EP3717616B1 - Reinigungszusammensetzung mit protease - Google Patents

Reinigungszusammensetzung mit protease Download PDF

Info

Publication number
EP3717616B1
EP3717616B1 EP18795655.2A EP18795655A EP3717616B1 EP 3717616 B1 EP3717616 B1 EP 3717616B1 EP 18795655 A EP18795655 A EP 18795655A EP 3717616 B1 EP3717616 B1 EP 3717616B1
Authority
EP
European Patent Office
Prior art keywords
detergent composition
protease
laundry detergent
seq
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18795655.2A
Other languages
English (en)
French (fr)
Other versions
EP3717616A1 (de
Inventor
Hu ZHU
Hong Zhang
Hui Li
Dietmar Andreas LANG
Mark Lawrence THOMPSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Global IP Ltd
Unilever IP Holdings BV
Original Assignee
Unilever Global IP Ltd
Unilever IP Holdings BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Global IP Ltd, Unilever IP Holdings BV filed Critical Unilever Global IP Ltd
Publication of EP3717616A1 publication Critical patent/EP3717616A1/de
Application granted granted Critical
Publication of EP3717616B1 publication Critical patent/EP3717616B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase

Definitions

  • the invention concerns a detergent composition
  • a surfactant that incorporates a new protease enzyme.
  • Water can be a scare resource. Consumers who wish to use detergent compositions on a substrate, particularly laundry detergents on textiles may only be able to use water that is not optimum for cleaning.
  • salty water water with a significant sodium chloride content
  • sea water is sometimes used.
  • proteases are common ingredients in cleaning compositions.
  • One problem with commercial proteases is that they work poorly in salty water conditions.
  • EP0319460 A2 relates to cleaning compositions, and to a method of cleaning using such compositions, which contain certain proteases produced by microorganisms of the genus Vibrio.
  • WO2016207275 A1 concerns the use of one or more enzymes, such as proteases, for washing or rinsing a laundry item with water having a salt content of at least 0.05 % at 20°C and/or a BOD value of at least 1 mg/L at 20°C.
  • enzymes such as proteases
  • the present invention provides a detergent composition comprising:
  • the protease enzyme has at least 95%, more preferably 97% sequence identity to SEQ ID NO: 1. Most preferably the protease enzyme has 100% sequence identity to SEQ ID NO: 1.
  • a preferred detergent composition is a laundry detergent composition.
  • the laundry detergent composition is a liquid or a powder, more preferably the detergent is a liquid detergent.
  • the laundry detergent composition comprises anionic and/or nonionic surfactant, more preferably the laundry detergent composition comprises both anionic and nonionic surfactant.
  • the laundry detergent preferably comprises an alkoxylated polyamine.
  • the laundry detergent preferably comprises a soil release polymer, more preferably a polyester based soil released polymer.
  • the laundry detergent comprises phosphonic acid (or salt thereof) chelating agent at a level that is less than 0.1 wt.%, more preferably less than 0.01 wt.%, most preferably the composition is free from phosphonic acid (or salt thereof) chelating agent.
  • Preferred detergent compositions particularly laundry detergent compositions additionally comprise a further enzyme selected from the group consisting of: lipases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, mannanases, and/or additional proteases.
  • a further enzyme selected from the group consisting of: lipases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, mannanases, and/or additional proteases.
  • the present invention provides a method of improving enzymatic cleaning in water having a sodium chloride content of from 0.1 to 4%, preferably from 0.25 to 3 wt.% at 20°C, said method comprising incorporation of a protease enzyme having at least 90% sequence identity to SEQ ID NO: 1 into a detergent composition comprising from 1 to 60 wt.% of a surfactant; and subsequent treatment of a substrate, preferably textiles, with said composition.
  • the present invention provides the use of a protease enzyme having at least 90%, preferably 95%, more preferably 97%, most preferably 100%, sequence identity to SEQ ID NO: 1 to improve enzymatic cleaning in water having a sodium chloride content of from 0.1 to 4%, at a temperature of from 15°C to 45°C.
  • indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
  • the detergent composition may take any suitable form, for example liquids, solids (including powders) or gels.
  • the detergent composition can be applied to any suitable substrate.
  • Particularly preferred substrates are textiles.
  • Particularly preferred detergent compositions are laundry detergent compositions.
  • Laundry detergent compositions may take any suitable form. Preferred forms are liquid or powder, with liquid being most preferred.
  • the detergent composition comprises surfactant (which includes a mixture of two or more surfactants).
  • the composition comprises from 1 to 60 wt.%, preferably from 2 to 50 wt.%, more preferably from 4 to 50 wt.% of surfactant. Even more preferred levels of surfactant are from 6 to 30 wt.%, more preferably from 8 to 20 wt.%.
  • the detergent composition (preferably a laundry detergent composition) comprises anionic and/or nonionic surfactant, preferably comprising both anionic and nonionic surfactant.
  • Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
  • the most preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof.
  • the alkyl ether sulphate is a C 12 -C 14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES).
  • the linear alkyl benzene sulphonate is a sodium C 11 to C 15 alkyl benzene sulphonates.
  • the alkyl sulphates is a linear or branched sodium C 12 to C 18 alkyl sulphates.
  • Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
  • liquid formulations preferably two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt.% of alkyl ethoxylated non-ionic surfactant.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Preferred nonionic detergent compounds are the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide.
  • nonionic detergent compound is the alkyl ethoxylated non-ionic surfactant is a C 8 to C 18 primary alcohol with an average ethoxylation of 7EO to 9EO units.
  • surfactants used are saturated.
  • protease performs well in salt water conditions.
  • the protease can therefore be considered halotolerant. This means that it can function in a high salt environment.
  • protease can perform well at low temperature 20°C.
  • the protease outperforms commercial protease enzymes at both high temperature 40°C and low temperature 20°C salt water environments.
  • the protease is present at a level of from 0.0005 to 1 wt.%, preferably from 0.005 to 0.6 wt.%.
  • the protease enzyme has at least 90%, preferably 95%, or even 97% sequence identity to SEQ ID NO: 1.
  • the protease enzyme most preferably may have 100% sequence identity to SEQ ID NO: 1.
  • the detergent composition is in the form of a laundry composition, it is preferred that an alkoxylated polyamine is included.
  • Preferred levels of alkoxylated polyamine range from 0.1 to 8 wt.%, preferably from 0.2 to 6 wt.%, more preferably from 0.5 to 5 wt.%. Another preferred level is from 1 to 4 wt.%.
  • the alkoxylated polyamine may be linear or branched. It may be branched to the extent that it is a dendrimer.
  • the alkoxylation may typically be ethoxylation or propoxylation, or a mixture of both. Where a nitrogen atom is alkoxylated, a preferred average degree of alkoxylation is from 10 to 30, preferably from 15 to 25.
  • a preferred material is alkoxylated polyethylenimine, most preferably ethoxylated polyethyleneimine, with an average degree of ethoxylation being from 10 to 30 preferably from 15 to 25, where a nitrogen atom is ethoxylated.
  • the detergent composition is in the form of a laundry composition, it is preferred that a soil release polymer is included.
  • Preferred levels of soil release polymer range from 0.1 to 10 wt.%, preferably from 0.2 to 8 wt.%, more preferably from 0.25 to 7 wt.%, most preferably from 0.5 to 6 wt.%.
  • Suitable polyester based soil release polymers are described in WO 2014/029479 and WO 2016/005338 .
  • Additional enzymes other than the specified protease may be present in the detergent composition. It is preferred that additional enzymes are present in the preferred laundry detergent composition.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.%.
  • Levels of enzyme present in the composition preferably relate to the level of enzyme as pure protein.
  • Preferred further enzymes include those in the group consisting of: lipases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, mannanases, and/or additional proteases. Said preferred additional enzymes include a mixture of two or more of these enzymes.
  • the further enzyme is selected from: lipases, cellulases, alpha-amylases and/or additional protease.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ), e.g. from H. lanuginosa ( T. lanuginosus ) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
  • lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 , WO 00/60063 .
  • Preferred commercially available lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM and Lipoclean TM (Novozymes A/S).
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases A 1 and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • proteases hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
  • suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases; aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database ( https://merops.sanger.ac.uk /). Serine proteases are preferred. Subtilase type serine proteases are more preferred.
  • the term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng.
  • Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
  • the subtilases may be divided into 6 subdivisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO 89/06279 and protease PD138 described in ( WO 93/18140 ).
  • proteases may be those described in WO 92/175177 , WO 01/016285 , WO 02/026024 and WO 02/016547 .
  • trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 , WO 94/25583 and WO 05/040372 , and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146 .
  • protease is a subtilisins (EC 3.4.21.62).
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in ( WO93/18140 ).
  • the subsilisin is derived from Bacillus, preferably Bacillus lentus, B.
  • subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
  • Suitable commercially available protease enzymes include those sold under the trade names names Alcalase®, Blaze®; DuralaseTm, DurazymTm, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®, Coronase®, Coronase® Ultra, Neutrase®, Everlase® and Esperase® all could be sold as Ultra® or Evity® (Novozymes A/S).
  • the composition may use cutinase, classified in EC 3.1.1.74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus , e.g. a special strain of B. licheniformis , described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
  • amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, AmplifyTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus , Pseudomonas , Humicola , Fusarium , Thielavia , Acremonium , e.g.
  • cellulases produced from Humicola insolens , Thielavia terrestris , Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
  • Commercially available cellulases include CelluzymeTM, CarezymeTM, Celluclean TM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation). CellucleanTM is preferred.
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus , and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
  • the aqueous solution used in the method preferably has an enzyme present.
  • the enzyme is preferably present in the aqueous solution used in the method at a concentration in the range from 0.01 to 10ppm, preferably 0.05 to 1ppm.
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • Chelating agents may be present or absent from the detergent compositions.
  • the laundry detergent comprises phosphonic acid (or salt thereof) chelating agent at a level that is less than 0.1 wt.%, more preferably less than 0.01 wt.%, most preferably the composition is free from phosphonic acid (or salt thereof) chelating agent.
  • Example phosphonic acid (or salt thereof) chelating agents are: 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP); Diethylenetriaminepenta(methylenephosphonic acid) (DTPMP); Hexamethylenediaminetetra(methylenephosphonic acid) (HDTMP); Aminotris(methylenephosphonic acid) (ATMP); Ethylenediaminetetra(methylenephosphonic acid) (EDTMP); Tetramethylenediaminetetra(methylenephosphonic acid) (TDTMP); and, Phosphonobutanetricarboxylic acid (PBTC).
  • HEDP 1-Hydroxyethylidene-1,1-diphosphonic acid
  • DTPMP Diethylenetriaminepenta(methylenephosphonic acid)
  • HDTMP Hexamethylenediaminetetra(methylenephosphonic acid)
  • AMP Aminotris(methylenephosphonic acid)
  • ETMP Ethylenedi
  • detergent compositions preferably laundry detergent compositions
  • materials that may be included in the detergent compositions include fluorescent agent, perfume, shading dyes and polymers.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • the total amount of the fluorescent agent or agents used in the composition is generally from 0.0001 to 0.5 wt.%, preferably 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Preferred fluorescers are fluorescers with CAS-No 3426-43-5 ; CAS-No 35632-99-6 ; CAS-No 24565-13-7 ; CAS-No 12224-16-7 ; CAS-No 13863-31-5 ; CAS-No 4193-55-9 ; CAS-No 16090-02-1 ; CAS-No 133-66-4 ; CAS-No 68444-86-0 ; CAS-No 27344-41-8 .
  • fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
  • the aqueous solution used in the method has a fluorescer present.
  • the fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
  • the composition preferably comprises a perfume.
  • perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co .
  • the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl an
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavour Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavour Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • the Research Institute for Fragrance Materials provides a database of perfumes (fragrances) with safety information.
  • Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
  • perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0.
  • these materials have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethy
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
  • perfumes with which the present invention can be applied are the so-called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
  • the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • the composition is a laundry detergent composition
  • it comprises a shading dye.
  • the shading dye is present at from 0.0001 to 0.1 wt.% of the composition.
  • Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Zurich, 2003 ) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003 ).
  • Shading Dyes for use in laundry compositions preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol -1 cm -1 , preferably greater than 10000 L mol -1 cm -1 .
  • the dyes are blue or violet in colour.
  • Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
  • Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged.
  • Azine preferably carry a net anionic or cationic charge.
  • Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280.
  • the white cloth used in this test is bleached non-mercerised woven cotton sheeting.
  • Shading dyes are discussed in WO 2005/003274 , WO 2006/032327(Unilever ), WO 2006/032397(Unilever ), WO 2006/045275(Unilever ), WO 2006/027086(Unilever ), WO 2008/017570(Unilever ), WO 2008/141880 (Unilever ), WO 2009/132870(Unilever ), WO 2009/141173 (Unilever ), WO 2010/099997(Unilever ), WO 2010/102861 (Unilever ), WO 2010/148624(Unilever ), WO 2008/087497 (P&G ), WO 2011/011799 (P&G ), WO 2012/054820 (P&G ), WO 2013/142495 (P&G ) and WO 2013/151970 (P&G ).
  • Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
  • Alkoxylated thiophene dyes are discussed in WO/2013/142495 and WO/2008/087497 . Preferred examples of thiophene dyes are shown below: and,
  • Bis-azo dyes are preferably sulphonated bis-azo dyes.
  • Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, Direct Violet 66, direct violet 99 and alkoxylated versions thereof. Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO2010/151906 .
  • alkoxylated bis-azo dye is :
  • Thiophene dyes are available from Milliken under the tradenames of Liquitint Violet DD and Liquitint Violet ION.
  • Azine dye are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5, acid blue 59, and the phenazine dye selected from: wherein:
  • the shading dye is present in the composition in range from 0.0001 to 0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
  • a mixture of shading dyes may be used.
  • the shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine.
  • the alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation.
  • 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation.
  • the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
  • An example structure of a preferred reactive anthraquinone covalently attached to a propoxylated polyethylene imine is:
  • the composition may comprise one or more further polymers.
  • suitable polymers are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • the protease-producing microorganism strains were isolated from marine sediment samples collected from Jiaozhou Bay (China Yellow Sea, 36°09'N, 120°32'E) by selective screening on skim milk agar plates containing (g/L seawater): tryptone 5, yeast extract 2, skim milk powder 40, agar powder 16. The plates were incubated at 20°C for 48-72 h to obtain bacterial colonies. The colonies with a clear hydrolysis circle of casein in milk were evaluated as protease producers. The proteolytic LA-05 strain exhibiting the larger hydrolysis circle was selected for further experiments.
  • the seed and fermentation medium used for LA-05 strain culture consisted of 5 g tryptone, 2 g yeast extract and 1 L seawater, pH 7.0.
  • the media were autoclaved at 121°C for 20 min.
  • the isolated LA-05 strain was inoculated with 2% (v/v) seed culture and cultivated on a rotary shaker incubator at 20°C and 150 rpm for 12 h.
  • the culture was transferred to 2-L conical flasks containing 400 ml of fermentation medium and incubated for 78 h at 15-30°C and 150 rpm.
  • the kinetics of growth and enzyme production were measured every 6 h during the incubation period (78 h).
  • the cell density was monitored by measuring the absorbance at 600 nm.
  • the cell-free supernatant was recovered by centrifugation at 12000 rpm for 20 min at 4°C, and then used as crude enzyme preparation to determine protease activity.
  • API strip tests and 16S rRNA gene sequencing were carried out for the genus identification of LA-05 strain. API strips were used to investigate the physiological and biochemical characteristics of strain LA-05 according to the manufacturer's instructions.
  • the 16S rRNA sequence was amplified by PCR using forward primer (27F, 5'-AGAGTTTGATCMTGGCTCAG-3') and reverse primer (1492R, 5'-TACGGYTACCTTGTTACGACTT-3').
  • the genomic DNA of strain LA-05 was purified by TIANamp Bacteria DNA Kit (TIANGEN, Beijing, China) and then used as the template for PCR amplification including 30 cycles (the cycling parameters: denaturation at 94°C for 50 s, primer annealing at 58°C for 50 s, extension at 72°C for 100 s).
  • the amplified product was cloned in pMD18-T vector (Takara, Dalian, China), and the recombinant plasmid pMD-16S was constructed. Then, the recombinant plasmid was transformed into the competent cells of Escherichia coli DH5a. LB broth media containing ampicillin (60 ⁇ g/ml) was applied to culture recombinant clones of E. coli DH5a. The DNA fragment of 16S rRNA ligated into the recombinant plasmid was confirmed by commercial DNA sequencing (Sangon Biotech Co., Ltd., Shanghai, China). The multiple sequence alignment was performed using Identify program through EzTaxon database.
  • Type culture strains with pairwise similarity above 97% were selected and subjected to phylogenetic and molecular evolutionary analyses with Molecular Evolutionary Genetics Analysis (MEGA) software (version 7.0.9) by the neighbor-joining method.
  • MEGA Molecular Evolutionary Genetics Analysis
  • the protein concentration was determined with a BCA Protein Assay Kit (Sangon Biotech, Shanghai, China) using bovine serum albumin (BSA) as a reference.
  • Protease activity was determined according to the modified method (Lagzian and Asoodeh, 2012). Briefly, 0.25 ml aliquot of purified protease was incubated with 0.75 ml 50 mM Tris-HCI buffer (pH 8.0) containing 1% (w/v) casein at 45°C for 10 min. The reaction was terminated by adding 0.5 mL of 20 % (w/v) trichloroacetic acid (TCA). The mixture was blended with a lab-dancer and placed at room temperature for 20 min.
  • TCA trichloroacetic acid
  • protease activity was defined as the amount of enzyme that hydrolyzed casein to release 1 ⁇ g tyrosine per minute under experimental conditions. Protease activity units were calculated using tyrosine (0-100 ⁇ g/ml) as standard.
  • the molecular mass of purified protease was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using (5%, w/v) stacking gel and (12%, w/v) resolving gel according to standard protocols with Bio-Rad Mini-PROTEIN equipment (Farhadian et al., 2015). The gel was stained with Coomassie Brilliant Blue R-250 and destained with methanol-acetic acid-water (5/1/4, v/v/v). The relative molecular weight of purified enzyme was estimated by comparing its mobility to standard protein marker.
  • the gel was rinsed twice with 50 mM Tris-HCI buffer (pH 8.0) at 4°C for 20min in order to extract residual Triton X-100, and then incubated with 1% (w/v) casein in 50 mM Tris-HCI buffer (pH 8.0) at 25°C for 1 h.
  • the gel was soaked in 20% (w/v) trichloroacetic acid (TCA) to terminate the protease reaction, stained with Coomassie Brilliant Blue R-250 for 2 h, and destained with methanol-acetic acid-water (5/1/4, v/v/v) over night to reveal protease hydrolysis bands.
  • TCA trichloroacetic acid
  • the isoelectric focusing of purified protease was performed on gel strips with immobilized pH gradients (IPG) from 3 to 10 (Bio-Rad, USA) using multiphor II electrophoresis system (GE Healthcare). Briefly, the purified protease was desalted and rinsed with 1% glycine buffer by ultrafiltration. Pre-electrophoresis started at 700 V for 20 min at 15°C after fixing the IPG strip. Then, the sample and IEF standards were subjected to electrophoresis at 2000 V for 90 min at 15°C. Finally, the band was fixed by TCA buffer treatment for 30min, stained with Coomassie Blue R-250 and destained with methanol-acetic acid-water mixture. The p/ value of purified protease was assessed by ImageQuant TL Version 7.0 software.
  • the protease purified by SDS-PAGE was transferred to a polyvinylidene difluoride (PVDF) membrane in CAPS buffer according to Matsudaira's protocol (Matsudaira, 1987).
  • PVDF membrane was slightly stained with Coomassie Brilliant Blue R-250 and the band containing enzyme was excised.
  • SHIMADZU PPSQ-21A protein sequencer
  • the strip containing protease obtained by denatured SDS-PAGE was excised carefully and proteins were analyzed by tandem mass spectrometry (MALDI MS/MS) as described in published protocol (Marchand et al., 2009). All acquired spectra of samples were processed using TOF/TOF ExplorerTM Software (AB SCIEX) in a default mode.
  • the identification of peptide mass fingerprint (PMF) was searched using GPS Explorer (V3.6) with the search engine MASCOT (2.3) against the NCBI database (Non-redundant protein sequences). Proteins with protein score confidence intervals (C.I.) above 95% were considered confident identifications.
  • the candidate proteins were selected based on the MASCOT search results, proteolytic activity and secretion mechanism.
  • the multiple sequence alignment was performed on the encoding sequence of candidates by DNAMAN software.
  • One pair of primers 5'-ATGAACCAACAACGTCAACTAAGCTG -3' and 5'-CGGGTCAATCTAAACGCAACG-3', was designed in accordance with conserved regions of the upstream and downstream coding sequences.
  • the coding sequence was amplified and cloned in pMD18-T vector using an Escherichia coli DH5a as the host strain for Sanger sequencing. Eventually, the obtained nucleotide sequence was translated to amino acid sequence, a mature protease with 321 amino acid residues. Trace metals in purified protease was determined by flame atomic absorption spectrometry.
  • Washes were carried out at 20°C and 40°C, with shaking at 250rpm for 1h.
  • the washing at 20°C shows the benefit of the invention even at low temperature conditions.
  • the stains were separated from the wash liqueur and rinsed 2x in a beaker containing 1L of FH26 water, before leaving to dry overnight. After drying, the stain plates were digitally scanned and their deltaE measured. This value is used to express cleaning effect and is defined as the colour difference between a white cloth and that of the stained cloth after being washed.
  • deltaE [ ⁇ L 2 + ⁇ a 2 + ⁇ b 2
  • ⁇ L is a measure of the difference in darkness between the washed and white cloth
  • ⁇ a and ⁇ b are measures for the difference in redness and yellowness respectively between both cloths.
  • Formulation 1 (F1) (wt. %) Demin water to 100 Nonionic surfactant (25-7) 4.365 Tinopal 5BMGX 0.200 Acusol WR 0.700 TEA 8.820 EU LAS acid 5.820 Glycerol 2.000 Prifac 5908 0.860 Dequest 2010 1.500 EU SLES 4.365 BIT - Proxel 0.040 Citric acid 1.000 Formulation 2 (F2) (wt.
  • the two tested enzymes were added to formulations 1 and 2 to give an effective enzyme level in the formulation of 0.5 wt.%.
  • the proteases were:-

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (14)

  1. Reinigungsmittelzusammensetzung, umfassend:
    (i) 1 bis 60 Gew.-%, bevorzugt 2 bis 50 Gew.-%, bevorzugter 4 bis 50 Gew.-%, Tensid;
    (ii) 0,0005 bis 1 Gew.-%, bevorzugt 0,005 bis 0,6 Gew.-%, eines Proteaseenzyms mit mindestens 90% Sequenzidentität zu SEQ ID NO: 1.
  2. Reinigungsmittelzusammensetzung nach Anspruch 1, wobei das Proteaseenzym mindestens 95%, bevorzugter 97% Sequenzidentität zu SEQ ID NO: 1 aufweist.
  3. Reinigungsmittelzusammensetzung nach Anspruch 1 oder 2, wobei das Proteaseenzym 100% Sequenzidentität zu SEQ ID NO: 1 aufweist.
  4. Reinigungsmittelzusammensetzung nach irgendeinem vorhergehenden Anspruch, wobei die Reinigungsmittelzusammensetzung eine Waschmittelzusammensetzung ist.
  5. Waschmittelzusammensetzung nach Anspruch 4, wobei die Waschmittelzusammensetzung eine Flüssigkeit oder ein Pulver ist, bevorzugt ein flüssiges Waschmittel.
  6. Waschmittelzusammensetzung nach Anspruch 4 oder Anspruch 5, wobei die Waschmittelzusammensetzung anionisches und/oder nichtionisches Tensid umfasst, wobei es bevorzugt sowohl anionisches als auch nichtionisches Tensid umfasst.
  7. Waschmittelzusammensetzung nach irgendeinem der Ansprüche 4 bis 6, wobei die Waschmittelzusammensetzung ein alkoxyliertes Polyamin umfasst, bevorzugt in einer Menge von 0,1 bis 8 Gew.-%, bevorzugter von 0,2 bis 6 Gew.-%, am meisten bevorzugt von 0,5 bis 5 Gew.-%.
  8. Waschmittelzusammensetzung nach irgendeinem der Ansprüche 4 bis 7, wobei die Waschmittelzusammensetzung ein Soil-release-Polymer umfasst, bevorzugt ein Soil-release-Polymer auf Polyesterbasis.
  9. Waschmittelzusammensetzung nach irgendeinem der Ansprüche 4 bis 8, wobei der Gehalt an Phosphonsäure (oder Salz davon)-Chelatbildner weniger als 0,1 Gew.-%, bevorzugt 0,01 Gew.-%, beträgt, wobei die Zusammensetzung bevorzugter frei von Phosphonsäure (oder Salz davon)-Chelatbildner ist.
  10. Reinigungsmittelzusammensetzung nach irgendeinem vorhergehenden Anspruch, zusätzlich umfassend ein weiteres Enzym ausgewählt aus der Gruppe bestehend aus: Lipasen, Cellulasen, alpha-Amylasen, Peroxidasen/ Oxidasen, Pektatlyasen, Mannanasen und/oder zusätzlichen Proteasen.
  11. Verfahren zur Verbesserung der enzymatischen Reinigung in Wasser mit einem Natriumchloridgehalt von 0,1 bis 4 Gew.-%, bevorzugt von 0,25 bis 3 Gew.-%, bei 20 °C, wobei das Verfahren die Aufnahme eines Proteaseenzyms mit mindestens 90% Sequenzidentität zu SEQ ID NO: 1 in eine Reinigungsmittelzusammensetzung, umfassend 1 bis 60 Gew.-% eines Tensids; und die anschließende Behandlung eines Substrats, bevorzugt Textilien, mit der Zusammensetzung umfasst.
  12. Verfahren nach Anspruch 11, wobei das Proteaseenzym mindestens 95%, noch bevorzugter 97% Sequenzidentität zu SEQ ID NO: 1 aufweist; wobei das Proteaseenzym am meisten bevorzugt eine 100% Sequenzidentität zu SEQ ID NO: 1 aufweist.
  13. Verfahren nach Anspruch 11 oder Anspruch 12, wobei die Zusammensetzung, die das Substrat behandelt, eine Zusammensetzung nach irgendeinem der Ansprüche 4 bis 10 ist.
  14. Verwendung eines Proteaseenzyms mit mindestens 90%, bevorzugt 95%, bevorzugter 97%, am meisten bevorzugt 100% Sequenzidentität zu SEQ ID NO: 1 zur Verbesserung der enzymatischen Reinigung in Wasser mit einem Natriumchloridgehalt von 0,1 bis 4% bei einer Temperatur von 15 °C bis 45 °C.
EP18795655.2A 2017-11-30 2018-10-31 Reinigungszusammensetzung mit protease Active EP3717616B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2017114032 2017-11-30
EP18151963 2018-01-16
PCT/EP2018/079897 WO2019105675A1 (en) 2017-11-30 2018-10-31 Detergent composition comprising protease

Publications (2)

Publication Number Publication Date
EP3717616A1 EP3717616A1 (de) 2020-10-07
EP3717616B1 true EP3717616B1 (de) 2021-10-13

Family

ID=64049273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18795655.2A Active EP3717616B1 (de) 2017-11-30 2018-10-31 Reinigungszusammensetzung mit protease

Country Status (4)

Country Link
EP (1) EP3717616B1 (de)
CN (1) CN111479912B (de)
BR (1) BR112020010648A2 (de)
WO (1) WO2019105675A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3127167A1 (en) 2019-03-14 2020-09-17 The Procter & Gamble Company Cleaning compositions comprising enzymes
MX2021011104A (es) 2019-03-14 2021-10-22 Procter & Gamble Composiciones de limpieza que comprenden enzimas.
US10988715B2 (en) 2019-03-14 2021-04-27 The Procter & Gamble Company Method for treating cotton

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (de) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
DK187280A (da) 1980-04-30 1981-10-31 Novo Industri As Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
DE3684398D1 (de) 1985-08-09 1992-04-23 Gist Brocades Nv Lipolytische enzyme und deren anwendung in reinigungsmitteln.
EP0258068B1 (de) 1986-08-29 1994-08-31 Novo Nordisk A/S Enzymhaltiger Reinigungsmittelzusatz
NZ221627A (en) 1986-09-09 1993-04-28 Genencor Inc Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios
DE3854249T2 (de) 1987-08-28 1996-02-29 Novonordisk As Rekombinante Humicola-Lipase und Verfahren zur Herstellung von rekombinanten Humicola-Lipasen.
JPH0760187B2 (ja) 1987-09-17 1995-06-28 小糸工業株式会社 路面積雪深計
US4865983A (en) * 1987-12-04 1989-09-12 W. R. Grace & Co.-Conn. Cleaning compositions containing protease produced by vibrio and method of use
DK6488D0 (da) 1988-01-07 1988-01-07 Novo Industri As Enzymer
WO1989006270A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Enzymatic detergent
JP3079276B2 (ja) 1988-02-28 2000-08-21 天野製薬株式会社 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法
DE68911131T2 (de) 1988-03-24 1994-03-31 Novonordisk As Cellulosezubereitung.
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
GB8915658D0 (en) 1989-07-07 1989-08-23 Unilever Plc Enzymes,their production and use
ES2055601T3 (es) 1990-04-14 1994-08-16 Kali Chemie Ag Lipasas alcalinas de bacillus, secuencias de adn que las codifican, asi como bacilli que producen estas lipasas.
BR9106839A (pt) 1990-09-13 1993-07-20 Novo Nordisk As Variante de lipase,construcao de dna,vetor de expressao de recombinante,celula,planta,processo para produzir uma variante de lipase,aditivo e composicao de detergente
US5292796A (en) 1991-04-02 1994-03-08 Minnesota Mining And Manufacturing Company Urea-aldehyde condensates and melamine derivatives comprising fluorochemical oligomers
ES2085024T3 (es) 1991-04-30 1996-05-16 Procter & Gamble Detergentes liquidos reforzados con complejo de acido borico-poliol para inhibir la enzima proteolitica.
EP0511456A1 (de) 1991-04-30 1992-11-04 The Procter & Gamble Company Flüssiges Reinigungsmittel mit einem aromatischen Boratester zur Inhibierung des proteolytischen Enzyms
DK28792D0 (da) 1992-03-04 1992-03-04 Novo Nordisk As Nyt enzym
DK72992D0 (da) 1992-06-01 1992-06-01 Novo Nordisk As Enzym
DK88892D0 (da) 1992-07-06 1992-07-06 Novo Nordisk As Forbindelse
JP3618748B2 (ja) 1993-04-27 2005-02-09 ジェネンコー インターナショナル インコーポレイテッド 洗剤に使用する新しいリパーゼ変異体
DK52393D0 (de) 1993-05-05 1993-05-05 Novo Nordisk As
JP2859520B2 (ja) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物
EP0724631A1 (de) 1993-10-13 1996-08-07 Novo Nordisk A/S H 2?o 2?-stabile peroxidasevarianten
CZ105396A3 (en) 1993-10-14 1996-09-11 Procter & Gamble Cleaning agent, agent for cleaning fabrics, agent for washing dishes, washing agent, method of cleaning fabrics, method of washing dishes and washing process
JPH07143883A (ja) 1993-11-24 1995-06-06 Showa Denko Kk リパーゼ遺伝子及び変異体リパーゼ
KR970701264A (ko) 1994-02-22 1997-03-17 안네 제케르 지질분해효소의 변이체 제조방법(a method of preparing a viriant of a lipolytic enzyme)
JPH09510617A (ja) 1994-03-29 1997-10-28 ノボ ノルディスク アクティーゼルスカブ アルカリ性バチルスアミラーゼ
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
AU2884695A (en) 1994-06-23 1996-01-19 Unilever Plc Modified pseudomonas lipases and their use
BE1008998A3 (fr) 1994-10-14 1996-10-01 Solvay Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci.
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
JPH08228778A (ja) 1995-02-27 1996-09-10 Showa Denko Kk 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法
CN101173263A (zh) 1995-03-17 2008-05-07 诺沃奇梅兹有限公司 新的内切葡聚糖酶
DE69633825T2 (de) 1995-07-14 2005-11-10 Novozymes A/S Modifiziertes enzym mit lipolytischer aktivität
DE69632538T2 (de) 1995-08-11 2005-05-19 Novozymes A/S Neuartige lipolytische enzyme
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
DE69718351T2 (de) 1996-10-08 2003-11-20 Novozymes A/S, Bagsvaerd Diaminobenzoesäure derivate als farbstoffvorläufer
AR016969A1 (es) 1997-10-23 2001-08-01 Procter & Gamble VARIANTE DE PROTEASA, ADN, VECTOR DE EXPRESIoN, MICROORGANISMO HUESPED, COMPOSICIoN DE LIMPIEZA, ALIMENTO PARA ANIMALES Y COMPOSICIoN PARA TRATAR UN TEXTIL
AU3420100A (en) 1999-03-31 2000-10-23 Novozymes A/S Lipase variant
JP4745503B2 (ja) 1999-03-31 2011-08-10 ノボザイムス アクティーゼルスカブ アルカリα−アミラーゼ活性を有するポリペプチド及びそれらをコードする核酸
EP2206786A1 (de) 1999-08-31 2010-07-14 Novozymes A/S Neue Proteasen und Varianten davon
CN1337553A (zh) 2000-08-05 2002-02-27 李海泉 地下观光游乐园
CN100591763C (zh) 2000-08-21 2010-02-24 诺维信公司 枯草杆菌酶
KR20030032605A (ko) * 2001-10-19 2003-04-26 씨제이 주식회사 비브리오 메치니코프 유도체로부터 얻어진 단백질분해효소및 이를 포함하는 세탁용 세제 조성물
DE10162728A1 (de) 2001-12-20 2003-07-10 Henkel Kgaa Neue Alkalische Protease aus Bacillus gibsonii (DSM 14393) und Wasch-und Reinigungsmittel enthaltend diese neue Alkalische Protease
KR20040008986A (ko) * 2002-07-20 2004-01-31 씨제이 주식회사 알칼리성 액체 세제 조성물
GB0314210D0 (en) 2003-06-18 2003-07-23 Unilever Plc Laundry treatment compositions
EP1678296B1 (de) 2003-10-23 2011-07-13 Novozymes A/S Protease mit verbesserter stabilität in detergentien
AU2004293826B2 (en) 2003-11-19 2009-09-17 Danisco Us Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
GB0420203D0 (en) 2004-09-11 2004-10-13 Unilever Plc Laundry treatment compositions
CN101023158B (zh) 2004-09-23 2011-04-27 荷兰联合利华有限公司 洗衣处理组合物
GB0421145D0 (en) 2004-09-23 2004-10-27 Unilever Plc Laundry treatment compositions
DE102004052007B4 (de) 2004-10-25 2007-12-06 Müller Weingarten AG Antriebssystem einer Umformpresse
CN101360813B (zh) 2006-08-10 2013-06-19 荷兰联合利华有限公司 遮蔽组合物
EP2192169B1 (de) 2007-01-19 2012-05-09 The Procter & Gamble Company Wäschepflegezusammensetzung mit Bleichmittel für Cellulosesubstrate
EP2152846B1 (de) 2007-05-18 2012-05-16 Unilever PLC Triphendioxazinfarbstoffe
DE102007038031A1 (de) 2007-08-10 2009-06-04 Henkel Ag & Co. Kgaa Mittel enthaltend Proteasen
CN101910392B (zh) 2008-01-04 2012-09-05 宝洁公司 酶和包含组合物的织物调色剂
EP2085070A1 (de) 2008-01-11 2009-08-05 Procter & Gamble International Operations SA. Reinigungs- und/oder Behandlungszusammensetzungen
JP2011513539A (ja) 2008-02-29 2011-04-28 ザ プロクター アンド ギャンブル カンパニー リパーゼを含む洗剤組成物
AR070497A1 (es) 2008-02-29 2010-04-07 Procter & Gamble Composicion detergente que comprende lipasa
MY153627A (en) 2008-05-02 2015-02-27 Unilever Plc Reduced spotting granules
MY155292A (en) 2008-05-20 2015-09-30 Unilever Plc Shading composition
WO2009148983A1 (en) 2008-06-06 2009-12-10 The Procter & Gamble Company Detergent composition comprising a variant of a family 44 xyloglucanase
MY159509A (en) 2009-03-05 2017-01-13 Unilever Plc Dye radical initiators
MY154041A (en) 2009-03-12 2015-04-30 Unilever Plc Dye-polymers formulations
WO2010148624A1 (en) 2009-06-26 2010-12-29 Unilever Plc Dye polymers
JP6129740B2 (ja) 2010-10-22 2017-05-17 ミリケン・アンド・カンパニーMilliken & Company 青味剤用ビス−アゾ着色剤
US20120101018A1 (en) 2010-10-22 2012-04-26 Gregory Scot Miracle Bis-azo colorants for use as bluing agents
WO2012054058A1 (en) 2010-10-22 2012-04-26 The Procter & Gamble Company Bis-azo colorants for use as bluing agents
MX2013005276A (es) 2010-11-12 2013-06-03 Procter & Gamble Colorantes azoicos de tiofeno y composiciones para el cuidado de ropa que contienen estos colorantes.
WO2013142486A1 (en) 2012-03-19 2013-09-26 The Procter & Gamble Company Laundry care compositions containing dyes
WO2013151970A1 (en) 2012-04-03 2013-10-10 The Procter & Gamble Company Laundry detergent composition comprising water-soluble phthalocyanine compound
DE102012016462A1 (de) 2012-08-18 2014-02-20 Clariant International Ltd. Verwendung von Polyestern in Wasch- und Reinigungsmitteln
WO2014071410A1 (en) * 2012-11-05 2014-05-08 Danisco Us Inc. Compositions and methods comprising thermolysin protease variants
EP2966160A1 (de) 2014-07-09 2016-01-13 Clariant International Ltd. Lagerstabile Zusammensetzungen mit schmutzablösenden Polymeren
WO2016207275A1 (en) * 2015-06-24 2016-12-29 Novozymes A/S Use of enzymes, detergent composition and laundry method

Also Published As

Publication number Publication date
EP3717616A1 (de) 2020-10-07
CN111479912A (zh) 2020-07-31
CN111479912B (zh) 2021-08-10
WO2019105675A1 (en) 2019-06-06
BR112020010648A2 (pt) 2021-02-02

Similar Documents

Publication Publication Date Title
EP3649222B1 (de) Bleichungszusammensetzung
EP3440170B1 (de) Waschmittelzusammensetzung
EP3717616B1 (de) Reinigungszusammensetzung mit protease
EP3433346B1 (de) Waschmittelzusammensetzung
EP3555255B1 (de) Waschmittelzusammensetzung
EP3884023B1 (de) Reinigungsmittelzusammensetzung
EP3884025B1 (de) Reinigungsmittelzusammensetzung
EP3884022B1 (de) Reinigungsmittelzusammensetzung
EP3417040B1 (de) Bleichungszusammensetzung
EP3884024B1 (de) Reinigungsmittelzusammensetzung
EP3884026B1 (de) Reinigungsmittelzusammensetzung
EP3853330B1 (de) Reinigungsmittelzusammensetzung
EP3649221B1 (de) Wäschereinigungszusammensetzung
EP3417039B1 (de) Bleichungszusammensetzung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20210219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018025083

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1438200

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211013

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1438200

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018025083

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

26N No opposition filed

Effective date: 20220714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231030

Year of fee payment: 6

Ref country code: FR

Payment date: 20231026

Year of fee payment: 6

Ref country code: DE

Payment date: 20231020

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013