EP3547450B1 - Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity - Google Patents
Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity Download PDFInfo
- Publication number
- EP3547450B1 EP3547450B1 EP19165394.8A EP19165394A EP3547450B1 EP 3547450 B1 EP3547450 B1 EP 3547450B1 EP 19165394 A EP19165394 A EP 19165394A EP 3547450 B1 EP3547450 B1 EP 3547450B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metasurface
- excitation
- polarization
- radiating element
- element according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010287 polarization Effects 0.000 claims description 114
- 230000005284 excitation Effects 0.000 claims description 95
- 239000011159 matrix material Substances 0.000 claims description 16
- 230000000737 periodic effect Effects 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 5
- 230000009977 dual effect Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 238000002310 reflectometry Methods 0.000 description 5
- 102100036464 Activated RNA polymerase II transcriptional coactivator p15 Human genes 0.000 description 3
- 101000713904 Homo sapiens Activated RNA polymerase II transcriptional coactivator p15 Proteins 0.000 description 3
- 229910004444 SUB1 Inorganic materials 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 1
- 241000397921 Turbellaria Species 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 102220047090 rs6152 Human genes 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/24—Polarising devices; Polarisation filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
- H01Q15/0026—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/24—Polarising devices; Polarisation filters
- H01Q15/242—Polarisation converters
- H01Q15/244—Polarisation converters converting a linear polarised wave into a circular polarised wave
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/104—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/20—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
- H01Q5/28—Arrangements for establishing polarisation or beam width over two or more different wavebands
Definitions
- the invention relates to a radiating element with circular polarization, in particular for a planar antenna, and intended to be used in particular in space communications, on board satellites or in user terminals.
- the invention also relates to an array antenna comprising at least one such radiating element.
- the so-called "compact" radiating elements make it possible in particular to offer a good compromise between several specifications: good surface efficiency over the entire operating band, sufficient bandwidth for adaptation and in radiation, a small size and a low mass.
- Congestion is particularly critical in the low frequency bands L (1 to 2 GHz), S (2 to 4 GHz), C (from 3.4 to 4.2 GHz in reception and 5.725 and 7.075 GHz in transmission) penalized by significant wavelengths.
- the search for compact and wideband elements is particularly active for multispot antennas, associating a reflector and a focal array made up of a large number of sources.
- Fabry Perot's cavity resonant antennas are linearly polarized. Obtaining circular polarization on such antennas must be achieved without degrading the compactness of the radiating element by adding a device making it possible to obtain radiation in circular polarization.
- Radiating elements having continuous linear radiating openings make it possible to radiate several fronts.
- plane waves over a large angular sector. They are formed by a waveguide with parallel plates terminated by a longitudinal horn, which makes the transition between the waveguide with parallel plates and free space.
- a focusing / collimator device is inserted on the radiofrequency wave propagation path, between the two parallel metal plates, making it possible to convert cylindrical wave fronts from the sources into plane wave fronts.
- These continuous radiating linear apertures operate over a very wide band (for example at 20 and 30 GHz), due to the absence of resonant propagation modes. They are also capable of radiating over a very large angular sector.
- the polarization of the radiated wave is that of the wave which propagates in the waveguide with parallel plates, namely linear.
- a first known solution consists in covering the radiating element with a polarizing radome consisting of several frequency selective surfaces (FSS), the characteristics of which are optimized so as to generate a phase difference of 90 ° between the two orthogonal polarizations, without interfere with the operation of the antenna.
- Polarizing radomes cascading quarter-wave layers exhibit good bandwidth and oblique incidence performance, however with a thickness (thickness of the order of one wavelength in a vacuum) detrimental to the compactness of the antenna.
- Fine polarizers have been also developed, but their performances in bandwidth and in oblique incidence are limited.
- a solution consisting in combining a polarizer and a Fabry Perot cavity can be found in the document “Self polarizing Fabry-Perot antennas based on polarization twisting element” (SA Notice, R. Sauleau, G. Valerio, LL Coq, and H. Legay, IEEE Trans. Antennas Propag., Vol. 61, no. 3, pp. 1032-1040, Mar. 2 ).
- the solution is illustrated by the figure 1 .
- the frequency-selective surface Fabry Perot cavity radiates similarly in two subspaces (upper and lower). It consists of two periodic partially reflecting surfaces (FSS1, FSS2) according to a linear polarization Ex, and is excited according to this polarization.
- Periodic surfaces are transparent to the Ey wave.
- a polarization reversal ground plane reflects the emitted wave in the lower plane, transforms its linear polarization (for example from Ex to Ey), and returns the wave in the upper direction.
- This ground plane PM is produced by means of COR corrugations of depth ⁇ / 4, inclined at 45 ° with respect to the grids constituting the periodic partially reflecting surfaces (FSS1, FSS2).
- a distance of ⁇ / 8 (where ⁇ is the wavelength in the radiating element) between the polarization inverted PM ground plane and the Fabry Perot cavity with periodic partially reflecting surfaces achieves a phase delay of 90 ° on the component Ey, necessary to obtain the circular polarization.
- the cavity being transparent to the component Ey, the field is radiated in the upper sub-space.
- the frequency behavior of this solution is however relatively low band. Indeed, as illustrated by figure 4 of the cited document, the rate of ellipticity of the wave at the output of the polarizer is at 1 dB over a frequency band corresponding to approximately 2.5% of the central frequency.
- This weak band behavior is linked on the one hand to the corrugations of the ground plane PM, the height ( ⁇ / 4) of which is a function of the wavelength. It is also linked to the spacing ( ⁇ / 8) between the lower partially reflecting periodic surface FSS1 and the ground plane PM, which is a function of the wavelength.
- the invention therefore aims to obtain a radiating element with circular polarization from a linear excitation, both compact in height and very wide band.
- the cells with metasurfaces of the same row are coupled by an interconnection line with a metasurface elongated along the alignment axis.
- the rows are connected to one another by means of the metasurface cells, forming with the metasurface interconnection lines a grid pattern with a rectangular mesh.
- the metasurface cells of the same row are isolated from each other.
- the metasurface cells of the same row are all spaced periodically.
- all the metasurface cells of the metasurface have the same dimensions.
- the frequency selective surface comprises an array of parallel metal wires, spaced periodically, and aligned with the excitation polarization.
- the frequency selective surface comprises a two-dimensional array of metallic dipoles arranged periodically.
- the excitation opening comprises at least one waveguide opening opening into the resonant cavity.
- the excitation opening comprises a double power supply formed by two waveguides opening symmetrically into the resonant cavity, and connected to an impedance matching network.
- the excitation opening is a horn with a radiating linear opening.
- the radiating element comprises a plurality of excitation openings, the excitation openings being formed by an array of linear radiating openings.
- the radiating element comprises at least one second cavity cascaded over the frequency selective surface.
- the metasurface cells are rectangular in shape.
- the invention also relates to an array antenna comprising at least one aforementioned radiating element.
- the figure 2 illustrates a schematic representation, in the yz plane, of the radiating element according to the invention, from the theory of rays.
- the radiating element comprises an excitation opening OE, which opens onto a metasurface S1.
- the S1 metasurface comprises an array of conductive planar elements forming metasurface cells (not shown on the figure 1 ), exhibiting a certain pattern repeated periodically in a two-dimensional fashion. Metasurface cells have dimensions less than the operating wavelength of the radiating element (so-called “sub-lambda” dimensions).
- a wave linearly polarized according to a first excitation polarization is produced at the excitation opening OE.
- the excitation opening OE is represented by a rectangular waveguide penetrating into the S1 metasurface without protruding from the S1 metasurface, or by slightly protruding from the latter.
- the linearly polarized wave propagates in the cavity, delimited by the metasurface S1 and by a frequency selective surface S2, comprising an arrangement of metallic wires or of periodically distributed dipoles.
- the metasurface S1 and the frequency selective surface S2 are spaced from each other by a distance D1.
- the frequency selective surface S2 is partially reflecting for the excitation polarization Ex (also called polarization TE, for “Transverse Electric”) and transparent for a second polarization Ey orthogonal to the excitation polarization Ex, called orthogonal polarization (also called orthogonal polarization. polarization TM, for "Transverse Magnetic”), and the direction of wave propagation.
- the frequency selective surface S2 is therefore characterized respectively by reflection and transmission coefficients r 2 x and t 2 x .
- the wave produced by the excitation opening is partly radiated (Etx), and partly reflected. This reflected part is called the incident wave Eix.
- the S1 metasurface is fully reflective. It acts in a ground plane, facing the frequency selective surface S2.
- the metasurface S1 is characterized respectively by the reflection coefficients r 1 xx and r 1 yx , which translate the components of the reflected wave according to the polarizations Ex and Ey for the incident wave Eix.
- a resonance is established between the two surfaces for the wave in Ex excitation polarization, typical of Fabry Perot resonators.
- the incident wave Eix which propagates in the cavity, undergoes a series of reflections on the frequency selective surface S2 and on the metasurface S1. At each reflection on the frequency selective surface S2, part of the incident wave Eix is radiated. At each reflection on the metasurface S1, part of the incident wave Eix undergoes a polarization rotation, also called depolarization, producing the polarized wave Er1y according to the orthogonal polarization Ey.
- the amplitude of the polarized wave Er1y according to the orthogonal polarization Ey is determined by the reflection coefficient r 1 yx .
- Another one part of the incident wave Eix retains its polarization, producing the polarized wave Er1x according to the excitation polarization Ex.
- the amplitude of the polarized wave Er1x according to the excitation polarization Ex is determined by the reflection coefficient r 1 xx .
- the synthesis of a radiation in circular polarization is obtained when the wave radiated E'tx by the selective surface in frequency S2, and coming from the reflected wave Er1x polarized according to the excitation polarization Ex, corresponds in amplitude to l wave polarized Er1y according to the orthogonal polarization Ey, with a phase shift of ⁇ 90 °.
- the amplitude of the wave radiated E'tx by the frequency selective surface S2 is determined by the transmission coefficient t 2 x .
- the frequency selective surface S2 being transparent to the orthogonal polarization Ey, the polarized wave Er1y according to the orthogonal polarization Ey is radiated without being attenuated.
- the wave polarized Er1y according to the orthogonal polarization Ey is denoted E'ty.
- a first radiation in circular polarization is therefore composed of E'tx and E'ty waves.
- the reflected wave Er1x undergoes a new reflection on the frequency selective surface S2, with a reflection coefficient r 2 x , and, according to the same principle, a second radiation in circular polarization is composed of the waves E "tx and E" ty , then a third radiation in circular polarization, composed of the waves E '"tx and E'" ty.
- a circularly polarized beam is thus obtained, which is attenuated more and more as one moves away from the excitation opening OE.
- T x t 2 x + t 2 x r 1 xx r 2 x e - jk 0 2 D 1 cos ⁇ + t 2 x r 1 xx 2 r 2 x 2 e - jk 0 4 D 1 cos ⁇ + ⁇
- T x t 2 x 1 - r 1 xx r 2 x e - jk 0 2 D 1 cos ⁇
- ⁇ r 1 xx represents the in-phase component of the reflection coefficient r 1 xx
- ⁇ r 2 x represents the in-phase component of the reflection coefficient r 2 x
- N any integer.
- N ' is any integer.
- Equation (16) does not depend on the first order of the frequency (the wave number k 0 is not found in the equation), but relates only the components of the reflection and transmission matrices of the selective surface in frequency S2 and metasurface S1.
- the band pass-through is no longer limited by the mechanism for generating the circular polarization, but by the operating mechanism of the Fabry Pérot cavity. The bandwidth widening techniques for the latter can then be used, without effects on the circular polarization.
- the cascading of a second cavity, above the frequency selective surface S2 makes it possible to widen the pass band, without this degrading the quality of the circular polarization.
- phase component of the transmission coefficient t 2 x of the frequency selective surface S2 determines the directivity of the radiating element; it is therefore predetermined and known, as a function of the desired directivity.
- equation (16) in order to produce pure circular polarization, the in-phase components of the reflection coefficients r 1 yx and r 1 xx should be appropriately selected.
- the metasurface S1 does not receive in incidence any wave in orthogonal polarization Ey, insofar as the frequency selective surface S2 is transparent to the orthogonal polarization.
- the reflection coefficients r 1 xy and r 1 yy which respectively translate the reflection coefficient in excitation polarization Ex and in orthogonal polarization Ey for an incident wave in orthogonal polarization Ey, are therefore irrelevant for the dimensioning of the metasurface S1. Only the reflection coefficients r 1 xx and r 1 yx must be taken into account for the dimensioning of the metasurface S1, and determined by relation (16).
- An Ox'y'z coordinate system is defined as being the result of the rotation of an angle ⁇ around the Oz axis of the Oxyz coordinate system (the Ox axis is defined by the excitation polarization Ex, and the Oy axis by the orthogonal polarization Ey).
- diagonal reflection coefficients e j ⁇ 1 and e j ⁇ 2 respectively represent the phase components of the waves reflected respectively in excitation polarization and in orthogonal polarization, in the frame Ox'y'z.
- the amplitude components of the waves reflected in excitation polarization and in orthogonal polarization are equal to 1, reflecting the lossless character of the S1 metasurface.
- each incident wave in linear polarization is reflected with an excitation polarization component Ex and an orthogonal polarization component Ey.
- an S1 metasurface made up of an arrangement of planar conductive elements rectangular (also called “patches” according to Anglo-Saxon terminology)
- the phase responses according to the Ex or Ey polarization are controlled in the first order by the dimensions of the conducting planar element.
- the S1 metasurface may include an array of MS metasurface cells, as shown in figure 3 .
- the dimensions of MS metasurface cells can be obtained relatively independently as a function of the in-phase components of the diagonal reflection coefficients.
- the dimensions of each cell with a metasurface MS are adjusted as a function of the in-phase components of the diagonal reflection coefficients e j ⁇ 1 and e j ⁇ 2 previously determined.
- the metasurface cells can advantageously be rectangular.
- the S1 metasurface can therefore be made up of several rows RA of cells with an MS metasurface.
- the MS metasurface cells of the same row RA are isolated from one another, and placed on a substrate SUB1. These elements are arranged between the ground plane crossed by the excitation opening, and the frequency selective surface S2. Each cell with an MS metasurface therefore forms a dipole, having a mainly capacitive behavior for the excitation polarization Ex and for the orthogonal polarization Ey. All CE centers of MS metasurface cells are aligned along an AX alignment axis. The alignment axis AX is therefore oriented by the angle ⁇ with respect to the excitation polarization Ex.
- MS metasurface cells can all have the same length (ly dimension on the figure 3 ), and there can be the same spacing between two MS metasurface cells (px dimension on the figure 3 ).
- the S1 metasurface can include LG metasurface interconnection lines.
- LG metasurface interconnection lines interconnect all MS metasurface cells of the same row RA. They advantageously allow to evacuate the electrostatic charges present in the MS metasurface cells, and thus improve the overall behavior of the radiating element.
- MS metasurface cells have remarkably stable properties in incidence, since particularly small patterns can be used, in order to obtain broadband or even dual-band characteristics.
- the cells with a metasurface MS in the same row RA are coupled at their center CE, orthogonally, to an interconnection line with a metasurface LG.
- the interconnection line with metasurface LG is oriented by the angle ⁇ with respect to the excitation polarization Ex.
- the assembly formed by the interconnection line LG and by the cells with metasurface MS constitutes therefore a grid with stubs (or with adaptation elements).
- the stub gate has a mainly inductive behavior for the Ex excitation polarization, and capacitive for the orthogonal Ey polarization.
- the frequency selective surface S2 partially reflecting, consists of an array of metallic wires FI spaced periodically, and oriented according to the excitation polarization Ex.
- the frequency selective surface S2 can consist of dipoles, of slot types or "patches” (or “plaques” in French).
- the slits can be made in a metal plate, and the patches placed on an electrically transparent substrate.
- the network of cells with a metasurface MS is placed on a substrate SUB1, itself placed on a ground plane PM.
- the ground plane PM is crossed by the excitation opening OE.
- the substrate SUB1 may for example be composed of two layers of Astroquartz TM, between which there is a layer of nidaquartz.
- the rows RA are connected to one another via the cells with a metasurface MS. Together with the LG metasurface interconnection lines, they thus form a pattern rectangular mesh netting.
- the metasurface S1 thus has an inductive behavior for the excitation polarization Ex and for the orthogonal polarization Ey.
- the figure 8 illustrates the case where the excitation opening OE is a CRN horn with a radiating linear opening.
- the radiating linear opening crossing the metasurface S1 and opening into the cavity, can constitute the radiative part of a quasi-optical beam former, characterized in particular by a large lateral opening.
- This solution therefore makes it possible to maintain a wide spectral opening, while radiating the circular polarization.
- the figure 9 illustrates the case where there is a plurality of excitation openings OE.
- the excitation openings OE are formed by an array RES of linear radiating openings, resulting for example from a divider with parallel plates.
- the use of a divider with parallel plates makes it possible in particular to better distribute the field on the excitation openings OE.
- it is advisable to strongly limit the coupling between the ports for example to -15 dB.
- the figures 10A , 10B and 10C illustrate an embodiment of the invention, in which the excitation opening OE is doubled. It comprises a double power supply formed by two waveguide openings (WG1, WG2) opening symmetrically into the resonant cavity, and connected to an impedance matching network RAD.
- the RAD impedance matching network comprises at least one IR iris, in order to widen the matching band.
- This embodiment makes it possible to cancel a possible parasitic TEM mode present in the radiating element.
- This TEM mode which generates cross-polarized lobes, is independent of the OE excitation aperture type.
- the figure 10C illustrates such an opening excitation, integrated in a radiating element according to the invention. In the figure 10C , each MS metasurface cell forms a dipole, with no interconnection line.
- the splitting of the excitation opening can be achieved in the same way when the MS metasurface cells are connected by an interconnection line, or when they form a rectangular mesh grid.
- the figures 11A and 11B illustrate the frequency behavior of the directivity and the rate of ellipticity ("axial ratio" in English terminology), for several antennas integrating the radiating elements in accordance with the invention, and comprising a double feed formed by two guide openings waves, in accordance with the embodiment described above.
- the radiating elements are distinguished by different values of the width (a) and of the length (b) of the excitation opening, and for different values of the reflectivity coefficient r 2 x .
- the values of the reflectivity coefficient r 2 x are noted “+", "++” or "+++” to indicate their relative value.
- the bandwidth at -3 dB is of the order of 10% of the center frequency.
- the bandwidth at ⁇ 3 dB is greater than 10% for the four antennas, and remains of the order of 10% at -1 dB, which is clearly superior to the performance of the radiating elements of the state of the art.
- the circular polarization generation technique operates over a wide bandwidth, and does not limit the operation of the radiating element.
- the broadband behavior can be further improved by cascading a second cavity on the frequency selective surface S2.
- a second resonant cavity is placed on the cavity which is the subject of the invention.
- the second resonant cavity has as its lower surface the frequency selective surface of the lower cavity, and as its upper surface a partially reflecting surface.
- the cross section of the upper cavity may be larger than that of the first lower cavity, as described in the document FR2959611 , or, alternatively, have a cross section substantially identical to that of the lower cavity.
- the so-called “two-cavity” embodiment makes it possible to lower the reflectivity of the frequency-selective surface of the lower cavity, which favors the broadband behavior of the radiating element, and without however having any influence. on the quality of circular polarization.
Landscapes
- Aerials With Secondary Devices (AREA)
- Feeding And Controlling Fuel (AREA)
Description
L'invention porte sur un élément rayonnant a polarisation circulaire, notamment pour une antenne plane, et destiné à être utilisé notamment dans des communications spatiales, à bord de satellites ou dans des terminaux utilisateurs. L'invention se rapporte aussi à une antenne réseau comportant au moins un tel élément rayonnant.The invention relates to a radiating element with circular polarization, in particular for a planar antenna, and intended to be used in particular in space communications, on board satellites or in user terminals. The invention also relates to an array antenna comprising at least one such radiating element.
Différents types d'éléments rayonnants ont récemment été développés, répondant aux contraintes et aux spécificités des communications spatiales.Different types of radiating elements have recently been developed, responding to the constraints and specificities of space communications.
Les éléments rayonnants dits « compacts », comme par exemple les antennes à cavités résonantes de Fabry Perot, permettent notamment d'offrir un bon compromis entre plusieurs spécifications : une bonne efficacité de surface sur toute la bande de fonctionnement, une bande passante suffisante en adaptation et en rayonnement, un faible encombrement et une faible masse. L'encombrement est particulièrement critique dans les bandes de fréquences basses L (1 à 2 GHz), S (2 à 4 GHz), C (de 3,4 à 4,2 GHz en réception et de 5,725 et 7,075 GHz en émission) pénalisées par des longueurs d'onde significatives. Aussi, la recherche d'éléments compacts et large bande est particulièrement active pour les antennes multispots, associant un réflecteur et un réseau focal constitué d'un grand nombre de sources. Les antennes à cavités résonantes de Fabry Perot, actuellement utilisées dans les communications spatiales, sont polarisées linéairement. L'obtention d'une polarisation circulaire sur de telles antennes doit être réalisée sans dégrader la compacité de l'élément rayonnant par l'adjonction d'un dispositif permettant d'obtenir un rayonnement en polarisation circulaire.The so-called "compact" radiating elements, such as for example the resonant cavity antennas from Fabry Perot, make it possible in particular to offer a good compromise between several specifications: good surface efficiency over the entire operating band, sufficient bandwidth for adaptation and in radiation, a small size and a low mass. Congestion is particularly critical in the low frequency bands L (1 to 2 GHz), S (2 to 4 GHz), C (from 3.4 to 4.2 GHz in reception and 5.725 and 7.075 GHz in transmission) penalized by significant wavelengths. Also, the search for compact and wideband elements is particularly active for multispot antennas, associating a reflector and a focal array made up of a large number of sources. Fabry Perot's cavity resonant antennas, currently used in space communications, are linearly polarized. Obtaining circular polarization on such antennas must be achieved without degrading the compactness of the radiating element by adding a device making it possible to obtain radiation in circular polarization.
Les éléments rayonnants disposant d'ouvertures linéaires rayonnantes continues, comme le sont par exemple les formateurs de faisceaux quasi-optiques, permettent quant à eux de rayonner plusieurs fronts d'ondes plans sur un large secteur angulaire. Elles sont formées d'un guide d'onde à plaques parallèles terminées par un cornet longitudinal, qui réalise la transition entre le guide d'onde à plaques parallèles et l'espace libre. Un dispositif focalisant/collimateur est inséré sur le trajet de propagation des ondes radiofréquences, entre les deux plaques métalliques parallèles, permettant de convertir des fronts d'ondes cylindriques issus des sources en des fronts d'ondes plans. Ces ouvertures linéaires rayonnantes continues fonctionnent sur une très large bande (par exemple à 20 et à 30 GHz), en raison de l'absence de modes de propagation résonants. Elles sont par ailleurs capables de rayonner sur un très vaste secteur angulaire. Toutefois, dans leur fonctionnement nominal, la polarisation de l'onde rayonnée est celle de l'onde qui se propage dans le guide d'onde à plaques parallèles, à savoir linéaire.Radiating elements having continuous linear radiating openings, such as quasi-optical beamformers, for example, make it possible to radiate several fronts. plane waves over a large angular sector. They are formed by a waveguide with parallel plates terminated by a longitudinal horn, which makes the transition between the waveguide with parallel plates and free space. A focusing / collimator device is inserted on the radiofrequency wave propagation path, between the two parallel metal plates, making it possible to convert cylindrical wave fronts from the sources into plane wave fronts. These continuous radiating linear apertures operate over a very wide band (for example at 20 and 30 GHz), due to the absence of resonant propagation modes. They are also capable of radiating over a very large angular sector. However, in their nominal operation, the polarization of the radiated wave is that of the wave which propagates in the waveguide with parallel plates, namely linear.
Pour obtenir des largeurs de faisceaux identiques selon les deux plans, il est par ailleurs connu d'élargir l'ouverture linéaire rayonnante continue en utilisant un diviseur à plaques parallèles. Ces réseaux d'ouvertures linéaires rayonnent également en polarisation linéaire, comme chaque ouverture linéaire rayonnante.In order to obtain identical beam widths in the two planes, it is moreover known to widen the continuous radiating linear aperture by using a splitter with parallel plates. These linear aperture arrays also radiate in linear polarization, like each radiating linear aperture.
Il y a donc un besoin actuel de trouver des dispositifs capables de convertir une polarisation linéaire en polarisation circulaire, compatibles avec les ouvertures rayonnantes existantes, et pouvant faire par ailleurs fonction d'élément rayonnant à polarisation circulaire.There is therefore a current need to find devices capable of converting a linear polarization into circular polarization, compatible with the existing radiating apertures, and capable moreover of acting as a radiating element with circular polarization.
Une première solution connue consiste à recouvrir l'élément rayonnant d'un radôme polarisant constitué de plusieurs surfaces sélectives en fréquence (FSS), dont les caractéristiques sont optimisées de sorte à générer une différence de phase de 90° entre les deux polarisations orthogonales, sans perturber le fonctionnement de l'antenne. Des radômes polarisants mettant en cascade des couches quart d'onde présentent des bonnes performances en bande passante et en incidence oblique, avec toutefois une épaisseur (épaisseur de l'ordre d'une longueur d'onde dans le vide) nuisant à la compacité de l'antenne. Des polariseurs fins ont été également développés, mais leurs performances en bande passante et en incidence oblique sont limitées.A first known solution consists in covering the radiating element with a polarizing radome consisting of several frequency selective surfaces (FSS), the characteristics of which are optimized so as to generate a phase difference of 90 ° between the two orthogonal polarizations, without interfere with the operation of the antenna. Polarizing radomes cascading quarter-wave layers exhibit good bandwidth and oblique incidence performance, however with a thickness (thickness of the order of one wavelength in a vacuum) detrimental to the compactness of the antenna. Fine polarizers have been also developed, but their performances in bandwidth and in oblique incidence are limited.
Une solution consistant à combiner un polariseur et une cavité de Fabry Perot, se retrouve dans le document
D'autres éléments rayonnants de l'état de la technique sont divulgués dans l'article
L'invention vise donc à obtenir un élément rayonnant à polarisation circulaire à partir d'une excitation linéaire, à la fois compact en hauteur et très large bande.The invention therefore aims to obtain a radiating element with circular polarization from a linear excitation, both compact in height and very wide band.
Un objet de l'invention est donc un élément rayonnant à polarisation circulaire, comprenant :
- au moins une ouverture d'excitation d'une onde polarisée linéairement selon une première polarisation dite d'excitation ;
- une surface sélective en fréquence, partiellement réfléchissante pour la polarisation d'excitation et transparente pour une deuxième polarisation orthogonale à la polarisation d'excitation, dite polarisation orthogonale, et à la direction de propagation de l'onde, et disposée dans un plan défini par la polarisation d'excitation et par la polarisation orthogonale ;
- l'élément rayonnant comprenant en outre une métasurface, totalement réfléchissante, faisant face à la surface sélective en fréquence, et comprenant un réseau bidimensionnel et périodique d'éléments planaires conducteurs formant cellules à métasurface,
- l'ouverture d'excitation débouchant sur la métasurface,
- la surface sélective en fréquence et la métasurface formant une cavité résonante pour la polarisation d'excitation,
- les cellules à métasurface étant toutes orientées de façon identique vis-à-vis de la polarisation d'excitation et configurées pour :
- o réfléchir une onde incidente selon la polarisation d'excitation pour former une onde réfléchie polarisée selon la polarisation d'excitation, et
- o dépolariser et réfléchir l'onde incidente pour former une onde réfléchie polarisée selon la polarisation orthogonale avec une différence de phase sensiblement égale à ± 90° par rapport l'onde réfléchie polarisée selon la polarisation d'excitation, et avec une amplitude sensiblement égale à l'amplitude d'une onde rayonnée par la surface sélective en fréquence, issue de l'onde réfléchie polarisée selon la polarisation d'excitation.
- at least one excitation opening of a linearly polarized wave according to a first so-called excitation polarization;
- a frequency selective surface, partially reflecting for the excitation polarization and transparent for a second polarization orthogonal to the excitation polarization, called orthogonal polarization, and to the direction of propagation of the wave, and arranged in a plane defined by the excitation polarization and by the orthogonal polarization;
- the radiating element further comprising a fully reflecting metasurface facing the frequency selective surface and comprising a two-dimensional and periodic array of planar conductive elements forming metasurface cells,
- the excitation opening leading to the metasurface,
- the frequency selective surface and the metasurface forming a resonant cavity for the excitation polarization,
- the metasurface cells being all oriented identically with respect to the excitation polarization and configured for:
- o reflect an incident wave according to the excitation polarization to form a reflected wave polarized according to the excitation polarization, and
- o depolarize and reflect the incident wave to form a reflected wave polarized according to the orthogonal polarization with a phase difference substantially equal to ± 90 ° with respect to the reflected wave polarized according to the excitation polarization, and with an amplitude substantially equal to the amplitude of a wave radiated by the frequency selective surface, resulting from the wave reflected polarized according to the excitation polarization.
Avantageusement, la métasurface comprend un plan de masse sur lequel sont disposés un substrat et le réseau de cellules à métasurface agencées en rangées, les centres de chaque cellule à métasurface d'une même rangée étant alignés selon un axe d'alignement, l'axe d'alignement étant orienté d'un angle de rotation (Ψ) par rapport à la polarisation d'excitation, l'angle de rotation (Ψ) étant déterminé de sorte à obtenir une matrice [S'] de type diagonale, où :
Avantageusement, les cellules à métasurfaces d'une même rangée sont couplées par une ligne d'interconnexion à métasurface allongée selon l'axe d'alignement.Advantageously, the cells with metasurfaces of the same row are coupled by an interconnection line with a metasurface elongated along the alignment axis.
Avantageusement, les rangées sont connectées entre elles par l'intermédiaire des cellules à métasurface, formant avec les lignes d'interconnexion à métasurface un motif de grillage à maille rectangulaire.Advantageously, the rows are connected to one another by means of the metasurface cells, forming with the metasurface interconnection lines a grid pattern with a rectangular mesh.
En variante, les cellules à métasurface d'une même rangée sont isolées les unes des autres.As a variant, the metasurface cells of the same row are isolated from each other.
Avantageusement, les cellules à métasurface d'une même rangée sont toutes espacées périodiquement.Advantageously, the metasurface cells of the same row are all spaced periodically.
Avantageusement, toutes les cellules à métasurface de la métasurface ont les mêmes dimensions.Advantageously, all the metasurface cells of the metasurface have the same dimensions.
Avantageusement, la surface sélective en fréquence comprend un réseau de fils métalliques parallèles, espacés périodiquement, et alignés avec la polarisation d'excitation.Advantageously, the frequency selective surface comprises an array of parallel metal wires, spaced periodically, and aligned with the excitation polarization.
En variante, la surface sélective en fréquence comprend un réseau bidimensionnel de dipôles métalliques agencés de façon périodique.Alternatively, the frequency selective surface comprises a two-dimensional array of metallic dipoles arranged periodically.
Avantageusement, l'ouverture d'excitation comprend au moins une ouverture de guide d'ondes débouchant dans la cavité résonante.Advantageously, the excitation opening comprises at least one waveguide opening opening into the resonant cavity.
Avantageusement, l'ouverture d'excitation comprend une alimentation double formée par deux guides d'ondes débouchant de manière symétrique dans la cavité résonante, et connectés à un réseau d'adaptation d'impédance.Advantageously, the excitation opening comprises a double power supply formed by two waveguides opening symmetrically into the resonant cavity, and connected to an impedance matching network.
Avantageusement, l'ouverture d'excitation est un cornet d'une ouverture linéaire rayonnante.Advantageously, the excitation opening is a horn with a radiating linear opening.
Avantageusement, l'élément rayonnant comprend une pluralité d'ouvertures d'excitation, les ouvertures d'excitation étant formées par un réseau d'ouvertures rayonnantes linéaires.Advantageously, the radiating element comprises a plurality of excitation openings, the excitation openings being formed by an array of linear radiating openings.
Avantageusement, l'élément rayonnant comprend au moins une deuxième cavité mise en cascade sur la surface sélective en fréquence.Advantageously, the radiating element comprises at least one second cavity cascaded over the frequency selective surface.
Avantageusement, les cellules à métasurface sont de forme rectangulaire.Advantageously, the metasurface cells are rectangular in shape.
L'invention se rapporte également à une antenne réseau comprenant au moins un élément rayonnant précité.The invention also relates to an array antenna comprising at least one aforementioned radiating element.
D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d'exemple et qui représentent, respectivement :
-
figure 1 , un élément rayonnant à polarisation circulaire de l'état de l'art ; -
figure 2 , une représentation schématique, dans le plan yz, de l'élément rayonnant selon l'invention, à partir de la théorie des rayons ; -
figure 3 , une vue d'ensemble et une vue détaillée, dans le plan xy, de plusieurs rangées de cellules à métasurface constitutives de la métasurface et isolées l'une de l'autre; -
figure 4 , une vue en perspective des cellules à métasurface isolées l'une de l'autre, illustrant plus particulièrement l'orientation entre l'axe d'alignement des cellules à métasurface par rapport à la polarisation d'excitation ; -
figure 5 , une vue d'ensemble et une vue détaillée, dans le plan xy, de plusieurs rangées de cellules à métasurface constitutives de la métasurface et reliées par une ligne d'interconnexion; -
figure 6 , une vue en perspective des cellules à métasurface couplées les unes aux autres par une ligne d'interconnexion ; -
figure 7 , une vue en perspective des cellules à métasurface formant un grillage à maille rectangulaire ; -
figure 8 , une application de l'élément rayonnant selon l'invention, où l'ouverture d'excitation est un cornet d'ouverture linéaire rayonnante ; -
figure 9 , une application de l'élément rayonnant selon l'invention, où les d'ouvertures d'excitation sont des ouvertures linéaires rayonnante mises en réseau ; -
figures 10A ,10B et 10C , un mode de réalisation dans lequel l'ouverture d'excitation comprend une alimentation double ; -
figures 11A et11B , des courbes illustrant la directivité et le taux d'ellipticité en fonction de la fréquence, pour plusieurs configurations d'éléments rayonnants.
-
figure 1 , a radiating element with circular polarization of the state of the art; -
figure 2 , a schematic representation, in the yz plane, of the radiating element according to the invention, from the theory of rays; -
figure 3 , an overview and a detailed view, in the xy plane, of several rows of metasurface cells constituting the metasurface and isolated from each other; -
figure 4 , a perspective view of the metasurface cells isolated from one another, more particularly illustrating the orientation between the alignment axis of the metasurface cells with respect to the excitation polarization; -
figure 5 , an overview and a detailed view, in the xy plane, of several rows of metasurface cells constituting the metasurface and connected by an interconnection line; -
figure 6 , a perspective view of the metasurface cells coupled to each other by an interconnect line; -
figure 7 , a perspective view of the metasurface cells forming a rectangular mesh screen; -
figure 8 , an application of the radiating element according to the invention, where the excitation opening is a radiating linear aperture horn; -
figure 9 , an application of the radiating element according to the invention, where the excitation openings are linear radiating openings networked; -
figures 10A ,10B and 10C , an embodiment in which the excitation opening comprises a dual feed; -
figures 11A and11B , curves illustrating the directivity and the rate of ellipticity as a function of the frequency, for several configurations of radiating elements.
La
Une onde polarisée linéairement selon une première polarisation d'excitation est produite au niveau de l'ouverture d'excitation OE. L'ouverture d'excitation OE est représentée par un guide d'ondes rectangulaire pénétrant dans la métasurface S1 sans dépasser de la métasurface S1, ou en dépassant légèrement de celle-ci. L'onde polarisée linéairement se propage dans la cavité, délimitée par la métasurface S1 et par une surface sélective en fréquence S2, comprenant un agencement de fils métalliques ou de dipôles répartis périodiquement. La métasurface S1 et la surface sélective en fréquence S2 sont espacées l'une de l'autre d'une distance D1. La surface sélective en fréquence S2 est partiellement réfléchissante pour la polarisation d'excitation Ex (également appelée polarisation TE, pour « Transverse Electric ») et transparente pour une deuxième polarisation Ey orthogonale à la polarisation d'excitation Ex, dite polarisation orthogonale (également appelée polarisation TM, pour « Transverse Magnetic »), et à la direction de propagation de l'onde. La surface sélective en fréquence S2 est donc caractérisée respectivement par des coefficients de réflexion et de transmission r 2x et t 2 x. L'onde produite par l'ouverture d'excitation est rayonnée en partie (Etx), et en partie réfléchie. Cette partie réfléchie est appelée onde incidente Eix.A wave linearly polarized according to a first excitation polarization is produced at the excitation opening OE. The excitation opening OE is represented by a rectangular waveguide penetrating into the S1 metasurface without protruding from the S1 metasurface, or by slightly protruding from the latter. The linearly polarized wave propagates in the cavity, delimited by the metasurface S1 and by a frequency selective surface S2, comprising an arrangement of metallic wires or of periodically distributed dipoles. The metasurface S1 and the frequency selective surface S2 are spaced from each other by a distance D1. The frequency selective surface S2 is partially reflecting for the excitation polarization Ex (also called polarization TE, for "Transverse Electric") and transparent for a second polarization Ey orthogonal to the excitation polarization Ex, called orthogonal polarization (also called orthogonal polarization. polarization TM, for "Transverse Magnetic"), and the direction of wave propagation. The frequency selective surface S2 is therefore characterized respectively by reflection and transmission coefficients r 2 x and t 2 x . The wave produced by the excitation opening is partly radiated (Etx), and partly reflected. This reflected part is called the incident wave Eix.
La métasurface S1 est totalement réfléchissante. Elle agit en plan de masse, faisant face à la surface sélective en fréquence S2. La métasurface S1 est caractérisée respectivement par les coefficients de réflexion r 1xx et r 1yx , qui traduisent les composantes de l'onde réfléchie selon les polarisations Ex et Ey pour l'onde incidente Eix.The S1 metasurface is fully reflective. It acts in a ground plane, facing the frequency selective surface S2. The metasurface S1 is characterized respectively by the reflection coefficients r 1 xx and r 1 yx , which translate the components of the reflected wave according to the polarizations Ex and Ey for the incident wave Eix.
Une résonance s'établit entre les deux surfaces pour l'onde en polarisation d'excitation Ex, typique des résonateurs de Fabry Perot. L'onde incidente Eix, qui se propage dans la cavité, subit une série de réflexions sur la surface sélective en fréquence S2 et sur la métasurface S1. A chaque réflexion sur la surface sélective en fréquence S2, une partie de l'onde incidente Eix est rayonnée. A chaque réflexion sur la métasurface S1, une partie de l'onde incidente Eix subit une rotation de polarisation, également appelée dépolarisation, produisant l'onde polarisée Er1y selon la polarisation orthogonale Ey. L'amplitude de l'onde polarisée Er1y selon la polarisation orthogonale Ey est déterminée par le coefficient de réflexion r 1 yx. Une autre partie de l'onde incidente Eix conserve sa polarisation, produisant l'onde polarisée Er1x selon la polarisation d'excitation Ex. L'amplitude de l'onde polarisée Er1x selon la polarisation d'excitation Ex est déterminée par le coefficient de réflexion r 1 xx. La synthèse d'un rayonnement en polarisation circulaire s'obtient lorsque l'onde rayonnée E'tx par la surface sélective en fréquence S2, et issue de l'onde réfléchie Er1x polarisée selon la polarisation d'excitation Ex, correspond en amplitude à l'onde polarisée Er1y selon la polarisation orthogonale Ey, avec un déphasage de ±90°. L'amplitude de l'onde rayonnée E'tx par la surface sélective en fréquence S2 est déterminée par le coefficient de transmission t 2 x. La surface sélective en fréquence S2 étant transparente à la polarisation orthogonale Ey, l'onde polarisée Er1y selon la polarisation orthogonale Ey est rayonnée sans être atténuée. L'onde polarisée Er1y selon la polarisation orthogonale Ey est notée E'ty. Un premier rayonnement en polarisation circulaire est donc composé des ondes E'tx et E'ty.A resonance is established between the two surfaces for the wave in Ex excitation polarization, typical of Fabry Perot resonators. The incident wave Eix, which propagates in the cavity, undergoes a series of reflections on the frequency selective surface S2 and on the metasurface S1. At each reflection on the frequency selective surface S2, part of the incident wave Eix is radiated. At each reflection on the metasurface S1, part of the incident wave Eix undergoes a polarization rotation, also called depolarization, producing the polarized wave Er1y according to the orthogonal polarization Ey. The amplitude of the polarized wave Er1y according to the orthogonal polarization Ey is determined by the reflection coefficient r 1 yx . Another one part of the incident wave Eix retains its polarization, producing the polarized wave Er1x according to the excitation polarization Ex. The amplitude of the polarized wave Er1x according to the excitation polarization Ex is determined by the reflection coefficient r 1 xx . The synthesis of a radiation in circular polarization is obtained when the wave radiated E'tx by the selective surface in frequency S2, and coming from the reflected wave Er1x polarized according to the excitation polarization Ex, corresponds in amplitude to l wave polarized Er1y according to the orthogonal polarization Ey, with a phase shift of ± 90 °. The amplitude of the wave radiated E'tx by the frequency selective surface S2 is determined by the transmission coefficient t 2 x . The frequency selective surface S2 being transparent to the orthogonal polarization Ey, the polarized wave Er1y according to the orthogonal polarization Ey is radiated without being attenuated. The wave polarized Er1y according to the orthogonal polarization Ey is denoted E'ty. A first radiation in circular polarization is therefore composed of E'tx and E'ty waves.
L'onde réfléchie Er1x subit une nouvelle réflexion sur la surface sélective en fréquence S2, avec un coefficient de réflexion r 2x , et, selon le même principe, un deuxième rayonnement en polarisation circulaire est composé des ondes E"tx et E"ty, puis un troisième rayonnement en polarisation circulaire, composé des ondes E'"tx et E'"ty.The reflected wave Er1x undergoes a new reflection on the frequency selective surface S2, with a reflection coefficient r 2 x , and, according to the same principle, a second radiation in circular polarization is composed of the waves E "tx and E" ty , then a third radiation in circular polarization, composed of the waves E '"tx and E'" ty.
On obtient ainsi un faisceau en polarisation circulaire, de plus en plus atténué à mesure que l'on s'éloigne de l'ouverture d'excitation OE.A circularly polarized beam is thus obtained, which is attenuated more and more as one moves away from the excitation opening OE.
Un pré-dimensionnement de cet élément rayonnant peut être réalisé à partir de la théorie des rayons, traditionnellement utilisé pour cette catégorie d'élément rayonnant. On suppose que :
- la taille de cavité est infinie dans le plan xy ;
- la surface sélective en fréquence S2 est caractérisée respectivement par les coefficients de réflexion et de transmission r 2x et t 2 x. Elle est complètement transparente à l'onde polarisée Ey ;
- la distance entre la surface sélective en fréquence S2 et la métasurface S1 est égale à D1 ;
- la métasurface S1 est caractérisée respectivement par les coefficients de réflexion r 1xx et r 1yx traduisant les composantes de l'onde réfléchie selon les polarisations Ex et Ey pour une onde incidente Eix.
- the cavity size is infinite in the xy plane;
- the frequency selective surface S2 is characterized respectively by the reflection and transmission coefficients r 2 x and t 2 x . It is completely transparent to the Ey polarized wave;
- the distance between the frequency selective surface S2 and the metasurface S1 is equal to D1;
- the metasurface S1 is characterized respectively by the reflection coefficients r 1 xx and r 1 yx reflecting the components of the reflected wave according to the polarizations Ex and Ey for an incident wave Eix.
De ce qui précède, les fonctions de transfert Tx et Ty pour les ondes transmises polarisées Etrans (x) et Etrans (y) peuvent être écrites comme étant la somme de tous les champs transmis en champ lointain :
De (1) la fonction de transfert Tx peut être déterminée :
Où k 0 est le nombre d'onde dans l'espace libre, à savoir 2π/λ0, et θ l'angle d'incidence de l'onde d'excitation.
De (2), la fonction de transfert Ty peut être déterminée :
La condition de résonance est réalisée lorsque :
Où ∠r 1xx représente la composante en phase du coefficient de réflexion r 1xx , ∠r 2x représente la composante en phase du coefficient de réflexion r 2x , et N un entier quelconque.Where ∠ r 1 xx represents the in-phase component of the reflection coefficient r 1 xx , ∠r 2 x represents the in-phase component of the reflection coefficient r 2 x , and N any integer.
En utilisant les fonctions de transfert calculées en (5) et (8) pour les deux polarisations, il est possible de calculer le taux d'ellipticité (AR Axial Ratio) pour l'antenne entière, en utilisant la relation suivante :
Partant des relations (12) et (13), et en utilisant les fonctions de transfert calculées en (5) et (8), il est donc possible d'écrire la condition pour produire une polarisation circulaire pure avec les relations suivantes :
En combinant l'équation (9), décrivant la condition de résonance, et l'équation (15), décrivant la condition de polarisation circulaire, la relation suivante peut être obtenue :
Où N' est un entier quelconque.Where N 'is any integer.
L'équation (16) ne dépend pas au premier ordre de la fréquence (le nombre d'onde k0 ne se trouve pas dans l'équation), mais relie uniquement les composantes des matrices de réflexion et de transmission de la surface sélective en fréquence S2 et de la métasurface S1. La bande passante n'est plus limitée par le mécanisme de génération de la polarisation circulaire, mais par le mécanisme de fonctionnement de la cavité de Fabry Pérot. Les techniques d'élargissement de bande passante pour cette dernière peuvent alors être utilisées, sans effets sur la polarisation circulaire. En particulier, la mise en cascade d'une deuxième cavité, au-dessus de la surface sélective en fréquence S2, permet d'élargir la bande passante, sans que cela ne dégrade la qualité de la polarisation circulaire.Equation (16) does not depend on the first order of the frequency (the wave number k 0 is not found in the equation), but relates only the components of the reflection and transmission matrices of the selective surface in frequency S2 and metasurface S1. The band pass-through is no longer limited by the mechanism for generating the circular polarization, but by the operating mechanism of the Fabry Pérot cavity. The bandwidth widening techniques for the latter can then be used, without effects on the circular polarization. In particular, the cascading of a second cavity, above the frequency selective surface S2, makes it possible to widen the pass band, without this degrading the quality of the circular polarization.
La composante en phase du coefficient de transmission t 2x de la surface sélective en fréquence S2 détermine la directivité de l'élément rayonnant ; elle est donc prédéterminée et connue, en fonction de la directivité souhaitée. Ainsi, d'après l'équation (16), pour produire une polarisation circulaire pure, il convient de sélectionner de façon appropriée les composantes en phase des coefficients de réflexion r 1yx et r 1 xx. The phase component of the transmission coefficient t 2 x of the frequency selective surface S2 determines the directivity of the radiating element; it is therefore predetermined and known, as a function of the desired directivity. Thus, according to equation (16), in order to produce pure circular polarization, the in-phase components of the reflection coefficients r 1 yx and r 1 xx should be appropriately selected.
La matrice de répartition [S] (ou « scattering matrix » en terminologie anglo-saxonne) de la métasurface S1 peut s'écrire de façon classique sous la forme :
Or, la métasurface S1 ne reçoit en incidence aucune onde en polarisation orthogonale Ey, dans la mesure où la surface sélective en fréquence S2 est transparente à la polarisation orthogonale. Les coefficients de réflexion r 1xy et r 1yy , qui traduisent respectivement le coefficient de réflexion en polarisation d'excitation Ex et en polarisation orthogonale Ey pour une onde incidente en polarisation orthogonale Ey, sont donc indifférents pour le dimensionnement de la métasurface S1. Seuls les coefficients de réflexion r 1xx et r 1yx doivent être pris en considération pour le dimensionnement de la métasurface S1, et déterminés par la relation (16).However, the metasurface S1 does not receive in incidence any wave in orthogonal polarization Ey, insofar as the frequency selective surface S2 is transparent to the orthogonal polarization. The reflection coefficients r 1 xy and r 1 yy , which respectively translate the reflection coefficient in excitation polarization Ex and in orthogonal polarization Ey for an incident wave in orthogonal polarization Ey, are therefore irrelevant for the dimensioning of the metasurface S1. Only the reflection coefficients r 1 xx and r 1 yx must be taken into account for the dimensioning of the metasurface S1, and determined by relation (16).
Un repère Ox'y'z est défini comme étant le résultat de la rotation d'un angle Ψ autour de l'axe Oz du repère Oxyz (l'axe Ox est défini par la polarisation d'excitation Ex, et l'axe Oy par la polarisation orthogonale Ey).An Ox'y'z coordinate system is defined as being the result of the rotation of an angle Ψ around the Oz axis of the Oxyz coordinate system (the Ox axis is defined by the excitation polarization Ex, and the Oy axis by the orthogonal polarization Ey).
On cherche donc à obtenir, à partir de la matrice de répartition [S] dans le repère Oxyz, une matrice de répartition [S'] de type diagonale dans le repère Ox'y'z, pouvant s'écrire sous la forme :
Où les coefficients de réflexion diagonaux e jϕ
Sous condition d'incidence normale (θ=0°), il existe ainsi une relation de congruence entre la matrice de répartition [S] dans le plan Oxy, et la matrice de répartition [S'] dans le plan Ox'y', qui peut donc s'écrire sous la forme :
Où [R] est une matrice de rotation d'angle Ψ :
Il convient donc d'identifier l'angle Ψ qui permet de transformer la matrice de répartition requise [S] en matrice diagonale. Pour ce calcul, qui n'est pas détaillé ici, seuls les coefficients de réflexion r 1xx et r 1yx sont spécifiés pour le fonctionnement de l'antenne, les coefficients de réflexion r 1xy et r 1yy n'étant que des variables d'ajustement. Ainsi, une fois que l'angle Ψ a été identifié pour obtenir une matrice diagonale, les coefficients de réflexion diagonaux e jϕ
En raison du désalignement de la métasurface S1 par rapport à la polarisation d'excitation Ex, chaque onde incidente en polarisation linéaire est réfléchie avec une composante en polarisation d'excitation Ex et une composante en polarisation orthogonale Ey. Dans le cas d'une métasurface S1 constituée d'un agencement d'éléments planaires conducteurs rectangulaires (également appelés « patches » selon la terminologie anglo-saxonne), les réponses en phase selon la polarisation Ex ou Ey sont contrôlées au premier ordre par les dimensions de l'élément planaire conducteur.Due to the misalignment of the metasurface S1 with respect to the excitation polarization Ex, each incident wave in linear polarization is reflected with an excitation polarization component Ex and an orthogonal polarization component Ey. In the case of an S1 metasurface made up of an arrangement of planar conductive elements rectangular (also called “patches” according to Anglo-Saxon terminology), the phase responses according to the Ex or Ey polarization are controlled in the first order by the dimensions of the conducting planar element.
La métasurface S1 peut comprendre un réseau de cellules à métasurface MS, telles qu'illustrées en
Les cellules à métasurface peuvent être avantageusement rectangulaires. La métasurface S1 peut donc être constituée de plusieurs rangées RA de cellules à métasurface MS.The metasurface cells can advantageously be rectangular. The S1 metasurface can therefore be made up of several rows RA of cells with an MS metasurface.
Comme l'illustre la
Les cellules à métasurface MS peuvent toutes avoir la même longueur (dimension ly sur la
Selon une variante, illustrée par la
Comme l'illustre la
La surface sélective en fréquence S2, partiellement réfléchissante, est constituée d'un réseau de fils métalliques FI espacés de façon périodique, et orientés selon la polarisation d'excitation Ex. En variante, la surface sélective en fréquence S2 peut être constituée de dipôles, de types fentes ou « patches » (ou « plaques » en français). Les fentes peuvent être réalisées dans une plaque métallique, et les patches disposés sur un substrat électriquement transparent.The frequency selective surface S2, partially reflecting, consists of an array of metallic wires FI spaced periodically, and oriented according to the excitation polarization Ex. As a variant, the frequency selective surface S2 can consist of dipoles, of slot types or "patches" (or "plaques" in French). The slits can be made in a metal plate, and the patches placed on an electrically transparent substrate.
Le réseau de cellules à métasurface MS est disposé sur un substrat SUB1, lui-même placé sur un plan de masse PM. Le plan de masse PM est traversé par l'ouverture d'excitation OE. Le substrat SUB1 peut être par exemple composé de deux couches d'Astroquartz™, entre lesquelles se trouve une couche de nidaquartz.The network of cells with a metasurface MS is placed on a substrate SUB1, itself placed on a ground plane PM. The ground plane PM is crossed by the excitation opening OE. The substrate SUB1 may for example be composed of two layers of Astroquartz ™, between which there is a layer of nidaquartz.
Selon une variante, illustrée par la
La
La
Les
Les
La
Le comportement large bande peut être encore amélioré en mettant en cascade une deuxième cavité sur la surface sélective en fréquence S2. Pour réaliser cette mise en cascade, au moins une deuxième cavité résonante est placée sur la cavité objet de l'invention. La deuxième cavité résonante a comme surface inférieure la surface sélective en fréquence de la cavité inférieure, et comme surface supérieure une surface partiellement réfléchissant. La section transverse de la cavité supérieure peut être plus grande que celle de la première cavité inférieure, comme décrit dans le document
Claims (16)
- A circularly polarized radiating element comprising:- at least one excitation aperture (OE) for a wave that is linearly polarized according to a first so-called excitation polarization (Ex);- a frequency selective surface (S2) that partially reflects the excitation polarization (Ex) and that is transparent to a second polarization (Ey), referred to as the orthogonal polarization, that is orthogonal to the excitation polarization (Ex) and to the direction of propagation of the wave, and that is placed in a plane defined by the excitation polarization (Ex) and by the orthogonal polarization (Ey);and further comprising a completely reflective metasurface (S1) facing the frequency selective surface (S2), and comprising a two-dimensional and periodic array of conductive planar elements forming metasurface cells (MS), the excitation aperture (OE) leading onto the metasurface (S1),the frequency selective surface (S2) and the metasurface (S1) forming a resonant cavity for the excitation polarization (Ex),the metasurface cells (MS) all being oriented identically with respect to the excitation polarization (Ex) and configured to:o reflect an incident wave (Eix) according to the excitation polarization (Ex) to form a reflected wave (Er1x) polarized according to the excitation polarization (Ex), ando depolarize and reflect the incident wave (Eix) to form a reflected wave (Erly) polarized according to the orthogonal polarization (Ey), having a phase difference substantially equal to ± 90° with respect to the reflected wave (Er1x) polarized according to the excitation polarization (Ex), and having an amplitude substantially equal to the amplitude of a wave (E'tx) radiated by the frequency selective surface (S2), generated from the reflected wave (Er1x) polarized according to the excitation polarization (Ex).
- The radiating element according to claim 1, the metasurface (S1) comprising a ground plane (PM) on which are placed a substrate (SUB1) and the array of metasurface cells (MS), which cells are arranged in rows (RA), the centres (CE) of each metasurface cell (MS) of a given row (RA) being aligned along an alignment axis (AX), the alignment axis (AX) being oriented by a rotation angle (Ψ) with respect to the excitation polarization (Ex), the rotation angle (Ψ) being determined so as to obtain a diagonal type matrix [S'], where:
- The radiating element according to claim 2, the metasurface cells (MS) of a given row (RA) being coupled by a metasurface interconnect line (LG) that is elongated along the alignment axis (AX).
- The radiating element according to claim 3, the rows (RA) being connected to one another by way of metasurface cells (MS), forming with the metasurface interconnect lines (LG) a rectangular-meshed grid pattern.
- The radiating element according to claim 2, the metasurface cells (MS) of a given row (RA) being isolated from one another.
- The radiating element according to one of claims 2 to 5, the metasurface cells (MS) of a given row (RA) all being periodically spaced.
- The radiating element according to one of claims 2 to 6, all the metasurface cells (MS) of the metasurface (S1) having the same dimensions.
- The radiating element according to one of the preceding claims, the frequency selective surface (S2) comprising an array of parallel metal wires (FI) that are periodically spaced and aligned with the excitation polarization (Ex).
- The radiating element according to one of claims 1 to 7, the frequency selective surface (S2) comprising a two-dimensional array of metal dipoles that are arranged periodically.
- The radiating element according to one of the preceding claims, the excitation aperture (OE) comprising at least one waveguide aperture leading into the resonant cavity.
- The radiating element according to claim 10, the excitation aperture (OE) comprising a dual feed formed by two waveguides (WG1, WG2) that lead symmetrically into the resonant cavity, and that are connected to an impedance matching network (RAD).
- The radiating element according to one of claims 1 to 9, the excitation aperture (OE) being a horn (CRN) of a linear radiating aperture.
- The radiating element according to one of claims 1 to 9, comprising a plurality of excitation apertures, the excitation apertures being formed by an array (RES) of linear radiating apertures.
- The radiating element according to one of the preceding claims, comprising at least a second cavity cascaded on the frequency selective surface (S2).
- The radiating element according to one of the preceding claims, the metasurface cells (MS) being of rectangular shape.
- An array antenna comprising at least one radiating element according to one of the preceding claims.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1800260A FR3079678B1 (en) | 2018-03-29 | 2018-03-29 | RADIANT ELEMENT WITH CIRCULAR POLARIZATION IMPLEMENTING A RESONANCE IN A CAVITY OF FABRY PEROT |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3547450A1 EP3547450A1 (en) | 2019-10-02 |
EP3547450B1 true EP3547450B1 (en) | 2021-10-27 |
Family
ID=62873390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19165394.8A Active EP3547450B1 (en) | 2018-03-29 | 2019-03-27 | Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity |
Country Status (6)
Country | Link |
---|---|
US (1) | US11217896B2 (en) |
EP (1) | EP3547450B1 (en) |
CA (1) | CA3038392A1 (en) |
ES (1) | ES2902431T3 (en) |
FR (1) | FR3079678B1 (en) |
WO (1) | WO2020109676A2 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102302466B1 (en) * | 2014-11-11 | 2021-09-16 | 주식회사 케이엠더블유 | Waveguide slotted array antenna |
US11460620B1 (en) * | 2018-07-05 | 2022-10-04 | Triad National Security, Llc | Reflective metasurfaces for broadband terahertz linear-to-circular polarization conversion and circular dichroism spectroscopy |
CN112688052B (en) * | 2019-10-18 | 2022-04-26 | 华为技术有限公司 | Common-aperture antenna and communication equipment |
CN110797649B (en) * | 2019-11-11 | 2021-08-24 | 中国电子科技集团公司第十四研究所 | Broadband dual-polarization microstrip antenna sub-array with filtering and scaling functions |
CN110808461B (en) * | 2019-11-22 | 2021-11-05 | 东南大学 | Low-profile holographic imaging antenna based on Fabry-Perot resonant cavity type structure |
CN111129782B (en) * | 2019-12-31 | 2021-04-02 | 哈尔滨工业大学 | Double circular polarization three-channel retro-reflector based on super surface |
CN111737777B (en) * | 2020-06-04 | 2024-03-01 | 陕西亿杰宛鸣科技有限公司 | Design method based on non-uniform transmission broadband PB super surface |
CN111900538A (en) * | 2020-08-17 | 2020-11-06 | 上海交通大学 | Ka-band satellite communication antenna housing |
CN112117545B (en) * | 2020-09-02 | 2021-08-06 | 南京航空航天大学 | Polarization reconfigurable multifunctional frequency selective wave absorber based on water |
CN112525095A (en) * | 2020-11-25 | 2021-03-19 | 重庆大学 | Method for realizing super-surface biaxial strain sensing by utilizing polarization-phase-deformation relation |
EP4016735A1 (en) * | 2020-12-17 | 2022-06-22 | INTEL Corporation | A multiband patch antenna |
CN112886272B (en) * | 2021-01-14 | 2022-03-04 | 西安电子科技大学 | Dual-frequency dual-polarization Fabry-Perot resonant cavity antenna |
US11322831B1 (en) * | 2021-06-30 | 2022-05-03 | King Abdulaziz University | Radio cross-section reduction of conformal antennas mounted on vehicles |
CN114430117B (en) * | 2022-01-29 | 2023-08-01 | 中国人民解放军空军工程大学 | Low-radar-scattering cross-section resonant cavity antenna and preparation method thereof |
CN114843761B (en) * | 2022-04-13 | 2023-03-24 | 南昌大学 | Airborne microwave radiometer antenna based on circular polarization |
CN114552199B (en) * | 2022-04-25 | 2022-08-16 | 南京华成微波技术有限公司 | Fabry-Perot cavity antenna with RCS reduction |
CN114824814A (en) * | 2022-04-28 | 2022-07-29 | 东南大学 | Spatial wave polarization regulation and control method and device based on radiation super-surface |
CN114709626B (en) * | 2022-06-07 | 2022-11-08 | 电子科技大学 | Fabry-Perot resonant cavity vortex electromagnetic wave antenna based on super surface |
CN115064877B (en) * | 2022-06-10 | 2024-08-20 | 西安电子科技大学 | Decoupling super-surface applied to dual-polarized compact base station antenna array |
CN114824834B (en) * | 2022-06-29 | 2022-10-14 | 电子科技大学 | Fully-integrated large-frequency-ratio double-frequency double-fed folded reflective array antenna |
US11575429B1 (en) | 2022-07-08 | 2023-02-07 | Greenerwave | Multi-beam and multi-polarization electromagnetic wavefront shaping |
CN115810892B (en) * | 2022-11-28 | 2023-08-25 | 北京星英联微波科技有限责任公司 | Millimeter wave all-metal high-gain folding reflective array antenna |
CN117791149B (en) * | 2024-01-18 | 2024-11-08 | 中国人民解放军战略支援部队航天工程大学 | Multi-polarization reflecting unit and array antenna adopting space phase delay technology |
CN118281576B (en) * | 2024-05-31 | 2024-07-30 | 天府兴隆湖实验室 | Super-surface array structure and signal relay reflection device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3001193A (en) * | 1956-03-16 | 1961-09-19 | Pierre G Marie | Circularly polarized antenna system |
EP2266166B1 (en) * | 2008-03-18 | 2017-11-15 | Université Paris Sud (Paris 11) | Steerable microwave antenna |
FR2959611B1 (en) * | 2010-04-30 | 2012-06-08 | Thales Sa | COMPRISING RADIANT ELEMENT WITH RESONANT CAVITIES. |
US9385436B2 (en) * | 2013-07-18 | 2016-07-05 | Thinkom Solutions, Inc. | Dual-band dichroic polarizer and system including same |
-
2018
- 2018-03-29 FR FR1800260A patent/FR3079678B1/en not_active Expired - Fee Related
-
2019
- 2019-03-27 ES ES19165394T patent/ES2902431T3/en active Active
- 2019-03-27 EP EP19165394.8A patent/EP3547450B1/en active Active
- 2019-03-27 US US16/367,085 patent/US11217896B2/en active Active
- 2019-03-29 CA CA3038392A patent/CA3038392A1/en active Pending
- 2019-09-13 WO PCT/FR2019/000145 patent/WO2020109676A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2020109676A2 (en) | 2020-06-04 |
FR3079678B1 (en) | 2020-04-17 |
US11217896B2 (en) | 2022-01-04 |
EP3547450A1 (en) | 2019-10-02 |
FR3079678A1 (en) | 2019-10-04 |
CA3038392A1 (en) | 2019-09-29 |
ES2902431T3 (en) | 2022-03-28 |
US20190305436A1 (en) | 2019-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3547450B1 (en) | Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity | |
EP2564466B1 (en) | Compact radiating element having resonant cavities | |
CA2793126C (en) | Reflector array antenna with crossed polarization compensation and method for producing such an antenna | |
EP0899814B1 (en) | Radiating structure | |
EP2869400B1 (en) | Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor | |
EP2710676B1 (en) | Radiating element for an active array antenna consisting of elementary tiles | |
EP1387437A1 (en) | Array antenna for reflector systems | |
EP3179551B1 (en) | Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies | |
EP0315141A1 (en) | Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide | |
EP1416586A1 (en) | Antenna with an assembly of filtering material | |
EP3843202A1 (en) | Horn for ka dual-band satellite antenna with circular polarisation | |
CA2460820C (en) | Broadband or multiband antenna | |
EP0430745A1 (en) | Circular polarized antenna, particularly for array antenna | |
EP0048190B1 (en) | Non-dispersive antenna array and its application to electronic scanning | |
FR2518828A1 (en) | Frequency spatial filter for two frequency microwave antenna - comprising double sandwich of metallic grids and dielectric sheets | |
EP0015804A2 (en) | Polarizing device and microwave antenna comprising same | |
EP3900113B1 (en) | Elementary microstrip antenna and array antenna | |
EP0477102B1 (en) | Directional network with adjacent radiator elements for radio communication system and unit with such a directional network | |
EP3506429B1 (en) | Quasi-optical beam former, basic antenna, antenna system, associated telecommunications platform and method | |
FR3102311A1 (en) | NETWORK ANTENNA | |
FR3142300A1 (en) | Device for controlling RF electromagnetic beams according to their angle of incidence and manufacturing method | |
EP4391232A1 (en) | Wide-angle impedance matching device for an array antenna with radiating elements and method for designing such a device | |
FR3134659A1 (en) | Device for controlling RF electromagnetic beams according to their frequency band and manufacturing method | |
FR2830987A1 (en) | Waveguide-fed antenna, for microwave or millimeter wave communications, has metallic surface at end of guide with at least one central |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200130 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210604 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019008596 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1442678 Country of ref document: AT Kind code of ref document: T Effective date: 20211115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211027 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1442678 Country of ref document: AT Kind code of ref document: T Effective date: 20211027 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2902431 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220127 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220227 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220228 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220127 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220128 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019008596 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220327 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220327 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20231019 AND 20231025 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602019008596 Country of ref document: DE Owner name: UNIVERSITE DE RENNES, FR Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR Ref country code: DE Ref legal event code: R081 Ref document number: 602019008596 Country of ref document: DE Owner name: THALES, FR Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR Ref country code: DE Ref legal event code: R081 Ref document number: 602019008596 Country of ref document: DE Owner name: INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INS, FR Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR Ref country code: DE Ref legal event code: R081 Ref document number: 602019008596 Country of ref document: DE Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240213 Year of fee payment: 6 Ref country code: GB Payment date: 20240215 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240223 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240405 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211027 |