the at least two electrically isolated contact areas (10, 12) of the power semiconductor (2) by means of a structured metallic connecting layer (26) which comprises at least two essentially closed sintered layers (20, 24, 36), are firmly connected to the substrate (4), wherein the substantially closed sintered layers (20, 24, 36) are applied via a template, a first sintered layer (20) being applied to the substrate (4) and at least partially dried, with at least one second sintered layer (24) being applied to one Metal molded body (42) is applied and at least partially dried, the metal molded body (42) being placed on the first sintered layer (20) with a side facing away from the at least partially dried second sintered layer, the at least two electrically isolated contact areas (10 , 12) of the power semiconductor (2) on the second sintered layer (24), in particular by pressing, contacted and then by sintering the at least two sintered layers (20, 24, 36) cohesively connected to the substrate (4).
4. Verfahren zur Herstellung eines Leistungshalbleitermo duls (44) mit einem Leistungshalbleiter (2) und einem Sub strat (4), wobei der Leistungshalbleiter (2) auf einer dem Substrat (4) zugewandten Seite (8) mindestens zwei elektrisch voneinander isolierte Kontaktbereiche (10, 12) aufweist, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche (10, 12) des Leistungshalbleiters (2) mittels einer strukturierten metallischen Verbindungsschicht (26), welche mindestens zwei im Wesentlichen geschlossene Sinter schichten (20, 24, 36) umfasst, mit dem Substrat (4) stoff schlüssig verbunden werden, wobei die im Wesentlichen geschlossene Sinterschichten (20, 24, 36) über eine Schablone aufgetragen werden, wobei eine erste Sinterschicht (20) auf das Substrat (4) auf getragen und zumindest teilweise getrocknet wird, wobei ein mit einer zweiten Sinterschicht (24) beschichteter Metallformkörper (42) bereitgestellt wird, wobei der Metallformkörper (42) mit einer der zweiten Sinter schicht (24) abgewandten Seite auf der ersten Sinter schicht (20) platziert wird, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche (10, 12) des Leistungshalbleiters (2) auf der zweiten Sinterschicht (24), insbesondere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten (20, 24, 36) stoffschlüssig mit dem Sub strat (4) verbunden werden. 4. A method for producing a power semiconductor module (44) with a power semiconductor (2) and a sub strate (4), wherein the power semiconductor (2) on a side (8) facing the substrate (4) has at least two electrically isolated contact areas ( 10, 12), the at least two electrically isolated contact areas (10, 12) of the power semiconductor (2) by means of a structured metallic connecting layer (26) which comprises at least two essentially closed sintered layers (20, 24, 36), be firmly connected to the substrate (4), the essentially closed sintered layers (20, 24, 36) being applied via a template, a first sintered layer (20) being applied to the substrate (4) and at least partially dried wherein a metal molded body (42) coated with a second sintered layer (24) is provided, the metal molded body (42) having one of the second sin the layer (24) facing away from the first sintered layer (20) is placed, wherein the at least two electrically isolated contact areas (10, 12) of the power semiconductor (2) on the second sintered layer (24), in particular by pressing, contacted and then by sintering the at least two sintered layers (20, 24, 36) cohesively with the sub strat (4).
5. Verfahren nach einem der vorherigen Ansprüche, wobei der Leistungshalbleiter (2) durch die Verbindungs schicht (26) mindestens 70 gm, insbesondere mindestens 200 gm, vom Substrat (4) beabstandet kontaktiert wird. 5. The method according to any one of the preceding claims, wherein the power semiconductor (2) is contacted by the connecting layer (26) at least 70 gm, in particular at least 200 gm, spaced from the substrate (4).
6. Verfahren nach einem der vorherigen Ansprüche, wobei die mindestens zwei im Wesentlichen geschlossene Sin terschichten (20, 24, 36) aus einer Suspension, die metalli sche Festkörperpartikel und ein Bindemittel enthält, herge stellt werden. 6. The method according to any one of the preceding claims, wherein the at least two substantially closed sinter layers (20, 24, 36) are made from a suspension containing metallic solid particles and a binder.
7. Verfahren nach Anspruch 2, wobei die erste Sinterschicht (20) mittels einer ersten Schablone (18) auf das Substrat (4) aufgetragen wird, wobei die zweite Sinterschicht (24) mittels einer zur ersten Schablone (18) spiegelsymmetrischen Schablone (40) auf die Transfereinheit (38) aufgetragen wird. 7. The method according to claim 2, wherein the first sintered layer (20) is applied to the substrate (4) by means of a first template (18), the second sintered layer (24) by means of a template (40) which is mirror-symmetrical to the first template (18) is applied to the transfer unit (38).
8. Verfahren nach Anspruch 3, wobei der Metallformkörper (42) zumindest zwei Metallplätt chen (42a, 42b) umfasst, wobei die zumindest eine zweite Sinterschicht (24) mittels zumindest einer ersten Schablone (18) auf das zumindest zwei Metallplättchen (42a, 42b) des Metallformkörpers (42) aufge tragen wird. 8. The method according to claim 3, wherein the shaped metal body (42) comprises at least two metal plates (42a, 42b), wherein the at least one second sintered layer (24) is applied to the at least two metal plates (42a, 42b) by means of at least one first template (18) ) of the shaped metal body (42) will wear.
9. Verfahren nach Anspruch 1, wobei die mindestens zwei im Wesentlichen geschlossene Sin terschichten (20, 24, 36), in einer auf einer Substratfläche orthogonalen Richtung übereinander angeordnet werden. 9. The method according to claim 1, wherein the at least two substantially closed sinter layers (20, 24, 36) are arranged one above the other in a direction orthogonal to a substrate surface.
10. Verfahren nach einem der Ansprüche 1 oder 9, wobei die zweite Schablone (22) beim Aufträgen der zweiten Sinterschicht (24) derartig angeordnet wird, dass die zweite Schablone (22) die erste Sinterschicht (20) umgibt. 10. The method according to any one of claims 1 or 9, wherein the second template (22) when applying the second sintered layer (24) is arranged such that the second template (22) surrounds the first sintered layer (20).
11. Verfahren nach einem der Ansprüche 1, 9 oder 10, wobei die erste Schablone (18) während des Auftragens der ersten Sinterschicht (20) und die zweite Schablone (22) wäh rend des Auftragens der zweiten Sinterschicht (24), insbeson dere flächig, auf das Substrat (4) aufgelegt werden. 11. The method according to any one of claims 1, 9 or 10, wherein the first template (18) during the application of the first sintered layer (20) and the second template (22) during the application of the second sintered layer (24), in particular flat , are placed on the substrate (4).
12. Verfahren nach einem der Ansprüche 1 oder 9 bis 11, wobei die zweite Schablone (22) im Wesentlichen doppelt so dick ausgeführt wird wie die erste Schablone (18). 12. The method according to any one of claims 1 or 9 to 11, wherein the second template (22) is made substantially twice as thick as the first template (18).
13. Verfahren nach einem der Ansprüche 1 oder 9 bis 12, wobei die erste Schablone (18) eine erste Dicke (dl) von 80- 100 gm aufweist und wobei die zweite Schablone (22) eine zweite Dicke (d2) von 120-200 gm aufweist, 13. The method according to any one of claims 1 or 9 to 12, wherein the first template (18) has a first thickness (dl) of 80-100 gm and wherein the second template (22) has a second thickness (d2) of 120-200 has gm,
14. Leistungshalbleitermodul (44) mit einem Leistungshalblei ter (2) und einem Substrat (4), wobei der Leistungshalbleiter (2) auf der dem Substrat (4) zugewandten Seite (8) mindestens zwei elektrisch voneinander isolierte Kontaktbereiche (10, 12) aufweist, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche (10, 12) des Leistungshalbleiters (2) mittels einer strukturierten metallischen Verbindungsschicht (26), welche mindestens zwei im Wesentlichen geschlossene Sinter schichten (20, 24, 36) umfasst, mit dem Substrat (4) stoff schlüssig verbunden sind, wobei die im Wesentlichen geschlossene Sinterschichten (20, 24, 36) über eine Schablone aufgetragen sind, wobei zumindest eine zweite Sinterschicht (24) auf einen Me tallformkörper (42) aufgetragen ist, wobei der Metallformkörper (42) mit einer der zweiten Sinter schicht abgewandten Seite auf der ersten Sinterschicht (20) platziert ist, wobei die mindestens zwei elektrisch voneinander isolierten Kontaktbereiche (10, 12) des Leistungshalbleiters (2) auf der zweiten Sinterschicht (24), insbesondere durch Anpressen, kontaktiert und daraufhin durch Sintern der zumindest zwei Sinterschichten (20, 24, 36) stoffschlüssig mit dem Sub strat (4) verbunden sind. 14. Power semiconductor module (44) with a power semiconductor (2) and a substrate (4), the power semiconductor (2) having at least two electrically isolated contact areas (10, 12) on the side (8) facing the substrate (4) , wherein the at least two electrically isolated contact areas (10, 12) of the power semiconductor (2) with the substrate (4 ) are materially connected, the essentially closed sintered layers (20, 24, 36) being applied via a template, with at least one second sintered layer (24) being applied to a molded metal body (42), wherein the metal molded body (42) is placed with a side facing away from the second sintered layer on the first sintered layer (20), the at least two electrically isolated contact areas (10, 12) of the power semiconductor (2) on the second sintered layer (24), in particular by pressing, contacted and then by sintering the at least two sintered layers (20, 24, 36) cohesively with the sub strate (4).
15. Leistungshalbleitermodul (44) nach Anspruch 14, wobei der Leistungshalbleiter (2) durch die Verbindungs schicht (26) mindestens 70 gm, insbesondere mindestens 100 gm, vom Substrat (4) beabstandet kontaktiert ist. 15. Power semiconductor module (44) according to claim 14, wherein the power semiconductor (2) is contacted by the connecting layer (26) at least 70 gm, in particular at least 100 gm, spaced from the substrate (4).
16. Leistungshalbleitermodul (44) nach einem der Ansprüche 14 oder 15, wobei die mindestens zwei im Wesentlichen geschlossene Sin terschichten (20, 24, 36) aus einer Suspension, die metalli sche Festkörperpartikel und ein Bindemittel enthält, herge stellt sind. 16. Power semiconductor module (44) according to one of claims 14 or 15, wherein the at least two substantially closed sinter layers (20, 24, 36) are made from a suspension containing metallic solid particles and a binder.
17. Leistungshalbleitermodul (44) nach einem der Ansprüche 14 bis 16, wobei zwischen zwei Sinterschichten (20, 24, 36) ein Metall formkörper (42) angeordnet und stoffschlüssig mit den Sinter schichten (20, 24, 36) verbunden ist. 17. Power semiconductor module (44) according to one of claims 14 to 16, wherein a metal molded body (42) is arranged between two sintered layers (20, 24, 36) and cohesively connected to the sintered layers (20, 24, 36).
18. Leistungshalbleitermodul (44) nach einem der Ansprüche 14 bis 17, wobei der Leistungshalbleiter (2) auf der dem Substrat (4) abgewandten Seite (16) einen dritten Kontaktbereich (14) auf weist, welcher stoffschlüssig mit einem, insbesondere mehrla gigen, weiteren Substrat 48 verbunden ist, wobei die zwei elektrisch voneinander isolierte Kontaktberei che (10, 12) über jeweils mindestens ein Verbindungsele ment (50, 52), insbesondere, stoffschlüssig mit dem weiteren Substrat (48) verbunden sind. 18. Power semiconductor module (44) according to one of claims 14 to 17, wherein the power semiconductor (2) on the side (16) facing away from the substrate (4) has a third contact area (14) which is firmly bonded with a, in particular multi-layer, further substrate 48 is connected, wherein the two electrically insulated contact areas (10, 12) are each connected via at least one connecting element (50, 52), in particular, cohesively with the further substrate (48).
19. Stromrichter mit mindestens einem Leistungshalbleitermo dul (44) nach einem der Ansprüche 14 bis 18. 19. Converter with at least one power semiconductor module (44) according to one of claims 14 to 18.
EP21725421.8A 2020-06-23 2021-04-30 Method for contacting a power semiconductor with a substrate, and power semiconductor module having a power semiconductor and a substrate Pending EP4128326A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20181634 2020-06-23
PCT/EP2021/061372 WO2021259536A2 (en) 2020-06-23 2021-04-30 Method for contacting a power semiconductor device on a substrate

Publications (1)

Publication Number Publication Date
EP4128326A2 true EP4128326A2 (en) 2023-02-08

Family

ID=71138531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21725421.8A Pending EP4128326A2 (en) 2020-06-23 2021-04-30 Method for contacting a power semiconductor with a substrate, and power semiconductor module having a power semiconductor and a substrate

Country Status (4)

Country Link
US (1) US20230343745A1 (en)
EP (1) EP4128326A2 (en)
CN (1) CN115917719A (en)
WO (1) WO2021259536A2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN168174B (en) * 1986-04-22 1991-02-16 Siemens Ag
JP3420203B2 (en) * 2000-10-27 2003-06-23 Necエレクトロニクス株式会社 Solder bump formation method
JP2004228375A (en) * 2003-01-23 2004-08-12 Seiko Epson Corp Method of forming bump, device and electronic apparatus
JP2011060964A (en) * 2009-09-09 2011-03-24 Tamura Seisakusho Co Ltd Method of forming bump
DE202012004434U1 (en) 2011-10-15 2012-08-10 Danfoss Silicon Power Gmbh Metal shaped body for creating a connection of a power semiconductor chip with upper potential surfaces to thick wires
JPWO2015029152A1 (en) * 2013-08-28 2017-03-02 株式会社日立製作所 Semiconductor device
DE102014206608A1 (en) 2014-04-04 2015-10-08 Siemens Aktiengesellschaft A method of mounting an electrical component using a hood and a hood suitable for use in this method
TW201611198A (en) * 2014-04-11 2016-03-16 阿爾發金屬公司 Low pressure sintering powder
BR112016029118A2 (en) * 2014-06-12 2017-08-22 Alpha Metals sintering materials and fixing methods using the same
DE102014222819B4 (en) 2014-11-07 2019-01-03 Danfoss Silicon Power Gmbh Power semiconductor contact structure with bonding buffer and method for its production
FR3047111B1 (en) * 2016-01-26 2018-03-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives ASSEMBLY COMPRISING MIXED INTERCONNECT MEANS COMPRISING INTERMEDIATE INTERCONNECTION ELEMENTS AND METAL SINTERED JOINTS AND METHOD OF MANUFACTURE
DE102016225654A1 (en) * 2016-12-20 2018-06-21 Robert Bosch Gmbh Power module with a housing formed in floors
US10002821B1 (en) * 2017-09-29 2018-06-19 Infineon Technologies Ag Semiconductor chip package comprising semiconductor chip and leadframe disposed between two substrates
US11315868B2 (en) * 2018-03-23 2022-04-26 Mitsubishi Materials Corporation Electronic-component-mounted module design to reduce linear expansion coefficient mismatches

Also Published As

Publication number Publication date
WO2021259536A3 (en) 2022-07-07
WO2021259536A2 (en) 2021-12-30
US20230343745A1 (en) 2023-10-26
CN115917719A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
EP4128337B1 (en) Power module with at least three power units
DE102005047106B4 (en) Power semiconductor module and method of manufacture
EP3625823B1 (en) Power module having at least one power semiconductor
DE102009044641B4 (en) Device with a semiconductor chip and metal foil and a method for producing the device
DE10102621B4 (en) power module
EP4118681A1 (en) Power semiconductor module comprising at least one power semiconductor element
WO2007033829A2 (en) Power semiconductor module and a method for the production thereof
EP3794641A1 (en) Heat extraction assembly for a semiconductor power module
DE10314172B4 (en) A method of operating an assembly of an electrical component on a substrate and method of making the assembly
DE102012215656B4 (en) Method for producing a power semiconductor module
EP3940769A1 (en) Semiconductor module comprising at least one semiconductor element and a substrate
WO2019063533A1 (en) Component, and method for the production thereof
WO2021259536A2 (en) Method for contacting a power semiconductor device on a substrate
WO2018037047A1 (en) Power module, method for producing same, and power electronics circuit
DE102017211336A1 (en) Power module with surface-mounted electrical contacting elements
WO2017093116A1 (en) Electronic power module
DE102015115133B3 (en) Method for connecting a heat sink with at least one circuit carrier by shrinking
EP4199075A1 (en) Electronic module comprising a pulsating heat pipe with a channel structure
DE102006040838A1 (en) Electronic power package for high power electronic device, has two non-planar insulating substrates with high thermal conductivity with electrical conductivity layers which are separated and isolated from each other
EP4235771A1 (en) Semiconductor device comprising at least one semiconductor element, a first layer of material and a second layer of material
EP3901996A2 (en) Method for connecting components during manufacture of power electronic modules or assemblies via direct bonding of smooth metallic surface layers as well as corresponding power electronic module and corresponding power electronic assembly
EP4211719A1 (en) Semiconductor module comprising at least one semiconductor element
EP4300554A1 (en) Method of manufacturing a semiconductor assembly having semiconductor element and substrate
DE112022000346T5 (en) Semiconductor device and method of manufacturing the same
EP4300555A1 (en) Method of manufacturing a semiconductor assembly having semiconductor element and substrate

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221028

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)