EP4058623A1 - Fil imprégné, produit composite à paroi mince nervuré comportant un tel fil imprégné, et procédé de fabrication de ce fil et de ce produit composite - Google Patents
Fil imprégné, produit composite à paroi mince nervuré comportant un tel fil imprégné, et procédé de fabrication de ce fil et de ce produit compositeInfo
- Publication number
- EP4058623A1 EP4058623A1 EP20807903.8A EP20807903A EP4058623A1 EP 4058623 A1 EP4058623 A1 EP 4058623A1 EP 20807903 A EP20807903 A EP 20807903A EP 4058623 A1 EP4058623 A1 EP 4058623A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- impregnated
- yarn
- strands
- manufacturing
- composite product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/40—Yarns in which fibres are united by adhesives; Impregnated yarns or threads
- D02G3/404—Yarns or threads coated with polymeric solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
- B29B15/122—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/08—Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
- B29C70/081—Combinations of fibres of continuous or substantial length and short fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/20—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/24—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/38—Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/447—Yarns or threads for specific use in general industrial applications, e.g. as filters or reinforcement
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B3/00—Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
- D06B3/04—Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of yarns, threads or filaments
- D06B3/06—Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of yarns, threads or filaments individually handled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2267/00—Use of polyesters or derivatives thereof as reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2311/00—Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
- B29K2311/10—Natural fibres, e.g. wool or cotton
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/02—Reinforcing materials; Prepregs
Definitions
- Impregnated yarn, composite product with a thin ribbed wall comprising such an impregnated yarn, and method of manufacturing this yarn and this composite product [0001]
- the present invention relates to the field of thin-walled composite products reinforced by ribs resulting from son, as well as impregnated son used in the manufacture of such thin-wall ribbed composite products.
- Such thin-walled composite products are conventionally used to form a part with improved mechanical properties while keeping a low weight for this part.
- Document WO2019087141 relates to a method of impregnation with the polymer of a grid formed from an assembly of threads, which improves the quality of the impregnation, with the aim of improving the bending properties of a product A thin-walled composite comprising this grid on a base flat support, such as a mat.
- a base flat support such as a mat.
- this method is not suitable when it is desired to have an impregnated thread with high mechanical performance because of the very partial impregnation of the threads of the mesh.
- Document EP2813607A1 describes the passage of strands of fibers in an impregnation unit comprising a bath of liquid thermoplastic polymer, to form an impregnated yarn. It turns out that in practice the simple passage through a bath of liquid polymer does not ensure complete and perfect impregnation of the strand of fibers throughout its volume, but very partial impregnation at the surface of the strand of fibers. This random and insufficient impregnation does not guarantee optimized and reproducible properties for the reinforcing threads within the thin-walled composite product.
- One of the aims of the present invention is to provide a solution which makes it possible to obtain an impregnated yarn for which the impregnation of the fibers is improved, whereby the mechanical properties of this impregnated yarn are increased.
- Another object of the invention is to provide a method of manufacturing an impregnated yarn as well as the impregnated yarn resulting from this manufacturing process which are free from the limitations of the known manufacturing methods and impregnated yarns.
- Another object of the invention is to provide a method of manufacturing a ribbed thin-wall composite product as well as the ribbed thin-wall composite resulting from this manufacturing process which are free from the limitations of the manufacturing methods and known thin-walled composites.
- Another object of the invention is to provide a method of manufacturing a thin-walled composite product reinforced by ribs formed by wires forming a ribbed thin-walled composite product improved with respect to the state of the technical.
- Impregnating the strand by continuously advancing said strand so as to form a strand impregnated with the thermoplastic material, whereby an impregnated yarn is formed;
- each of said strands has a twist T1 in a first orientation during their passage through the impregnation tank 20, and
- This solution has the particular advantage over the prior art of allowing good impregnation of the fibers by the thermoplastic material, and in particular of not obtaining an impregnated yarn in which only the surface portion of the strands is impregnated, without systematically having a core impregnation of the strands and of the impregnated yarn resulting from this process.
- Such an impregnated yarn resulting from the manufacturing process according to the invention has better mechanical strength due to this improved impregnation, and in particular a more substantial impregnation, in particular by reaching the fibers of the central portion of the strand or strands. which forms the yarn, which therefore allows improved impregnation of the yarn itself thus obtained.
- a greater proportion of the volume of each strand is impregnated with the thermoplastic material, resulting in impregnation of a greater proportion of the volume of the entire yarn.
- an impregnated yarn comprising at least two continuous strands comprising plant fibers, with a first individual twist of the strands in a first direction (each of said strands has an individual twist in a first orientation) and a second overall twist of the strands in a second direction different from the first direction (all of said strands has an overall twist according to a second orientation different from the first orientation).
- said strands are impregnated with thermoplastic material in at least 60% of their volume, each of said strands being individually twisted and all of said strands also being twisted in a configuration held by the thermoplastic material.
- thermoplastic material allows the formation of a bond between all the strands both in their individual twisted configuration (individual twist of the strands) and also in their twisted configuration between them (overall twist of the strands resulting in a wire twisted).
- an impregnated yarn with high mechanical performance is thus obtained.
- such an impregnated yarn exhibits improved flexural, tensile and compressive strength due to this dual level twist, for each strand and between all strands.
- the impregnated wire further comprises at least one connecting wire wound helically around all of said strands, forming an impregnated and tied wire.
- a binding wire improves the hold of the shape of the section of the wire, and will in particular help to limit the crushing of the wire intended to form a rib on the surface of a thin-walled composite product.
- This connecting wire is therefore optional. If this binding thread is present around the impregnated thread, one can alternatively provide two binding threads wound in a helix and which can be in the same direction, or preferably in the opposite direction.
- One or the other or more of the following arrangements can also be present in the impregnated yarn:
- the outer fibers of said strands form (s) an angle of between -20 ° and + 20 ° with the longitudinal or main direction of the impregnated yarn, - the strands have an individual twist of between 50 and 300 rpm, preferably between 100 and 200 rpm ,
- the impregnated yarn comprises between three and six strands each having a weight of between 200 and 800 tex, preferably between 300 to 600 tex.
- a composite product is formed having a ribbed face, said ribs being created at least in part by the impregnated threads.
- a thin-walled composite product comprising impregnated son. as described in the present text, said composite product having a ribbed face, said ribs being created at least in part by said impregnated threads.
- these ribs makes it possible to increase the flexural rigidity of the part formed from or incorporating such a thin-walled composite product, while slightly increasing its weight. Also, the presence of these ribs also makes it possible to improve the impact behavior of this part, the ribs slowing the propagation of cracks in the part during an impact, thus confining the damage, preventing the projection of debris and increasing by elsewhere the absorption of energy on impact.
- the expression “thin-walled” composite product means that the composite product has a wall whose thickness is at most equal to 10% of the smallest dimension of this composite product or of the article comprising this composite product.
- the expression “thin-walled” composite product means that the composite product has a wall whose thickness is at most equal to 5% of the smallest dimension of this product. composite or of the article comprising that composite product.
- the thin-walled composite product thus formed is intended to form in particular, and without limitation, a part or part of a part for the passenger compartment of a motor vehicle, such as an instrument panel, door covers, cover panel of the pillars and console, a roof, a trunk cover. It can also be used to make suitcase shells, vehicle bodies, etc.
- the invention also relates to a method of manufacturing an article comprising a thin-walled portion wherein said thin-walled portion is formed from or comprises a thin-walled composite product produced according to the method described in the present text.
- said article belonging to the group comprising: an automobile body part, in particular the doors, the roof, the hood, fenders, spoiler, spoiler, front and rear bumpers, aerodynamic kits, or automotive interior parts including door covers, dashboard, center console, pillar trims, trunk linings, the roof, or sports articles such as a canoe, kayak or light boat hull, a bicycle frame, or even a piece of furniture, or aircraft interior parts, in particular the panels side panels, ceiling panels, luggage compartments, or aerodynamic parts of light aircraft, in particular the engine cover, wheel covers, or any aerodynamic fairing of a mobile machine, or even a suitcase shell.
- Figure 1 illustrates the different steps of a process for manufacturing an impregnated yarn and the impregnated yarn resulting from this manufacturing process which are not part of the invention
- FIG. 2 represents the different stages of a method of manufacturing a yarn impregnated with two strands and the impregnated yarn resulting from this production method according to the invention
- Figure 3 illustrates the different steps of a variant with three strands of the manufacturing process of an impregnated yarn and the impregnated yarn resulting from this manufacturing process according to the invention
- Figure 4 shows a manufacturing unit of an impregnated yarn allowing the implementation of the variant of the manufacturing method of Figure 3,
- FIG. 5 schematically represents an implementation possibility for the impregnation tank making it possible to carry out the step of impregnating the strand or strands which will form the impregnated yarn
- Figures 6A and 6B respectively show the first face and the second face of a composite product with thin ribbed wall according to the invention comprising impregnated son
- Figure 7 is an enlarged view of zone VII of Figure 6B, showing the impregnated son forming ribs on one of the faces of the composite product of Figures 6A and 6B
- Figure 8 illustrates the different steps of a manufacturing process forming another type of impregnated yarn and which falls outside the scope of the present invention.
- Example (s) of embodiment of the invention Referring to Figure 1 showing the steps in the manufacture of an impregnated yarn which is not part of the invention, from the right to the left of FIG. 1, the arrow F1 representing the entry and the arrow F2 the exit.
- a single strand 10a is used to continuously form the impregnated yarn 10e.
- the strand 10a is a continuous ribbon coming out of a reel and comprising plant fibers 11, the orientation of which has not necessarily been directed.
- this strand 10a consists of short flax fibers which are essentially parallel to each other and to the general direction of the strand 10a.
- step B preferably, but not necessarily, a twist T1 of the strand 10a is carried out in a first direction, which forms a twisted strand 10b according to an individual twist which orients the fibers 11 in a direction which n 'is not parallel to the general direction PO of strand 10a (angle b for the outer fibers 11 in FIG. 1).
- the purpose of this twisting will be to increase the resistance to tearing of the strand, and thus to prevent it from breaking during the following impregnation step.
- This individual twist T1 will however be small (for example an angle b of between 0 ° and 20 ° with respect to the direction PO of the strand 10b) in order to facilitate good impregnation in the following step.
- step C the twisted strand 10b (or the untwisted strand 10a) is impregnated with a liquid thermoplastic material 12a, such as a thermoplastic polymer (or a mixture of polymers thermoplastics) present in an impregnation tank 20.
- a liquid thermoplastic material 12a such as a thermoplastic polymer (or a mixture of polymers thermoplastics) present in an impregnation tank 20.
- This specific impregnation step C will be described in detail below.
- An impregnated strand, optionally twisted, 10c is obtained, also forming, in this case of FIG. 1 with a single strand, an impregnated yarn 10e.
- FIG. 8 which is not part of the invention, there is shown the alternative case in which the manufacturing process comprises steps A, C described above, and step E described below. after, but not steps B and D: there is no individual torsion T1, nor additional individual torsion T1 '.
- This figure 8 comprises a single strand 10a with fibers 11 essentially parallel to the direction PO of strand 10a, to form the impregnated yarn 10e, but it is possible, in the context of this process of FIG. 8, to use two strands 10a, three strands 10a or even more strands 10e, which therefore remain in their untwisted state throughout the process, and in particular during impregnation step C and tying step (optional) E.
- the wire 10c can be twisted (step D), and this additionally if it has already been twisted before (step B of twisting T1 or else strand already supplied twisted).
- a final step E which is preferable but not imperative, in addition to or as an alternative to the twisting T1 ′ (step D) of the yarn leaving the tank, consists in placing a binding yarn 13 around the impregnated twisted strand 10c, in forming a helix, and this after passing through the impregnation tank 20, while the thermoplastic material 12a which has impregnated the impregnated yarn is still liquid and has not completely hardened.
- 0n refers to Figure 2 showing a variant of the manufacturing process of a single strand impregnated yarn which has just been described in relation to Figures 1 and 8, constituting a process falling within the scope of the invention, in which two strands 10a (step A) or 10b (step B) are used to form an impregnated yarn according to the invention.
- Each twisted strand 10b is impregnated with liquid thermoplastic material 12a at the level of the impregnation tank 20 (step C) and then the two impregnated twisted strands 10c are twisted together according to a twist T2.
- thermoplastic material provides a bond between the two impregnated twisted strands 10c, which maintains in the impregnated yarn 10d the configuration of the overall twist between the two impregnated twisted strands 10c.
- thermoplastic material 12a is still liquid and has not completely hardened, it also produces a bond retaining between them the binding wire 13 in helix around the impregnated wire 10d, and to form an impregnated and tied wire 10e.
- thermoplastic material 12b has hardened, it maintains these bonds.
- FIG. 3 shows a variant of the manufacturing process of an impregnated yarn according to the invention, in which three flat strands 10a (step A) or three twisted strands 10b (step B) are used for forming the impregnated yarn.
- Each twisted strand 10b is impregnated with liquid thermoplastic material 12a at the level of the impregnation tank (step C) and then the three impregnated twisted strands 10c are twisted together (step D) according to an overall twist T2.
- An impregnated yarn 10d is thus formed which is larger than each impregnated twisted individual strand 10c, and this while the thermoplastic material is still liquid 12a, in all cases not hardened.
- this thermoplastic material 12 provides a bond between the three impregnated twisted strands 10c, which maintains the overall twist configuration between the three impregnated twisted strands 10c in the impregnated yarn 10d.
- a binding wire 13 is used helically around the impregnated wire 10d, as shown in FIG. 3, and this while the thermoplastic material 12a is still liquid and has not completely hardened, this thermoplastic material 12a not only achieves a connection between the three impregnated twisted strands 10c of the impregnated yarn 10d, but also a connection retaining the connecting yarn 13 helically around the impregnated yarn 10d, and to form an impregnated and twisted yarn 10e. Once the thermoplastic material 12b has hardened, it maintains these bonds.
- impregnated and tied yarn can be replaced by “impregnated yarn” and vice versa in the present text because the use of the connecting yarn 13 arranged in a helix around the impregnated yarn is not systematic in within the scope of the present invention.
- 0n refers to Figure 5 illustrating one of the implementation possibilities of the impregnation step, with the impregnation tank 20 filled with liquid thermoplastic material 12a and delimiting a passage 21 between the inlet 20a and the outlet 20b of the impregnation tank 20.
- the impregnation tank 20 filled with liquid thermoplastic material 12a and delimiting a passage 21 between the inlet 20a and the outlet 20b of the impregnation tank 20.
- these contact zones 20c are located on the lateral face of the cylinders 22 placed in the impregnation tank 20 and bypassed by the twisted strands 10b which therefore run through a passage 21 in the form of a wave or a wave.
- Other configurations, not shown, are possible to force the individual contact of the twisted strands 10b against a face of the passage 21 while the strands 10b are bathed in the liquid thermoplastic material 12a, for example with the zig-zag walls of the tank. impregnation 20.
- passage 21 is sinuous.
- an effective impregnation step is carried out which makes it possible to have, at the outlet of the impregnation tank 20, strands 10c impregnated with an impregnation of thermoplastic material in at least 60% of their volume, in general in at least 70% of their volume, preferably in at least 80%, even at least 90% or 95%.
- thermoplastic material in the whole (100%) volume of the impregnated strands 10c. This large amount of thermoplastic material is found in the same proportion in the yarn at the end of the production line implementing the production method according to the invention.
- each of said strands has a twist T1 in a first orientation during their passage through the impregnation tank 20: this individual twist is for example between 50 and 300 rpm, from preferably between 100 and 200rpm.
- This first orientation is for example S.
- This first orientation of the twist T1 results in the formation of a strand 10b with outer fibers 11 which have an angle b with respect to the general direction PO of the strand 10a.
- said impregnated yarn 10 d comprises at least two twisted strands 10b (preferably three twisted strands 10b) separated from one another upstream of the impregnation tank 20 and passing simultaneously through said passage 21.
- the impregnated yarn 10 d is composed of 2 to 10 individual strands of 200 to 1500 tex, preferably 3 to 6 strands of 200 to 800 tex, preferably 3 to 6 strands of 300 to 600 tex.
- several separate impregnation tanks working in parallel are used, one for the impregnation of each strand 10b.
- the twisted strands 10b enter the impregnation tank through a hole fitted at the level of the inlet 20a of the impregnation tank 20 (on the right in FIG. 5), large enough to avoid a blocking, but small enough to prevent a leak of liquid thermoplastic material, for example poly propylene (example a hole of 2.5mm in diameter for three twisted strands 10b of 555tex each).
- the impregnated twisted strands 10c emerge through a calibrated hole at the level of the outlet 20b of the impregnation tank 20 (on the left in FIG. 5) which will determine the final radius of the impregnated wire 10d and the quantity of material. thermoplastic of this 10d impregnated yarn.
- thermoplastic material and fibers in the yarn impregnated 10d will typically be between 30 and 70% by weight of thermoplastic material, preferably between 40 and 60% by weight of thermoplastic material in the impregnated yarn 10d.
- the strand 10a or 10b or each of said strands 10a or 10b consists only of plant fibers.
- These vegetable fibers belong to the group comprising the following materials: flax, hemp, sisal, jute, abaca, kenaf, nettle, ramie, kapok, abaca, henequen, pineapple, banana, palm tree, and wood fibers.
- the thermoplastic material used for the impregnation comprises a polymer which belongs to the group comprising polyolefins, polypropylene (PP), polypropylene, grafted with maleic anhydride (maPP), polyethylene (PE ), polyamide or co-polyamide, polyester or co-polyester, thermoplastic polyurethane, co-polyoxymethylene, thermoplastic cellulose esters (Cellulose acetate propionate), polylactic acid (PLA) or derivatives thereof or a mixture of these.
- a mixture of polypropylene and polypropylene grafted with maleic anhydride (maPP) is used which promotes the adhesion of the polymer with the natural fibers. It is possible, by way of example, to use such a mixture with 3 to 10% of my PP by weight.
- the thermoplastic thermoplastic material has, in the impregnation tank 20, a viscosity such that the Melt Flow Index is greater than 10 g / 10 min, preferably greater than 34 g / 10 min.
- Melt Flow Index is meant a measurement in g / 10min, according to Standard IS01133, under a load of 2.16kg at 230 ° C.
- the molten thermoplastic material 12a has, in the impregnation tank 20, a viscosity of between 10 and 10 ⁇ 00 Pa.s, preferably between 20 and 1000 Pa.s, and preferably between 50 and 500 Not. This viscosity corresponds to a low shear rate viscosity of 1 sec-1.
- a manufacturing unit 100 as shown schematically in Figure 4. We can use finds the direction of advance from right to left in FIGS. 1 to 3, between an input F1 and an output F2. At the entrance to this manufacturing unit 100, three reels 110 allow the manufacturing unit 100 to be supplied with three twisted strands 10b corresponding to step B in FIG. 3.
- drying of the twisted strands 10b is carried out by passing through a drying module 120, which drying could be omitted in other variant embodiments.
- a drying module 120 which drying could be omitted in other variant embodiments.
- natural fibers still have 4-8% moisture.
- the twisted strands 10b can be very easily dried by passing before entering the impregnation tank in a drying module 120 formed of a tube with a flow of hot air between 100-150 ° C. It is also possible to dry the twisted strands 10b beforehand and to keep the coils which unwind on the reels 110 in a dry atmosphere.
- the previously described impregnation tank 20 is arranged just downstream of the drying module 120, with an extruder 23 which supplies the tank 20 with liquid thermoplastic material.
- the end of the manufacturing unit 100 comprises, downstream of the impregnation tank 20, a drive module, winding and twisting 140 comprising a spool for receiving the impregnated yarn 10d (or the impregnated and tied yarn 10e).
- step D of twisting of the impregnated yarn 10d is carried out during which an overall twist is carried out corresponding to a twist T2 between them of all the strands downstream of the impregnation tank 20, while the thermoplastic material is still in the liquid state, whereby the thermoplastic material 12a makes a bond between the strands 10c in their twisted state between them, resulting in forming an impregnated and twisted yarn 10d.
- the overall torsion is carried out in a second orientation T2 different from the first orientation T1.
- T2 different from the first orientation T1.
- the degree of twist T2 is chosen so that the outer fibers 11 of said strand 10c or of said strands 10c form an acute or zero angle d, low, between -20 ° and + 20 ° with the direction longitudinal or main P1 of the impregnated yarn 10d.
- this angle d is between + 10 ° and -10 °, or even between + 5 ° and -5 ° and possibly between + 3 ° and -3 °.
- outer fibers is meant the portion of the fibers of each strand which is located on the surface of the impregnated (and twisted) yarn.
- the strands 10b have fibers with a certain twist according to a first orientation (angle d if the combination of twists T1 and T1 ', or angle b if twist T1 only), by twisting the strands together according to a second orientation (overall twist T2), the angle d (and possibly e in the presence of a connecting thread 13) formed between the outer fibers of the strands and the main direction P1 of the thread 10d is reduced, or even achieved, canceling out or 10th.
- a first orientation angle d if the combination of twists T1 and T1 ', or angle b if twist T1 only
- a yarn geometry with the outer fibers of the yarn at 0 ° (longitudinal) is advantageous.
- This is possible by twisting (T2 twist) several individual yarns in a reverse twist direction to the individual strands (if the individual strands have a T1 twist in S, the yarn is twisted in Z for the T2 twist) so as to obtain the fibers outside at 0 ° or close to 0 °.
- twisting with a twist of 73rpm three individual strands of 555tex having a twist of
- step E a binding wire 13 is provided and said binding wire 13 is wound around the thread 10d impregnated with material thermoplastic downstream of the impregnation tank, whereby an impregnated and tied thread 10e is formed.
- This binding wire 13 is placed in a helix all around the impregnated wire 10d while the thermoplastic material 12a is still liquid to ensure the attachment of this binding wire 13 on the impregnated wire 10d and to obtain good cohesion for the impregnated and tied wire.
- this binder yarn has a linear weight of between 10 and 60 tex, preferably between 15 and 45 tex.
- the weight added by the binder yarn will typically be 1 to 15% of the total weight of the impregnated and tied yarn 10e, preferably 2 to 10%.
- this connecting wire 13 contributes to maintaining a circular shape to the section of the impregnated and twisted wire 10th, and mainly to increasing its resistance to radial compression.
- This is advantageous when the impregnated and tied yarn 10e is used in a thin-walled composite product as ribs on its surface, since during the manufacturing process of the thin-walled composite product the product is compressed either by a flexible membrane under pressure, or by a flexible pad (for example a silicone substrate). During this operation, the threads making up the ribs tend to be crushed and the effectiveness of the ribs is thus reduced.
- the binding thread 13 can be a thread of plant fibers (for example linen, cotton, hemp, etc.) or can be synthetic (polymer thread such as polyester, polyamide, or of glass fibers, carbon fibers , aramid).
- This binding wire 13 must not melt or become too flexible at the processing temperature of the composite product (180-210 ° C), otherwise the binding wire 13 will deform during the compression of the part and it loses all its usefulness in confinement and maintaining the shape of the impregnated yarn and string.
- this binding wire 13 is placed (step E) after step D of overall twisting of the wire, and this then that the module for depositing the connecting wire 130 is arranged upstream of (before) the drive, winding and twisting module 140. It is in fact understood that the twisting (overall twist T2) of all the strands of the yarn is produced by the drive, winding and twisting module 140 but that this overall twisting propagates to the outlet of the impregnation tank 20 (in FIG.
- the three impregnated twisted strands 10c are differentiated (separated) to just after being associated in the impregnated wire 10d).
- exactly two binding threads 13 are arranged in a helix around the impregnated thread 10d with a reverse direction of rotation, whereby the two binding threads 13 cross each other on the surface of the impregnated and tied thread 10e.
- the impregnated wire passes inside the spool of the binding wire, said spool rotating at the determined speed to obtain the desired density of binding wire.
- the tension on the small binding wire is generated by the inertia of this binding wire rotating at high speed around the impregnated wire.
- the binding wire spool can rotate around the impregnated wire, and tension in the binding wire is generated by slowing the unwinding of the spool.
- the impregnated yarn has no contact with the binding thread laying unit other than the binding thread itself, so as not to interfere with the twisting process which takes place between the drive, winding and twisting module 140 and the impregnation tank 20.
- winding and twisting 140 For the drive module, winding and twisting 140, one can use a winding system where the coil which winds the impregnated yarn rotates both on its own axis to wind the impregnated yarn, and on the axis of the impregnated yarn to create twist.
- the second way is that of the spinning wheel, with the pin spinner spinning around the spool.
- the speed of the spinner's rotation determines the twist, and the speed differential between the spool and the spinner controls the feed rate of the impregnated wire.
- the precise control of these two speeds can be done with stepping motors, with synchronous motors or with servo motors.
- the initial strand 10a is in the form of a ribbon with fibers 11 aligned, with fibers 11 having an angle close to 0 ° relative to the main direction PO of the tape, passing through the bath of molten thermoplastic polymer in an impregnation tank before the binding wire 13 is laid helically around the impregnated wire 10c.
- the invention also relates to a thin-walled composite product comprising impregnated threads as described above, said composite product having a ribbed face, said ribs being created at least in part by said threads. impregnated, and in some cases all the ribs being formed by impregnated threads.
- such a ribbed thin-walled composite product results from a process comprising the following steps: - providing a support such as a mat
- FIGS. 6A and 6B and in FIG. 7 An example of such a ribbed thin-walled composite product 30 is illustrated in FIGS. 6A and 6B and in FIG. 7 in the form of a portion of a part which can be used for example as a part for covering a passenger compartment. automobile.
- This ribbed thin-walled composite product 30 has a mesh 32 and a support 34 superimposed and interconnected.
- the lattice 32 is formed of impregnated and strung yarns 10e which are held together by crisscrossing by an assembly yarn, for example of polyester, for example a 10 to 100 dtex yarn, applied by sewing, knitting or weaving with the threads. impregnated and tied 10th of the lattice 32.
- connection between the mesh 32 and the support 34 is produced by the polymer itself, either during the compression molding step, or during a hot prelamination step.
- the mesh 32 can be sewn onto the support 34.
- two supports 34 are provided and the mesh 32 is stacked with the two supports 34, the two supports 34 being on either side of said mesh 32 to form a sandwich stack.
- the support 34 (or both supports) is (are) chosen from among a support of woven material, a support of non-woven material or a support 34 of non-woven material belonging to the list following: a web of unidirectional fibers (11), a superposition of layers of unidirectional fibers (11) (multidirectional web), and a mat of randomly distributed fibers.
- said support 34 (or both supports) is (are) prepreg (s) with a polymer (or more generally with a thermoplastic material) identical or different from the polymer (or more generally with thermoplastic material) impregnated son of the mesh.
- the mesh 32 comprises a mesh with a mesh opening greater than or equal to 1 cm, preferably between 1 cm and 6 cm, preferably between 1 cm and 3 cm.
- the impregnated wire described above is used to form a mesh 32 or a grid.
- the grid can have parallel wires in two directions to create a square, rectangular or parallelepiped mesh. It can also have three or four directions of thread.
- a square mesh grid will typically have a 5-100mm mesh, depending on the size of the yarn used, typically a 10-30mm mesh with a yarn made from 1500tex of impregnated linen.
- the grid can be produced by a textile method, with a small thread binding the impregnated threads together, for example by knitting.
- the grid can also be obtained by thermally welding the impregnated wires at their crossings, either by heating, or by ultrasound.
- the grid is then combined with other composite layers during the thermocompression step (for example mats of natural fibers and PP, or mats of polyester and PP fibers .... )
- other composite layers for example mats of natural fibers and PP, or mats of polyester and PP fibers ....
- the preform comprising the impregnated threads must be shaped in order to obtain said composite product with reinforcing ribs.
- Several methods are possible. For thermocompression, the preform is heated in an oven to melt the thermoplastic polymer.
- the base layer and the preform comprising the impregnated yarns can either be combined beforehand and heated together, if their temperature and heating method match, or else heated separately, but simultaneously.
- the preform and base layer are placed in the mold in a press and the press is closed to compact and form the composite product. Once the polymer has cooled and hardened, the part is demolded.
- the mold used is rigid on the smooth side of the part, but has a soft substrate, for example a 2-10mm layer of silicone, on the ribbed side, so as not to crush the ridges created by the impregnated threads 10d or 10e described above. .
- the pressure can be exerted by a flexible membrane pressurized on the ribbed face.
- the heating-cooling cycle can also be done in the mold.
- the ribs can be obtained at specifically chosen locations using a depositing robot which will precisely deposit the desired impregnated 10d or 10e strands on a base layer (for example a mat), according to a specific reinforcement scheme.
- the bond with the base layer can be done by melting the polymer, or by locally sewing the impregnated thread.
- the composite product presented here has a thin wall which means that it is generally initially in the form of a sheet or of a panel, one dimension of which is much smaller (at least 10 times smaller) than the other two.
- Such a composite product can take on a multitude of geometries, including a flat sheet, a non-planar sheet, and in particular a sheet with a convex face and a concave face, or even a corrugated sheet, a three-dimensional hollow shape, and in particular a hollow tube of circular section, of polygonal section or another shape, and in particular any three-dimensional shell with a thin wall.
- an article comprising a thin-walled portion in which said thin-walled portion is formed of a thin-walled composite product produced according to one of the previously described methods.
- Such an article incorporating a thin-walled composite product can be used in various applications and in particular belongs to the group comprising: an automobile body part, in particular the doors, the roof, the hood, the fenders, the spoiler, the spoiler - front and rear shocks, aerodynamic kits, or automotive interior parts including door covers, dashboard, center console, pillar trim, trunk trim, roof, or sporting goods such as '' a canoe, kayak or light boat hull, a bicycle frame, or a piece of furniture, or aircraft interior parts, including side panels, ceiling panels, luggage compartments, or aerodynamic parts of light aircraft, in particular the engine cover, the wheel covers, or any aerodynamic fairing of a mobile machine, or even a suitcase shell.
- step D Angle between the outer fibers 11 and the impregnated and twisted yarn 10d (step D)
- Impregnated twisted strand (impregnated yarn if only one strand)
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
L'invention concerne un fil imprégné, un produit composite à paroi mince nervuré comportant un tel fil imprégné, et leur procédé de fabrication. Un tel fil imprégné (10d; 10e) comporte au moins deux brins (10a; 10b) continus comprenant des fibres végétales (11), lesdits brins (10a; 10b) étant imprégnés de matière thermoplastique (12a) dans au moins 60% de leur volume, chacun desdits brins (10a; 10b) étant individuellement torsadé (T1) et l'ensemble desdits brins (10a; 10b) étant également torsadé (T2) dans une configuration (10d) maintenue par la matière thermoplastique (12a).
Description
Description
Titre de l'invention : Fil imprégné, produit composite à paroi mince nervuré comportant un tel fil imprégné, et procédé de fabrication de ce fil et de ce produit composite [0001 ]Domaine technique
[0002]La présente invention concerne le domaine des produits composites à paroi mince renforcés par des nervures résultant de fils, ainsi que les fils imprégnés servant à la fabrication de tels produits composites à paroi mince nervurés. [0003]De tels produits composites à paroi mince sont classiquement utilisés pour former une pièce avec des propriétés mécaniques améliorées tout en gardant un poids faible pour cette pièce.
[0004]Etat de la technique
[0005]Si l'on cherche à renforcer le produit composite à paroi mince en flexion, mais aussi en compression, il est connu de proposer des renforts en saillie en forme de réseau nervuré ou de grille comme dans WO201 7099585 dans lequel on forme par moulage ces nervures au-dessus et/ou en dessous de la plaque de base.
[0006]0n connaît certains types de produits composites à paroi mince du document EP2648890, notamment avec des fils d'une première épaisseur et des fils d'une deuxième épaisseur plus grande que la première épaisseur et qui servent de renfort formant des nervures sur l'une des faces du produit composite à paroi mince. Ces fils de la deuxième épaisseur sont composés de fibres végétales torsadées, cette torsion apportant notamment une meilleure résistance à la compression de ces fils de la deuxième épaisseur.
[0007]Le document W02019087141 concerne une méthode d'imprégnation par du polymère d'une grille formée d'un assemblage de fils, qui améliore la qualité de l'imprégnation, avec pour objectif d'améliorer les propriétés en flexion d'un produit composite à paroi mince comportant cette grille sur un support plat de base, tel qu'un mat. A cet effet, on effectue un
saupoudrage de particules de polymère sur l'une des faces d'un treillis de fils entrecroisés, afin d'obtenir une grille comportant une quantité supérieure de polymère sur l'une des faces, ce qui au surplus allège le produit composite à paroi mince comportant une telle grille. Cependant cette méthode n'est pas adaptée lorsque l'on souhaite disposer d'un fil imprégné à haute performance mécanique à cause de l'imprégnation très partielle des fils du treillis.
[0008]Le document EP2813607A1 décrit le passage de brins de fibres dans une unité d'imprégnation comportant un bain de polymère thermoplastique liquide, pour former un fil imprégné. Il s'avère qu'en pratique le simple passage dans un bain de polymère liquide n'assure pas une totale et parfaite imprégnation du brin de fibres dans tout son volume, mais une imprégnation très partielle en surface du brin de fibres. Cette imprégnation aléatoire et insuffisante ne garantit pas des propriétés optimisées et reproductibles pour les fils de renfort au sein du produit composite à paroi mince.
[0009]Bref résumé de l'invention
[0010]Un des buts de la présente invention est de proposer une solution qui permette d'obtenir un fil imprégné pour lequel l'imprégnation des fibres est améliorée, ce par quoi les propriétés mécaniques de ce fil imprégné sont augmentées.
[0011 ]Un autre but de l'invention est de proposer un procédé de fabrication d'un fil imprégné ainsi que le fil imprégné résultant de ce procédé de fabrication qui soient exempts des limitations des procédés de fabrication et des fils imprégnés connus.
[0012]Un autre but de l'invention est de proposer un procédé de fabrication d'un produit composite à paroi mince nervuré ainsi que le composite à paroi mince nervuré résultant de ce procédé de fabrication qui soient exempts des limitations des procédés de fabrication et des composite à paroi mince connus.
[0013]Un autre but de l'invention est de proposer un procédé de fabrication d'un produit composite à paroi mince renforcé par des nervures formées par des fils formant un produit composite à paroi mince nervuré amélioré par rapport à l'état de la technique. [0014]Selon l'invention, ces buts sont atteints notamment au moyen d'un procédé de fabrication d'un fil imprégné à partir d'au moins un brin comprenant des fibres végétales, dans lequel les étapes suivantes sont mises en oeuvre :
- fournir au moins deux brins continus comprenant des fibres végétales,
- fournir une cuve d'imprégnation délimitant un passage sinueux entre une entrée et une sortie,
- alimenter la cuve avec un bain de matière polymère thermoplastiqueà l'état fondue remplissant ledit passage en permanence, - disposer ledits brins de sorte qu'ils soient séparés entre eux en amont de la cuve d'imprégnation, qu'ils pénètrent dans la cuve d'imprégnation par ladite entrée, qu'ils suivent simultanément le passage en étant immergé dans la matière thermoplastiqueà l'état liquide et en présentant au moins une zone de contact avec une face du passage, et qu'ils ressortent de la cuve d'imprégnation par ladite sortie, et
- imprégner le brin en faisant avancer en continu ledit brin de façon à former un brin imprégné de la matière thermoplastique, ce par quoi on forme un fil imprégné ;
- dans lequel chacun desdits brins présente une torsion T1 selon une première orientation lors de leur passage dans la cuve d'imprégnation 20, et
- dans lequel on réalise en outre, après l'étape d'imprégnation, une étape de torsion du fil au cours de laquelle est réalisée une torsion d'ensemble correspondant à une torsion T2 entre eux de tous les brins en aval de la cuve d'imprégnation, alors que la matière thermoplastique est encore à l'état liquide, ce par quoi la matière thermoplastique réalise une liaison
entre les brins dans leur état torsadé entre eux, résultant dans la formation d'un fil imprégné et torsadé, et dans lequel ladite torsion d'ensemble T2 est réalisée selon une deuxième orientation différente de la première orientation. [0015]Cette solution présente notamment l'avantage par rapport à l'art antérieur de permettre une bonne imprégnation des fibres par la matière thermoplastique, et notamment de ne pas obtenir un fil imprégné dans lequel seule la portion de surface des brins est imprégnée, sans avoir systématiquement une imprégnation à cœur des brins et du fil imprégné résultant de ce procédé.
[0016]Un tel fil imprégné résultant du procédé de fabrication selon l'invention présente une meilleure tenue mécanique du fait de cette imprégnation améliorée, et notamment d'une imprégnation plus conséquente, notamment en atteignant les fibres de la portion centrale du ou des brins qui forme(nt) le fil, ce qui permet donc une imprégnation améliorée du fil lui-même ainsi obtenu. Une plus grande proportion du volume de chaque brin est imprégnée par la matière thermoplastique, ce qui entraîne une imprégnation d'une plus grande proportion du volume de tout le fil. [0017]C'est notamment du fait du contact avec des surfaces de la cuve d'imprégnation lors du passage du ou des brins dans le bain de matière thermoplastique liquide, qu'est assurée cette bonne imprégnation, car en frottant contre des surfaces dures, le ou les brins sont aplatis, ce qui permet, par cette ouverture du ou des brins, un déploiement des fibres et par là la mise en contact direct entre toutes ou la plupart des fibres de chaque brin et la matière thermoplastique liquide. Le contact avec les parois de la cuve délimitant le passage crée également une surpression locale qui force la matière thermoplastique à pénétrer dans le brin, et à enrober davantage de fibres du brin, voire toutes les fibres du brin. [0018]Egalement, selon l'invention on propose un fil imprégné comportant au moins deux brins continus comprenant des fibres végétales, avec une
première torsion individuelle des brins dans unpremier sens (chacun desdits brins présente une torsion individuelle selon une première orientation) et une deuxième torsion d'ensemble des brins dans un deuxième sens différent du premier sens (l'ensemble desdits brins présente une torsion d'ensemble selon une deuxième orientation différente de la première orientation). De préférence, lesdits brins sont imprégnés de matière thermoplastique dans au moins 60% de leur volume, chacun desdits brins étant individuellement torsadé et l'ensemble desdits brins étant également torsadé dans une configuration maintenue par la matière thermoplastique.
[0019]Ainsi, un tel fil imprégné présente donc à la fois une torsion individuelle de chaque brin et également une torsion d'ensemble. On comprend que la matière thermoplastique permet la formation d'une liaison entre tous les brins à la fois dans leur configuration torsadée individuelle (torsion individuelle des brins) et également dans leur configuration torsadée entre eux (torsion d'ensemble des brins résultant en un fil torsadé).
[0020]Comme il sera présenté plus loin en détail, on obtient ainsi un fil imprégné à haute performances mécaniques. Entre autres choses, un tel fil imprégné présente une résistance améliorée à la flexion, à la traction et à la compression grâce à cette torsion à double niveau, pour chaque brin et entre tous les brins.
[0021]Selon un mode de réalisation, le fil imprégné comporte en outre au moins un fil de liaison enroulé en hélice autour de l'ensemble desdits brins, formant un fil imprégné et ficelé. Un tel fil de liaison améliore la tenue de la forme de la section du fil, et va notamment contribuer à limiter l'écrasement du fil destiné à former une nervure en surface d'un produit composite à paroi mince. Ce fil de liaison est donc optionnel. Si ce fil de liaison est présent autour du fil imprégné, on peut en alternative prévoir deux fils de liaison enroulés en hélice et qui peuvent être de même sens, ou de façon préférentielle en sens opposé.
[0022]L'une ou l'autre ou plusieurs des dispositions suivantes peuvent en outre se présenter dans le fil imprégné :
- les fibres extérieures desdits brins forme(nt) un angle compris entre -20° et +20° avec la direction longitudinale ou principale du fil imprégné, - les brins présentent une torsion individuelle comprise entre 50 et 300tpm, de préférence entre 100 et 200tpm,
- le fil imprégné comporte entre trois et six brins présentant chacun un poids compris entre 200 et 800 tex, de préférence entre 300 à 600 tex.
[0023]Egalement, selon l'invention on propose un procédé de fabrication d'un produit composite à paroi mince comprenant les étapes suivantes :
- fourniture d'un support tel qu'un mat
- fabrication de fils imprégnés selon le procédé décrit dans le présent texte,
- assemblage des fils imprégnés pour former un treillis dans lequel les fils imprégnés s'entrecroisent, - empilement du treillis et du support, et
- moulage par compression du treillis et du support empilés, ce par quoi on forme un produit composite, présentant une face nervurée, lesdites nervures étant créées au moins en partie par les fils imprégnés.
[0024] Egalement, selon l'invention on propose un procédé de fabrication d'un produit composite à paroi mince comprenant les étapes suivantes :
- fabrication de fils imprégnés selon le procédé décrit dans le présent texte,
- fourniture de fils de base présentant une taille inférieure aux fils imprégnés, - tissage ou tricotage des fils de base avec lesdits fils imprégnés, pour former une préforme,
- moulage par compression de la préforme, ce par quoi on forme un produit composite présentant une face nervurée, lesdites nervures étant créées au moins en partie par les fils imprégnés. [0025]En outre, selon l'invention est proposée une solution selon laquelle on fournit un produit composite à paroi mince comportant des fils imprégnés
tels que décrits dans le présent texte, ledit produit composite présentant une face nervurée, lesdites nervures étant créées au moins en partie par lesdits fils imprégnés.
[0026]La présence de ces nervures permet d'augmenter la rigidité en flexion de la pièce formée de ou intégrant un tel produit composite à paroi mince, tout en augmentant faiblement son poids. Egalement, la présence de ces nervures permet en outre d'améliorer le comportement en impact de cette pièce, les nervures freinant la propagation de fissures dans la pièce lors d'un impact, confinant ainsi le dommage, évitant la projection de débris et augmentant par ailleurs l'absorption d'énergie à l'impact.
[0027]Dans le présent texte, l'expression produit composite à « paroi mince » signifie que le produit composite comporte une paroi dont l'épaisseur est au plus égale à 10% de la plus petite dimension de ce produit composite ou de l'article comportant ce produit composite. Selon une autre possibilité rentrant dans le cadre de la présente invention, l'expression produit composite à « paroi mince » signifie que le produit composite comporte une paroi dont l'épaisseur est au plus égale à 5% de la plus petite dimension de ce produit composite ou de l'article comportant ce produit composite. [0028]Le produit composite à paroi mince ainsi formé est destiné à former notamment, et de façon non limitative, une pièce ou une partie de pièce pour l'habitacle d'un véhicule automobile, telles que tableau de bord, couverture de portières, panneau de couverture des piliers et console, un pavillon, une couverture de coffre. Il peut aussi être utilisé pour réaliser des coques de valise, des carrosseries de véhicules....
[0029]L'invention porte également sur un procédé de fabrication d'un article comprenant une portion à paroi mince dans lequel ladite portion à paroi mince est formée de ou comporte un produit composite à paroi mince fabriqué selon le procédé décrit dans le présent texte, ledit article appartenant au groupe comprenant : une pièce de carrosserie automobile, notamment les portes, le toit, le
capot, les ailes, l'aileron, le spoiler, les pare-chocs avant et arrière, les kits aérodynamiques, ou des pièces intérieures automobiles notamment les couvertures de portière, le tableau de bord, la console centrale, les habillages de pilier, les habillages de coffre, le pavillon, ou des articles de sport tels qu'une coque de canoé, kayak ou bateau léger, un cadre de bicyclette, ou encore un élément de mobilier, ou des pièces d'intérieur d'avion, notamment les panneaux latéraux, les panneaux de plafond, les coffres à bagage, ou des pièces aérodynamiques d'avion léger, notamment le capot moteur, les capots de roue, ou tout carénage aérodynamique d'un engin mobile, ou encore une coque de valise.
[0030]Brève description des figures
[0031 ]Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
[0032]La figure 1 illustre les différentes étapes dun procédé de fabrication d'un fil imprégné et le fil imprégné résultant de ce procédé de fabrication qui ne font pas partie de l'invention,
[0033]La figure 2 représente les différentes étapes d'unprocédé de fabrication d'un fil imprégné avec deux brins et le fil imprégné résultant de ce procédé de fabrication selon l'invention,
[0034]La figure 3 illustre les différentes étapes d'une variante avec trois brins du procédé de fabrication d'un fil imprégné et le fil imprégné résultant de ce procédé de fabrication selon l'invention,
[0035]La figure 4 représente une unité de fabrication d'un fil imprégné permettant la mise en oeuvre de la variante du procédé de fabrication de la figure 3,
[0036]La figure 5 représente schématiquement une possibilité de mise en oeuvre pour la cuve d'imprégnation permettant de réaliser l'étape d'imprégnation du brin ou des brins qui vont former le fil imprégné,
[0037] Les figures 6A et 6B représentent respectivement la première face et la deuxième face d'un produit composite à paroi mince nervuré selon l'invention comprenant des fils imprégnés,
[0038] La figure 7 est une vue agrandie de la zone VII de la figure 6B, montrant les fils imprégnés formant des nervures sur une des faces du produit composite des figures 6A et 6B, et [0039]La figure 8 illustre les différentes étapes d'un procédé de fabrication formant un autre type de fil imprégné et qui sort du cadre de la présente invention.
[0040]Exemple(s) de mode de réalisation de l'invention [0041] On se reporte à la figure 1 montrant les étapes de la fabrication d'un fil imprégné qui ne fait pas partie de l'invention, depuis la droite vers la gauche de la figure 1, la flèche F1 représentant l'entrée et la flèche F2 la sortie. Ici, un seul brin 10a est utilisé pour former en continu le fil imprégné 10e. Au départ (après la flèche F1, étape A), le brin 10a est un ruban continu sortant d'une bobine et comprenant des fibres végétales 11 dont l'orientation n'a pas forcément été dirigée. Par exemple, ce brin 10a est constitué de fibres courtes de lin essentiellement parallèles entre elles et à la direction générale du brin 10a. Ensuite, (étape B), de préférence, mais de manière non impérative, on effectue une torsion T1 du brin 10a dans un premier sens, ce qui forme un brin torsadé 10b selon une torsion individuelle qui oriente les fibres 11 dans une direction qui n'est pas parallèle à la direction générale PO du brin 10a (angle b pour les fibres extérieures 11 sur la figure 1). Cette torsion aura pour but d'augmenter la résistance au déchirement du brin, et ainsi d'en éviter la rupture lors de l'étape suivante d'imprégnation. Cette torsion individuelle T1 sera toutefois peu importante (par exemple un angle b compris entre 0° et 20° par rapport à la direction PO du brin 10b) afin de faciliter une bonne imprégnation dans l'étape suivante. Selon une autre possibilité (sans l'étape A de la figure 1), on part directement du brin 10b déjà torsadé individuellement sur la bobine qui alimente la chaîne de production. Ensuite, (étape C), on effectue une imprégnation du brin torsadé 10b (ou du brin non torsadé 10a) par une matière thermoplastique liquide 12a, telle qu'un polymère thermoplastique (ou un mélange de polymères
thermoplastiques) présent dans une cuve d'imprégnation 20. Cette étape d'imprégnation C spécifique sera décrite en détails plus loin. On obtient un brin imprégné, éventuellement torsadé, 10c, formant également, dans ce cas de la figure 1 avec un seul brin, un fil imprégné 10e. [0042]Dans le cas de la figure 8, qui ne fait pas partie de l'invention, on a représenté le cas alternatif dans lequel le procédé de fabrication comporte les étapes A, C décrites précédemment, et l'étape E décrite ci-après, mais pas les étapes B et D : il n'y a pas de torsion individuelle T1, ni de torsion individuelle supplémentaire T1'. Cette figure 8 comporte un seul brin 10a aux fibres 11 essentiellement parallèles à la direction PO du brin 10a, pour former le fil imprégné 10e mais il est possible, dans le cadre de ce procédé de la figure 8, de recourir à deux brins 10a, trois brins 10a voire davantage de brins 10e, qui restent donc dans leur état non torsadé tout le long du procédé, et notamment au cours de l'étape C d'imprégnation et de l'étape (optionnelle) de ficelage E.
[0043]Ensuite, comme montré sur la figure 1, à la sortie de la cuve d'imprégnation 20, mais de manière optionnelle et non impérative, le fil 10c peut être torsadé (étape D), et ce additionnellement s'il a déjà été torsadé auparavant (étape B de torsion T1 ou bien brin déjà fourni torsadé). Cette torsion individuelle T1' (supplémentaire), qui s'effectue dans le même sens (première orientation de torsion) que la torsion individuelle T1, permet d'augmenter la résistance à la compression radiale du fil, et ce alors que la plus faible torsion T1 (angle b) des fibres extérieures 11 dans la cuve d'imprégnation 20 facilite la bonne imprégnation. Une dernière étape E, qui est préférable mais non impérative, en complément ou comme alternative à la torsion T1' (étape D) du fil en sortie de la cuve, consiste à placer un fil de liaison 13 autour du brin torsadé imprégné 10c, en formant une hélice, et ce après le passage dans la cuve d'imprégnation 20, alors que la matière thermoplastique 12a qui a imprégné le fil imprégné est encore liquide et n'a pas totalement durci. On obtient un fil imprégné et ficelé 10e dans lequel la matière
thermoplastique durcie 12b sert de liant pour maintenir la position et l'orientation des fibres 11 d'une part entre elles et d'autre part avec le fil de liaison 13, au sein du fil imprégné et ficelé 10e qui présente une bonne cohésion lui conférant de bonnes propriétés de résistance à la compression radiale. A la sortie (flèche F2), on a formé un fil imprégné et ficelé 10e qui peut être enroulé sur une bobine pour une utilisation ultérieure.
[0044]0n se reporte à la figure 2 représentant une variante du procédé de fabrication d'un fil imprégné à brin simple qui vient d'être décrit en relation avec les figures 1 et 8, constituant un procédé rentrant dans le cadre de l'invention, dans lequel on utilise deux brins 10a (étape A) ou 10b (étape B) pour former un fil imprégné selon l'invention. Chaque brin torsadé 10b est imprégné de matière thermoplastique liquide 12a au niveau de la cuve d'imprégnation 20 (étape C) et ensuite les deux brins torsadés imprégnés 10c sont retorsadés ensemble selon une torsion T2 . On forme ainsi un fil imprégné 10d plus gros que chaque brin individuel torsadé imprégnés 10c, et ce alors que la matière thermoplastique est encore liquide 12a, dans tous les cas non durcie. De cette façon, cette matière thermoplastique réalise une liaison entre les deux brins torsadés imprégnés 10c, ce qui maintient dans le fil imprégné 10d la configuration de la torsion d'ensemble entre les deux brins torsadés imprégnés 10c. Lors de l'étape finale E optionnelle, mais préférentielle, de pose du fil de liaison 13 en hélice autour du fil imprégné 10d, comme la matière thermoplastique 12a est encore liquide et n'a pas totalement durci, elle réalise également une liaison retenant entre eux le fil de liaison 13 en hélice autour du fil imprégné 10d, et pour former un fil imprégné et ficelé 10e. Une fois la matière thermoplastique durcie 12b, elle maintient ces liaisons.
[0045]0n se reporte maintenant à la figure 3 représentant une variante du procédé de fabrication d'un fil imprégné selon l'invention, dans lequel on utilise trois brins plats 10a (étape A) ou trois brins torsadés 10b (étape B) pour former le fil imprégné. Chaque brin torsadé 10b est imprégné de
matière thermoplastique liquide 12a au niveau de la cuve d'imprégnation (étape C) et ensuite les trois brins torsadés imprégnés 10c sont retorsadés ensemble (étape D) selon une torsion d'ensemble T2. On forme ainsi un fil imprégné 10d plus gros que chaque brin individuel torsadé imprégné 10c, et ce alors que la matière thermoplastique est encore liquide 12a, dans tous les cas non durcie. De cette façon, cette matière thermoplastique 12 réalise une liaison entre les trois brins torsadés imprégnés 10c, ce qui maintient la configuration de la torsion d'ensemble entre les trois brins torsadés imprégnés 10c dans le fil imprégné 10d. Si on utilise un fil de liaison 13 en hélice autour du fil imprégné 10d, comme représenté sur la figure 3, et ce alors que la matière thermoplastique 12a est encore liquide et n'a pas totalement durci, cette la matière thermoplastique 12a réalise non seulement une liaison entre les trois brins torsadés imprégnés 10c du fil imprégné 10d, mais également une liaison retenant le fil de liaison 13 en hélice autour du fil imprégné 10d, et pour former un fil imprégné et ficelé 10e. Une fois la matière thermoplastique durcie 12b, elle maintient ces liaisons.
[0046]0n vient de décrire en relation avec les figures 1, 8, 2 et 3, les cas dans lesquels le fil imprégné résulte d'un seul brin, de deux brins ou de trois brins, mais on comprend que selon l'invention, on peut envisager d'utiliser encore davantage de brins torsadés individuellement et torsadés ensemble entre eux (4 brins, 5 brins ou davantage de brins).
[0047]A noter que l'expression « fil imprégné et ficelé » peut être remplacée par « fil imprégné » et inversement dans le présent texte car le recours au fil de liaison 13 disposé en hélice autour du fil imprégné n'est pas systématique dans le cadre de la présente invention.
[0048]0n se reporte à la figure 5 illustrant une des possibilités de mise en oeuvre de l'étape d'imprégnation, avec la cuve d'imprégnation 20 remplie de matière thermoplastique liquide 12a et délimitant un passage 21 entre l'entrée 20a et la sortie 20b de la cuve d'imprégnation 20. Selon une disposition essentielle pour permettre la bonne imprégnation des brins 10b
par la matière thermoplastique liquide 12a, il existe dans le passage 21 suivi par chacun des brins torsadés 10b, une ou plusieurs zone(s) de contact 20c avec une paroi appartenant à la face du passage 21, donc de la face interne de la cuve d'imprégnation 20. Dans le cas de figure représenté sur la figure 5, ces zones de contact 20c sont situées sur la face latérale des cylindres 22 placés dans la cuve d'imprégnation 20 et contournés par les brins torsadés 10b qui parcourent de ce fait un passage 21 en forme de vague ou d'onde. D'autres configurations non représentées sont possibles pour forcer le contact individuel des brins torsadés 10b contre une face du passage 21 alors que les brins 10b baignent dans la matière thermoplastique liquide 12a, par exemple avec des parois en zig-zag de la cuve d'imprégnation 20. D'une façon générale, le passage 21 est sinueux.
[0049]Ainsi, on comprend que du fait de ce frottement et de la pression des brins torsadés 10b sur ces zones de contact, la pénétration de la matière thermoplastique liquide 12a dans le brin 10b est favorisée, et ce notamment car ce contact a tendance à écarter entre elles les fibres 11 des brins torsadés 10b et à créer une surpression locale sur la matière thermoplastique liquide 12a. A la sortie du passage 21 et des contacts précités, on obtient des brins torsadés imprégnés 10c avec une torsion individuelle T1 conforme à celle avant le passage dans la cuve d'imprégnation, ces brins étant très imprégnés, voire entièrement imprégnés de matière thermoplastique 12a. Grâce à cet agencement, on réalise une étape d'imprégnation efficace qui permet d'avoir à la sortie de la cuve d'imprégnation 20 des brins imprégnés 10c avec une imprégnation de matière thermoplastique dans au moins 60% de leur volume, en général dans au moins 70% de leur volume, de préférence dans au moins 80%, voire au moins 90% ou 95%. Dans certains cas, on parvient à obtenir une imprégnation de matière thermoplastique dans tout (100%) le volume des brins imprégnés 10c. Cette quantité importante de matière thermoplastique se retrouve dans cette même proportion dans le fil à la fin
de la chaîne de fabrication mettant en oeuvre le procédé de fabrication selon l'invention.
[0050]Dans un mode de réalisation correspondant à la figure 3, chacun desdits brins présente une torsion T1 selon une première orientation lors de leur passage dans la cuve d'imprégnation 20 : cette torsion individuelle est par exemple comprise entre 50 et 300tpm, de préférence entre 100 et 200tpm. Cette première orientation est par exemple en S. Cette première orientation de la torsion T1 résulte dans la formation d'un brin 10b avec des fibres 11 extérieures qui présentent un angle b par rapport à la direction générale PO du brin 10a.
[0051]Selon l'invention, ledit fil imprégné 10 d comporte au moins deux brins torsadés 10b (de préférence trois brins torsadés 10b ) séparés entre eux en amont de la cuve d'imprégnation 20 et passant simultanément dans ledit passage 21. Par exemple, le fil imprégné 10 d est composé de 2 à 10 brins individuels de 200 à 1500 tex, de préférence de 3 à 6 brins de 200 à 800 tex, de préférence de 3 à 6 brins de 300 à 600 tex. Selon une alternative de réalisation, on utilise plusieurs cuves d'imprégnation séparées travaillant en parallèle, une pour l'imprégnation de chaque brin 10b.
[0052]Par exemple, les brins torsadés 10b pénètrent dans la cuve d'imprégnation à travers un trou ajusté au niveau de l'entrée 20a de la cuve d'imprégnation 20 (à droite sur la figure 5), assez grand pour éviter un blocage, mais assez petit pour éviter une fuite de matière thermoplastique liquide, par exemple du poly propylène (exemple un trou de 2.5mm de diamètre pour trois brins torsadés 10b de 555tex chacun). Egalement, par exemple, les brins torsadés imprégnés 10c ressortent par un trou calibré au niveau de la sortie 20b de la cuve d'imprégnation 20 (à gauche sur la figure 5) qui déterminera le rayon final du fil imprégné 10d et la quantité de matière thermoplastique de ce fil imprégné 10d.
(exemple un trou de 2mm de diamètre pour trois brins torsadés 10b de 555tex chacun). Le diamètre de ce trou de sortie sera ajusté pour obtenir la fraction de matière thermoplastique et de fibres voulues dans le fil
imprégné 10d. La fraction sera typiquement entre 30 et 70% en poids de matière thermoplastique, de préférence entre 40 et 60% en poids de matière thermoplastique dans le fil imprégné 10d.
[0053]Selon un mode de réalisation, le brin 10a ou 10b ou chacun desdits brins 10a ou 10b consiste uniquement en des fibres végétales. Ces fibres végétales appartiennent au groupe comprenant les matériaux suivants : lin, chanvre, sisal, jute, abaca, kenaf, ortie, ramie, kapok, abaca, henequen, ananas, banane, palmier, et fibres de bois.
[0054]Selon un mode de réalisation, la matière thermoplastique utilisée pour l'imprégnation comporte un polymère qui appartient au groupe comprenant les polyoléfines, le polypropylène (PP), le polypropylène, greffée d'anhydride maléique (maPP), le polyéthylène (PE), le polyamide ou co-polyamide, le polyester ou co-polyester, le polyuréthane thermoplastique, le co-Polyoxyméthylène, les esters de cellulose thermoplastique (Cellulose acetate propionate), l'acide polylactique (PLA) ou dérivés de ces derniers ou un mélange de ces derniers. Par exemple, on utilise un mélange de polypropylène et de polypropylène greffée d'anhydride maléique (maPP) qui favorise l'adhésion du polymère avec les fibres naturelles. On peut à titre d'exemple utiliser un tel mélange avec 3 à 10% de ma PP en poids.
[0055]Selon un mode de réalisation, la matière thermoplastique thermoplastiqueprésente, dans la cuve d'imprégnation 20, une viscosité telle que le Melt Flow Index est supérieur à 10 g/10min, de préférence supérieur à 34 g/10min. On entend par Melt Flow Index, une mesure en g/10min, selon la Norme IS01133, sous une charge de 2.16kg à 230°C.
[0056]Selon un mode de réalisation, la matière thermoplastique 12a fondue présente, dans la cuve d'imprégnation 20, une viscosité comprise entre 10 et 10Ό00 Pa.s, préférentiellement entre 20 et 1000 Pa.s, et préférentiellement entre 50 et 500 Pa.s. Cette viscosité correspond à une viscosité à bas taux de cisaillement de 1 sec-1. En général, on se situe lors
de l'imprégnation dans la cuve d'imprégnation 20 à une température de matière thermoplastique comprise entre 150°C et 250°C.
[0057]Pour mettre en oeuvre le procédé de fabrication d'un fil imprégné tel que décrit précédemment, notamment en relation avec les figures 1 à 3, on peut utiliser une unité de fabrication 100 telle qu'illustrée schématiquement sur la figure 4. On retrouve le sens d'avancement de la droite vers la gauche des figures 1 à 3, entre une entrée F1 et une sortie F2 . A l'entrée de cette unité de fabrication 100, trois dévidoirs 110 permettent l'alimentation de l'unité de fabrication 100 avec trois brins torsadés 10b correspondant à l'étape B de la figure 3.
[0058]Dans le cas représenté, on réalise un séchage des brins torsadés 10b par passage dans un module de séchage 120, lequel séchage pourrait être omis dans d'autres variantes de mise en oeuvre. Cependant, on constate que les fibres naturelles présentent toujours 4-8% d'humidité. Lorsque ces fibres 11 pénètrent dans la cuve d'imprégnation qui est par exemple portée à
190°C, cette humidité forme de la vapeur d'eau et s'échappe des fibres. En s'échappant, la vapeur repousse la matière thermoplastique et nuit à l'imprégnation des fibres formant les brins. Les brins torsadés 10b peuvent être très facilement séchés en transitant avant l'entrée dans la cuve d'imprégnation dans un module de séchage 120 formé d'un tube avec un flux d'air chaud entre100-150°C. Il est aussi possible de sécher les brins torsadés 10b au préalable et de maintenir les bobines qui se déroulent sur les dévidoirs 110 dans une atmosphère sèche.
[0059]De cette façon, préalablement à l'entrée dans la cuve d'imprégnation 20 du brin 10b ou desdits brins 10b, on réalise le séchage dudit brin 10b ou desdits brins 10b.
[0060]La cuve d'imprégnation 20 préalablement décrite est disposée juste en aval du module de séchage 120, avec une extrudeuse 23 qui alimente la cuve 20 en matière thermoplastique liquide. [0061 ] La fin de l'unité de fabrication 100 comporte, en aval de la cuve d'imprégnation 20, un module d'entrainement, d'enroulement et de
retordage 140 comportant une bobine de réception du fil imprégné 10d (ou du fil imprégné et ficelé 10e). De cette façon, lorsqu'on faire passer l'extrémité libre du fil imprégné 10d dans le module d'entraînement, d'enroulement et de retordage 140, et que l'on active ledit module d'entraînement, d'enroulement et de retordage 140 on fait avancer le fil imprégné et on réalise sa torsion d'ensemble ainsi que son enroulement sur un support au fur et à mesure de l'avancée du fil imprégné, ce par quoi on obtient un fil imprégné torsadé 10d (et éventuellement ficelé) qui est enroulé sur une bobine du module d'entraînement, d'enroulement et de retordage 140.
[0062]De cette façon, on réalise, après l'étape C d'imprégnation, une étape ( étape D) de torsion du fil imprégné 10d au cours de laquelle est réalisée une torsion d'ensemble correspondant à une torsion T2 entre eux de tous les brins en aval de la cuve d'imprégnation 20, alors que le la matière thermoplastique est encore à l'état liquide, ce par quoi la matière thermoplastique 12a réalise une liaison entre les brins 10c dans leur état torsadé entre eux, résultant dans la formation d'un fil imprégné et torsadé 10d.
[0063]Selon l'invention, la torsion d'ensemble est réalisée selon une deuxième orientation T2 différente de la première orientation T1. Ainsi, si la torsion individuelle T1 de chaque brin 10c est en S (sens anti-horaire par rapport à la direction d'avancement du fil), on réalisera avec ledit module d'entraînement, d'enroulement et de retordage 140 une torsion d'ensemble du fil 10d en Z (sens horaire par rapport à la direction d'avancement du fil).
[0064]Grâce à ces dispositions, le degré de torsion T2 est choisi pour que les fibres 11 extérieures dudit brin 10c ou desdits brins 10c forment un angle d aigu ou nul, faible, compris entre -20° et +20° avec la direction longitudinale ou principale P1 du fil imprégné 10d. Selon une autre possibilité, cet angle d est compris entre +10° et -10°, voire entre +5° et -5° et éventuellement entre +3° et -3°. Par « fibres extérieures », on entend la
portion des fibres de chaque brin qui est située en surface du fil imprégné (et torsadé). En effet, dans les cas où les brins 10b ont des fibres avec une certaine torsion selon une première orientation (angle d si cumul des torsions T1 et T1', ou angle b si torsion T1 seulement) , en retordant les brins ensemble selon une deuxième orientation (torsion d'ensemble T2), on réduit, voire on arrive à annuler l'angle d (et éventuellement e en présence d'un fil de liaison 13) formé entre les fibres extérieures des brins et la direction principale P1 du fil 10d ou 10e. Ceci est visible notamment sur la figure 3 ou les fibres 11, visibles dans la portion D représentant le fil imprégné 10d avec torsion d'ensemble, et formant des fibres extérieures, sont sensiblement parallèles à la direction principale P1 du fil imprégné 10d (angle e noté comme proche de 0, à savoir e ~0, par rapport à P1).
[0065]Cette situation dans laquelle les fibres extérieures 11 sont orientées à 0° (longitudinales) dans le fil imprégné 10d, permet de disposer de fils imprégnés rigides au maximum en flexion, ce qui engendrera de bonnes qualités de résistance à la flexion lorsque ces fils sont intégrés comme nervures à la surface dans un produit composite à paroi mince.
[0066]Comme en flexion, ce sont essentiellement les fibres extérieures du fil imprégné qui sont sollicitées, une géométrie de fil avec les fibres extérieures du fil à 0° (longitudinales) est avantageuse. Ceci est possible en retordant (torsion T2) plusieurs fils individuels dans un sens de torsion inverse aux brins individuels (si les brins individuels ont une torsion T1 en S, le fil est retordu en Z pour la torsion T2) de sorte à obtenir les fibres extérieures à 0° ou proche de 0°. Par exemple, en retordant avec une torsion de 73tpm trois brins individuels de 555tex ayant une torsion de
158tpm, on obtient un angle de fibres de 0° à l'extérieur du fil de 1665 tex (par exemple en lin). Ainsi, en travaillant avec des brins individuels retordus pour former un gros fil, il est possible d'optimiser l'angle des fibres 11 afin d'avoir de bonnes propriétés en flexion (fibres 11 extérieures à 0°) et une bonne résistance en compression radiale du fil (fibres 11 intérieures avec angle de torsion assez important).
[0067]Comme l'opération de l'étape D de torsion de tous les fils 10c individuels en un plus gros fil 10d s'effectue alors que la matière thermoplastique 12a est encore à l'état fondu, cette torsion d'ensemble crée une compaction supplémentaire du fil 10d qui presse encore la matière thermoplastique à l'intérieur des fils individuels 10c et en améliore l'imprégnation.
[0068]Dans le mode de réalisation représenté sur les figures 1 à 3, on réalise (étape E) l'étape suivante : on fournit un fil de liaison 13 et on enroule le dit fil de liaison 13 autour du fil imprégné 10d de matière thermoplastique en aval de la cuve d'imprégnation, ce par quoi on forme un fil imprégné et ficelé 10e. Ce fil de liaison 13 est posé en hélice tout autour du fil imprégné 10d alors que la matière thermoplastique 12a est encore liquide pour assurer la fixation de ce fil de liaison 13 sur le fil imprégné 10d et obtenir une bonne cohésion pour le fil imprégné et ficelé 10e. Par exemple, ce fil de liaison comporte un poids linéique compris entre 10 et 60 tex, de préférence compris entre 15 et 45 tex. Le poids ajouté par le fil de liaison sera typiquement de 1 à 15% du poids total du fil imprégné et ficelé 10e, de préférence de 2 à 10%.
[0069]Parmi les avantages de la présence de ce fil de liaison 13, il faut relever qu'il contribue à maintenir une forme circulaire à la section du fil imprégné et ficelé 10e, et au principal à augmenter sa résistance à la compression radiale. Ceci est avantageux lorsque le fil imprégné et ficelé 10e est utilisé dans un produit composite à paroi mince comme nervures à sa surface, car pendant le procédé de fabrication du produit composite à paroi mince le produit est comprimé, soit par une membrane flexible sous pression, soit par un tampon flexible (par exemple un substrat silicone). Lors de cette opération, les fils composant les nervures tendent à être écrasés et l'efficacité des nervures est ainsi réduite. Comme lors d'une sollicitation en flexion, la rigidité dépend de l'épaisseur de la structure à la puissance trois, l'épaisseur des nervures a une influence dominante sur la rigidité en flexion du produit composite à paroi mince.
[0070]Le fil de liaison 13 peut être un fil en fibres végétales (par exemple lin, coton, chanvre...) ou peut être synthétique (fil en polymère tel que polyester, polyamide, ou en fibres de verre, fibres de carbone, aramide). Ce fil de liaison 13 ne doit pas fondre ou devenir trop souple à la température de mise en oeuvre du produit composite (180-210°C), sinon le fil de liaison 13 se déformera lors de la compression de la pièce et il perd toute son utilité en confinement et maintien de la forme du fil imprégné et ficelélOe.
[0071 ]Ainsi, en cas de présence d'un fil de liaison torsadé 13 dans le fil imprégné 10e, ce fil de liaison 13 est posé (étape E) après l'étape D de torsion d'ensemble du fil, et ce alors que le module de dépose du fil de liaison 130 est disposé en amont du (avant le) module d'entraînement, d'enroulement et de retordage 140. On comprend en effet que le retordage (torsion d'ensemble T2) de tous les brins du fil est réalisé par le module d'entraînement, d'enroulement et de retordage 140 mais que cette mise en torsion d'ensemble se propage jusqu'à la sortie de la cuve d'imprégnation 20 (sur la figure 4, à la sortie - à gauche- de la cuve d'imprégnation 20, les trois brins torsadés imprégnés 10c sont différenciés (séparés) pour juste après être associés dans le fil imprégné 10d). [0072]Selon une possibilité non illustrée, on fournit au moins deux fils de liaison 13 en aval de la cuve d'imprégnation, et on dispose en continu lesdits fils de liaison en hélice, avec des sens différents, autour du fil imprégné 10d au fur et à mesure de son avancée par la sortie de la cuve d'imprégnation, ce par quoi on forme un fil imprégné et ficelé 10e. Dans un cas de réalisation, on dispose exactement deux fils de liaison 13 en hélice autour du fil imprégné 10d avec un sens de rotation inverse, ce par quoi les deux fils de liaison 13 se croisent à la surface du fil imprégné et ficelé 10e.
[0073]Pour la pose de ce fil de liaison 13 ou de deux ou davantage de fils de liaison 13, différentes méthodes sont possibles. Dans une première solution, le fil imprégné passe à l'intérieur de la bobine du fil de liaison,
ladite bobine tournant à la vitesse déterminée pour obtenir la densité de fil de liaison voulue. La bobine tournant à haute vitesse, la tension sur le petit fil de liaison est générée par l'inertie de ce fil de liaison tournant à haute vitesse autour du fil imprégné. Alternativement, la bobine de fil de liaison peut tourner autour du fil imprégné, et la tension dans le fil de liaison est générée en freinant le déroulage de la bobine. Dans les deux cas, le fil imprégné n'a pas de contact avec l'unité de dépose du fil de liaison autre que le fil de liaison lui-même, et ce afin de ne pas nuire au processus de retordage qui s'effectue entre le module d'entraînement, d'enroulement et de retordage 140 et la cuve d'imprégnation 20.
[0074]Pour le module d'entraînement, d'enroulement et de retordage 140, on peut utiliser un système d'enroulement où la bobine qui enroule le fil imprégné tourne à la fois sur son axe propre pour enrouler le fil imprégné, et sur l'axe du fil imprégné pour créer de la torsion. La seconde manière est celle du rouet, avec l'épinglier tournant autour de la bobine. La vitesse de rotation de l'épinglier détermine la torsion, et le différentiel de vitesse entre la bobine et l'épinglier contrôle la vitesse d'avance du fil imprégné. Le pilotage précis de ces deux vitesses peut se faire avec des moteurs pas à pas, avec des moteurs synchrones ou des servo-moteurs. [0075]Selon une autre possibilité visible sur la figure 8, qui ne fait pas partie de la présente invention, le brin initial 10a se présente sous la forme d'un ruban aux fibres 11 alignées, avec des fibres 11 présentant un angle proche de 0° par rapport à la direction principale PO du ruban, passant au travers du bain de polymère thermoplastique fondu dans une cuve d'imprégnation avant que le fil de liaison 13 soit posé en hélice autour du fil imprégné 10c.
[0076]Comme indiqué précédemment, l'invention porte également sur un produit composite à paroi mince comportant des fils imprégnés tels que décrits précédemment, ledit produit composite présentant une face nervurée, lesdites nervures étant créées au moins en partie par lesdits fils
imprégnés, et dans certains cas toutes les nervures étant formées par des fils imprégnés.
[0077]Selon une possibilité, un tel produit composite à paroi mince nervuré résulte d'un procédé comportant les étapes suivantes : - fourniture d'un support tel qu'un mat
- fabrication de fils imprégnés selon le procédé précédemment décrit,
- assemblage des fils imprégnés pour former un treillis dans lequel les fils imprégnés s'entrecroisent,
- empilement du treillis et du support, et - moulage par compression du treillis et du support empilés, ce par quoi on forme un produit composite, présentant une face nervurée, lesdites nervures étant créées au moins en partie par les fils imprégnés.
[0078]Un exemple d'un tel produit composite à paroi mince nervuré 30 est illustré sur les figures 6A et 6B et sur la figure 7 sous forme d'une portion de pièce utilisable par exemple comme pièce d'habillage d'un habitacle d'automobile . Ce produit composite à paroi mince nervuré 30 comporte un treillis 32 et un support 34 superposés et reliés entre eux. Le treillis 32 est formé de fils imprégnés et ficelés 10e qui sont maintenus ensemble en s'entrecroisant par un fil d'assemblage, par exemple en polyester, par exemple un fil de 10 à 100 dtex, appliqué par couture, tricotage ou tissage avec les imprégnés et ficelés 10e du treillis 32.
[0079]La liaison entre le treillis 32 et le support 34 est réalisée par le polymère lui-même, soit lors de l'étape de moulage par compression, soit lors d'une étape de prélamination à chaud. Alternativement, le treillis 32 peut être cousu sur le support 34.
[0080]Selon un autre procédé de fabrication, on fournit deux supports 34 et on empile le treillis 32 avec les deux supports 34, les deux supports 34 étant de part et d'autre dudit treillis 32 pour former un empilement sandwich. [0081]Selon un mode de réalisation, le support 34 (ou les deux supports) est (sont) choisi(s) parmi un support de matériau tissé, un support de matériau non-tissé ou, un support 34 de matériau non-tissé appartenant à la liste
suivante : une nappe de fibres (11) unidirectionnelles, une superposition de nappes de fibres (11) unidirectionnelles (nappe multidirectionnelle), et un mat de fibres aléatoirement distribuées.
[0082]Selon un mode de réalisation, ledit support 34 (ou les deux supports) est (sont) préimprégné(s) d'un polymère (ou plus généralement d'une matière thermoplastique) identique ou différent du polymère (ou plus généralement de la matière thermoplastique) des fils imprégnés du treillis.
[0083]Selon un mode de réalisation, le treillis 32 comprend une maille avec une ouverture de maille supérieure ou égale à 1 cm, de préférence compris entre 1 cm et 6 cm, préférentiellement entre 1 cm et 3 cm.
[0084]Le fil imprégné décrit précédemment est utilisé pour former un treillis 32 ou une grille. La grille peut avoir des fils parallèles dans deux directions pour créer un maillage carré, rectangulaire ou parallélépipédique. Elle peut aussi avoir trois ou quatre directions de fil. Une grille au maillage carré aura typiquement une maille de 5-100mm, selon la taille du fil utilisé, typiquement un maillage de 10-30mm avec un fil composé de 1500tex de lin imprégné. La grille peut être réalisée par une méthode textile, avec un petit fil liant les fils imprégnés entre eux, par exemple par tricotage. La grille peut aussi être obtenu en soudant thermiquement les fils imprégnés à leurs croisements, soit en chauffant, sois par ultrason. Pour obtenir le produit composite final désiré, la grille est ensuite combinée avec d'autres couches composites lors de l'étape de thermocompression (par exemple des mats de fibres naturelles et PP, ou des mat de fibres de polyester et PP....) [0085]Selon une autre possibilité, on propose un procédé de fabrication d'un produit composite à paroi mince nervuré, comprenant les étapes suivantes :
- fabrication de fils imprégnés selon l'un des procédé précédemment décrit, - fourniture de fils de base présentant une taille inférieure aux fils imprégnés,
- tissage ou tricotage des fils de base avec lesdits fils imprégnés, pour former une préforme,
- moulage par compression de la préforme, ce par quoi on forme un produit composite présentant une face nervurée, lesdites nervures étant créées au moins en partie par les fils imprégnés.
[0086]La préforme comportant les fils imprégnés doit être mise en forme afin d'obtenir ledit produit composite avec des nervures de renfort. Plusieurs méthodes sont possibles. Pour la thermocompression, la préforme est chauffée dans un four afin de fondre le polymère thermoplastique. La couche de base et la préforme comprenant les fils imprégnés peuvent soit être combinées au préalable et chauffées ensemble, si leur température et méthode de chauffage concordent, ou alors chauffées séparément, mais simultanément. La préforme et la couche de base sont placée dans le moule dans une presse et la presse est fermée pour compacter et former le produit composite. Une fois le polymère refroidi et durci, la pièce est démoulée. Le moule utilisé est rigide du côté lisse de la pièce, mais comporte un substrat mou, par exemple une couche de 2-10mm de silicone, du côté nervuré, afin de ne pas écraser les nervures créées par les fils imprégnés 10d ou 10e décrits précédemment. Alternativement, la pression peut être exercée par une membrane souple mise sous pression sur la face nervurée. Aussi, le cycle de chauffe refroidissement peut également se faire dans le moule
[0087] Les nervures peuvent être obtenues à des endroits spécifiquement choisis en utilisant un robot de dépose qui va déposer précisément les fils imprégnés 10d ou 10e voulus sur une couche de base (par exemple un mat), selon un schéma de renfort spécifique. La liaison avec la couche de base peut se faire en fondant le polymère, ou en cousant localement le fil imprégné.
[0088]Le produit composite présenté ici présente une paroi mince ce qui signifie qu'il est en général au départ sous forme d'une feuille ou d'un
panneau dont une des dimensions est bien plus petite (au moins 10 fois plus petite) que les deux autres.
[0089]Un tel produit composite peut revêtir une multitude de géométries, parmi lesquelles une feuille plane, une feuille non plane, et notamment une feuille avec une face convexe et une face concave, ou encore une feuille ondulée, une forme creuse tridimensionnelle, et notamment un tube creux de section circulaire, de section polygonale ou une autre forme, et notamment toute coque tri-dimensionnelle à paroi mince.
[0090]Ainsi, et de façon non limitative, on propose de fabriquer un article comprenant une portion à paroi mince dans lequel ladite portion à paroi mince est formée d'un produit composite à paroi mince fabriqué selon l'un des procédés précédemment décrits. Un tel article intégrant un produit composite à paroi mince est utilisable dans différentes application et notamment appartient au groupe comprenant : une pièce de carrosserie automobile, notamment les portes, le toit, le capot, les ailes, l'aileron, le spoiler, les pare-chocs avant et arrière, les kits aérodynamiques, ou des pièces intérieures automobiles notamment les couvertures de portière, le tableau de bord, la console centrale, les habillages de pilier, les habillages de coffre, le pavillon, ou des articles de sport tels qu'une coque de canoé, kayak ou bateau léger, un cadre de bicyclette, ou encore un élément de mobilier, ou des pièces d'intérieur d'avion, notamment les panneaux latéraux, les panneaux de plafond, les coffres à bagage, ou des pièces aérodynamiques d'avion léger, notamment le capot moteur, les capots de roue, ou tout carénage aérodynamique d'un engin mobile, ou encore une coque de valise.
[0091][Tableaux 1]
Numéros de référence employés sur les figures A Etape d'alimentation de brin(s) 10a B Etape de torsion du (des) brin(s) 10a C Etape d'imprégnation du (des) brin(s) 10b D Etape de retordage de l'ensemble des brins 10c
E Etape de pose du fil de liaison 13 sur le fil 10d
F1 Entrée
F2 Sortie
T1 Torsion individuelle des brins
T1' Torsion supplémentaire individuelle des brins
T2 Torsion d'ensemble du fil
PO Direction principale du brin
P1 Direction principale du fil
A Angle entre les fibres extérieures 11 et le brin 10a (étape A)
B Angle entre les fibres extérieures 11 et le brin 10b (étape B)
D Angle entre les fibres extérieures 11 et le fil 10d imprégné et torsadé (étape D)
E Angle entre les fibres extérieures 11 et le fil imprégné, torsadé et ficelélOe (étape E)
10a Brin plat
10b Brin torsadé
10c Brin torsadé imprégné (fil imprégné si un seul brin)
10d Fil imprégné avec torsion d'ensemble
10e Fil imprégné et ficelé
11 Fibres
12a Matière thermoplastique liquide
12b Matière thermoplastique durcie
13 Fil de liaison
20 Cuve d'imprégnation
20a Entrée de la cuve
20b Sortie de la cuve
20c Zone de contact des brins dans le passage 21
21 Passage
22 Cylindre
23 Extrudeuse
30 Produit composite à paroi mince nervuré
32 Treillis
34 Support
100 Unité de fabrication
110 Dévidoirs
120 Module de séchage
130 Module de dépose du fil de liaison
140 Unité d'entrainement, d'enroulement et de retordage
Claims
1. Procédé de fabrication d'un fil imprégné (10d; 10e) à partir d'au moins deux brins (10a; 10b) comprenant des fibres végétales (11), dans lequel les étapes suivantes sont mises en oeuvre : - fournir au moins deux brins (10a; 10b) continus comprenant des fibres
(11) végétales,
- fournir une cuve d'imprégnation (20) délimitant un passage (21) sinueux entre une entrée et une sortie,
- alimenter la cuve avec un bain de matière polymère thermoplastique(12a) fondue remplissant ledit passage (21) en permanence,
- disposer lesdits brins (10a; 10b) de sorte qu'ils soient séparés entre eux en amont de la cuve d'imprégnation (20), qu'ils pénètrent dans la cuve d'imprégnation (20) par ladite entrée, qu'ils suivent simultanément le passage (21) en étant immergés dans la matière thermoplastique(12a) et en présentant au moins une zone de contact (20c) avec une face du passage (21), et qu'ils ressortent de la cuve d'imprégnation (20) par ladite sortie, et
- imprégner le brin (10a; 10b) en faisant avancer en continu ledit brin (10a; 10b) de façon à former un brin (10a; 10b) imprégné de la matière thermoplastique(12a), ce par quoi on forme un fil imprégné (10d; 10e),
- dans lequel chacun desdits brins (10a; 10b) présente une torsion (T1) selon une première orientation lors de leur passage (21) dans la cuve d'imprégnation (20), et
- dans lequel on réalise en outre, après l'étape d'imprégnation, une étape de torsion du fil au cours de laquelle est réalisée une torsion d'ensemble correspondant à une torsion (T2) entre eux de tous les brins (10a; 10b) en aval de la cuve d'imprégnation (20), alors que la matière thermoplastique (12a) est encore à l'état liquide, ce par quoi la matière thermoplastique (12a) réalise une liaison entre les brins (10a; 10b) dans leur état torsadé entre eux, résultant dans la formation d'un fil imprégné (10d; 10e) et torsadé, et dans lequel ladite torsion d'ensemble (T2) est réalisée selon une deuxième orientation différente de la première orientation.
2. Procédé de fabrication d'un fil imprégné (10d; 10e) selon la revendication 1, dans lequel l'étape suivante est en outre mise en oeuvre :
- fournir un fil de liaison (13) et enrouler le dit fil de liaison (13) autour du fil imprégné (10d) de matière thermoplastique en aval de la cuve d'imprégnation (20), ce par quoi on forme un fil imprégné et ficelé (10e).
3. thermoplastiquethermoplastiqueProcédé de fabrication d'un fil imprégné (10d; 10e) selon l'une des revendications 1 à 2, dans lequel les fibres (11) extérieures dudit brin (10a; 10b) ou desdits brins (10a; 10b) forme(nt) un angle (d) compris entre -20° et +20° avec la direction longitudinale ou principale du fil imprégné, de préférence un angle (d) compris entre +10° et -10°, et de préférence un angle (d) compris entre +5° et -5°.
4. Procédé de fabrication d'un fil imprégné (10d; 10e) selon l'une des revendications 1 à 3, dans lequel ledit brin (10a; 10b) consiste uniquement en des fibres (11) végétales.
5. Procédé de fabrication d'un fil selon la revendication 4 dans lequel les fibres (11) végétales appartiennent au groupe comprenant les matériaux suivants : lin, chanvre, sisal, jute, abaca, kenaf, ortie, ramie, kapok, abaca, henequen, ananas, banane, palmier, et fibres de bois.
6. Procédé de fabrication d'un fil selon l'une des revendications 1 à 5, dans lequel le polymère thermoplastiqueappartient au groupe comprenant les polyoléfines, le polypropylène (PP), le polypropylène greffée d'anhydride maléique (maPP), le polyéthylène (PE), le polyamide ou co-polyamide, le polyester ou co-polyester, le polyuréthane thermoplastique, le co- Polyoxyméthylène, les esters de cellulose thermoplastique (Cellulose acetate propionate), l'acide polylactique (PLA) ou dérivés de ces derniers ou un mélange de ces derniers.
7. Procédé de fabrication d'un fil selon l'une des revendications 1 à 6, dans lequel la matière thermoplastique(12a) présente, dans la cuve d'imprégnation, une viscosité telle que le Melt Flow Index, mesuré selon la Norme IS01133, sous une charge de 2.16kg à 230°C, est supérieur à 10 g/10min, de préférence supérieur à 34 g/10min.
8. Procédé de fabrication d'un fil selon l'une des revendications 1 à 6, dans lequel la matière thermoplastique (12a) fondue présente, dans la cuve d'imprégnation, une viscosité comprise entre 10 et 10Ό00 Pa.s.
9. Procédé de fabrication d'un fil selon l'une des revendications 1 à 8, dans lequel le fil imprégné (10d) comporte entre 30 et 70% en poids de matière thermoplastique. Procédé de fabrication d'un fil selon l'une des revendications 1 à 9, dans lequel préalablement à l'entrée dans la cuve d'imprégnation (20) du brin (10a; 10b), on réalise en outre le séchage dudit brin (10a; 10b).
10. Procédé de fabrication d'un fil selon l'une des revendications 1 à 9, dans lequel on réalise en outre lesdites étapes suivantes :
- fournir au moins deux fils de liaison (13) en aval de la cuve d'imprégnation (20),
- disposer en continu lesdits fils de liaison (13) en hélice, avec des sens différents, autour du fil imprégné (10d) au fur et à mesure de son avancée par la sortie de la cuve d'imprégnation (20), ce par quoi on forme un fil imprégné et ficelé (10e).
11. Procédé de fabrication d'un fil selon l'une des revendications 1 à 10, dans lequel on réalise en outre lesdites étapes suivantes :
- - fournir un module d'entrainement, d'enroulement et de retordage (140) disposée en aval de la cuve d'imprégnation (20),
- - faire passer l'extrémité libre du fil imprégné (10d; 10e) dans le module d'entraînement, d'enroulement et de retordage, et
- - activer ledit module d'entraînement, d'enroulement et de retordage (140) pour faire avancer le fil imprégné (10d; 10e) et réaliser sa torsion d'ensemble (T2) ainsi que son enroulement sur un support au fur et à mesure de l'avancée du fil imprégné (10d; 10e).
12. Procédé de fabrication d'un produit composite à paroi mince comprenant les étapes suivantes :
- fourniture d'un support (34) tel qu'un mat
- fabrication de fils imprégnés selon le procédé de l'une quelconque des revendications 1 à 11,
- assemblage des fils imprégnés pour former un treillis (32) dans lequel les
fils imprégnés s'entrecroisent,
- empilement du treillis (32) et du support (34), et
- moulage par compression du treillis (32) et du support (34) empilés, ce par quoi on forme un produit composite, présentant une face nervurée, lesdites nervures étant créées au moins en partie par les fils imprégnés.
13. Procédé fabrication d'un produit composite à paroi mince selon la revendication précédente, dans lequel les fils du treillis (32) sont maintenus ensemble en s'entrecroisant par un fil d'assemblage, par exemple en polyester, appliqué par couture, tricotage ou tissage avec les fils du treillis (32).
14. Procédé de fabrication d'un produit composite à paroi mince selon l'une des revendications 12 à 13, dans lequel on fournit deux supports (34) et on empile le treillis (32) avec les deux supports (34), les deux supports (34) étant de part et d'autre dudit treillis (32) pour former un empilement sandwich.
15. Procédé de fabrication d'un produit composite à paroi mince selon l'une des revendications 12 à 14, dans lequel le support (34) est choisi parmi un support (34) de matériau tissé ou un support (34) de matériau non-tissé appartenant à la liste suivante : une nappe de fibres (11) unidirectionnelles, une superposition de nappes de fibres (11) unidirectionnelles (nappe multidirectionnelle) et un mat de fibres aléatoirement distribuées.
16. Procédé de fabrication d'un produit composite à paroi mince comprenant les étapes suivantes :
- fabrication de fils imprégnés (1 Od ; 10e) selon le procédé de l'une quelconque des revendications 1 à 15,
- fourniture de fils de base présentant une taille inférieure aux fils imprégnés (1 Od ; 10e),
- tissage ou tricotage des fils de base avec lesdits fils imprégnés (1 Od ; 10e), pour former une préforme,
- moulage par compression de la préforme, ce par quoi on forme un produit composite présentant une face nervurée, lesdites nervures étant créées au moins en partie par les fils imprégnés (1 Od ; 10e).
17. Procédé de fabrication d'un article comprenant une portion à paroi mince dans lequel ladite portion à paroi mince est formée de ou comporte un produit composite à paroi mince fabriqué selon le procédé de l'une des revendication 12 à 16, ledit article appartenant au groupe comprenant : une pièce de carrosserie automobile, notamment les portes, le toit, le capot, les ailes, l'aileron, le spoiler, les pare-chocs avant et arrière, les kits aérodynamiques, ou des pièces intérieures automobiles notamment les couvertures de portière, le tableau de bord, la console centrale, les habillages de pilier, les habillages de coffre, le pavillon, ou des articles de sport tels qu'une coque de canoé, kayak ou bateau léger, , un cadre de bicyclette, ou encore un élément de mobilier, ou des pièces d'intérieur d'avion, notamment les panneaux latéraux, les panneaux de plafond, les coffres à bagage, ou des pièces aérodynamiques d'avion léger, notamment le capot moteur, les capots de roue, ou tout carénage aérodynamique d'un engin mobile, ou encore une coque de valise.
18. Fil imprégné (10d; 10e) comportant au moins deux brins (10a; 10b) continus comprenant des fibres (11) végétales, lesdits brins (10a; 10b) étant imprégnés de matière thermoplastique (12a) dans au moins 60% de leur volume, chacun desdits brins (10a; 10b) étant individuellement torsadé, en présentant une torsion (T1) selon une première orientation, et l'ensemble desdits brins (10a; 10b) étant également torsadé dans une configuration maintenue par la matière thermoplastique (12a), selon une torsion d'ensemble (T2) selon une deuxième orientation différente de la première orientation.
19. Fil imprégné (10d; 10e) selon la revendication 18, comportant en outre au moins un fil de liaison (13) enroulé en hélice autour de l'ensemble desdits brins (10a; 10b), formant un fil imprégné et ficelé (10d; 10e).
20. Fil imprégné (10d; 10e) selon la revendication 18 ou 19, dans lequel les fibres (11) extérieures desdits brins (10a; 10b) forment un angle (d) compris entre -20° et +20° avec la direction longitudinale ou principale (P1) du fil imprégné (1 Od ; 10e), de préférence un angle (d) compris entre +10° et -10°, et de préférence un angle (d) compris entre +5° et -5°.
21. Fil imprégné (10d; 10e) selon l'une des revendications 18 à 20, dans lequel les brins (10a; 10b) présentent une torsion individuelle (T1) comprise entre 50 et 300tpm, de préférence entre 100 et 200tpm.
22. Fil imprégné (10d; 10e) selon l'une des revendications 18 à 21, comportant entre trois et six brins (10a; 10b) présentant chacun un poids compris entre 200 et 800 tex, de préférence entre 300 à 600 tex.
23. Produit composite à paroi mince comportant des fils imprégnés (1 Od ; 10e) selon l'une des revendications 18 à 22, ledit produit composite présentant une face nervurée, lesdites nervures étant créées au moins en partie par lesdits fils imprégnés (1 Od ; 10e).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1912815A FR3103199B1 (fr) | 2019-11-15 | 2019-11-15 | Fil imprégné, produit composite à paroi mince nervuré comportant un tel fil imprégné, et procédé de fabrication de ce fil et de ce produit composite |
PCT/IB2020/060695 WO2021094996A1 (fr) | 2019-11-15 | 2020-11-13 | Fil imprégné, produit composite à paroi mince nervuré comportant un tel fil imprégné, et procédé de fabrication de ce fil et de ce produit composite |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4058623A1 true EP4058623A1 (fr) | 2022-09-21 |
Family
ID=71111461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20807903.8A Pending EP4058623A1 (fr) | 2019-11-15 | 2020-11-13 | Fil imprégné, produit composite à paroi mince nervuré comportant un tel fil imprégné, et procédé de fabrication de ce fil et de ce produit composite |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220403563A1 (fr) |
EP (1) | EP4058623A1 (fr) |
CN (1) | CN115298367B (fr) |
FR (1) | FR3103199B1 (fr) |
WO (1) | WO2021094996A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024161175A1 (fr) | 2023-01-30 | 2024-08-08 | Bcomp Sa | Ensemble outil avec insert interchangeable pour la fabrication d'une pièce composite nervurée et méthode de fabrication |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102594918B1 (ko) * | 2022-10-21 | 2023-10-27 | 제일개발주식회사 | 바나나 섬유 로프 제조방법 및 이에 의해 제조된 바나나 섬유 로프 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2454830A (en) * | 1948-11-30 | Tensioned roving and method of | ||
US1959723A (en) * | 1929-11-08 | 1934-05-22 | Lejeune Leon Sylvain Max | Spinning process |
GB514772A (en) * | 1938-03-17 | 1939-11-17 | John Brandwood | Improvements in or relating to the preparation of doubled textile yarns or cords |
US2842932A (en) * | 1954-07-29 | 1958-07-15 | Robert S Owens | Apparatus and method for making twisted fiber products |
GB902614A (en) * | 1958-01-23 | 1962-08-01 | Nat Res Dev | Improvements in or relating to the moulding of resin impregnated materials |
US4016714A (en) * | 1975-05-21 | 1977-04-12 | Ashaway Line & Twine Mfg. Co. | String construction |
JP5564670B2 (ja) * | 2007-11-30 | 2014-07-30 | 株式会社神戸製鋼所 | 天然繊維強化熱可塑性樹脂射出成形品 |
US8883908B2 (en) * | 2009-06-02 | 2014-11-11 | Johns Manville | Methods for making reinforced thermoplastic composites using reactive fibers and/or reactive flakes |
WO2012076308A1 (fr) * | 2010-12-08 | 2012-06-14 | Bcomp Gmbh | Produits composites de fibres à paroi mince renforcées et leur procédé de réalisation |
FR2972674A1 (fr) * | 2011-03-18 | 2012-09-21 | Innobat | Procede et dispositif de fabrication d'un materiau composite, materiau composite et profil le comportant |
JP5862109B2 (ja) * | 2011-08-19 | 2016-02-16 | 国立大学法人山口大学 | 天然繊維強化樹脂ストランドの製造方法及び製造装置 |
JP6021343B2 (ja) | 2012-02-09 | 2016-11-09 | 株式会社神戸製鋼所 | 含浸糸布及び含浸糸布の製造方法 |
FR3020819B1 (fr) * | 2014-05-12 | 2020-02-14 | Arkema France | Procede d'impregnation de fibres naturelles par un polymere en dispersion aqueuse et utilisation desdites fibres dans les materiaux composites. |
NL2015927B1 (en) | 2015-12-08 | 2017-06-28 | Atg Europe B V | Composite grid structure. |
FR3073167B1 (fr) | 2017-11-06 | 2020-11-20 | Bcomp Sa | Procede de fabrication d’un produit composite |
-
2019
- 2019-11-15 FR FR1912815A patent/FR3103199B1/fr active Active
-
2020
- 2020-11-13 EP EP20807903.8A patent/EP4058623A1/fr active Pending
- 2020-11-13 CN CN202080093090.7A patent/CN115298367B/zh active Active
- 2020-11-13 US US17/776,469 patent/US20220403563A1/en active Pending
- 2020-11-13 WO PCT/IB2020/060695 patent/WO2021094996A1/fr unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024161175A1 (fr) | 2023-01-30 | 2024-08-08 | Bcomp Sa | Ensemble outil avec insert interchangeable pour la fabrication d'une pièce composite nervurée et méthode de fabrication |
Also Published As
Publication number | Publication date |
---|---|
CN115298367A (zh) | 2022-11-04 |
US20220403563A1 (en) | 2022-12-22 |
FR3103199A1 (fr) | 2021-05-21 |
WO2021094996A1 (fr) | 2021-05-20 |
FR3103199B1 (fr) | 2021-12-10 |
CN115298367B (zh) | 2024-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002070806A1 (fr) | Procede et dispositif de fabrication d'une plaque composite a renfort fibreux multiaxial | |
EP3999326A1 (fr) | Produit composite à paroi mince renforcé par des fils hybrides et procédé de fabrication d'un tel produit | |
WO2021094996A1 (fr) | Fil imprégné, produit composite à paroi mince nervuré comportant un tel fil imprégné, et procédé de fabrication de ce fil et de ce produit composite | |
WO2019087141A1 (fr) | Produit composite comprenant un treillis et un polymere | |
EP1226298B1 (fr) | Procede et dispositif de fabrication de plaques composites | |
FR3055569B1 (fr) | Preforme, piece d'ossature et procede de fabrication d'une telle preforme | |
EP1497104B1 (fr) | Procede de fabrication d'un nouveau materiau compose de faisceaux de fibres naturelles pre impregnees de resine organique et se presentant sous forme de fil ou de ruban, dispositif pour la mise en oeuvre du procede et produit obtenu | |
EP2988911B1 (fr) | Procede de fabrication d'un materiau composite realise avec des fils de fibres vegetales et materiau composite realise selon ce procede | |
EP1466045B1 (fr) | Structure fibreuse pour la realisation de materiaux composites | |
EP2591158B1 (fr) | Preforme souple pour la production d'une piece a base de fibres naturelles | |
FR2964590A1 (fr) | Procede de fabrication d'un ressort de suspension pour vehicule automobile en materiau composite de mise en œuvre simplifiee | |
EP3057781B1 (fr) | Piece structurelle de vehicule automobile, legere et robuste et sa methode de fabrication | |
EP3230513B1 (fr) | Armature textile pour pultrusion et son procede de realisation | |
FR3048635B1 (fr) | Armature textile lisse pour pultrusion, procede et dispositif pour sa realisation, et son utilisation pour la fabrication de pieces par pultrusion | |
WO2006053978A1 (fr) | Produit de renforcement aere et procede pour sa realisation | |
FR2600589A1 (fr) | Procede pour realisation de courroies et courroies ainsi obtenues | |
FR2949125A1 (fr) | Renfort composite a base de fibres naturelles | |
FR3028797A1 (fr) | Procede d'impregnation sequentiel d'une structure textile | |
EP3938162A1 (fr) | Procede de fabrication d'un renfort fibreux pre-impregne a partir d'un non-tisse thermoplastique et d'un renfort de fibres naturelles vegetales, et renfort fibreux pre-impregne obtenu | |
FR3028799A1 (fr) | Produit composite stratifie contenant des volumes de liaison inter-plis | |
CA2953085A1 (fr) | Armature textile de renforcement et son procede de realisation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220516 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |