EP3463716B1 - Method for producing sheet ingots by vertical casting of an aluminium alloy - Google Patents
Method for producing sheet ingots by vertical casting of an aluminium alloy Download PDFInfo
- Publication number
- EP3463716B1 EP3463716B1 EP17731208.9A EP17731208A EP3463716B1 EP 3463716 B1 EP3463716 B1 EP 3463716B1 EP 17731208 A EP17731208 A EP 17731208A EP 3463716 B1 EP3463716 B1 EP 3463716B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic field
- intensity
- variation
- frequency
- maximum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005266 casting Methods 0.000 title claims description 56
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims description 56
- 229910045601 alloy Inorganic materials 0.000 claims description 50
- 239000000956 alloy Substances 0.000 claims description 50
- 230000006698 induction Effects 0.000 claims description 35
- 239000007788 liquid Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 17
- 239000006185 dispersion Substances 0.000 claims description 14
- 230000003595 spectral effect Effects 0.000 claims description 14
- 230000001902 propagating effect Effects 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 11
- 238000007711 solidification Methods 0.000 claims description 11
- 230000008023 solidification Effects 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 230000014509 gene expression Effects 0.000 claims description 5
- 239000000411 inducer Substances 0.000 claims 4
- 239000002826 coolant Substances 0.000 claims 1
- 239000011701 zinc Substances 0.000 description 45
- 239000010949 copper Substances 0.000 description 29
- 239000000203 mixture Substances 0.000 description 21
- 238000005204 segregation Methods 0.000 description 15
- 229910052725 zinc Inorganic materials 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 13
- 238000003756 stirring Methods 0.000 description 12
- 238000007670 refining Methods 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 230000002123 temporal effect Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000000737 periodic effect Effects 0.000 description 7
- 238000002601 radiography Methods 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000010606 normalization Methods 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 6
- 238000005275 alloying Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000004411 aluminium Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 235000011837 pasties Nutrition 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910001234 light alloy Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
- B22D11/003—Aluminium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
- B22D11/114—Treating the molten metal by using agitating or vibrating means
- B22D11/115—Treating the molten metal by using agitating or vibrating means by using magnetic fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/041—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/122—Accessories for subsequent treating or working cast stock in situ using magnetic fields
Definitions
- the technical field of the invention is the manufacture of ingots following a casting of a liquid aluminum alloy.
- a macrosegregation well known to those skilled in the art is the central negative macrosegregation, resulting from a depletion of eutectic alloying elements, along a vertical central axis of the ingot. These macrosegregations have been described in the work of John Wiley et al “Direct-Chill Casting of light alloys”, Publisher Wiley, September 2013, pp 158 - 172 .
- This is a continuous macro-segregation, this term designating the fact that the macro-segregation takes place continuously over all or part of the height of the ingot, in other words that it is essentially uniform along the casting axis. .
- V-shaped bands are alternately enriched and depleted in eutectic and peritectic alloy elements. These bands are observable by performing X-ray radiographs of vertical slices of ingots, typically in the L / TC plane at mid-width, when the segregated elements absorb the X-rays in a manner different from the atoms of the metal composing the ingot. Other means make it possible to visualize this phenomenon, for example ultrasound or observation with the naked eye of anodized vertical slices, due to the difference in optical reflectivity between the zones enriched or depleted in alloying elements.
- intermittent macrosegregation is most marked at the level of the T / 2.5 region of the thickness, the T / 2 region corresponding to the central axis of the ingot.
- T / n designates a region located at a distance T / n from an edge of the ingot, where T denotes a thickness of the ingot.
- Periodic intermittent macrosegregations appear very early after the start of casting, as soon as an inclined front is formed between a solid zone and a liquid zone. They are observed in all cases of casting of aluminum alloys loaded with aluminum alloys, typically cast in formats with a thickness greater than 300 mm, this thickness threshold itself depending on the casting speed.
- the document FR2530510 describes a process for electromagnetic casting of metals in which a stationary magnetic field and a magnetic field of variable frequency are simultaneously made to act, both to produce radial vibrations within the metal not yet solidified, and to limit the stirring.
- EP 2682201 describes an electromagnetic stirring process using two inductors mounted symmetrically with respect to each other with respect to the vertical plane of symmetry of an ingot mold. These inductors generate two electromagnetic fields of different frequencies propagating in opposite directions along a vertical axis. At least one of the inductors generates a magnetic field at a resonant frequency of the liquid metal.
- WO 2014/155357 relates to methods and apparatus for moving molten metal, the electromagnetic inductor comprising at least two pairs of electromagnetic poles and a first magnetic field component being generated between a pole in a first pair of electromagnetic poles and a second pole in a different pair of electromagnetic poles, and a second magnetic field component being generated between the two poles in one or more pairs of electromagnetic poles, the second magnetic field component thereby generating one or more eddy currents in the molten metal.
- WO 2009/018810 relates to a method and a device for electromagnetic stirring of electrically conductive fluids, using an RMF magnetic field rotating in the horizontal plane and a WMF magnetic field migrating vertically with respect thereto.
- the aim is to avoid non-symmetrical flow structures in vessels filled with molten material, especially at the start and during solidification.
- efficient mixing of the fluid and / or controlled solidification of metal alloys should be achieved, while avoiding the formation of segregation zones in the structure being solidified.
- the solution is that the rotating magnetic field RMF and the migrating magnetic field WMF are connected discontinuously in the form of periodic and adjustable durations in time and alternately, consecutively in time. via associated induction coils.
- the method may include a definition of a plurality of critical values of the intensity and frequency of the induction current, so as to define a resonance curve, representing the critical values of intensity and frequency generating a resonance of said free surface, the method comprising determining a range of variation of the intensity or the frequency of the induction current in a domain delimited by said resonance curve.
- the method comprises a variation of the frequency of the induction current flowing through an inductor.
- Another subject of the invention is an aluminum alloy ingot, obtained by the process as described above and in the description which follows.
- alloys Unless otherwise indicated, all indications concerning the chemical composition of alloys are expressed as a percentage by weight based on the total weight of the alloy.
- the expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4.
- the designation of the alloys is made in accordance with the regulations of The Aluminum Association, known to those skilled in the art.
- the figure 1A illustrates an example of a casting process known from the prior art.
- an aluminum alloy 1 flows into an ingot mold 2, through an opening 2i.
- the mold 2 extends along a vertical Z axis. It is delimited by a peripheral enclosure whose section, in a horizontal XY plane, is parallelepiped.
- a cooling fluid 3 for example water, flows against the wall of the solidified product. This process is known as semi-continuous casting by direct cooling (“Direct-Chill Casting").
- a false bottom 4 can be translated so as to move away from the opening 2i during the casting.
- the mold 2 extends, parallel to a first horizontal axis X, along a thickness e and, parallel to a second horizontal axis Y, perpendicular to the axis X, along a length l.
- the thickness e is for example greater than 300 mm. It is beyond such a thickness that the intermittent macrosegregations 11 appear markedly.
- a solid zone 1s forms, near the cooled enclosure, around a liquid zone 1l, designated by the term “marsh”.
- the interface between the liquid zone 1l and the solid zone 1s is a front 10, the latter progressing towards the center of the mold as the solidification of the alloy takes place.
- a parallelepipedal ingot also designated by the term “product”, is formed.
- the alloy is an aluminum alloy of the 1XXX, 2XXX, 3XXX, 4XXX, 5XXX, 6XXX, 7XXX or 8XXX series. Alloys in which the mass fraction of alloying elements is greater than 1%, or even greater than 3% or even more than 5% are particularly suitable for a process according to the invention, because the higher this mass fraction of these alloying elements is. important, the more the intermittent macrosegregations are marked.
- the invention is particularly advantageous for products made of a 2XXX, 5XXX, 6XXX or 7XXX alloy, the thickness of which is at least equal to 400 mm or even 450 mm.
- a magnetic field generator 5 capable of generating a magnetic field B intended to be applied to the liquid zone 1l of the alloy.
- a generator can be a permanent magnet or an electromagnetic inductor, the latter generating a magnetic field when it is traversed by an electric current, called an induction current.
- the magnetic field B applied to the liquid zone 1l is an alternating field, of amplitude B 0 and of frequency f .
- the effect of this magnetic field is to apply a mixing of the marsh, under the effect of Lorentz forces applying to the metallic liquid zone 1l.
- the application of a magnetic field B generates, in the alloy, the formation of an electric current J resulting, within the liquid zone of the alloy subjected to the magnetic field, in the appearance of a Lorentz force F such that F ⁇ J ⁇ B where ⁇ denotes the vector product operator, and ⁇ denotes a relation of proportionality.
- This Lorentz force exhibits an oscillating component at a frequency twice the frequency f of the magnetic field.
- the frequency f is chosen so as to allow sufficient penetration of the magnetic field B in the swamp, so as to obtain efficient mixing of the liquid.
- the frequency f is all the lower the greater the thickness of the product.
- the frequency is preferably less than 5 Hz, and even more advantageously less than 2 Hz or 1 Hz.
- the generator 5 is able to generate a sliding magnetic field.
- the term sliding magnetic field designates an alternating magnetic field, the amplitude B 0 of which is not constant, and varies between a minimum value and a maximum amplitude B 0 max , maximum amplitude B 0 max propagating along a propagation axis ⁇ , preferably rectilinear.
- amplitude we mean the maximum value that a periodic quantity takes.
- the axis of propagation belongs to a plane parallel to the direction of casting.
- the distance ⁇ separating two amplitude maxima of the magnetic field is the wavelength of the sliding magnetic field.
- the figure 1B represents an example of the distribution of the amplitude B 0 of a magnetic field sliding along a propagation axis ⁇ at an instant t (solid line), and at an instant t + ⁇ t (dotted line). On the axis of propagation, there is represented a coordinate r corresponding to the position of a point of the marsh.
- the figure 1C illustrates a temporal evolution of an alternating magnetic field sliding at this point. Due to the propagation of the maximum amplitude value B 0 max , the amplitude of the magnetic field, at this point, varies between a minimum value B 0 min and the value B 0 max the latter not changing over time.
- a sliding magnetic field generator 5 can be formed by several electromagnetic inductors arranged around the peripheral enclosure.
- the Lorentz force at a point of coordinates r of the marsh, comprises an oscillating component, modulated according to a frequency 2 f double the frequency of the magnetic field.
- the amplitude of the Lorentz force at a point r of the marsh depends on the square of the amplitude of the magnetic field applied at this point.
- the application of a sliding magnetic field results, at a point in the marsh, by a modulation of its amplitude.
- the amplitude of the magnetic field at a point in the marsh varies as a function of time, between a minimum amplitude B 0 min and a maximum amplitude B 0 max .
- the Lorentz force density the latter having, at a point r of the marsh, a maximum value when the amplitude of the magnetic field, at this point, is maximum.
- the inventors have observed that by modulating, over time, the maximum amplitude of the Lorentz force F max propagating in the marsh, the intermittent macrosegregations are attenuated, or even disappear, and this particularly on ingots whose thickness is greater than 300 mm.
- the temporal modulation of the Lorentz force density can be obtained by modifying the pole pitch, that is to say the phase shift between the induction currents flowing in each inductor.
- a modification makes it possible to vary the wavelength ⁇ of the sliding magnetic field, that is to say the distance between two maxima propagating along the axis of propagation.
- the frequency of the induction current flowing in the inductors can be variable, which modifies the frequency f of the magnetic field.
- the amplitude of the induction current can also be variable, which changes the value of the maximum amplitude B 0 max of the magnetic field.
- FIG. 1D there is shown an embodiment in which the value of the maximum amplitude B 0 max of the magnetic field and the wavelength ⁇ of the sliding magnetic field are variable over time.
- the maximum amplitude B 0 max varies between B 0 max t and B 0 max t + ⁇ t .
- the wavelength ⁇ has been changed from ⁇ ( t ) to ⁇ ( t + ⁇ t ).
- FIG 1E which represents a temporal evolution of an alternating magnetic field sliding at a point, an embodiment has been shown in which the value of the maximum amplitude B 0 max of the magnetic field varies, over time, for a constant frequency f and a wavelength ⁇ .
- the maximum amplitude of the Lorentz force, propagating in the marsh varies between t and t + ⁇ t , between the values F max ( t ) and F max ( t + ⁇ t ).
- the temporal modulation of a force parameter is implemented during the casting, for a significant period, preferably greater than 50% or even 80% of the duration of the casting. This temporal modulation can for example be applied for at least 30 minutes, or even at least 1 hour.
- a sliding magnetic field B can in particular be generated from two inductors arranged on the same face of the ingot.
- the inductors are preferably placed facing a large face of the ingot, that is to say one of the two sides of the ingot having the largest vertical section.
- the inductors can be superimposed on one another, so as to generate a so-called vertical phase shift, or arranged side by side, so as to generate a horizontal phase shift.
- a device described in the application was used.
- WO2014 / 155357 and more precisely according to the configuration described in connection with the figures 19 and 20A , in which three inductors, oriented along the vertical axis Z, are arranged facing each major face of the ingot.
- the sliding magnetic field can also be generated from one or more permanent magnets arranged at the periphery of the mold and set in motion with respect to the latter. For example, it is possible to generate a sliding magnetic field by rotating a permanent magnet.
- a variation of the parameters of the sliding magnetic field be it its amplitude, its frequency or its wavelength, makes it possible to apply a non-stationary Lorentz force in the swamp.
- the inventors have observed that this makes it possible to attenuate the appearance of intermittent macrosegregations or even to make them disappear. Such conditions probably influence the recirculations occurring spontaneously in the marsh, and reduce their consequences.
- the rate of variation of the maximum Lorentz force density is greater than 0.05 Nm -3 .s -1 , and preferably greater than 0.1 Nm -3 .s -1 , and preferably greater than 0.2 Nm -3 .s -1 .
- the maximum rate of variation of the maximum Lorentz force density during casting is at least 1 Nm -3 .s -1 and preferably at least 2 Nm -3 .s -1 .
- the variation of one or more force parameters takes place in a time interval less than or equal to the characteristic durations of the recirculations generated by natural convection. These times vary depending on the thickness of the ingot and the casting speed. Considering thicknesses e between 300 mm and 700 mm, and casting speeds of between 30 mm / min and 80 mm / min, the characteristic times of recirculations extend between 20 seconds (thickness of 300 mm, casting speed of 30 mm / min) and 10 minutes (thickness of 700 mm, casting speed of 80 mm / min). Thus, the force parameters vary in a time interval ⁇ t determined as a function of these characteristic times.
- the term “variation” is understood to mean a significant variation of at least 10% of the force parameter considered, and preferably of at least 20% or even 30% of the force parameter.
- the variation of a force parameter can be periodic, the time period of variation being of the order of a characteristic recirculation duration, that is to say between 20 seconds and 10 minutes depending on the conditions of dimensions and speed of the casting.
- the maximum density Lorentz force varies by at least 30 Nm -3 , and advantageously at least 40 Nm -3 , and preferably at least 50 Nm -3 , and even more preferably at least 60 Nm -3 .
- the variation of a force parameter can also be monotonic during the casting, for example according to an increasing or decreasing function between the start and the end of the casting, the value of the force parameter varying continuously or in successive increments. .
- the Lorentz force of maximum intensity is not equal to zero. Typically, it is zero when the current in the inductors or coils is zero. So advantageously, the variation of the force parameter is not obtained by a periodic interruption of the sliding field.
- the Lorentz force of maximum intensity is greater than 80 N / m 3 , preferably greater than 100 N / m 3 , preferably greater than 120 N / m 3 , even more preferably. greater than 140 N / m 3 .
- the inventors have in fact observed that the suppression of intermittent macrosegregations was not optimum when the force was too low, as shown in Example 5 ( Fig 20 a to d).
- the minimum value from which the suppression of intermittent macrosegregations is improved depends on all the casting parameters, in particular the stirring mode, the position of the inductors relative to the plate and the composition of the alloy.
- the frequency f and / or the maximum amplitude B 0 max of the magnetic field are modified respectively by varying the frequency and the amplitude of the induction current flowing in the inductors.
- the method can comprise a preliminary step of defining an operating domain, that is to say a range of variation of the frequency and / or of the intensity of the induction current.
- This preliminary step includes the determination of one or more values of frequency / intensity pairs, called critical values, generating, at the free surface 1 sup of the marsh, a resonance, the resonance resulting in the appearance of significant oscillations of said free surface 1 sup , the latter being shown on the figure 1A . These significant oscillations are usually seen with the naked eye.
- significant oscillation is meant, for example, an oscillation whose amplitude is greater than or equal to 5 mm along the vertical axis Z.
- the frequency of the current is fixed and the intensity of the induction current is increased up to that a significant oscillation is observed.
- a resonance curve R in a frequency / intensity plane corresponding to the different pairs (frequency / intensity) at which a resonance is observed at the free surface of the marsh. From this curve R, a range of variation of the intensity and / or of the frequency is determined, so as to avoid or limit the appearance of a resonance of the free surface of the marsh.
- the resonance curve delimits a zone of stability and a zone of instability, in which the casting can become dangerous.
- modulating the frequency or intensity of the induction current, and therefore the frequency f or the maximum amplitude B 0 max of the sliding magnetic field makes it possible to temporarily approach the resonance curve R, for example periodically, while remaining in the zone of stability. This maximizes the intensity of the Lorentz force, and therefore swamp mixing, while remaining within acceptable safety configurations. Indeed, in the vicinity of the resonance curve, the stirring effect is particularly important.
- Such a resonance curve R depends on the casting conditions, that is to say the dimensions of the mold, the casting speed, the configuration of the applied magnetic field, the latter depending on the magnetic field generator, c ' that is to say inductors or permanent magnet (s) used.
- An R resonance curve is shown on the figure 2 , this curve having been obtained by casting an ingot with a thickness of 525 mm x 1650 mm, at a casting speed of 45 mm / min, a magnetic stirring being carried out by the application of a magnetic field by three inductors arranged in front of each large face of the ingot and out of phase by 90 ° to form a horizontal electromagnetic pump element, as previously mentioned.
- graphs representing a percentage of the intensity of a Lorentz force, called nominal, 100% corresponding to the intensity of the maximum induction current usable in the installation when the frequency is equal at 0.2 Hz.
- This intensity corresponds to the appearance of a resonance at the frequency of 0.2 Hz.
- the intensity and the frequency of the induction current are located in a space delimited by the curve representing a certain percentage of the intensity of the nominal Lorentz force, for example 10% of this intensity, and the resonance curve.
- the method comprises a variation of the frequency of the induction current flowing through an inductor.
- the inventors have found that it is advantageous to vary the frequency because the variation in the penetration of the field which results therefrom makes it possible to vary the force gradient in the thickness and the depth of the liquid well more effectively.
- the power electronics make the frequency variation faster than the variation intensity; which gives an additional degree of freedom towards the weaker periods of unsteady forcing. It is in fact advantageous to decouple the hydrodynamic characteristic times from the characteristic solidification times in order to avoid intermittent macrosegregations.
- the variation of one or more force parameters can in particular make it possible to alternate periods during which the dimensionless number of Hartmann Ha is respectively low, typically less than 1, and high, typically greater than 3, or even 5.
- the dimensionless number of Hartmann Ha is a number commonly used in the field of magnetohydrodynamics. It represents a ratio between the magnetic viscosity and the viscosity of a charged liquid flowing in a magnetic field. The greater this number, the greater the contribution of Lorentz forces.
- the dimensionless Hartmann Ha number alternates with a ratio between weak and strong values of at least 3 or of at least 5. Such a configuration is preferred, since it makes it possible to alternate periods during which the kinetic energy applied. by the magnetic field opposes the natural convection of the liquid metal, and periods during which natural convection predominates.
- the products obtained by a method according to the invention exhibit intermittent macrosegregation which is limited compared to methods of the prior art, or even not perceptible.
- the characterization of the products was carried out by analyzing horizontal profiles (along the TC axis) of an X-ray taken at mid-width along a vertical L / TC plane, these profiles being calibrated to obtain the distribution spatial elements of heavy alloys of Zn or Cu type.
- An example of obtaining the Zn concentration profile from an X-ray of an Al-Zn alloy is shown on the figure 4 .
- L, TL and TC correspond respectively to the dimension of the ingot along the vertical axis, the so-called “long transverse” axis and along the so-called “short transverse” axis.
- chemical analyzes can be carried out along horizontal profiles, so as to quantify the spatial distribution of said chemical elements along the TC axis.
- Intermittent macrosegregation can be characterized by a maximum deviation in mass of an alloying element, in this case Zn, in the zone most marked by intermittent macrosegregation, that is to say in the vicinity of T / 2.5 .
- the concentration profiles, obtained by radiography or by any other method, with a spatial resolution of 0.1 mm were processed as shown in Figure figure 5A .
- the profile obtained with the resolution of 0.1 mm is the raw profile referenced profile A.
- a sliding average over 2 mm makes it possible to avoid microsegregation, the smoothed profile obtained is referenced profile B.
- Another sliding average of the raw profile over 50 mm makes it possible to get rid of intermittent macro-segregations, and to obtain the continuous macro-segregation profile, the profile obtained being a so-called basic profile, referenced profile C.
- Profile C is subtracted from profile B to obtain a so-called corrected profile , corresponding to intermittent macrosegregation, the corrected profile being referenced profile D.
- the corrected profile is mainly representative of intermittent macrosegregation, and is not or only slightly affected by central continuous macrosegregation and by microsegregation. Such a corrected profile makes it possible to characterize the intermittent macrosegregation.
- the element considered is an element whose content by weight in the alloy is greater than or equal to 0.5%. It may preferably be the major element of the alloy, the term major element corresponding to the definition given by The Aluminum Association.
- the maximum difference ⁇ C ZA can be normalized by the nominal concentration C 0 of the element considered.
- the products according to the invention preferably have a value of such a standardized ratio of less than 10% and preferably less than 8% or even less than 6%.
- the absolute value of ⁇ C ZA can be influenced by the thickness of the product, the nature of the element considered, in particular its partition coefficient and / or its concentration.
- ⁇ VS ZR max VS ZR - min VS ZR where max (C ZR ) and min (C ZR ) denote respectively the maximum and minimum concentrations of the element considered measured between T / 6 and T / 12.
- the weaker ⁇ the less marked the intermittent macrosegregations.
- the products obtained by the process according to the invention preferably have a dispersion criterion ⁇ less than 3.3, preferably less than 3, more advantageously less than 2.5, even more advantageously less than 2 and preferably less than 1.5.
- T / n denotes a distance from an edge of the ingot, along a horizontal axis, T / 2 corresponding to the center of the ingot.
- the criteria of dispersion ⁇ and of spectral intensity ⁇ are advantageously applied to the major element of the alloy in question, typically to Zn for a 7xxx alloy or to Cu for a 2xxx alloy. These criteria can also be applied to the sum of two elements, for example the sum of Zn + Cu in certain 7xxx alloys or the sum of Mg + Si in the 6xxx alloys. These criteria can also be applied to an element whose content by weight in the alloy is greater than or equal to 0.5% or to the sum of two elements of the alloy whose individual content is greater than 0.5%,
- the values for normalizing the maximum deviation ⁇ C ZA , and / or the Fourier transform correspond to the sum of the nominal concentrations of the elements considered.
- the rectangular cross-section ingots obtained by the process according to the invention can be used as they are cast or after wringing, optionally after dissolution and quenching and aging for the alloys with age hardening.
- the ingots of rectangular section obtained by the process according to the invention are rolled and / or forged.
- An AA7035 alloy was cast without electromagnetic stirring.
- the composition of the cast alloy comprising a nominal Zn concentration of 5.6% by weight, a nominal Mg concentration of 1.3% by weight.
- the format of the ingot was 1650 mm x 525 mm. This example is representative of the prior art.
- the grain refining was carried out with an AITiB 5: 1 refining concentration of 1Kg / t.
- the casting speed was 35 mm / min.
- the figure 3 shows a mid-width x-ray of the ingot on an L / TC plane, in which the central negative macrosegregation and intermittent macrosegregation are clearly identifiable.
- the value of the maximum deviations of the Zn content was 0.75% by weight for ⁇ C ZA and 0.19% by weight for ⁇ C ZR , the value of the maximum deviations normalized in the analysis zone and in the reference zone thus being 13.3% and 3.5% respectively.
- the value of the dispersion criterion ⁇ as defined by equation (6) was 3.9.
- the Fourier transform of each profile has been calculated, and is represented on the figure 7 , after normalization by the nominal composition of Zn: 5.6% by weight.
- the x-axis represents the spatial period, between 0 and 30 mm. Different predominant peaks are observed, corresponding to different spatial periods distributed between 8 and 25 mm, and more particularly between 10 mm and 25 mm.
- the spectral intensity criterion ⁇ which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm, normalized by the nominal concentration C 0 of Zn, was for all the profiles at least 0.01.
- a casting of an AA7035 alloy was carried out with electromagnetic stirring.
- the composition of the cast alloy included a nominal Zinc concentration of 5.6% by weight and a nominal Magnesium concentration of 1.3% by weight.
- the ingot size was 1650mm x 525mm.
- the grain refining was carried out with an AITiB 5: 1 refining concentration of 1Kg / t.
- the casting speed was 35 mm / min.
- the electromagnetic stirring was obtained by placing, opposite each face L / TL of the ingot, (corresponding to a YZ plane in the reference mark indicated on the figure 1A ), three inductors oriented along the vertical axis Z, traversed by an alternating current, frequency 0.25 Hz, phase-shifted with respect to each other by 60 ° and spaced from each other by 0.6 m, thus constituting an electromagnetic pump element.
- the distance between the inductors and the ingot was 172 mm.
- the electromagnetic pump elements on each face were oriented in the opposite direction.
- the inductors generated a magnetic field sliding along a horizontal plane, the sliding axis being parallel to the TL direction, the wavelength ⁇ was 3.6 m.
- the maximum density of the Lorentz force induced in the liquid marsh was varied between about 180 N / m 3 and 240 N / m 3 with a variation speed of 2 Nm -3 .s -1 by modifying the nominal value of the current in the inductors.
- the resonance curve, corresponding to these conditions of casting, is shown on the figure 8 .
- the variation in the intensity of the induction current is represented in this figure by a double arrow.
- the figure 9 shows an X-ray of the ingot according to an L / TC plane, on which the central negative macrosegregation at T / 2 is identifiable.
- profile A different gross horizontal profiles of the Zn content
- profile B smoothed
- TC axis One distinguishes the negative central macrosegregation, maximal at T / 2.
- D profiles corrected profile type
- the value of the maximum deviations of the Zn content was 0.24% by weight for ⁇ C ZA and 0.28% by weight for ⁇ C ZR , the value of the maximum deviations normalized in the analysis zone and in the zone of reference being respectively 4.3% and 5%.
- the value of the dispersion criterion ⁇ as defined by equation (6) was 0.9: intermittent macrosegregation in the analysis zone between T / 2.3 and T / 3.3 has been eliminated.
- the Fourier transform of each profile has been calculated, and is represented on the figure 11 , after normalization by the nominal composition of Zn: 5.6% by weight.
- the x-axis represents the spatial period, between 0 and 30 mm. There are no longer any predominant peaks observed.
- the spectral intensity criterion ⁇ which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the nominal concentration C 0 of Zn, was for all the profiles less than 0.005.
- an AA 7050 alloy was cast without electromagnetic stirring.
- the composition of the alloy was 6.3% by weight Zn, 2.2% by weight Mg and 2.1% by weight Cu.
- the format of the ingot was 1650x525mm.
- the grain refining is carried out using an AITiC3: 0.15 refining wire with an addition rate of 1 kg / tonne.
- the casting speed was 45mm / min. It constitutes the reference of Example 4.
- the figure 12 shows an X-ray of the ingot according to an L / TC plane, on which the central negative macrosegregation at T / 2 is identifiable.
- the smooth horizontal profile of the sum of two elements Zn and Cu (profiles B) along an axis TC deduced from the radiography of the figure 12 .
- the radiography only makes it possible to quantify the elements causing a contrast with respect to aluminum, namely in this case Zn and Cu. This remark applies to Examples 4 and 5 which follow.
- the spectral intensity criterion ⁇ which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the sum of the nominal compositions in Zn and Cu, was for one of the profiles greater than 0.01 or for all of the profiles greater than 0.007.
- an alloy was cast in AA 7050.
- the composition of the alloy was 6.3% by weight of Zn, 2.2% by weight of Mg and 2.1% by weight of Cu.
- the cross section of the ingot was 1650x525mm.
- the grain refining is carried out using an AITiC3: 0.15 refining wire with an addition rate of 1 kg / tonne.
- the casting speed was 45mm / min.
- the electromagnetic stirring was obtained by placing, opposite each face L / TL of the ingot, (corresponding to a YZ plane in the reference mark indicated on the figure 1A ) three coils oriented along the z axis and traversed by an alternating current which was out of phase, in the central coil, by 90 ° with respect to the current in the extreme coils.
- the wavelength of the sliding field was 2.4 m.
- the electromagnetic pump elements thus obtained were arranged in a mirror with respect to each face L / TL of the ingot, the sliding direction being parallel to the cross-long direction, the generated sliding diverging from the mid-width of the ingot.
- the unsteady forcing was obtained by imposing a cyclic variation of the frequency of the alternating electric current which traversed the coils, as illustrated by the double arrow in the frequency vs intensity diagram of the figure 15 .
- the maximum density of the Lorentz force thus generated by the variation of the frequency between 0.450 and 0.600Hz was varied between approximately 110 N / m 3 and 150 N / m 3 over a period of 3 min which corresponds to a speed of variation of about 0.22 N / m 3 / s.
- the figure 16 shows an X-ray of the ingot according to an L / TC plane, on which the central negative macrosegregation at T / 2 is identifiable. Intermittent macrosegregations are very strongly attenuated compared to the reference ( Fig 12 ), as shown in figures 17a and 17b .
- a casting of AA7050 alloy was carried out.
- the composition of the alloy was 6.3% by weight of Zn, 2.2% by weight of Mg and 2.1% by weight of Cu, the contents of the other elements were all less than 0.5% by weight.
- the cross section of the ingot was 1650x525mm.
- the grain refining is carried out using an AlTiC3: 0.15 refining wire with an addition rate of 1 kg / tonne.
- the casting speed was 45mm / min.
- the electromagnetic stirring was obtained by placing, opposite each face L / TL of the ingot, (corresponding to a YZ plane in the reference mark indicated on the figure 1A ) three coils oriented along the z axis and traversed by an alternating current which was out of phase, in the central coil, by 90 ° with respect to the current in the extreme coils.
- the wavelength of the sliding field was 2.4 m.
- the electromagnetic pump elements thus obtained were arranged in a mirror with respect to each face L / TL of the ingot, the sliding direction being parallel to the cross-long direction, the generated sliding diverging from the mid-width of the ingot.
- the unsteady forcing was obtained by imposing a variation from zero in the intensity of the alternating electric current flowing through the coils, as illustrated by the arrows in the frequency vs intensity diagram of the figure 19 .
- the intensity of the maximum Lorentz volume force thus generated by the variation in intensity typically varied from 0 N / m 3 to 140 N / m 3 in 4 min, which corresponds to a rate of variation of 0.58 N / m3 / s.
- the intensity of the maximum Lorentz volume force was varied between 140 N / m 3 and 360 N / m 3 in 5 min, which corresponds to a rate of change of 0.73 N / m 3 / s.
- the figure 20d represents the Fourier transform of each profile, after normalization by the sum of the nominal compositions of Zn and Cu: 8.3% by weight.
- the x-axis represents the spatial period, between 0 and 30 mm.
- the spectral intensity criterion ⁇ which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the sum of the nominal compositions in Zn and Cu, was for all the profiles less than 0.01. It is noted however that the criterion of spectral intensity ⁇ shows values higher than 0.005.
- the figure 21d represents the Fourier transform of each profile, after normalization by the sum of the nominal compositions of Zn and Cu: 8.3% by weight.
- the x-axis represents the spatial period, between 0 and 30 mm.
- the spectral intensity criterion ⁇ which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the sum of the nominal compositions in Zn and Cu, was for all the profiles less than 0.005.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
Le domaine technique de l'invention est la fabrication de lingots suite à une coulée d'un alliage d'aluminium liquideThe technical field of the invention is the manufacture of ingots following a casting of a liquid aluminum alloy.
Au cours d'une coulée verticale, visant à former un lingot, la solidification d'un métal ou d'un alliage métallique est affectée par des phénomènes dits de ségrégations macroscopiques. Lors du refroidissement du métal, des courants de convection se forment, engendrant des vortex de recirculation, ces derniers étant à l'origine de ségrégations macroscopiques lorsque leur durée de vie est du même ordre de grandeur que les durées caractéristiques de solidification. Ces phénomènes conduisent, dans le lingot solidifié, à un appauvrissement local ou à un enrichissement local en espèces chimiques. Ces ségrégations macroscopiques, ou macroségrégations, sont à l'origine d'hétérogénéités dans la composition du lingot.During a vertical casting, aimed at forming an ingot, the solidification of a metal or a metal alloy is affected by so-called macroscopic segregation phenomena. When the metal cools, convection currents are formed, generating recirculation vortices, the latter being the source of macroscopic segregation when their lifetime is of the same order of magnitude as the characteristic solidification times. These phenomena lead, in the solidified ingot, to a local impoverishment or to a local enrichment in chemical species. These macroscopic segregations, or macrosegregations, are the source of heterogeneities in the composition of the ingot.
Une macroségrégation bien connue de l'homme du métier est la macroségrégation centrale négative, résultant d'un appauvrissement en éléments d'alliage eutectiques, le long d'un axe central vertical du lingot. Ces macroségrégations ont été décrites dans l'ouvrage de
Les principaux mécanismes à l'origine de la macroségrégation centrale décrits dans cet ouvrage sont
- La convection thermosolutale dans le marais causée par les gradients de température et de concentration, et la pénétration de ces écoulements convectifs dans la zone pâteuse ;
- Le transport de grains dans la zone en surfusion sous l'effet de la gravité, de la force d'Archimède et de la convection naturelle ou forcée ;
- L'écoulement dans la zone pâteuse suscité par le retrait volumétrique à solidification, qui peut être assisté par la pression métallostatique ;
- L'écoulement du liquide dans la zone pâteuse causé par des déformations mécaniques ;
- Les écoulements forcés qui peuvent résulter de la verse, de l'injection ou d'un dégagement de gaz, d'un brassage, d'une vibration, etc. qui pénètrent dans la zone en surfusion et dans la zone pâteuse et modifient la direction des mouvements de convection.
- Thermosolutal convection in the marsh caused by temperature and concentration gradients, and the penetration of these convective flows into the pasty zone;
- Transport of grains in the supercooled zone under the effect of gravity, Archimedean force and natural or forced convection;
- The flow in the pasty zone caused by the volumetric shrinkage at solidification, which can be assisted by the metallostatic pressure;
- The flow of liquid in the pasty area caused by mechanical deformations;
- Forced flows which may result from the pouring, injection or evolution of gas, stirring, vibration, etc. which penetrate the supercooled zone and the pasty zone and modify the direction of the convection movements.
Il s'agit d'une macroségrégation continue, ce terme désignant le fait que la macroségrégation a lieu de façon continue sur tout ou partie de la hauteur du lingot, en d'autres termes qu'elle est essentiellement uniforme selon l'axe de coulée.This is a continuous macro-segregation, this term designating the fact that the macro-segregation takes place continuously over all or part of the height of the ingot, in other words that it is essentially uniform along the casting axis. .
Le phénomène de macroségrégation intermittente a été moins souvent décrit dans la littérature et se traduit par la formation de bandes en forme de V de part et d'autre de la macroségrégation centrale négative. Ces bandes en forme de V sont alternativement enrichies et appauvries en éléments d'alliage eutectique et péritectique. Ces bandes sont observables en effectuant des radiographies aux rayons X de tranches verticales de lingots, typiquement dans le plan L/TC à mi-largeur, lorsque les éléments ségrégés absorbent les rayons X de manière différenciée des atomes du métal composant le lingot. D'autres moyens permettent de visualiser ce phénomène, par exemple l'échographie ou l'observation à l'œil nu de tranches verticales anodisées, du fait de la différence de réflectivité optique entre les zones enrichies ou appauvries en éléments d'alliage. Généralement, la macroségrégation intermittente est la plus marquée au niveau de la région T/2.5 de l'épaisseur, la région T/2 correspondant à l'axe central du lingot. Selon une nomenclature connue de l'homme du métier, le terme T/n, ou n est un nombre positif, désigne une région située à une distance T/n d'un bord du lingot, où T désigne une épaisseur du lingot.The phenomenon of intermittent macrosegregation has been less often described in the literature and results in the formation of V-shaped bands on either side of the central negative macrosegregation. These V-shaped bands are alternately enriched and depleted in eutectic and peritectic alloy elements. These bands are observable by performing X-ray radiographs of vertical slices of ingots, typically in the L / TC plane at mid-width, when the segregated elements absorb the X-rays in a manner different from the atoms of the metal composing the ingot. Other means make it possible to visualize this phenomenon, for example ultrasound or observation with the naked eye of anodized vertical slices, due to the difference in optical reflectivity between the zones enriched or depleted in alloying elements. Generally, intermittent macrosegregation is most marked at the level of the T / 2.5 region of the thickness, the T / 2 region corresponding to the central axis of the ingot. According to a nomenclature known to those skilled in the art, the term T / n, where n is a positive number, designates a region located at a distance T / n from an edge of the ingot, where T denotes a thickness of the ingot.
Les macroségrégations intermittentes périodiques apparaissent très tôt après le démarrage de coulée, dès qu'un front incliné est formé entre une zone solide et une zone liquide. Elles sont observées dans tous les cas de coulée d'alliages d'aluminium chargés d'alliages d'aluminium, coulés typiquement selon des formats d'épaisseur supérieure à 300mm, ce seuil d'épaisseur dépendant lui-même de la vitesse de coulée.Periodic intermittent macrosegregations appear very early after the start of casting, as soon as an inclined front is formed between a solid zone and a liquid zone. They are observed in all cases of casting of aluminum alloys loaded with aluminum alloys, typically cast in formats with a thickness greater than 300 mm, this thickness threshold itself depending on the casting speed.
La publication
La réduction ou la suppression des macroségrégations continues, par exemple la macroségrégation centrale, a déjà été décrite. En particulier on a montré que l'application d'un champ magnétique, à des fins de brassage ou de freinage des écoulements, permettait de limiter l'apparition de macroségrégations continues. Le document
Le document
Les inventeurs ont considéré que les procédés précédemment décrits ne permettent pas de réduire efficacement l'apparition de macroségrégations intermittentes. Ils proposent un procédé permettant de limiter la formation de telles macroségrégations, voire à les éliminer, de façon à mieux maîtriser les propriétés mécaniques des produits issus de la coulée.The inventors considered that the methods described above do not make it possible to effectively reduce the appearance of intermittent macrosegregations. They propose a process making it possible to limit the formation of such macrosegregations, or even to eliminate them, so as to better control the mechanical properties of the products resulting from the casting.
Un objet de l'invention est un procédé pour couler un lingot d'alliage d'aluminium dans une lingotière sensiblement rectangulaire comportant les étapes suivantes :
- préparation de l'alliage d'aluminium ;
- coulée de l'alliage d'aluminium dans la lingotière, selon un axe vertical d'écoulement, l'alliage étant refroidi, au cours de la coulée, par un ruissellement d'un liquide refroidisseur au contact avec le métal solidifié;
- au cours de la coulée, application d'un champ magnétique dont l'amplitude est variée périodiquement selon une fréquence, ledit champ magnétique étant généré par au moins un générateur de champ magnétique disposé à la périphérie de la lingotière, de façon à appliquer une force de Lorentz en différents points d'une partie liquide de l'alliage en cours de solidification ;
- le champ magnétique appliqué étant un champ magnétique glissant, se propageant selon un axe de propagation, de telle sorte qu'une amplitude maximale du champ magnétique se propage selon ledit axe de propagation, en définissant une longueur d'onde de propagation, ledit champ magnétique glissant entraînant une propagation, selon ledit axe de propagation, d'une force de Lorentz d'intensité maximale ;
- ▪ ladite amplitude maximale du champ magnétique ;
- ▪ et/ou ladite fréquence du champ magnétique ;
- ▪ et/ou la longueur d'onde de propagation du champ magnétique ;
- preparation of aluminum alloy;
- casting of the aluminum alloy in the mold, along a vertical flow axis, the alloy being cooled, during the casting, by a flow of a cooling liquid in contact with the solidified metal;
- during casting, application of a magnetic field the amplitude of which is periodically varied according to a frequency, said magnetic field being generated by at least one magnetic field generator arranged at the periphery of the mold, so as to apply a force of Lorentz at different points of a liquid part of the alloy during solidification;
- the applied magnetic field being a sliding magnetic field, propagating along a propagation axis, such that a maximum amplitude of the magnetic field propagates along said propagation axis, by defining a propagation wavelength, said magnetic field sliding causing propagation, along said propagation axis, of a Lorentz force of maximum intensity;
- ▪ said maximum amplitude of the magnetic field;
- ▪ and / or said frequency of the magnetic field;
- ▪ and / or the propagation wavelength of the magnetic field;
Le procédé peut comporter l'une quelconque des caractéristiques suivantes, prises isolément ou en combinaison :
- la section de la lingotière, dans un plan horizontal, définit une épaisseur et une longueur, l'épaisseur étant inférieure ou égale à la longueur, l'épaisseur étant supérieure à 300 mm et de préférence d'au moins 400 mm ;
- la fréquence du champ magnétique est inférieure à 5Hz,
ou 2Hz ou 1 Hz ; - la force de Lorentz d'intensité maximale, se propageant selon l'axe de propagation, varie d'au moins 30 N.m-3 dans un intervalle temporel compris entre 20 secondes et 10 minutes ;
- le champ magnétique est tel que la valeur absolue de la variation de la densité de la force de Lorentz maximale est supérieure ou égale à 0.05 N.m-3.s-1 durant ledit intervalle temporel ;
- l'axe de propagation de l'amplitude maximale du champ magnétique appartient à un plan parallèle à la direction de coulée ;
- au cours de la coulée, la variation du paramètre de force est périodique, la période étant comprise entre 20s et 20 minutes, ou entre 1 minute et 15 minutes,
ou entre 2 minutes et 10 minutes ; - au cours de la coulée, la force de Lorentz d'intensité maximale n'est pas égale à zéro.
- au cours de la coulée, la variation du paramètre de force n'est pas obtenue par une interruption périodique du champ glissant.
- le nombre adimensionnel de Hartmann, en au moins un point de la partie liquide de l'alliage, varie au moins d'un facteur 3, voire d'un facteur 5, dans ledit intervalle temporel ;
- l'alliage d'aluminium est choisi parmi les alliages de types 2XXX, 6XXX ou 7XXX, l'épaisseur étant au moins 400 mm ou 450 mm.
- the section of the mold, in a horizontal plane, defines a thickness and a length, the thickness being less than or equal to the length, the thickness being greater than 300 mm and preferably at least 400 mm;
- the frequency of the magnetic field is less than 5Hz, or 2Hz or 1Hz;
- the Lorentz force of maximum intensity, propagating along the axis of propagation, varies by at least 30 Nm -3 over a time interval of between 20 seconds and 10 minutes;
- the magnetic field is such that the absolute value of the variation in the density of the maximum Lorentz force is greater than or equal to 0.05 Nm -3 .s -1 during said time interval;
- the axis of propagation of the maximum amplitude of the magnetic field belongs to a plane parallel to the direction of casting;
- during casting, the variation of the force parameter is periodic, the period being between 20 s and 20 minutes, or between 1 minute and 15 minutes, or between 2 minutes and 10 minutes;
- during casting, the Lorentz force of maximum intensity is not zero.
- during the casting, the variation of the force parameter is not obtained by a periodic interruption of the sliding field.
- the dimensionless Hartmann number, at at least one point of the liquid part of the alloy, varies at least by a factor of 3, or even by a factor of 5, in said time interval;
- the aluminum alloy is chosen from alloys of types 2XXX, 6XXX or 7XXX, the thickness being at least 400 mm or 450 mm.
Selon un mode de réalisation, les générateurs sont des inducteurs électromagnétiques, chaque inducteur électromagnétique étant parcouru par un courant dit courant d'induction. Le procédé comporte, durant ledit intervalle temporel :
- une variation d'une intensité du courant d'induction ;
- et/ou une variation d'une fréquence du courant d'induction ;
- et/ou une variation d'une distance entre un inducteur électromagnétique et la lingotière.
- a variation of an intensity of the induction current;
- and / or a variation of a frequency of the induction current;
- and / or a variation of a distance between an electromagnetic inductor and the mold.
Selon ce mode de réalisation, le procédé peut comporter une variation de l'intensité ou de la fréquence du courant d'induction parcourant un inducteur, le procédé comportant alors :
- une étape préalable de définition d'au moins une valeur critique de l'intensité et de la fréquence du courant d'induction générant, au niveau d'une surface libre de l'alliage d'aluminium s'écoulant dans la lingotière, une onde de résonance ;
- une détermination d'une plage de variation de l'intensité ou de la fréquence du courant d'induction en fonction de ladite valeur critique préalablement définie.
- a preliminary step of defining at least one critical value of the intensity and the frequency of the induction current generating, at a free surface of the aluminum alloy flowing in the mold, a wave resonance;
- a determination of a range of variation of the intensity or of the frequency of the induction current as a function of said previously defined critical value.
Le procédé peut comporter une définition d'une pluralité de valeurs critiques de l'intensité et de la fréquence du courant d'induction, de façon à définir une courbe de résonance, représentant les valeurs critiques d'intensité et de fréquence générant une résonance de ladite surface libre, le procédé comportant une détermination d'une plage de variation de l'intensité ou de la fréquence du courant d'induction dans un domaine délimité par ladite courbe de résonance.The method may include a definition of a plurality of critical values of the intensity and frequency of the induction current, so as to define a resonance curve, representing the critical values of intensity and frequency generating a resonance of said free surface, the method comprising determining a range of variation of the intensity or the frequency of the induction current in a domain delimited by said resonance curve.
De manière préférée, le procédé comporte une variation de la fréquence du courant d'induction parcourant un inducteur.Preferably, the method comprises a variation of the frequency of the induction current flowing through an inductor.
Selon un mode de réalisation, au moins un générateur est un aimant permanent, le procédé comportant :
- une variation d'une distance entre l'aimant permanent et la lingotière ;
- et/ou une rotation de l'aimant permanent, et une variation de la vitesse de rotation de l'aimant ;
- et/ou une rotation de deux aimants permanents.
- a variation of a distance between the permanent magnet and the mold;
- and / or a rotation of the permanent magnet, and a variation of the speed of rotation of the magnet;
- and / or a rotation of two permanent magnets.
Un autre objet de l'invention est un lingot en alliage d'aluminium, obtenu par le procédé tel que décrit ci-dessus et dans la description qui suit.Another subject of the invention is an aluminum alloy ingot, obtained by the process as described above and in the description which follows.
Le lingot peut présenter, pour un élément de l'alliage, dont la teneur en poids est supérieure à 0.5 %, ou la somme de deux éléments de l'alliage dont la teneur individuelle est supérieure à 0.5%, un critère de dispersion inférieur à 3.3, de préférence inférieur à 3, plus avantageusement inférieur à 2,5, encore plus avantageusement inférieur à 2 et de manière préférée inférieur à 1,5, ledit critère de dispersion étant défini selon les expressions suivantes :
- max (CZA) et min (CZA) désignent respectivement les concentrations maximale et minimale de l'élément considéré ou de la somme des deux éléments considérés mesurées dans une zone d'analyse, présentant des macroségrégations intermittentes, par exemple entre T/2.3 et T/3.3 ;
- max (CZR) et min (CZR) désignent respectivement les concentrations maximale et minimale de l'élément considéré ou de la somme des deux éléments considérés dans une zone de référence considérée comme peu affectée par les macroségrégations intermittentes, par exemple entre T/6 et T/12 ;
- max (C ZA ) and min (C ZA ) respectively denote the maximum and minimum concentrations of the element considered or of the sum of the two elements considered measured in an analysis zone, presenting intermittent macrosegregations, for example between T / 2.3 and T / 3.3;
- max (C ZR ) and min (C ZR ) respectively denote the maximum and minimum concentrations of the element considered or of the sum of the two elements considered in a reference zone considered as little affected by intermittent macrosegregations, for example between T / 6 and T / 12;
Le lingot peut présenter un critère d'intensité spectrale inférieur à 0.01, de préférence inférieur à 0.007 et de manière préférée inférieur à 0.005, ledit critère d'intensité spectrale étant calculé en :
- déterminant une amplitude maximale d'une transformée de Fourier d'un profil représentatif d'une macroségrégation intermittente d'un élément dont la teneur en poids est supérieure à 0.5% ou la somme de deux éléments de l'alliage dont la teneur individuelle est supérieure à 0.5%, le profil étant établi selon ladite direction TC, ladite amplitude maximale étant déterminée dans une plage de périodes spatiales comprise
entre 8 et 25 mm, - normalisant ladite amplitude maximale par une concentration nominale C0 dudit élément ou par la somme des concentrations nominales des deux éléments considérés.
- determining a maximum amplitude of a Fourier transform of a profile representative of an intermittent macrosegregation of an element whose content by weight is greater than 0.5% or the sum of two elements of the alloy whose individual content is greater at 0.5%, the profile being established in said direction TC, said maximum amplitude being determined in a range of spatial periods between 8 and 25 mm,
- normalizing said maximum amplitude by a nominal concentration C 0 of said element or by the sum of the nominal concentrations of the two elements considered.
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et représentés sur les figures listées ci-dessous.Other advantages and characteristics will emerge more clearly from the description which follows of particular embodiments of the invention, given by way of non-limiting examples, and shown in the figures listed below.
-
Les
figures 1A à 1E illustrent un exemple de dispositif et de procédé selon l'art antérieur et selon l'invention. Lafigure 1A présente les principaux composants du dispositif tandis que lesfigures 1B et 1C représentent respectivement une distribution spatiale et temporelle de l'amplitude d'un champ magnétique glissant selon l'art antérieur. Lesfigures 1D et 1E présentent respectivement une distribution spatiale et temporelle de l'amplitude d'un champ magnétique glissant instationnaire selon des modes de réalisation de l'invention.Thefigures 1A to 1E illustrate an example of a device and method according to the prior art and according to the invention. Thefigure 1A presents the main components of the device while thefigures 1B and 1C respectively represent a spatial and temporal distribution of the amplitude of a sliding magnetic field according to the prior art. Thefigures 1D and 1E respectively exhibit a spatial and temporal distribution of the amplitude of an unsteady sliding magnetic field according to embodiments of the invention. -
La
figure 2 représente une courbe dite de résonance de surface libre du marais, représentant des valeurs, dites critiques, de l'intensité et de la fréquence d'un courant d'induction auxquelles une résonance de la surface libre du marais apparaît, cela en mettant en œuvre un procédé de brassage électromagnétique.Thefigure 2 represents a curve known as the resonance of the free surface of the marsh, representing values, known as critical, of the intensity and the frequency of an induction current at which a resonance of the free surface of the marsh appears, this by implementing an electromagnetic mixing process. -
La
figure 3 est une radiographie d'une tranche verticale d'un produit obtenu en mettant en œuvre un premier exemple de procédé, représentatif de l'art antérieur, selon un premier exemple, dit exemple 1, représentatif de l'art antérieur.Thefigure 3 is an X-ray of a vertical slice of a product obtained by implementing a first example of a process, representative of the prior art, according to a first example, known as Example 1, representative of the prior art. -
La
figure 4 montre un exemple de profil de concentration en Zn le long d'une ligne horizontale de la tranche verticale représentée sur lafigure 3 et les zones d'analyse et de référence.Thefigure 4 shows an example of a Zn concentration profile along a horizontal line of the vertical slice shown in thefigure 3 and the analysis and reference areas. -
La
figure 5A montre les traitements numériques successivement effectués sur chaque profil obtenu avec une résolution de 0,1 mm. Lafigure 5B montre un profil résultant des traitements effectués.Thefigure 5A shows the digital processing successively carried out on each profile obtained with a resolution of 0.1 mm. Thefigure 5B shows a profile resulting from the treatments performed. -
Les
figures 6A et 6B illustrent des profils de caractérisation d'un produit obtenu en mettant en œuvre un procédé selon l'exemple 1. Lafigure 6A montre des profils de concentration en Zn le long de plusieurs lignes horizontales de la tranche verticale représentée sur lafigure 3 . Lafigure 6B montre les profils résultant des traitements numériques effectués.Thefigures 6A and 6B illustrate characterization profiles of a product obtained by implementing a process according to Example 1. Thefigure 6A shows Zn concentration profiles along several horizontal lines of the vertical slice shown on thefigure 3 . Thefigure 6B shows the profiles resulting from the digital processing performed. -
La
figure 7 montre des transformées de Fourier des profils représentés sur lafigure 6B .Thefigure 7 shows Fourier transforms of the profiles represented on thefigure 6B . -
La
figure 8 représente une courbe dite de résonance de surface libre du marais, obtenue en mettant en œuvre un procédé d'un deuxième exemple, dit exemple 2, selon l'invention.Thefigure 8 represents a curve known as the free surface resonance of the marsh, obtained by implementing a method of a second example, called example 2, according to the invention. -
Les
figures 9 ,10A ,10B et11 illustrent une caractérisation d'un produit obtenu en mettant en œuvre un procédé selon ce deuxième exemple. Lafigure 9 est une radiographie d'une tranche verticale du produit. Lafigure 10A montre des profils de concentration en Zn le long de plusieurs lignes horizontales de la tranche verticale représentée sur lafigure 9 . Lafigure 10B montre les profils résultant des traitements numériques effectués sur les profils illustrés sur lafigure 9 . Lafigure 11 montre des transformées de Fourier de ces différents profils.Thefigures 9 ,10A ,10B and11 illustrate a characterization of a product obtained by implementing a process according to this second example. Thefigure 9 is an x-ray of a vertical slice of the product. Thefigure 10A shows Zn concentration profiles along several horizontal lines of the vertical slice shown on thefigure 9 . Thefigure 10B show them profiles resulting from digital processing carried out on the profiles illustrated on thefigure 9 . Thefigure 11 shows Fourier transforms of these different profiles.
Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier.Unless otherwise indicated, all indications concerning the chemical composition of alloys are expressed as a percentage by weight based on the total weight of the alloy. The expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of the alloys is made in accordance with the regulations of The Aluminum Association, known to those skilled in the art.
La
Sous l'effet du refroidissement, une zone solide 1s se forme, à proximité de l'enceinte refroidie, autour d'une zone liquide 1ℓ, désignée par le terme « marais ». L'interface entre la zone liquide 1ℓ et la zone solide 1s est un front 10, ce dernier progressant vers le centre de la lingotière au fur et à mesure que la solidification de l'alliage a lieu. A l'issue du refroidissement, un lingot parallélépipédique, également désigné par le terme « produit », est formé.Under the effect of cooling, a
L'alliage est un alliage d'aluminium de la série 1XXX, 2XXX, 3XXX, 4XXX, 5XXX, 6XXX, 7XXX ou 8XXX. Les alliages dont la fraction massique en éléments d'alliage est supérieure à 1%, voire supérieure à 3% ou encore à 5% sont particulièrement adaptés à un procédé selon l'invention, car plus cette fraction massique de ces éléments d'alliages est importante, plus les macroségrégations intermittentes sont marquées. L'invention est particulièrement avantageuse pour les produits en alliage 2XXX, 5XXX, 6XXX ou 7XXX dont l'épaisseur est au moins égale à 400 mm voire 450 mm.The alloy is an aluminum alloy of the 1XXX, 2XXX, 3XXX, 4XXX, 5XXX, 6XXX, 7XXX or 8XXX series. Alloys in which the mass fraction of alloying elements is greater than 1%, or even greater than 3% or even more than 5% are particularly suitable for a process according to the invention, because the higher this mass fraction of these alloying elements is. important, the more the intermittent macrosegregations are marked. The invention is particularly advantageous for products made of a 2XXX, 5XXX, 6XXX or 7XXX alloy, the thickness of which is at least equal to 400 mm or even 450 mm.
On a représenté un générateur de champ magnétique 5, apte à générer un champ magnétique B destiné à être appliqué à la zone liquide 1ℓ de l'alliage. Un tel générateur peut être un aimant permanent ou un inducteur électromagnétique, ce dernier générant un champ magnétique lorsqu'il est parcouru par un courant électrique, dit courant d'induction.There is shown a
Le champ magnétique B appliqué à la zone liquide 1ℓ est un champ alternatif, d'amplitude B 0 et de fréquence f. L'effet de ce champ magnétique est d'appliquer un brassage du marais, sous l'effet de forces de Lorentz s'appliquant sur la zone liquide métallique 1ℓ. En effet, l'application d'un champ magnétique B engendre, dans l'alliage, la formation d'un courant électrique J résultant, au sein de la zone liquide de l'alliage soumis au champ magnétique, en l'apparition d'une force de Lorentz F telle que F ∝ J × B où × désigne l'opérateur produit vectoriel, et ∝ désigne une relation de proportionnalité. Cette force de Lorentz présente une composante oscillante à une fréquence double de la fréquence f du champ magnétique.The magnetic field B applied to the liquid zone 1ℓ is an alternating field, of amplitude B 0 and of frequency f . The effect of this magnetic field is to apply a mixing of the marsh, under the effect of Lorentz forces applying to the metallic liquid zone 1ℓ. Indeed, the application of a magnetic field B generates, in the alloy, the formation of an electric current J resulting, within the liquid zone of the alloy subjected to the magnetic field, in the appearance of a Lorentz force F such that F ∝ J × B where × denotes the vector product operator, and ∝ denotes a relation of proportionality. This Lorentz force exhibits an oscillating component at a frequency twice the frequency f of the magnetic field.
Du fait de l'épaisseur de la lingotière, la fréquence f est choisie de manière à permettre une pénétration suffisante du champ magnétique B dans le marais, de façon à obtenir un brassage efficace du liquide. La fréquence f est d'autant plus faible que l'épaisseur du produit est élevée. Dans le cas d'un alliage d'aluminium d'épaisseur supérieure à 300 mm, la fréquence est de préférence inférieure à 5 Hz, et de façon encore plus avantageuse inférieure à 2 Hz ou à 1Hz.Due to the thickness of the mold, the frequency f is chosen so as to allow sufficient penetration of the magnetic field B in the swamp, so as to obtain efficient mixing of the liquid. The frequency f is all the lower the greater the thickness of the product. In the case of an aluminum alloy with a thickness greater than 300 mm, the frequency is preferably less than 5 Hz, and even more advantageously less than 2 Hz or 1 Hz.
Le générateur 5 est apte à générer un champ magnétique glissant. Le terme champ magnétique glissant désigne un champ magnétique alternatif, dont l'amplitude B 0 n'est pas constante, et varie entre une valeur minimale et une amplitude maximale
La distance λ séparant deux maximas d'amplitude du champ magnétique est la longueur d'onde du champ magnétique glissant. La
Un générateur de champ magnétique glissant 5 peut être constitué par plusieurs inducteurs électromagnétiques disposés autour de l'enceinte périphérique. La force de Lorentz, en un point de coordonnées r du marais, comporte une composante oscillante, modulée selon une fréquence 2f double de la fréquence du champ magnétique. L'amplitude F 0 de la densité de force de Lorentz oscillante peut être explicitée selon l'expression :
On peut définir une vitesse de glissement VG du champ magnétique VG = fλ (2) auquel cas l'expression (1) peut être exprimée comme suit :
Ainsi, l'amplitude de la force de Lorentz, en un point r du marais dépend du carré de l'amplitude du champ magnétique appliqué en ce point. L'application d'un champ magnétique glissant se traduit, en un point du marais, par une modulation de son amplitude. Ainsi, l'amplitude du champ magnétique en un point du marais varie en fonction du temps, entre une amplitude minimale
Les inventeurs ont constaté qu'en modulant, dans le temps, l'amplitude maximale de la force de Lorentz Fmax se propageant dans le marais, les macroségrégations intermittentes sont atténuées, voire disparaissent, et cela particulièrement sur des lingots dont l'épaisseur est supérieure à 300 mm.The inventors have observed that by modulating, over time, the maximum amplitude of the Lorentz force F max propagating in the marsh, the intermittent macrosegregations are attenuated, or even disappear, and this particularly on ingots whose thickness is greater than 300 mm.
Cette modulation temporelle peut être obtenue par une variation d'un paramètre, dit paramètre magnétique de force, commandant l'amplitude de la densité de force de Lorentz explicitée dans les équations (1) et (3), par exemple :
- la valeur de l'amplitude maximale
- de la fréquence f du champ magnétique ;
- la longueur d'onde λ du champ magnétique glissant.
- the value of the
maximum amplitude - the frequency f of the magnetic field;
- the wavelength λ of the sliding magnetic field.
Lorsque le champ magnétique glissant est généré par une pluralité d'inducteurs électromagnétiques disposés à la périphérie de la lingotière, la modulation temporelle de la densité de force de Lorentz peut être obtenue en modifiant le pas polaire, c'est-à-dire le déphasage entre les courants d'induction circulant dans chaque inducteur. Une telle modification permet de faire varier la longueur d'onde λ du champ magnétique glissant, c'est-à-dire la distance entre deux maximas se propageant selon l'axe de propagation. La fréquence du courant d'induction circulant dans les inducteurs peut être variable, ce qui modifie la fréquence f du champ magnétique. L'amplitude du courant d'induction peut également être variable, ce qui modifie la valeur de l'amplitude maximale
De ce fait, dans les exemples représentés sur les
La modulation temporelle d'un paramètre de force est mise en œuvre pendant la coulée, durant une durée significative, de préférence supérieure à 50% voire à 80% de la durée de la coulée. Cette modulation temporelle peut par exemple être appliquée durant au moins 30 minutes, voire au moins 1 heure.The temporal modulation of a force parameter is implemented during the casting, for a significant period, preferably greater than 50% or even 80% of the duration of the casting. This temporal modulation can for example be applied for at least 30 minutes, or even at least 1 hour.
Un champ magnétique glissant B peut notamment être généré à partir de deux inducteurs disposés sur une même face du lingot. Les inducteurs sont disposés de préférence face à une grande face du lingot, c'est-à-dire une des deux faces du lingot présentant la plus grande section verticale. Les inducteurs peuvent être superposés l'un à l'autre, de façon à engendrer un déphasage dit vertical, ou disposés côte à côte, de façon à engendrer un déphasage horizontal. Dans les exemples décrits ci-après, on a utilisé un dispositif décrit dans la demande
Le champ magnétique glissant peut également être généré à partir d'un ou plusieurs aimants permanents disposés à la périphérie de la lingotière et mis en mouvement par rapport à cette dernière. Par exemple, il est possible de générer un champ magnétique glissant en faisant tourner un aimant permanent.The sliding magnetic field can also be generated from one or more permanent magnets arranged at the periphery of the mold and set in motion with respect to the latter. For example, it is possible to generate a sliding magnetic field by rotating a permanent magnet.
Une variation des paramètres du champ magnétique glissant, qu'il s'agisse de son amplitude, de sa fréquence ou de sa longueur d'onde permet d'appliquer une force de Lorentz non stationnaire dans le marais. Les inventeurs ont constaté que cela permet d'atténuer l'apparition des macroségrégations intermittentes voire de les faire disparaître. De telles conditions influent probablement sur les recirculations se produisant spontanément dans le marais, et réduisent leurs conséquences.A variation of the parameters of the sliding magnetic field, be it its amplitude, its frequency or its wavelength, makes it possible to apply a non-stationary Lorentz force in the swamp. The inventors have observed that this makes it possible to attenuate the appearance of intermittent macrosegregations or even to make them disappear. Such conditions probably influence the recirculations occurring spontaneously in the marsh, and reduce their consequences.
De préférence, dans le marais, la vitesse de variation de la densité maximale de force de Lorentz est supérieure à 0.05 N.m-3.s-1, et de préférence supérieure à 0.1 N.m-3.s-1, et de préférence supérieure à 0.2 N.m-3.s-1. Dans un mode de réalisation la vitesse maximale de variation de la densité maximale de force de Lorentz pendant la coulée est au moins de 1 N.m-3.s-1 et de préférence au moins de 2 N.m-3.s-1.Preferably, in the marsh, the rate of variation of the maximum Lorentz force density is greater than 0.05 Nm -3 .s -1 , and preferably greater than 0.1 Nm -3 .s -1 , and preferably greater than 0.2 Nm -3 .s -1 . In one embodiment, the maximum rate of variation of the maximum Lorentz force density during casting is at least 1 Nm -3 .s -1 and preferably at least 2 Nm -3 .s -1 .
De préférence, la variation d'un ou plusieurs paramètres de force a lieu dans un intervalle temporel inférieur ou égal aux durées caractéristiques des recirculations générées par convection naturelle. Ces durées varient selon l'épaisseur du lingot et de la vitesse de coulée. En considérant des épaisseurs e comprises entre 300 mm et 700 mm, et des vitesses de coulée comprises entre 30 mm/min et 80 mm/min, les durées caractéristiques des recirculations s'étendent entre 20 secondes (épaisseur de 300 mm, vitesse de coulée de 30 mm/min) et 10 minutes (épaisseur de 700 mm, vitesse de coulée de 80 mm/min). Ainsi, les paramètres de force varient dans un intervalle temporel Δt déterminé en fonction de ces durées caractéristiques. Par variation, on entend une variation significative, d'au moins 10% du paramètre de force considéré, et de préférence d'au moins 20% voire 30% du paramètre de force.Preferably, the variation of one or more force parameters takes place in a time interval less than or equal to the characteristic durations of the recirculations generated by natural convection. These times vary depending on the thickness of the ingot and the casting speed. Considering thicknesses e between 300 mm and 700 mm, and casting speeds of between 30 mm / min and 80 mm / min, the characteristic times of recirculations extend between 20 seconds (thickness of 300 mm, casting speed of 30 mm / min) and 10 minutes (thickness of 700 mm, casting speed of 80 mm / min). Thus, the force parameters vary in a time interval Δ t determined as a function of these characteristic times. The term “variation” is understood to mean a significant variation of at least 10% of the force parameter considered, and preferably of at least 20% or even 30% of the force parameter.
La variation d'un paramètre de force peut être périodique, la période temporelle de variation pouvant être de l'ordre d'une durée caractéristique de recirculation, c'est-à-dire être comprise entre 20 secondes et 10 minutes selon les conditions de dimensions et de vitesse de la coulée. De préférence, dans le marais, pendant la période temporelle de variation, la densité maximale de force de Lorentz varie d'au moins 30 N.m-3, et avantageusement d'au moins 40 N.m-3, et de préférence d'au moins 50 N.m-3, et encore plus préférentiellement d'au moins 60 N.m-3.The variation of a force parameter can be periodic, the time period of variation being of the order of a characteristic recirculation duration, that is to say between 20 seconds and 10 minutes depending on the conditions of dimensions and speed of the casting. Preferably, in the marsh, during the time period of variation, the maximum density Lorentz force varies by at least 30 Nm -3 , and advantageously at least 40 Nm -3 , and preferably at least 50 Nm -3 , and even more preferably at least 60 Nm -3 .
La variation d'un paramètre de force peut également être monotone au cours de la coulée, par exemple selon une fonction croissante ou décroissante entre le début et la fin de la coulée, la valeur du paramètre de force variant de façon continue ou par incréments successifs.The variation of a force parameter can also be monotonic during the casting, for example according to an increasing or decreasing function between the start and the end of the casting, the value of the force parameter varying continuously or in successive increments. .
Avantageusement, au cours de la coulée, la force de Lorentz d'intensité maximale n'est pas égale à zéro. Typiquement, elle est égale à zéro lorsque le courant dans les inducteurs ou les bobines est égale à zéro. Donc de manière avantageuse, la variation du paramètre de force n'est pas obtenue par une interruption périodique du champ glissant.Advantageously, during the casting, the Lorentz force of maximum intensity is not equal to zero. Typically, it is zero when the current in the inductors or coils is zero. So advantageously, the variation of the force parameter is not obtained by a periodic interruption of the sliding field.
Avantageusement, au cours de la coulée, la force de Lorentz d'intensité maximale est supérieure à 80 N/m3, de préférence supérieure à 100 N/m3, de préférence supérieure à 120 N/m3, de manière encore plus préférée supérieure à 140 N/m3. Les inventeurs ont en effet constaté que la suppression des macroségrégations intermittentes n'était pas optimum lorsque la force était trop faible comme le montre l'exemple 5 (
Selon un mode de réalisation, la fréquence f et/ou l'amplitude maximale
En considérant différentes valeurs critiques de fréquence (ou d'intensité), il est possible de déterminer expérimentalement une courbe de résonance R, dans un plan fréquence/intensité correspondant aux différents couples (fréquence/intensité) auxquels une résonance est observée à la surface libre du marais. A partir de cette courbe R, on détermine une plage de variation de l'intensité et/ou de la fréquence, de façon à éviter ou limiter l'apparition d'une résonance de la surface libre du marais. En effet, la courbe de résonance délimite une zone de stabilité et une zone d'instabilité, dans laquelle la coulée peut devenir dangereuse. Cependant, le fait de moduler la fréquence ou l'intensité du courant d'induction, et donc la fréquence f ou l'amplitude maximale
Une telle courbe de résonance R dépend des conditions de coulée, c'est-à-dire des dimensions de la lingotière, de la vitesse de coulée, de la configuration du champ magnétique appliqué, cette dernière dépendant du générateur de champ magnétique, c'est-à-dire des inducteurs ou du ou des aimants permanents utilisés. Une courbe de résonance R est représentée sur la
De manière préférée, le procédé comporte une variation de la fréquence du courant d'induction parcourant un inducteur. Les inventeurs ont trouvé qu'il était avantageux de faire varier la fréquence car la variation de pénétration du champ qui en résulte permet de faire varier plus efficacement le gradient de force dans l'épaisseur et la profondeur du puits liquide. Par ailleurs, l'électronique de puissance fait que la variation de fréquence est plus rapide que la variation d'intensité ; ce qui donne un degré de liberté supplémentaire vers les périodes plus faibles de forçage instationnaire. Il est en effet avantageux de découpler les temps caractéristiques hydrodynamiques des temps caractéristiques de la solidification pour éviter les macroségrégations intermittentes.Preferably, the method comprises a variation of the frequency of the induction current flowing through an inductor. The inventors have found that it is advantageous to vary the frequency because the variation in the penetration of the field which results therefrom makes it possible to vary the force gradient in the thickness and the depth of the liquid well more effectively. In addition, the power electronics make the frequency variation faster than the variation intensity; which gives an additional degree of freedom towards the weaker periods of unsteady forcing. It is in fact advantageous to decouple the hydrodynamic characteristic times from the characteristic solidification times in order to avoid intermittent macrosegregations.
Un autre exemple de courbe est représenté sur la
La variation d'un ou plusieurs paramètres de force peut notamment permettre d'alterner des périodes durant lesquelles le nombre adimensionnel de Hartmann Ha est respectivement faible, typiquement inférieur à 1, et élevé, typiquement supérieur à 3, voire 5. Le nombre adimensionnel de Hartmann Ha est un nombre couramment utilisé dans le domaine de la magnétohydrodynamique. Il représente un ratio entre la viscosité magnétique et la viscosité d'un liquide chargé s'écoulant dans un champ magnétique. Plus ce nombre est important, plus la contribution des forces de Lorentz est importante. De préférence le nombre adimensionnel de Hartmann Ha alterne avec un ratio entre valeurs faibles et fortes d'au moins 3 ou d'au moins 5. Une telle configuration est préférée, car elle permet d'alterner des périodes durant lesquelles l'énergie cinétique appliquée par le champ magnétique s'oppose à la convection naturelle du métal liquide, et des périodes durant lesquelles la convection naturelle prédomine.The variation of one or more force parameters can in particular make it possible to alternate periods during which the dimensionless number of Hartmann Ha is respectively low, typically less than 1, and high, typically greater than 3, or even 5. The dimensionless number of Hartmann Ha is a number commonly used in the field of magnetohydrodynamics. It represents a ratio between the magnetic viscosity and the viscosity of a charged liquid flowing in a magnetic field. The greater this number, the greater the contribution of Lorentz forces. Preferably, the dimensionless Hartmann Ha number alternates with a ratio between weak and strong values of at least 3 or of at least 5. Such a configuration is preferred, since it makes it possible to alternate periods during which the kinetic energy applied. by the magnetic field opposes the natural convection of the liquid metal, and periods during which natural convection predominates.
Comme décrit en lien avec les exemples présentés ci-après, les produits obtenus par un procédé selon l'invention présentent une macroségrégation intermittente limitée par rapport à des procédés de l'art antérieur, voire non perceptible. Dans les exemples qui suivent, la caractérisation des produits a été réalisée en analysant des profils horizontaux (selon l'axe TC) d'une radiographie réalisée à mi-largeur selon un plan vertical L/TC, ces profils étant étalonnés pour obtenir la distribution spatiale d'éléments d'alliage lourds de type Zn ou Cu. Les zones enrichies en tels éléments lourds, plus absorbantes, apparaissent sous la forme de taches sombres sur le négatif des radiographies effectuées et donc des taches claires sur les radiographies présentées. Un exemple d'obtention du profil de concentration en Zn à partir d'une radiographie d'un alliage Al-Zn est présenté sur la
Les termes L , TL et TC, connus de l'homme du métier, correspondent respectivement à la dimension du lingot selon l'axe vertical, l'axe dit « travers long » et selon l'axe dit « travers court ».The terms L, TL and TC, known to those skilled in the art, correspond respectively to the dimension of the ingot along the vertical axis, the so-called “long transverse” axis and along the so-called “short transverse” axis.
De façon complémentaire ou alternative, on peut réaliser des analyses chimiques selon des profils horizontaux, de façon à quantifier la distribution spatiale desdits éléments chimiques selon l'axe TC. Une macroségrégation intermittente peut être caractérisée par un écart maximal en masse d'un élément d'alliage, en l'occurrence Zn, dans la zone la plus marquée par les macroségrégations intermittentes, c'est-à-dire au voisinage de T/2.5.Complementarily or alternatively, chemical analyzes can be carried out along horizontal profiles, so as to quantify the spatial distribution of said chemical elements along the TC axis. Intermittent macrosegregation can be characterized by a maximum deviation in mass of an alloying element, in this case Zn, in the zone most marked by intermittent macrosegregation, that is to say in the vicinity of T / 2.5 .
Pour quantifier la macroségrégation intermittente, les profils de concentration, obtenus par radiographie ou par toute autre méthode, avec une résolution spatiale de 0,1 mm ont été traités comme illustré sur la
On peut alors calculer un écart maximal de concentration dans une zone d'analyse ZA située entre T/2.3 et T/3.3, cet écart maximal pouvant être exprimé selon l'équation suivante :
L'élément considéré est un élément dont la teneur en poids dans l'alliage est supérieure ou égale à 0.5%. Il peut s'agir, de préférence, de l'élément majeur de l'alliage, le terme élément majeur correspondant à la définition donnée par The Aluminum Association.The element considered is an element whose content by weight in the alloy is greater than or equal to 0.5%. It may preferably be the major element of the alloy, the term major element corresponding to the definition given by The Aluminum Association.
L'écart maximal ΔCZA peut être normalisé par la concentration nominale C0 de l'élément considéré. Les produits selon l'invention présentent de préférence une valeur d'un tel ratio normalisé inférieure à 10% et de préférence inférieure à 8% ou même inférieure à 6 %. Cependant la valeur absolue de ΔCZA peut être influencée par l'épaisseur du produit, la nature de l'élément considéré, notamment son coefficient de partage et/ou sa concentration. Il est donc utile pour caractériser les produits obtenus par le procédé selon l'invention de calculer, à titre de référence, un écart maximal dans une zone de référence ZR peu sensible aux macroségrégations intermittentes, située entre T/6 et T/12, cet écart maximal pouvant être exprimé selon l'équation suivante:
On obtient ainsi un critère de dispersion ε permettant d'évaluer pour l'élément considéré la macroségrégation intermittente :
Pour s'affranchir de variations locales de composition, il est avantageux, pour déterminer ΔCZA et ΔCZR , de calculer une moyenne sur au moins 5 profils de concentration distants d'au moins 10 mm.To avoid local variations in composition, it is advantageous, in order to determine Δ C ZA and ΔC ZR , to calculate an average over at least 5 concentration profiles at least 10 mm apart.
Plus ε est faible, moins les macroségrégations intermittentes sont marquées. Les produits obtenus par le procédé selon l'invention ont de préférence un critère de dispersion ε inférieur à 3.3, de préférence inférieur à 3, plus avantageusement inférieur à 2.5, encore plus avantageusement inférieur à 2 et de manière préférée inférieur à 1.5.The weaker ε, the less marked the intermittent macrosegregations. The products obtained by the process according to the invention preferably have a dispersion criterion ε less than 3.3, preferably less than 3, more advantageously less than 2.5, even more advantageously less than 2 and preferably less than 1.5.
Selon une nomenclature connue de l'homme du métier, T/n désigne une distance par rapport à un bord du lingot, selon un axe horizontal, T/2 correspondant au centre du lingot.According to a nomenclature known to those skilled in the art, T / n denotes a distance from an edge of the ingot, along a horizontal axis, T / 2 corresponding to the center of the ingot.
Il est également utile de réaliser une analyse par transformée de Fourier du profil brut de composition et de le normaliser par la composition nominale de l'élément. Une telle analyse permet d'identifier des périodes spatiales caractérisant la macroségrégation intermittente. La macroségrégation intermittente présente des périodes comprises entre 8 et 25 mm. Quand la macroségrégation intermittente est importante, on observe donc un pic de l'amplitude des composantes de Fourier pour des périodes spatiales comprises entre 8 et 25 mm. On détermine un critère adimensionnel d'intensité spectrale ζ qui correspond à l'amplitude maximale des composantes de Fourier dans une plage de période spatiale comprise entre 8 et 25 mm, normalisée par la concentration nominale C0 de l'élément considéré. Les produits obtenus par le procédé selon l'invention ont de préférence un critère ζ inférieur à 0.01, de préférence inférieur à 0.007 et de manière préférée inférieur à 0.005.It is also useful to perform a Fourier transform analysis of the raw composition profile and normalize it by the nominal composition of the element. Such an analysis makes it possible to identify spatial periods characterizing intermittent macrosegregation. Intermittent macrosegregation has periods between 8 and 25 mm. When intermittent macro-segregation is important, we therefore observe a peak in the amplitude of the Fourier components for spatial periods between 8 and 25 mm. One determines an adimensional criterion of spectral intensity ζ which corresponds to the maximum amplitude of Fourier components in a spatial period range between 8 and 25 mm, normalized by the nominal concentration C 0 of the element considered. The products obtained by the process according to the invention preferably have a criterion critère less than 0.01, preferably less than 0.007 and preferably less than 0.005.
Les critères de dispersion ε et d'intensité spectrale ζ sont avantageusement appliqués à l'élément majeur de l'alliage considéré, typiquement au Zn pour un alliage 7xxx ou au Cu pour un alliage 2xxx. On peut également appliquer ces critères à la somme de deux éléments, par exemple la somme Zn + Cu dans certains alliages 7xxx ou la somme Mg + Si dans les alliages 6xxx. Ces critères peuvent également s'appliquer à un élément dont la teneur en poids dans l'alliage est supérieure ou égale à 0. 5% ou à la somme de deux éléments de l'alliage dont la teneur individuelle est supérieure à 0.5%,The criteria of dispersion ε and of spectral intensity ζ are advantageously applied to the major element of the alloy in question, typically to Zn for a 7xxx alloy or to Cu for a 2xxx alloy. These criteria can also be applied to the sum of two elements, for example the sum of Zn + Cu in certain 7xxx alloys or the sum of Mg + Si in the 6xxx alloys. These criteria can also be applied to an element whose content by weight in the alloy is greater than or equal to 0.5% or to the sum of two elements of the alloy whose individual content is greater than 0.5%,
Dans le cas où l'on considère la somme de deux éléments, les valeurs pour normaliser l'écart maximal ΔC ZA, et/ou la transformée de Fourier correspondent à la somme des concentrations nominales des éléments considérés.In the case where the sum of two elements is considered, the values for normalizing the maximum deviation Δ C ZA , and / or the Fourier transform correspond to the sum of the nominal concentrations of the elements considered.
Les lingots de section rectangulaire obtenus par le procédé selon l'invention peuvent être utilisés tels que coulés ou après corroyage, optionnellement après mise en solution et trempe et vieillissement pour les alliages à durcissement structural. Avantageusement les lingots de section rectangulaire obtenus par le procédé selon l'invention sont laminés et/ou forgés.The rectangular cross-section ingots obtained by the process according to the invention can be used as they are cast or after wringing, optionally after dissolution and quenching and aging for the alloys with age hardening. Advantageously, the ingots of rectangular section obtained by the process according to the invention are rolled and / or forged.
On a réalisé une coulée d'un alliage AA7035 sans brassage électromagnétique. La composition de l'alliage coulé comprenant une concentration nominale en Zn de 5,6 % en poids, une concentration nominale en Mg de 1.3% en poids. Le format du lingot était de 1650 mm x 525 mm. Cet exemple est représentatif de l'art antérieur. L'affinage du grain a été réalisé avec une concentration d'affinant AITiB 5 :1 de 1Kg/t. La vitesse de coulée était de 35 mm/min. La
La valeur des écarts maximaux de la teneur en Zn était 0,75% en poids pour ΔCZA et 0,19% en poids pour ΔCZR, la valeur des écarts maximaux normalisés dans la zone d'analyse et dans la zone de référence étant ainsi respectivement 13.3% et 3.5%. La valeur du critère de dispersion ε tel que défini par l'équation (6) était 3.9. La transformée de Fourier de chaque profil a été calculée, et est représentée sur la
Au cours d'un deuxième exemple, on a réalisé une coulée d'un alliage AA7035 avec un brassage électromagnétique. La composition de l'alliage coulaitr comprenait une concentration nominale en cen Zinc de 5,6 % en poids et une concentration nominale en Magnésium de 1.3% en poids.. Le format du lingot était de 1650 mm x 525 mm. L'affinage du grain a été réalisé avec une concentration d'affinant AITiB 5 :1 de 1Kg/t. La vitesse de coulée s'élevait à 35 mm/min. Le brassage électromagnétique a été obtenu par la mise en place, en regard de chaque face L/TL du lingot, (correspondant à un plan YZ dans le repère indiqué sur la
La
La valeur des écarts maximaux de la teneur en Zn était 0,24% en poids pour ΔCZA et 0,28% en poids pour ΔCZR, la valeur des écarts maximaux normalisés dans la zone d'analyse et dans la zone de référence étant respectivement 4.3% et 5%. La valeur du critère de dispersion ε telle que définie par l'équation (6) était 0,9 : la macroségrégation intermittente dans la zone d'analyse entre T/2.3 et T/3.3 a été éliminée. La transformée de Fourier de chaque profil a été calculée, et est représentée sur la
Dans cet exemple, on a réalisé une coulée d'un alliage AA 7050 sans brassage électromagnétique. La composition de l'alliage était de 6.3% en poids de Zn, de 2.2% en poids de Mg et de 2.1% en poids de Cu. Le format du lingot était 1650x525mm. L'affinage du grain est effectué à l'aide d'un fil affinant AITiC3 :0.15 avec un taux d'ajout de 1kg/tonne. La vitesse de coulée était de 45mm/min. Il constitue la référence de l'exemple 4.In this example, an AA 7050 alloy was cast without electromagnetic stirring. The composition of the alloy was 6.3% by weight Zn, 2.2% by weight Mg and 2.1% by weight Cu. The format of the ingot was 1650x525mm. The grain refining is carried out using an AITiC3: 0.15 refining wire with an addition rate of 1 kg / tonne. The casting speed was 45mm / min. It constitutes the reference of Example 4.
La
Dans cet exemple, on a réalisé une coulée d'alliage en AA 7050. La composition de l'alliage était de 6.3% en poids de Zn, de 2.2% en poids de Mg et de 2.1% en poids de Cu. La section du lingot était de 1650x525mm. L'affinage du grain est effectué à l'aide d'un fil affinant AITiC3 :0.15 avec un taux d'ajout de 1kg/tonne. La vitesse de coulée était de 45mm/min. Le brassage électromagnétique a été obtenu par la mise en place, en regard de chaque face L/TL du lingot, (correspondant à un plan YZ dans le repère indiqué sur la
La
Sur la
Dans cet exemple, on a réalisé une coulée d'alliage AA7050 La composition de l'alliage était de 6.3% en poids de Zn, de 2.2% en poids de Mg et de 2.1% en poids de Cu, les teneurs des autres éléments étaient toutes inférieures à 0.5% en poids. La section du lingot était de 1650x525mm. L'affinage du grain est effectué à l'aide d'un fil affinant AlTiC3 :0.15 avec un taux d'ajout de 1kg/tonne. La vitesse de coulée était de 45mm/min. Le brassage électromagnétique a été obtenu par la mise en place, en regard de chaque face L/TL du lingot, (correspondant à un plan YZ dans le repère indiqué sur la
Le forçage instationnaire a été obtenu par l'imposition d'une variation à partir de zéro de l'intensité du courant électrique alternatif qui parcourait les bobines, tel qu'illustré par les flèches dans le diagramme fréquence vs intensité de la
Les résultats obtenus sont illustrés par les deux tranches verticales radiographiées représentées sur les
Sur la
Sur la
On observe ainsi que la suppression des macroségrégations intermittentes est améliorée si la force est supérieure à 140 N/m3. En effet, lorsque la force est trop faible, on constate que les valeurs du critère de dispersion ε d'intensité spectrale ζ sont supérieures aux valeurs préférées de l'invention. Les inventeurs supposent ainsi qu'un forçage instationnaire qui consisterait à interrompre périodiquement le champ glissant ne permettrait pas de supprimer de manière avantageuse les macroségrégations intermittentes.It is thus observed that the suppression of intermittent macrosegregations is improved if the force is greater than 140 N / m 3 . Indeed, when the force is too low, it is observed that the values of the dispersion criterion ε of spectral intensity ζ are greater than the preferred values of the invention. The inventors thus assume that an unsteady forcing which would consist of periodically interrupting the sliding field would not make it possible to advantageously suppress the intermittent macrosegregations.
Claims (14)
- Method for casting an aluminium alloy ingot in a substantially rectangular ingot mould comprising the following steps:- preparing the aluminium alloy;- casting the aluminium alloy in the ingot mould, along a vertical casting axis, the alloy being cooled, during the casting, by a runoff of a coolant in contact with the solidified metal;- during the casting, application of a magnetic field of which the amplitude (B0) is periodically varied according to a frequency (f), said magnetic field being generated by at least one magnetic field generator arranged at the periphery of the ingot mould, in such a way as to apply a Lorentz force (F) at different points of a liquid portion of the alloy in the process of solidification;- the magnetic field applied being a traveling magnetic field, propagating along an axis of propagation, in such a way that a maximum amplitudethe method being characterised in that a magnetic parameter referred to as a force parameter, governing the Lorentz force of maximum intensity (Fmax ), is variable in a predetermined time interval (Δt), said parameter being:▪ and/or said frequency (f) of the magnetic field;▪ and/or the propagation wavelength (λ) of the magnetic field;in such a way as to obtain a modulation, in said time interval, of said Lorentz force of maximum intensity (Fmax ) propagating along the axis of propagation.
- Method according to claim 1, wherein the section of the ingot mould, in a horizontal plane, defines a thickness (e) and a length (ℓ), the thickness being less than or equal to the length, the thickness being greater than 300 mm and preferably at least 400 mm.
- Method according to any of the preceding claims, wherein the frequency of the magnetic field is less than 5 Hz, or 2 Hz or 1 Hz.
- Method according to any of the preceding claims wherein, the Lorentz force of maximum intensity (Fmax ), propagating along the axis of propagation, varies by at least 30 N.m-3 in a time interval (Δt) between 20 seconds and 10 minutes.
- Method according to any of the preceding claims wherein, the magnetic field is such that the absolute value of the variation of the density of the maximum Lorentz force is greater than or equal to 0.05 N.m-3.s-1 during said time interval (Δt).
- Method according to any of the preceding claims, wherein the axis of propagation of the maximum amplitude of the magnetic field belongs to a plane parallel to the direction of casting.
- Method according to any of the preceding claims, wherein during the casting, the variation in the force parameter is periodical, the period being between 20s and 20 minutes, or between 1 minute and 15 minutes, or between 2 minutes and 10 minutes.
- Method according to any of the preceding claims, wherein the generators are electromagnetic inducers, each electromagnetic inducer having a current flowing through it referred to as induction current, the method comprising, during said time interval:- a variation in the intensity of the induction current;- and/or a variation of a frequency of the induction current;- and/or a variation of a distance between an electromagnetic inducer and the ingot mould.
- Method according to claim 8, comprising a variation in the intensity or in the frequency of the induction current flowing through an inducer, the method comprising:- a prior step of defining at least one critical value of the intensity and of the frequency of the induction current generating, on a free surface (1sup) of the aluminium alloy flowing in the ingot mould, a resonant wave;- a determination of a range of variation in the intensity or in the frequency of the induction current according to said critical value defined beforehand.
- Method according to claim 9 comprising, during said prior step, a definition of a plurality of critical values of the intensity and of the frequency of the induction current, in such a way as to define a resonance curve (R), representing the values of intensity and of frequency generating a resonance of said free surface, the method comprising a determination of a range of variation in the intensity or in the frequency of the induction current in a range delimited by said resonance curve.
- Method according to any of claims 1 to 7, wherein at least one generator is a permanent magnet, the method comprising:- a variation in a distance between the permanent magnet and the ingot mould;- and/or a rotation of the permanent magnet, and a variation in the rotation speed of the magnet;- and/or a rotation of two permanent magnets.
- Method according to any of the preceding claims, wherein the aluminium alloy is chosen from alloys of types 2XXX, 5XXX, 6XXX or 7XXX and wherein the thickness is at least 400 mm or 450 mm.
- Aluminium alloy ingot, obtained by the method object of any of claims 1 to 12 having, for an element of the alloy, of which the content by weight is greater than 0.5%, or for the sum of two elements of the alloy of which the individual content by weight is greater than 0.5%, a dispersion criterion less than 3.3, preferably less than 3, more advantageously less than 2.5, even more advantageously less than 2 and preferably less than 1.5, the dispersion criterion being defined according to the following expressions:- max (CZA) and min (CZA) respectively designate the maximum and minimum concentrations of the element considered or of the sum of the two elements considered measured in a zone of analysis (ZA), having intermittent macrosegregations, for example between T/2.3 and T/3.3;- max (CZR) and min (CZR) respectively designate the maximum and minimum concentrations of the element considered or of the sum of the two elements considered measured in a reference zone (ZR), considered as little affected by the intermittent macrosegregations, for example between T/6 and T/12;said concentrations being measured on at least one profile established at mid-width in a vertical plane L/TC and according to the direction TC, said profile being representative of said intermittent macrosegregations of the element considered according to the direction TC.
- Aluminium alloy ingot, according to claim 13 of which a spectral intensity criterion (ζ) is less than 0.01, preferably less than 0.007 and preferably less than 0.005, said spectral intensity criterion being calculated by:- Determining a maximum amplitude of a Fourier transform of a profile representative of an intermittent macrosegregation of an element of which the content by weight is greater than 0.5% or the sum of two elements of the alloy of which the individual content is greater than 0.5%, the profile being established according to said direction TC, said maximum amplitude being determined in a range of spatial periods between 8 and 25 mm,- standardising said maximum amplitude by a nominal concentration C0 of said element or by the sum of the nominal concentrations of the two elements considered.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1654834A FR3051698B1 (en) | 2016-05-30 | 2016-05-30 | METHOD OF MANUFACTURING LAMINATION INGOTS BY VERTICAL CASTING OF AN ALUMINUM ALLOY |
PCT/FR2017/051195 WO2017207886A1 (en) | 2016-05-30 | 2017-05-17 | Method for producing sheet ingots by vertical casting of an aluminium alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3463716A1 EP3463716A1 (en) | 2019-04-10 |
EP3463716B1 true EP3463716B1 (en) | 2021-02-17 |
Family
ID=56322234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17731208.9A Active EP3463716B1 (en) | 2016-05-30 | 2017-05-17 | Method for producing sheet ingots by vertical casting of an aluminium alloy |
Country Status (8)
Country | Link |
---|---|
US (1) | US20210220905A1 (en) |
EP (1) | EP3463716B1 (en) |
CN (1) | CN109311081A (en) |
CA (1) | CA3024166A1 (en) |
ES (1) | ES2858125T3 (en) |
FR (1) | FR3051698B1 (en) |
RU (1) | RU2018145016A (en) |
WO (1) | WO2017207886A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3074072B1 (en) * | 2017-11-27 | 2022-02-11 | Constellium Issoire | LOW SPEED, LOW FREQUENCY ALUMINUM CASTING PROCESS |
WO2019175884A1 (en) * | 2018-03-14 | 2019-09-19 | Nord Israel Research And Development Ltd. | Method of optimizing electromagnetic stirring in metallurgical technologies |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3842895A (en) * | 1972-01-10 | 1974-10-22 | Massachusetts Inst Technology | Metal alloy casting process to reduce microsegregation and macrosegregation in casting |
FR2530510B1 (en) | 1982-07-23 | 1985-07-05 | Cegedur | ELECTROMAGNETIC CASTING PROCESS FOR METALS IN WHICH AT LEAST ONE MAGNETIC FIELD DIFFERENT FROM THE CONTAINMENT FIELD |
JPS61253153A (en) * | 1985-05-02 | 1986-11-11 | Kobe Steel Ltd | Production of hot workable phosphor-bronze |
GB9013199D0 (en) * | 1990-06-13 | 1990-08-01 | Alcan Int Ltd | Apparatus and process for direct chill casting of metal ingots |
US5246060A (en) | 1991-11-13 | 1993-09-21 | Aluminum Company Of America | Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot |
SE514946C2 (en) * | 1998-12-01 | 2001-05-21 | Abb Ab | Method and apparatus for continuous casting of metals |
CN1425519A (en) * | 2002-10-25 | 2003-06-25 | 东北大学 | Aluminium alloy low frequency electromagnetic oscillation semicontinuous casting crystal grain fining method and device |
DE102007038281B4 (en) * | 2007-08-03 | 2009-06-18 | Forschungszentrum Dresden - Rossendorf E.V. | Method and device for the electromagnetic stirring of electrically conductive liquids |
NL2001248C2 (en) * | 2008-02-01 | 2009-08-06 | Stichting Netherlands Inst For | Method and device for controlling the flow during the solidification of a metallic alloy. |
RU2457064C1 (en) | 2011-03-03 | 2012-07-27 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) | Method of continuous and semicontinuous casing of aluminium alloys and device to this end |
GB201305822D0 (en) * | 2013-03-28 | 2013-05-15 | Pavlov Evgeny | Improvements in and relating to apparatus and methods |
CN103600045B (en) * | 2013-11-18 | 2015-10-07 | 上海大学 | The metal continuous cast technique that electromagnetic exciting composite machine stirs and device for casting of metal |
CN105057622B (en) * | 2015-08-21 | 2016-08-31 | 中南大学 | A kind of method suppressing DC Cast aluminium alloy gold macroscopic segregation of cast ingot |
-
2016
- 2016-05-30 FR FR1654834A patent/FR3051698B1/en active Active
-
2017
- 2017-05-17 CN CN201780033894.6A patent/CN109311081A/en active Pending
- 2017-05-17 EP EP17731208.9A patent/EP3463716B1/en active Active
- 2017-05-17 WO PCT/FR2017/051195 patent/WO2017207886A1/en unknown
- 2017-05-17 RU RU2018145016A patent/RU2018145016A/en not_active Application Discontinuation
- 2017-05-17 ES ES17731208T patent/ES2858125T3/en active Active
- 2017-05-17 CA CA3024166A patent/CA3024166A1/en not_active Abandoned
- 2017-05-17 US US16/096,780 patent/US20210220905A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2017207886A1 (en) | 2017-12-07 |
RU2018145016A (en) | 2020-07-09 |
CA3024166A1 (en) | 2017-12-07 |
CN109311081A (en) | 2019-02-05 |
ES2858125T3 (en) | 2021-09-29 |
EP3463716A1 (en) | 2019-04-10 |
FR3051698A1 (en) | 2017-12-01 |
FR3051698B1 (en) | 2020-12-25 |
US20210220905A1 (en) | 2021-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3463716B1 (en) | Method for producing sheet ingots by vertical casting of an aluminium alloy | |
EP3717146B1 (en) | Aluminium alloy flat product having improved thickness properties | |
Hua et al. | Grain refinement of Sn–Pb alloy under a novel combined pulsed magnetic field during solidification | |
Li et al. | Grain refinement and improvement of solidification defects in direct-chill cast billets of A4032 alloy by melt conditioning | |
CA1203069A (en) | Process and device for electromagnetic casting of metals | |
EP1239981B1 (en) | Method for vertical continuous casting of metals using electromagnetic fields and casting installation therefor | |
EP0005676A2 (en) | Electromagnetic agitating process applied to continuous casting | |
Cui et al. | DC casting of light alloys under magnetic fields | |
EP3717147B1 (en) | Low velocity and low frequency aluminium casting method | |
Chen et al. | Experimental investigation of microsegregation in low frequency electromagnetic casting 7075 aluminum alloy | |
Yamada et al. | Full Size Measurement and Simple Prediction on Macro Segregation of Aluminum Alloys Elements in Industrial Direct Chill Casting Slab | |
Aritaka et al. | Mechanism for complex morphology due to mechanical vibration | |
Carlberg et al. | On vertical drag defects formation during direct chill (DC) casting of aluminum billets | |
CA1204575A (en) | Electromagnetic stirring method and device for molten metals, namely steels, in a continuous casting process | |
Guo et al. | The effects of electromagnetic vibration on macrosegregation in AZ80 magnesium alloy billets | |
Liao et al. | In situ characterization of porosity evolution in A356 alloy directionally solidified under different solidification velocities | |
Zhao et al. | Grain Size and Macrosegregation Control of Large-Sized AA2219 Billets by Internal Electromagnetic Stirring in DC Casting | |
Erdegren et al. | Simulation of surface solidification in direct-chill 6xxx aluminum billets | |
Ogata et al. | Length scale of the dendritic array tailoring strength of a 5052 aluminum alloy | |
Kim et al. | EFFECT OF MICROSTRUCTURE BY ELECTROMAGNETIC FIELD IN CONTINUOUS CASTING OF 7XXX SERIES ALUMINUM ALLOYS | |
Santos et al. | Fatigue Crack Initiation on Semi-Solid Al–7Si–Mg Castings. Metals 2022, 12, 1061 | |
Shepelev et al. | Ultrasonic induced structural modification in Mg alloys | |
Joseph et al. | Circulation of Grains During Ingot Casting | |
Eskin | Mechanisms of macro-segregation in direct-chill casting of aluminum alloys | |
RU2019141258A (en) | Modified method of casting metals in an electromagnetic field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181217 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BERTHERAT, MARC Inventor name: JARRY, PHILIPPE Inventor name: TAINA, FABIO Inventor name: MENET, PIERRE-YVES Inventor name: ACHARD, JEAN-LOUIS Inventor name: CABLEA, MIRCEA |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200922 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017032674 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1360821 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20210217 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20210400801 Country of ref document: GR Effective date: 20210519 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210517 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2858125 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017032674 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20211118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210517 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1360821 Country of ref document: AT Kind code of ref document: T Effective date: 20210217 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240527 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240530 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20240530 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240603 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240503 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240507 Year of fee payment: 8 Ref country code: NO Payment date: 20240530 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240527 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |