EP3463716B1 - Method for producing sheet ingots by vertical casting of an aluminium alloy - Google Patents

Method for producing sheet ingots by vertical casting of an aluminium alloy Download PDF

Info

Publication number
EP3463716B1
EP3463716B1 EP17731208.9A EP17731208A EP3463716B1 EP 3463716 B1 EP3463716 B1 EP 3463716B1 EP 17731208 A EP17731208 A EP 17731208A EP 3463716 B1 EP3463716 B1 EP 3463716B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
intensity
variation
frequency
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17731208.9A
Other languages
German (de)
French (fr)
Other versions
EP3463716A1 (en
Inventor
Philippe Jarry
Fabio TAINA
Jean-Louis ACHARD
Marc Bertherat
Pierre-Yves Menet
Mircea CABLEA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP3463716A1 publication Critical patent/EP3463716A1/en
Application granted granted Critical
Publication of EP3463716B1 publication Critical patent/EP3463716B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Definitions

  • the technical field of the invention is the manufacture of ingots following a casting of a liquid aluminum alloy.
  • a macrosegregation well known to those skilled in the art is the central negative macrosegregation, resulting from a depletion of eutectic alloying elements, along a vertical central axis of the ingot. These macrosegregations have been described in the work of John Wiley et al “Direct-Chill Casting of light alloys”, Publisher Wiley, September 2013, pp 158 - 172 .
  • This is a continuous macro-segregation, this term designating the fact that the macro-segregation takes place continuously over all or part of the height of the ingot, in other words that it is essentially uniform along the casting axis. .
  • V-shaped bands are alternately enriched and depleted in eutectic and peritectic alloy elements. These bands are observable by performing X-ray radiographs of vertical slices of ingots, typically in the L / TC plane at mid-width, when the segregated elements absorb the X-rays in a manner different from the atoms of the metal composing the ingot. Other means make it possible to visualize this phenomenon, for example ultrasound or observation with the naked eye of anodized vertical slices, due to the difference in optical reflectivity between the zones enriched or depleted in alloying elements.
  • intermittent macrosegregation is most marked at the level of the T / 2.5 region of the thickness, the T / 2 region corresponding to the central axis of the ingot.
  • T / n designates a region located at a distance T / n from an edge of the ingot, where T denotes a thickness of the ingot.
  • Periodic intermittent macrosegregations appear very early after the start of casting, as soon as an inclined front is formed between a solid zone and a liquid zone. They are observed in all cases of casting of aluminum alloys loaded with aluminum alloys, typically cast in formats with a thickness greater than 300 mm, this thickness threshold itself depending on the casting speed.
  • the document FR2530510 describes a process for electromagnetic casting of metals in which a stationary magnetic field and a magnetic field of variable frequency are simultaneously made to act, both to produce radial vibrations within the metal not yet solidified, and to limit the stirring.
  • EP 2682201 describes an electromagnetic stirring process using two inductors mounted symmetrically with respect to each other with respect to the vertical plane of symmetry of an ingot mold. These inductors generate two electromagnetic fields of different frequencies propagating in opposite directions along a vertical axis. At least one of the inductors generates a magnetic field at a resonant frequency of the liquid metal.
  • WO 2014/155357 relates to methods and apparatus for moving molten metal, the electromagnetic inductor comprising at least two pairs of electromagnetic poles and a first magnetic field component being generated between a pole in a first pair of electromagnetic poles and a second pole in a different pair of electromagnetic poles, and a second magnetic field component being generated between the two poles in one or more pairs of electromagnetic poles, the second magnetic field component thereby generating one or more eddy currents in the molten metal.
  • WO 2009/018810 relates to a method and a device for electromagnetic stirring of electrically conductive fluids, using an RMF magnetic field rotating in the horizontal plane and a WMF magnetic field migrating vertically with respect thereto.
  • the aim is to avoid non-symmetrical flow structures in vessels filled with molten material, especially at the start and during solidification.
  • efficient mixing of the fluid and / or controlled solidification of metal alloys should be achieved, while avoiding the formation of segregation zones in the structure being solidified.
  • the solution is that the rotating magnetic field RMF and the migrating magnetic field WMF are connected discontinuously in the form of periodic and adjustable durations in time and alternately, consecutively in time. via associated induction coils.
  • the method may include a definition of a plurality of critical values of the intensity and frequency of the induction current, so as to define a resonance curve, representing the critical values of intensity and frequency generating a resonance of said free surface, the method comprising determining a range of variation of the intensity or the frequency of the induction current in a domain delimited by said resonance curve.
  • the method comprises a variation of the frequency of the induction current flowing through an inductor.
  • Another subject of the invention is an aluminum alloy ingot, obtained by the process as described above and in the description which follows.
  • alloys Unless otherwise indicated, all indications concerning the chemical composition of alloys are expressed as a percentage by weight based on the total weight of the alloy.
  • the expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4.
  • the designation of the alloys is made in accordance with the regulations of The Aluminum Association, known to those skilled in the art.
  • the figure 1A illustrates an example of a casting process known from the prior art.
  • an aluminum alloy 1 flows into an ingot mold 2, through an opening 2i.
  • the mold 2 extends along a vertical Z axis. It is delimited by a peripheral enclosure whose section, in a horizontal XY plane, is parallelepiped.
  • a cooling fluid 3 for example water, flows against the wall of the solidified product. This process is known as semi-continuous casting by direct cooling (“Direct-Chill Casting").
  • a false bottom 4 can be translated so as to move away from the opening 2i during the casting.
  • the mold 2 extends, parallel to a first horizontal axis X, along a thickness e and, parallel to a second horizontal axis Y, perpendicular to the axis X, along a length l.
  • the thickness e is for example greater than 300 mm. It is beyond such a thickness that the intermittent macrosegregations 11 appear markedly.
  • a solid zone 1s forms, near the cooled enclosure, around a liquid zone 1l, designated by the term “marsh”.
  • the interface between the liquid zone 1l and the solid zone 1s is a front 10, the latter progressing towards the center of the mold as the solidification of the alloy takes place.
  • a parallelepipedal ingot also designated by the term “product”, is formed.
  • the alloy is an aluminum alloy of the 1XXX, 2XXX, 3XXX, 4XXX, 5XXX, 6XXX, 7XXX or 8XXX series. Alloys in which the mass fraction of alloying elements is greater than 1%, or even greater than 3% or even more than 5% are particularly suitable for a process according to the invention, because the higher this mass fraction of these alloying elements is. important, the more the intermittent macrosegregations are marked.
  • the invention is particularly advantageous for products made of a 2XXX, 5XXX, 6XXX or 7XXX alloy, the thickness of which is at least equal to 400 mm or even 450 mm.
  • a magnetic field generator 5 capable of generating a magnetic field B intended to be applied to the liquid zone 1l of the alloy.
  • a generator can be a permanent magnet or an electromagnetic inductor, the latter generating a magnetic field when it is traversed by an electric current, called an induction current.
  • the magnetic field B applied to the liquid zone 1l is an alternating field, of amplitude B 0 and of frequency f .
  • the effect of this magnetic field is to apply a mixing of the marsh, under the effect of Lorentz forces applying to the metallic liquid zone 1l.
  • the application of a magnetic field B generates, in the alloy, the formation of an electric current J resulting, within the liquid zone of the alloy subjected to the magnetic field, in the appearance of a Lorentz force F such that F ⁇ J ⁇ B where ⁇ denotes the vector product operator, and ⁇ denotes a relation of proportionality.
  • This Lorentz force exhibits an oscillating component at a frequency twice the frequency f of the magnetic field.
  • the frequency f is chosen so as to allow sufficient penetration of the magnetic field B in the swamp, so as to obtain efficient mixing of the liquid.
  • the frequency f is all the lower the greater the thickness of the product.
  • the frequency is preferably less than 5 Hz, and even more advantageously less than 2 Hz or 1 Hz.
  • the generator 5 is able to generate a sliding magnetic field.
  • the term sliding magnetic field designates an alternating magnetic field, the amplitude B 0 of which is not constant, and varies between a minimum value and a maximum amplitude B 0 max , maximum amplitude B 0 max propagating along a propagation axis ⁇ , preferably rectilinear.
  • amplitude we mean the maximum value that a periodic quantity takes.
  • the axis of propagation belongs to a plane parallel to the direction of casting.
  • the distance ⁇ separating two amplitude maxima of the magnetic field is the wavelength of the sliding magnetic field.
  • the figure 1B represents an example of the distribution of the amplitude B 0 of a magnetic field sliding along a propagation axis ⁇ at an instant t (solid line), and at an instant t + ⁇ t (dotted line). On the axis of propagation, there is represented a coordinate r corresponding to the position of a point of the marsh.
  • the figure 1C illustrates a temporal evolution of an alternating magnetic field sliding at this point. Due to the propagation of the maximum amplitude value B 0 max , the amplitude of the magnetic field, at this point, varies between a minimum value B 0 min and the value B 0 max the latter not changing over time.
  • a sliding magnetic field generator 5 can be formed by several electromagnetic inductors arranged around the peripheral enclosure.
  • the Lorentz force at a point of coordinates r of the marsh, comprises an oscillating component, modulated according to a frequency 2 f double the frequency of the magnetic field.
  • the amplitude of the Lorentz force at a point r of the marsh depends on the square of the amplitude of the magnetic field applied at this point.
  • the application of a sliding magnetic field results, at a point in the marsh, by a modulation of its amplitude.
  • the amplitude of the magnetic field at a point in the marsh varies as a function of time, between a minimum amplitude B 0 min and a maximum amplitude B 0 max .
  • the Lorentz force density the latter having, at a point r of the marsh, a maximum value when the amplitude of the magnetic field, at this point, is maximum.
  • the inventors have observed that by modulating, over time, the maximum amplitude of the Lorentz force F max propagating in the marsh, the intermittent macrosegregations are attenuated, or even disappear, and this particularly on ingots whose thickness is greater than 300 mm.
  • the temporal modulation of the Lorentz force density can be obtained by modifying the pole pitch, that is to say the phase shift between the induction currents flowing in each inductor.
  • a modification makes it possible to vary the wavelength ⁇ of the sliding magnetic field, that is to say the distance between two maxima propagating along the axis of propagation.
  • the frequency of the induction current flowing in the inductors can be variable, which modifies the frequency f of the magnetic field.
  • the amplitude of the induction current can also be variable, which changes the value of the maximum amplitude B 0 max of the magnetic field.
  • FIG. 1D there is shown an embodiment in which the value of the maximum amplitude B 0 max of the magnetic field and the wavelength ⁇ of the sliding magnetic field are variable over time.
  • the maximum amplitude B 0 max varies between B 0 max t and B 0 max t + ⁇ t .
  • the wavelength ⁇ has been changed from ⁇ ( t ) to ⁇ ( t + ⁇ t ).
  • FIG 1E which represents a temporal evolution of an alternating magnetic field sliding at a point, an embodiment has been shown in which the value of the maximum amplitude B 0 max of the magnetic field varies, over time, for a constant frequency f and a wavelength ⁇ .
  • the maximum amplitude of the Lorentz force, propagating in the marsh varies between t and t + ⁇ t , between the values F max ( t ) and F max ( t + ⁇ t ).
  • the temporal modulation of a force parameter is implemented during the casting, for a significant period, preferably greater than 50% or even 80% of the duration of the casting. This temporal modulation can for example be applied for at least 30 minutes, or even at least 1 hour.
  • a sliding magnetic field B can in particular be generated from two inductors arranged on the same face of the ingot.
  • the inductors are preferably placed facing a large face of the ingot, that is to say one of the two sides of the ingot having the largest vertical section.
  • the inductors can be superimposed on one another, so as to generate a so-called vertical phase shift, or arranged side by side, so as to generate a horizontal phase shift.
  • a device described in the application was used.
  • WO2014 / 155357 and more precisely according to the configuration described in connection with the figures 19 and 20A , in which three inductors, oriented along the vertical axis Z, are arranged facing each major face of the ingot.
  • the sliding magnetic field can also be generated from one or more permanent magnets arranged at the periphery of the mold and set in motion with respect to the latter. For example, it is possible to generate a sliding magnetic field by rotating a permanent magnet.
  • a variation of the parameters of the sliding magnetic field be it its amplitude, its frequency or its wavelength, makes it possible to apply a non-stationary Lorentz force in the swamp.
  • the inventors have observed that this makes it possible to attenuate the appearance of intermittent macrosegregations or even to make them disappear. Such conditions probably influence the recirculations occurring spontaneously in the marsh, and reduce their consequences.
  • the rate of variation of the maximum Lorentz force density is greater than 0.05 Nm -3 .s -1 , and preferably greater than 0.1 Nm -3 .s -1 , and preferably greater than 0.2 Nm -3 .s -1 .
  • the maximum rate of variation of the maximum Lorentz force density during casting is at least 1 Nm -3 .s -1 and preferably at least 2 Nm -3 .s -1 .
  • the variation of one or more force parameters takes place in a time interval less than or equal to the characteristic durations of the recirculations generated by natural convection. These times vary depending on the thickness of the ingot and the casting speed. Considering thicknesses e between 300 mm and 700 mm, and casting speeds of between 30 mm / min and 80 mm / min, the characteristic times of recirculations extend between 20 seconds (thickness of 300 mm, casting speed of 30 mm / min) and 10 minutes (thickness of 700 mm, casting speed of 80 mm / min). Thus, the force parameters vary in a time interval ⁇ t determined as a function of these characteristic times.
  • the term “variation” is understood to mean a significant variation of at least 10% of the force parameter considered, and preferably of at least 20% or even 30% of the force parameter.
  • the variation of a force parameter can be periodic, the time period of variation being of the order of a characteristic recirculation duration, that is to say between 20 seconds and 10 minutes depending on the conditions of dimensions and speed of the casting.
  • the maximum density Lorentz force varies by at least 30 Nm -3 , and advantageously at least 40 Nm -3 , and preferably at least 50 Nm -3 , and even more preferably at least 60 Nm -3 .
  • the variation of a force parameter can also be monotonic during the casting, for example according to an increasing or decreasing function between the start and the end of the casting, the value of the force parameter varying continuously or in successive increments. .
  • the Lorentz force of maximum intensity is not equal to zero. Typically, it is zero when the current in the inductors or coils is zero. So advantageously, the variation of the force parameter is not obtained by a periodic interruption of the sliding field.
  • the Lorentz force of maximum intensity is greater than 80 N / m 3 , preferably greater than 100 N / m 3 , preferably greater than 120 N / m 3 , even more preferably. greater than 140 N / m 3 .
  • the inventors have in fact observed that the suppression of intermittent macrosegregations was not optimum when the force was too low, as shown in Example 5 ( Fig 20 a to d).
  • the minimum value from which the suppression of intermittent macrosegregations is improved depends on all the casting parameters, in particular the stirring mode, the position of the inductors relative to the plate and the composition of the alloy.
  • the frequency f and / or the maximum amplitude B 0 max of the magnetic field are modified respectively by varying the frequency and the amplitude of the induction current flowing in the inductors.
  • the method can comprise a preliminary step of defining an operating domain, that is to say a range of variation of the frequency and / or of the intensity of the induction current.
  • This preliminary step includes the determination of one or more values of frequency / intensity pairs, called critical values, generating, at the free surface 1 sup of the marsh, a resonance, the resonance resulting in the appearance of significant oscillations of said free surface 1 sup , the latter being shown on the figure 1A . These significant oscillations are usually seen with the naked eye.
  • significant oscillation is meant, for example, an oscillation whose amplitude is greater than or equal to 5 mm along the vertical axis Z.
  • the frequency of the current is fixed and the intensity of the induction current is increased up to that a significant oscillation is observed.
  • a resonance curve R in a frequency / intensity plane corresponding to the different pairs (frequency / intensity) at which a resonance is observed at the free surface of the marsh. From this curve R, a range of variation of the intensity and / or of the frequency is determined, so as to avoid or limit the appearance of a resonance of the free surface of the marsh.
  • the resonance curve delimits a zone of stability and a zone of instability, in which the casting can become dangerous.
  • modulating the frequency or intensity of the induction current, and therefore the frequency f or the maximum amplitude B 0 max of the sliding magnetic field makes it possible to temporarily approach the resonance curve R, for example periodically, while remaining in the zone of stability. This maximizes the intensity of the Lorentz force, and therefore swamp mixing, while remaining within acceptable safety configurations. Indeed, in the vicinity of the resonance curve, the stirring effect is particularly important.
  • Such a resonance curve R depends on the casting conditions, that is to say the dimensions of the mold, the casting speed, the configuration of the applied magnetic field, the latter depending on the magnetic field generator, c ' that is to say inductors or permanent magnet (s) used.
  • An R resonance curve is shown on the figure 2 , this curve having been obtained by casting an ingot with a thickness of 525 mm x 1650 mm, at a casting speed of 45 mm / min, a magnetic stirring being carried out by the application of a magnetic field by three inductors arranged in front of each large face of the ingot and out of phase by 90 ° to form a horizontal electromagnetic pump element, as previously mentioned.
  • graphs representing a percentage of the intensity of a Lorentz force, called nominal, 100% corresponding to the intensity of the maximum induction current usable in the installation when the frequency is equal at 0.2 Hz.
  • This intensity corresponds to the appearance of a resonance at the frequency of 0.2 Hz.
  • the intensity and the frequency of the induction current are located in a space delimited by the curve representing a certain percentage of the intensity of the nominal Lorentz force, for example 10% of this intensity, and the resonance curve.
  • the method comprises a variation of the frequency of the induction current flowing through an inductor.
  • the inventors have found that it is advantageous to vary the frequency because the variation in the penetration of the field which results therefrom makes it possible to vary the force gradient in the thickness and the depth of the liquid well more effectively.
  • the power electronics make the frequency variation faster than the variation intensity; which gives an additional degree of freedom towards the weaker periods of unsteady forcing. It is in fact advantageous to decouple the hydrodynamic characteristic times from the characteristic solidification times in order to avoid intermittent macrosegregations.
  • the variation of one or more force parameters can in particular make it possible to alternate periods during which the dimensionless number of Hartmann Ha is respectively low, typically less than 1, and high, typically greater than 3, or even 5.
  • the dimensionless number of Hartmann Ha is a number commonly used in the field of magnetohydrodynamics. It represents a ratio between the magnetic viscosity and the viscosity of a charged liquid flowing in a magnetic field. The greater this number, the greater the contribution of Lorentz forces.
  • the dimensionless Hartmann Ha number alternates with a ratio between weak and strong values of at least 3 or of at least 5. Such a configuration is preferred, since it makes it possible to alternate periods during which the kinetic energy applied. by the magnetic field opposes the natural convection of the liquid metal, and periods during which natural convection predominates.
  • the products obtained by a method according to the invention exhibit intermittent macrosegregation which is limited compared to methods of the prior art, or even not perceptible.
  • the characterization of the products was carried out by analyzing horizontal profiles (along the TC axis) of an X-ray taken at mid-width along a vertical L / TC plane, these profiles being calibrated to obtain the distribution spatial elements of heavy alloys of Zn or Cu type.
  • An example of obtaining the Zn concentration profile from an X-ray of an Al-Zn alloy is shown on the figure 4 .
  • L, TL and TC correspond respectively to the dimension of the ingot along the vertical axis, the so-called “long transverse” axis and along the so-called “short transverse” axis.
  • chemical analyzes can be carried out along horizontal profiles, so as to quantify the spatial distribution of said chemical elements along the TC axis.
  • Intermittent macrosegregation can be characterized by a maximum deviation in mass of an alloying element, in this case Zn, in the zone most marked by intermittent macrosegregation, that is to say in the vicinity of T / 2.5 .
  • the concentration profiles, obtained by radiography or by any other method, with a spatial resolution of 0.1 mm were processed as shown in Figure figure 5A .
  • the profile obtained with the resolution of 0.1 mm is the raw profile referenced profile A.
  • a sliding average over 2 mm makes it possible to avoid microsegregation, the smoothed profile obtained is referenced profile B.
  • Another sliding average of the raw profile over 50 mm makes it possible to get rid of intermittent macro-segregations, and to obtain the continuous macro-segregation profile, the profile obtained being a so-called basic profile, referenced profile C.
  • Profile C is subtracted from profile B to obtain a so-called corrected profile , corresponding to intermittent macrosegregation, the corrected profile being referenced profile D.
  • the corrected profile is mainly representative of intermittent macrosegregation, and is not or only slightly affected by central continuous macrosegregation and by microsegregation. Such a corrected profile makes it possible to characterize the intermittent macrosegregation.
  • the element considered is an element whose content by weight in the alloy is greater than or equal to 0.5%. It may preferably be the major element of the alloy, the term major element corresponding to the definition given by The Aluminum Association.
  • the maximum difference ⁇ C ZA can be normalized by the nominal concentration C 0 of the element considered.
  • the products according to the invention preferably have a value of such a standardized ratio of less than 10% and preferably less than 8% or even less than 6%.
  • the absolute value of ⁇ C ZA can be influenced by the thickness of the product, the nature of the element considered, in particular its partition coefficient and / or its concentration.
  • ⁇ VS ZR max VS ZR - min VS ZR where max (C ZR ) and min (C ZR ) denote respectively the maximum and minimum concentrations of the element considered measured between T / 6 and T / 12.
  • the weaker ⁇ the less marked the intermittent macrosegregations.
  • the products obtained by the process according to the invention preferably have a dispersion criterion ⁇ less than 3.3, preferably less than 3, more advantageously less than 2.5, even more advantageously less than 2 and preferably less than 1.5.
  • T / n denotes a distance from an edge of the ingot, along a horizontal axis, T / 2 corresponding to the center of the ingot.
  • the criteria of dispersion ⁇ and of spectral intensity ⁇ are advantageously applied to the major element of the alloy in question, typically to Zn for a 7xxx alloy or to Cu for a 2xxx alloy. These criteria can also be applied to the sum of two elements, for example the sum of Zn + Cu in certain 7xxx alloys or the sum of Mg + Si in the 6xxx alloys. These criteria can also be applied to an element whose content by weight in the alloy is greater than or equal to 0.5% or to the sum of two elements of the alloy whose individual content is greater than 0.5%,
  • the values for normalizing the maximum deviation ⁇ C ZA , and / or the Fourier transform correspond to the sum of the nominal concentrations of the elements considered.
  • the rectangular cross-section ingots obtained by the process according to the invention can be used as they are cast or after wringing, optionally after dissolution and quenching and aging for the alloys with age hardening.
  • the ingots of rectangular section obtained by the process according to the invention are rolled and / or forged.
  • An AA7035 alloy was cast without electromagnetic stirring.
  • the composition of the cast alloy comprising a nominal Zn concentration of 5.6% by weight, a nominal Mg concentration of 1.3% by weight.
  • the format of the ingot was 1650 mm x 525 mm. This example is representative of the prior art.
  • the grain refining was carried out with an AITiB 5: 1 refining concentration of 1Kg / t.
  • the casting speed was 35 mm / min.
  • the figure 3 shows a mid-width x-ray of the ingot on an L / TC plane, in which the central negative macrosegregation and intermittent macrosegregation are clearly identifiable.
  • the value of the maximum deviations of the Zn content was 0.75% by weight for ⁇ C ZA and 0.19% by weight for ⁇ C ZR , the value of the maximum deviations normalized in the analysis zone and in the reference zone thus being 13.3% and 3.5% respectively.
  • the value of the dispersion criterion ⁇ as defined by equation (6) was 3.9.
  • the Fourier transform of each profile has been calculated, and is represented on the figure 7 , after normalization by the nominal composition of Zn: 5.6% by weight.
  • the x-axis represents the spatial period, between 0 and 30 mm. Different predominant peaks are observed, corresponding to different spatial periods distributed between 8 and 25 mm, and more particularly between 10 mm and 25 mm.
  • the spectral intensity criterion ⁇ which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm, normalized by the nominal concentration C 0 of Zn, was for all the profiles at least 0.01.
  • a casting of an AA7035 alloy was carried out with electromagnetic stirring.
  • the composition of the cast alloy included a nominal Zinc concentration of 5.6% by weight and a nominal Magnesium concentration of 1.3% by weight.
  • the ingot size was 1650mm x 525mm.
  • the grain refining was carried out with an AITiB 5: 1 refining concentration of 1Kg / t.
  • the casting speed was 35 mm / min.
  • the electromagnetic stirring was obtained by placing, opposite each face L / TL of the ingot, (corresponding to a YZ plane in the reference mark indicated on the figure 1A ), three inductors oriented along the vertical axis Z, traversed by an alternating current, frequency 0.25 Hz, phase-shifted with respect to each other by 60 ° and spaced from each other by 0.6 m, thus constituting an electromagnetic pump element.
  • the distance between the inductors and the ingot was 172 mm.
  • the electromagnetic pump elements on each face were oriented in the opposite direction.
  • the inductors generated a magnetic field sliding along a horizontal plane, the sliding axis being parallel to the TL direction, the wavelength ⁇ was 3.6 m.
  • the maximum density of the Lorentz force induced in the liquid marsh was varied between about 180 N / m 3 and 240 N / m 3 with a variation speed of 2 Nm -3 .s -1 by modifying the nominal value of the current in the inductors.
  • the resonance curve, corresponding to these conditions of casting, is shown on the figure 8 .
  • the variation in the intensity of the induction current is represented in this figure by a double arrow.
  • the figure 9 shows an X-ray of the ingot according to an L / TC plane, on which the central negative macrosegregation at T / 2 is identifiable.
  • profile A different gross horizontal profiles of the Zn content
  • profile B smoothed
  • TC axis One distinguishes the negative central macrosegregation, maximal at T / 2.
  • D profiles corrected profile type
  • the value of the maximum deviations of the Zn content was 0.24% by weight for ⁇ C ZA and 0.28% by weight for ⁇ C ZR , the value of the maximum deviations normalized in the analysis zone and in the zone of reference being respectively 4.3% and 5%.
  • the value of the dispersion criterion ⁇ as defined by equation (6) was 0.9: intermittent macrosegregation in the analysis zone between T / 2.3 and T / 3.3 has been eliminated.
  • the Fourier transform of each profile has been calculated, and is represented on the figure 11 , after normalization by the nominal composition of Zn: 5.6% by weight.
  • the x-axis represents the spatial period, between 0 and 30 mm. There are no longer any predominant peaks observed.
  • the spectral intensity criterion ⁇ which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the nominal concentration C 0 of Zn, was for all the profiles less than 0.005.
  • an AA 7050 alloy was cast without electromagnetic stirring.
  • the composition of the alloy was 6.3% by weight Zn, 2.2% by weight Mg and 2.1% by weight Cu.
  • the format of the ingot was 1650x525mm.
  • the grain refining is carried out using an AITiC3: 0.15 refining wire with an addition rate of 1 kg / tonne.
  • the casting speed was 45mm / min. It constitutes the reference of Example 4.
  • the figure 12 shows an X-ray of the ingot according to an L / TC plane, on which the central negative macrosegregation at T / 2 is identifiable.
  • the smooth horizontal profile of the sum of two elements Zn and Cu (profiles B) along an axis TC deduced from the radiography of the figure 12 .
  • the radiography only makes it possible to quantify the elements causing a contrast with respect to aluminum, namely in this case Zn and Cu. This remark applies to Examples 4 and 5 which follow.
  • the spectral intensity criterion ⁇ which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the sum of the nominal compositions in Zn and Cu, was for one of the profiles greater than 0.01 or for all of the profiles greater than 0.007.
  • an alloy was cast in AA 7050.
  • the composition of the alloy was 6.3% by weight of Zn, 2.2% by weight of Mg and 2.1% by weight of Cu.
  • the cross section of the ingot was 1650x525mm.
  • the grain refining is carried out using an AITiC3: 0.15 refining wire with an addition rate of 1 kg / tonne.
  • the casting speed was 45mm / min.
  • the electromagnetic stirring was obtained by placing, opposite each face L / TL of the ingot, (corresponding to a YZ plane in the reference mark indicated on the figure 1A ) three coils oriented along the z axis and traversed by an alternating current which was out of phase, in the central coil, by 90 ° with respect to the current in the extreme coils.
  • the wavelength of the sliding field was 2.4 m.
  • the electromagnetic pump elements thus obtained were arranged in a mirror with respect to each face L / TL of the ingot, the sliding direction being parallel to the cross-long direction, the generated sliding diverging from the mid-width of the ingot.
  • the unsteady forcing was obtained by imposing a cyclic variation of the frequency of the alternating electric current which traversed the coils, as illustrated by the double arrow in the frequency vs intensity diagram of the figure 15 .
  • the maximum density of the Lorentz force thus generated by the variation of the frequency between 0.450 and 0.600Hz was varied between approximately 110 N / m 3 and 150 N / m 3 over a period of 3 min which corresponds to a speed of variation of about 0.22 N / m 3 / s.
  • the figure 16 shows an X-ray of the ingot according to an L / TC plane, on which the central negative macrosegregation at T / 2 is identifiable. Intermittent macrosegregations are very strongly attenuated compared to the reference ( Fig 12 ), as shown in figures 17a and 17b .
  • a casting of AA7050 alloy was carried out.
  • the composition of the alloy was 6.3% by weight of Zn, 2.2% by weight of Mg and 2.1% by weight of Cu, the contents of the other elements were all less than 0.5% by weight.
  • the cross section of the ingot was 1650x525mm.
  • the grain refining is carried out using an AlTiC3: 0.15 refining wire with an addition rate of 1 kg / tonne.
  • the casting speed was 45mm / min.
  • the electromagnetic stirring was obtained by placing, opposite each face L / TL of the ingot, (corresponding to a YZ plane in the reference mark indicated on the figure 1A ) three coils oriented along the z axis and traversed by an alternating current which was out of phase, in the central coil, by 90 ° with respect to the current in the extreme coils.
  • the wavelength of the sliding field was 2.4 m.
  • the electromagnetic pump elements thus obtained were arranged in a mirror with respect to each face L / TL of the ingot, the sliding direction being parallel to the cross-long direction, the generated sliding diverging from the mid-width of the ingot.
  • the unsteady forcing was obtained by imposing a variation from zero in the intensity of the alternating electric current flowing through the coils, as illustrated by the arrows in the frequency vs intensity diagram of the figure 19 .
  • the intensity of the maximum Lorentz volume force thus generated by the variation in intensity typically varied from 0 N / m 3 to 140 N / m 3 in 4 min, which corresponds to a rate of variation of 0.58 N / m3 / s.
  • the intensity of the maximum Lorentz volume force was varied between 140 N / m 3 and 360 N / m 3 in 5 min, which corresponds to a rate of change of 0.73 N / m 3 / s.
  • the figure 20d represents the Fourier transform of each profile, after normalization by the sum of the nominal compositions of Zn and Cu: 8.3% by weight.
  • the x-axis represents the spatial period, between 0 and 30 mm.
  • the spectral intensity criterion ⁇ which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the sum of the nominal compositions in Zn and Cu, was for all the profiles less than 0.01. It is noted however that the criterion of spectral intensity ⁇ shows values higher than 0.005.
  • the figure 21d represents the Fourier transform of each profile, after normalization by the sum of the nominal compositions of Zn and Cu: 8.3% by weight.
  • the x-axis represents the spatial period, between 0 and 30 mm.
  • the spectral intensity criterion ⁇ which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the sum of the nominal compositions in Zn and Cu, was for all the profiles less than 0.005.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

Domaine techniqueTechnical area

Le domaine technique de l'invention est la fabrication de lingots suite à une coulée d'un alliage d'aluminium liquideThe technical field of the invention is the manufacture of ingots following a casting of a liquid aluminum alloy.

Exposé de l'inventionDisclosure of the invention

Au cours d'une coulée verticale, visant à former un lingot, la solidification d'un métal ou d'un alliage métallique est affectée par des phénomènes dits de ségrégations macroscopiques. Lors du refroidissement du métal, des courants de convection se forment, engendrant des vortex de recirculation, ces derniers étant à l'origine de ségrégations macroscopiques lorsque leur durée de vie est du même ordre de grandeur que les durées caractéristiques de solidification. Ces phénomènes conduisent, dans le lingot solidifié, à un appauvrissement local ou à un enrichissement local en espèces chimiques. Ces ségrégations macroscopiques, ou macroségrégations, sont à l'origine d'hétérogénéités dans la composition du lingot.During a vertical casting, aimed at forming an ingot, the solidification of a metal or a metal alloy is affected by so-called macroscopic segregation phenomena. When the metal cools, convection currents are formed, generating recirculation vortices, the latter being the source of macroscopic segregation when their lifetime is of the same order of magnitude as the characteristic solidification times. These phenomena lead, in the solidified ingot, to a local impoverishment or to a local enrichment in chemical species. These macroscopic segregations, or macrosegregations, are the source of heterogeneities in the composition of the ingot.

Une macroségrégation bien connue de l'homme du métier est la macroségrégation centrale négative, résultant d'un appauvrissement en éléments d'alliage eutectiques, le long d'un axe central vertical du lingot. Ces macroségrégations ont été décrites dans l'ouvrage de John Wiley et al « Direct-Chill Casting of light alloys », Editeur Wiley, septembre 2013, pp 158 - 172 .A macrosegregation well known to those skilled in the art is the central negative macrosegregation, resulting from a depletion of eutectic alloying elements, along a vertical central axis of the ingot. These macrosegregations have been described in the work of John Wiley et al “Direct-Chill Casting of light alloys”, Publisher Wiley, September 2013, pp 158 - 172 .

Les principaux mécanismes à l'origine de la macroségrégation centrale décrits dans cet ouvrage sont

  • La convection thermosolutale dans le marais causée par les gradients de température et de concentration, et la pénétration de ces écoulements convectifs dans la zone pâteuse ;
  • Le transport de grains dans la zone en surfusion sous l'effet de la gravité, de la force d'Archimède et de la convection naturelle ou forcée ;
  • L'écoulement dans la zone pâteuse suscité par le retrait volumétrique à solidification, qui peut être assisté par la pression métallostatique ;
  • L'écoulement du liquide dans la zone pâteuse causé par des déformations mécaniques ;
  • Les écoulements forcés qui peuvent résulter de la verse, de l'injection ou d'un dégagement de gaz, d'un brassage, d'une vibration, etc. qui pénètrent dans la zone en surfusion et dans la zone pâteuse et modifient la direction des mouvements de convection.
The main mechanisms at the origin of central macrosegregation described in this book are
  • Thermosolutal convection in the marsh caused by temperature and concentration gradients, and the penetration of these convective flows into the pasty zone;
  • Transport of grains in the supercooled zone under the effect of gravity, Archimedean force and natural or forced convection;
  • The flow in the pasty zone caused by the volumetric shrinkage at solidification, which can be assisted by the metallostatic pressure;
  • The flow of liquid in the pasty area caused by mechanical deformations;
  • Forced flows which may result from the pouring, injection or evolution of gas, stirring, vibration, etc. which penetrate the supercooled zone and the pasty zone and modify the direction of the convection movements.

Il s'agit d'une macroségrégation continue, ce terme désignant le fait que la macroségrégation a lieu de façon continue sur tout ou partie de la hauteur du lingot, en d'autres termes qu'elle est essentiellement uniforme selon l'axe de coulée.This is a continuous macro-segregation, this term designating the fact that the macro-segregation takes place continuously over all or part of the height of the ingot, in other words that it is essentially uniform along the casting axis. .

Le phénomène de macroségrégation intermittente a été moins souvent décrit dans la littérature et se traduit par la formation de bandes en forme de V de part et d'autre de la macroségrégation centrale négative. Ces bandes en forme de V sont alternativement enrichies et appauvries en éléments d'alliage eutectique et péritectique. Ces bandes sont observables en effectuant des radiographies aux rayons X de tranches verticales de lingots, typiquement dans le plan L/TC à mi-largeur, lorsque les éléments ségrégés absorbent les rayons X de manière différenciée des atomes du métal composant le lingot. D'autres moyens permettent de visualiser ce phénomène, par exemple l'échographie ou l'observation à l'œil nu de tranches verticales anodisées, du fait de la différence de réflectivité optique entre les zones enrichies ou appauvries en éléments d'alliage. Généralement, la macroségrégation intermittente est la plus marquée au niveau de la région T/2.5 de l'épaisseur, la région T/2 correspondant à l'axe central du lingot. Selon une nomenclature connue de l'homme du métier, le terme T/n, ou n est un nombre positif, désigne une région située à une distance T/n d'un bord du lingot, où T désigne une épaisseur du lingot.The phenomenon of intermittent macrosegregation has been less often described in the literature and results in the formation of V-shaped bands on either side of the central negative macrosegregation. These V-shaped bands are alternately enriched and depleted in eutectic and peritectic alloy elements. These bands are observable by performing X-ray radiographs of vertical slices of ingots, typically in the L / TC plane at mid-width, when the segregated elements absorb the X-rays in a manner different from the atoms of the metal composing the ingot. Other means make it possible to visualize this phenomenon, for example ultrasound or observation with the naked eye of anodized vertical slices, due to the difference in optical reflectivity between the zones enriched or depleted in alloying elements. Generally, intermittent macrosegregation is most marked at the level of the T / 2.5 region of the thickness, the T / 2 region corresponding to the central axis of the ingot. According to a nomenclature known to those skilled in the art, the term T / n, where n is a positive number, designates a region located at a distance T / n from an edge of the ingot, where T denotes a thickness of the ingot.

Les macroségrégations intermittentes périodiques apparaissent très tôt après le démarrage de coulée, dès qu'un front incliné est formé entre une zone solide et une zone liquide. Elles sont observées dans tous les cas de coulée d'alliages d'aluminium chargés d'alliages d'aluminium, coulés typiquement selon des formats d'épaisseur supérieure à 300mm, ce seuil d'épaisseur dépendant lui-même de la vitesse de coulée.Periodic intermittent macrosegregations appear very early after the start of casting, as soon as an inclined front is formed between a solid zone and a liquid zone. They are observed in all cases of casting of aluminum alloys loaded with aluminum alloys, typically cast in formats with a thickness greater than 300 mm, this thickness threshold itself depending on the casting speed.

La publication R.C Dorward et al. « Banded segregation patterns in DC cast AIZnMgCu alloy ingots and their effect on plate properties » Aluminium, 1996, 72. Jahrgang, 4, p.251-259 décrit la formation de bandes de ségrégations intermittentes dans un alliage 7000. Selon ces auteurs, ce phénomène est dû à des avalanches de grains déclenchées périodiquement par des oscillations convectives du marais, c'est-à-dire la phase liquide du métal, en lien avec un mécanisme d'émission de tourbillons. Cet article montre notamment que la macroségrégation intermittente peut être à l'origine de variations des propriétés mécaniques, par exemple de la ténacité, sur les tôles obtenues à partir des produits bruts de coulée. Il est donc avantageux de trouver un procédé de coulée qui supprimerait ces macroségrégations intermittentes.The publication RC Dorward et al. “Banded segregation patterns in DC cast AIZnMgCu alloy ingots and their effect on plate properties” Aluminum, 1996, 72. Jahrgang, 4, p.251-259 describes the formation of bands of intermittent segregation in a 7000 alloy. According to these authors, this phenomenon is due to avalanches of grains periodically triggered by convective oscillations of the marsh, that is to say the liquid phase of the metal, in connection with a whirlpool emission mechanism. This article shows in particular that intermittent macrosegregation can be at the origin of variations in mechanical properties, for example of toughness, on the sheets obtained from the as-cast products. It is therefore advantageous to find a casting process which would eliminate these intermittent macrosegregations.

La réduction ou la suppression des macroségrégations continues, par exemple la macroségrégation centrale, a déjà été décrite. En particulier on a montré que l'application d'un champ magnétique, à des fins de brassage ou de freinage des écoulements, permettait de limiter l'apparition de macroségrégations continues. Le document US5375647 décrit par exemple un procédé de réduction de macroségrégation centrale survenant lors de la coulée d'un lingot d'alliage métallique. Ce procédé comprend l'application, lors du refroidissement, d'un champ magnétique statique généré par au moins une bobine parcourue par un courant continu.The reduction or elimination of continuous macro-segregations, for example central macro-segregation, has already been described. In particular, it has been shown that the application of a magnetic field, for purposes of mixing or braking the flows, makes it possible to limit the appearance of continuous macrosegregations. The document US5375647 describes, for example, a process for reducing central macrosegregation occurring during the casting of a metal alloy ingot. This method comprises the application, during cooling, of a static magnetic field generated by at least one coil carrying a direct current.

Le document FR2530510 décrit un procédé de coulée électromagnétique de métaux dans lequel on fait agir simultanément un champ magnétique stationnaire et un champ magnétique de fréquence variable, pour produire à la fois des vibrations radiales au sein du métal non encore solidifié, et limiter le brassage.The document FR2530510 describes a process for electromagnetic casting of metals in which a stationary magnetic field and a magnetic field of variable frequency are simultaneously made to act, both to produce radial vibrations within the metal not yet solidified, and to limit the stirring.

B. Zhang et al "Effect of low-frequency magnetic field on macrosegregation of continuous casting aluminum alloys" Materials Letters 57 (2003) pp1707-1711 ont appliqué un champ magnétique variable à basse fréquence (entre 10 et 100 Hz) à une billette de 200 mm en alliage AA7075 et ont constaté un effet bénéfique sur la diminution de la macroségrégation centrale, principalement pour une fréquence de 30 Hz. B. Zhang et al "Effect of low-frequency magnetic field on macrosegregation of continuous casting aluminum alloys" Materials Letters 57 (2003) pp1707-1711 applied a variable magnetic field at low frequency (between 10 and 100 Hz) to a 200 mm billet of AA7075 alloy and found a beneficial effect on the decrease in central macrosegregation, mainly for a frequency of 30 Hz.

EP 2682201 décrit un procédé de brassage électromagnétique à l'aide de deux inducteurs montés symétriquement par rapport à l'autre par rapport au plan vertical de symétrie d'une lingotière. Ces inducteurs génèrent deux champs électromagnétiques de fréquences différentes se propageant selon des directions opposées le long d'un axe vertical. Au moins un des inducteurs génère un champ magnétique à une fréquence de résonance du métal liquide. EP 2682201 describes an electromagnetic stirring process using two inductors mounted symmetrically with respect to each other with respect to the vertical plane of symmetry of an ingot mold. These inductors generate two electromagnetic fields of different frequencies propagating in opposite directions along a vertical axis. At least one of the inductors generates a magnetic field at a resonant frequency of the liquid metal.

WO 2014/155357 concerne des procédés et un appareil destinés à déplacer un métal fondu, l'inducteur électromagnétique comprenant au moins deux paires de pôles électromagnétiques et un premier composant de champ magnétique étant généré entre un pôle dans une première paire de pôles électromagnétiques et un second pôle dans une paire de pôles électromagnétiques différente, et un second composant de champ magnétique étant généré entre les deux pôles dans une ou plusieurs paires de pôles électromagnétiques, le second composant de champ magnétique générant ainsi un ou plusieurs courants de Foucault dans le métal fondu. WO 2014/155357 relates to methods and apparatus for moving molten metal, the electromagnetic inductor comprising at least two pairs of electromagnetic poles and a first magnetic field component being generated between a pole in a first pair of electromagnetic poles and a second pole in a different pair of electromagnetic poles, and a second magnetic field component being generated between the two poles in one or more pairs of electromagnetic poles, the second magnetic field component thereby generating one or more eddy currents in the molten metal.

WO 2009/018810 concerne un procédé et un dispositif d'agitation électromagnétique de fluides électriquement conducteurs, utilisant un champ magnétique RMF tournant dans le plan horizontal et un champ magnétique WMF migrant verticalement par rapport à celui-ci. L'objectif est d'éviter les structures à flux non symétriques dans les récipients remplis de matière fondue, en particulier au début et au cours de la solidification. De plus, un mélange efficace du fluide et/ou une solidification contrôlée d'alliages métalliques doit être obtenu, tout en évitant la formation de zones de ségrégation dans la structure en cours de solidification. La solution consiste à ce que le champ magnétique tournant RMF et le champ magnétique migrant WMF soient connectés de manière discontinue sous la forme de durées périodiques et ajustables dans le temps et alternativement, de manière consécutive dans le temps. via des bobines d 'induction associées. WO 2009/018810 relates to a method and a device for electromagnetic stirring of electrically conductive fluids, using an RMF magnetic field rotating in the horizontal plane and a WMF magnetic field migrating vertically with respect thereto. The aim is to avoid non-symmetrical flow structures in vessels filled with molten material, especially at the start and during solidification. In addition, efficient mixing of the fluid and / or controlled solidification of metal alloys should be achieved, while avoiding the formation of segregation zones in the structure being solidified. The solution is that the rotating magnetic field RMF and the migrating magnetic field WMF are connected discontinuously in the form of periodic and adjustable durations in time and alternately, consecutively in time. via associated induction coils.

Les inventeurs ont considéré que les procédés précédemment décrits ne permettent pas de réduire efficacement l'apparition de macroségrégations intermittentes. Ils proposent un procédé permettant de limiter la formation de telles macroségrégations, voire à les éliminer, de façon à mieux maîtriser les propriétés mécaniques des produits issus de la coulée.The inventors considered that the methods described above do not make it possible to effectively reduce the appearance of intermittent macrosegregations. They propose a process making it possible to limit the formation of such macrosegregations, or even to eliminate them, so as to better control the mechanical properties of the products resulting from the casting.

Exposé de l'inventionDisclosure of the invention

Un objet de l'invention est un procédé pour couler un lingot d'alliage d'aluminium dans une lingotière sensiblement rectangulaire comportant les étapes suivantes :

  • préparation de l'alliage d'aluminium ;
  • coulée de l'alliage d'aluminium dans la lingotière, selon un axe vertical d'écoulement, l'alliage étant refroidi, au cours de la coulée, par un ruissellement d'un liquide refroidisseur au contact avec le métal solidifié;
  • au cours de la coulée, application d'un champ magnétique dont l'amplitude est variée périodiquement selon une fréquence, ledit champ magnétique étant généré par au moins un générateur de champ magnétique disposé à la périphérie de la lingotière, de façon à appliquer une force de Lorentz en différents points d'une partie liquide de l'alliage en cours de solidification ;
  • le champ magnétique appliqué étant un champ magnétique glissant, se propageant selon un axe de propagation, de telle sorte qu'une amplitude maximale du champ magnétique se propage selon ledit axe de propagation, en définissant une longueur d'onde de propagation, ledit champ magnétique glissant entraînant une propagation, selon ledit axe de propagation, d'une force de Lorentz d'intensité maximale ;
le procédé étant caractérisé en ce qu'un paramètre magnétique dit de force, régissant une valeur force de Lorentz d'intensité maximale, est variable dans un intervalle temporel prédéterminé, ledit paramètre étant :
  • ▪ ladite amplitude maximale du champ magnétique ;
  • ▪ et/ou ladite fréquence du champ magnétique ;
  • ▪ et/ou la longueur d'onde de propagation du champ magnétique ;
de façon à obtenir une modulation, dans ledit intervalle temporel, de ladite force de Lorentz d'intensité maximale se propageant selon l'axe de propagation.An object of the invention is a method for casting an aluminum alloy ingot in a substantially rectangular ingot mold comprising the following steps:
  • preparation of aluminum alloy;
  • casting of the aluminum alloy in the mold, along a vertical flow axis, the alloy being cooled, during the casting, by a flow of a cooling liquid in contact with the solidified metal;
  • during casting, application of a magnetic field the amplitude of which is periodically varied according to a frequency, said magnetic field being generated by at least one magnetic field generator arranged at the periphery of the mold, so as to apply a force of Lorentz at different points of a liquid part of the alloy during solidification;
  • the applied magnetic field being a sliding magnetic field, propagating along a propagation axis, such that a maximum amplitude of the magnetic field propagates along said propagation axis, by defining a propagation wavelength, said magnetic field sliding causing propagation, along said propagation axis, of a Lorentz force of maximum intensity;
the method being characterized in that a so-called force magnetic parameter, governing a Lorentz force value of maximum intensity, is variable over a predetermined time interval, said parameter being:
  • ▪ said maximum amplitude of the magnetic field;
  • ▪ and / or said frequency of the magnetic field;
  • ▪ and / or the propagation wavelength of the magnetic field;
so as to obtain a modulation, in said time interval, of said Lorentz force of maximum intensity propagating along the axis of propagation.

Le procédé peut comporter l'une quelconque des caractéristiques suivantes, prises isolément ou en combinaison :

  • la section de la lingotière, dans un plan horizontal, définit une épaisseur et une longueur, l'épaisseur étant inférieure ou égale à la longueur, l'épaisseur étant supérieure à 300 mm et de préférence d'au moins 400 mm ;
  • la fréquence du champ magnétique est inférieure à 5Hz, ou 2 Hz ou 1 Hz ;
  • la force de Lorentz d'intensité maximale, se propageant selon l'axe de propagation, varie d'au moins 30 N.m-3 dans un intervalle temporel compris entre 20 secondes et 10 minutes ;
  • le champ magnétique est tel que la valeur absolue de la variation de la densité de la force de Lorentz maximale est supérieure ou égale à 0.05 N.m-3.s-1 durant ledit intervalle temporel ;
  • l'axe de propagation de l'amplitude maximale du champ magnétique appartient à un plan parallèle à la direction de coulée ;
  • au cours de la coulée, la variation du paramètre de force est périodique, la période étant comprise entre 20s et 20 minutes, ou entre 1 minute et 15 minutes, ou entre 2 minutes et 10 minutes ;
  • au cours de la coulée, la force de Lorentz d'intensité maximale n'est pas égale à zéro.
  • au cours de la coulée, la variation du paramètre de force n'est pas obtenue par une interruption périodique du champ glissant.
  • le nombre adimensionnel de Hartmann, en au moins un point de la partie liquide de l'alliage, varie au moins d'un facteur 3, voire d'un facteur 5, dans ledit intervalle temporel ;
  • l'alliage d'aluminium est choisi parmi les alliages de types 2XXX, 6XXX ou 7XXX, l'épaisseur étant au moins 400 mm ou 450 mm.
The process may include any of the following features, taken alone or in combination:
  • the section of the mold, in a horizontal plane, defines a thickness and a length, the thickness being less than or equal to the length, the thickness being greater than 300 mm and preferably at least 400 mm;
  • the frequency of the magnetic field is less than 5Hz, or 2Hz or 1Hz;
  • the Lorentz force of maximum intensity, propagating along the axis of propagation, varies by at least 30 Nm -3 over a time interval of between 20 seconds and 10 minutes;
  • the magnetic field is such that the absolute value of the variation in the density of the maximum Lorentz force is greater than or equal to 0.05 Nm -3 .s -1 during said time interval;
  • the axis of propagation of the maximum amplitude of the magnetic field belongs to a plane parallel to the direction of casting;
  • during casting, the variation of the force parameter is periodic, the period being between 20 s and 20 minutes, or between 1 minute and 15 minutes, or between 2 minutes and 10 minutes;
  • during casting, the Lorentz force of maximum intensity is not zero.
  • during the casting, the variation of the force parameter is not obtained by a periodic interruption of the sliding field.
  • the dimensionless Hartmann number, at at least one point of the liquid part of the alloy, varies at least by a factor of 3, or even by a factor of 5, in said time interval;
  • the aluminum alloy is chosen from alloys of types 2XXX, 6XXX or 7XXX, the thickness being at least 400 mm or 450 mm.

Selon un mode de réalisation, les générateurs sont des inducteurs électromagnétiques, chaque inducteur électromagnétique étant parcouru par un courant dit courant d'induction. Le procédé comporte, durant ledit intervalle temporel :

  • une variation d'une intensité du courant d'induction ;
  • et/ou une variation d'une fréquence du courant d'induction ;
  • et/ou une variation d'une distance entre un inducteur électromagnétique et la lingotière.
According to one embodiment, the generators are electromagnetic inductors, each electromagnetic inductor being traversed by a current called induction current. The method comprises, during said time interval:
  • a variation of an intensity of the induction current;
  • and / or a variation of a frequency of the induction current;
  • and / or a variation of a distance between an electromagnetic inductor and the mold.

Selon ce mode de réalisation, le procédé peut comporter une variation de l'intensité ou de la fréquence du courant d'induction parcourant un inducteur, le procédé comportant alors :

  • une étape préalable de définition d'au moins une valeur critique de l'intensité et de la fréquence du courant d'induction générant, au niveau d'une surface libre de l'alliage d'aluminium s'écoulant dans la lingotière, une onde de résonance ;
  • une détermination d'une plage de variation de l'intensité ou de la fréquence du courant d'induction en fonction de ladite valeur critique préalablement définie.
According to this embodiment, the method may include a variation in the intensity or the frequency of the induction current flowing through an inductor, the method then comprising:
  • a preliminary step of defining at least one critical value of the intensity and the frequency of the induction current generating, at a free surface of the aluminum alloy flowing in the mold, a wave resonance;
  • a determination of a range of variation of the intensity or of the frequency of the induction current as a function of said previously defined critical value.

Le procédé peut comporter une définition d'une pluralité de valeurs critiques de l'intensité et de la fréquence du courant d'induction, de façon à définir une courbe de résonance, représentant les valeurs critiques d'intensité et de fréquence générant une résonance de ladite surface libre, le procédé comportant une détermination d'une plage de variation de l'intensité ou de la fréquence du courant d'induction dans un domaine délimité par ladite courbe de résonance.The method may include a definition of a plurality of critical values of the intensity and frequency of the induction current, so as to define a resonance curve, representing the critical values of intensity and frequency generating a resonance of said free surface, the method comprising determining a range of variation of the intensity or the frequency of the induction current in a domain delimited by said resonance curve.

De manière préférée, le procédé comporte une variation de la fréquence du courant d'induction parcourant un inducteur.Preferably, the method comprises a variation of the frequency of the induction current flowing through an inductor.

Selon un mode de réalisation, au moins un générateur est un aimant permanent, le procédé comportant :

  • une variation d'une distance entre l'aimant permanent et la lingotière ;
  • et/ou une rotation de l'aimant permanent, et une variation de la vitesse de rotation de l'aimant ;
  • et/ou une rotation de deux aimants permanents.
According to one embodiment, at least one generator is a permanent magnet, the method comprising:
  • a variation of a distance between the permanent magnet and the mold;
  • and / or a rotation of the permanent magnet, and a variation of the speed of rotation of the magnet;
  • and / or a rotation of two permanent magnets.

Un autre objet de l'invention est un lingot en alliage d'aluminium, obtenu par le procédé tel que décrit ci-dessus et dans la description qui suit.Another subject of the invention is an aluminum alloy ingot, obtained by the process as described above and in the description which follows.

Le lingot peut présenter, pour un élément de l'alliage, dont la teneur en poids est supérieure à 0.5 %, ou la somme de deux éléments de l'alliage dont la teneur individuelle est supérieure à 0.5%, un critère de dispersion inférieur à 3.3, de préférence inférieur à 3, plus avantageusement inférieur à 2,5, encore plus avantageusement inférieur à 2 et de manière préférée inférieur à 1,5, ledit critère de dispersion étant défini selon les expressions suivantes : ε = Δ C ZA / Δ C ZR

Figure imgb0001
Δ C ZA = max C ZA min C ZA
Figure imgb0002
Δ C ZR = max C ZR min C ZR
Figure imgb0003
où :

  • max (CZA) et min (CZA) désignent respectivement les concentrations maximale et minimale de l'élément considéré ou de la somme des deux éléments considérés mesurées dans une zone d'analyse, présentant des macroségrégations intermittentes, par exemple entre T/2.3 et T/3.3 ;
  • max (CZR) et min (CZR) désignent respectivement les concentrations maximale et minimale de l'élément considéré ou de la somme des deux éléments considérés dans une zone de référence considérée comme peu affectée par les macroségrégations intermittentes, par exemple entre T/6 et T/12 ;
lesdites concentrations étant mesurées sur au moins un profil établi à mi-largeur dans un plan vertical L/TC et selon la direction TC, ledit profil étant représentatif desdites macroségrégations intermittentes selon ladite direction TC.The ingot may have, for an element of the alloy, the content of which by weight is greater than 0.5%, or the sum of two elements of the alloy whose individual content is greater than 0.5%, a dispersion criterion less than 3.3, preferably less than 3, more advantageously less than 2.5, even more advantageously less than 2 and preferably less than 1.5, said dispersion criterion being defined according to the expressions following: ε = Δ VS ZA / Δ VS ZR
Figure imgb0001
Δ VS ZA = max VS ZA - min VS ZA
Figure imgb0002
Δ VS ZR = max VS ZR - min VS ZR
Figure imgb0003
or :
  • max (C ZA ) and min (C ZA ) respectively denote the maximum and minimum concentrations of the element considered or of the sum of the two elements considered measured in an analysis zone, presenting intermittent macrosegregations, for example between T / 2.3 and T / 3.3;
  • max (C ZR ) and min (C ZR ) respectively denote the maximum and minimum concentrations of the element considered or of the sum of the two elements considered in a reference zone considered as little affected by intermittent macrosegregations, for example between T / 6 and T / 12;
said concentrations being measured on at least one profile established at mid-width in a vertical plane L / TC and along the TC direction, said profile being representative of said intermittent macrosegregations along said TC direction.

Le lingot peut présenter un critère d'intensité spectrale inférieur à 0.01, de préférence inférieur à 0.007 et de manière préférée inférieur à 0.005, ledit critère d'intensité spectrale étant calculé en :

  • déterminant une amplitude maximale d'une transformée de Fourier d'un profil représentatif d'une macroségrégation intermittente d'un élément dont la teneur en poids est supérieure à 0.5% ou la somme de deux éléments de l'alliage dont la teneur individuelle est supérieure à 0.5%, le profil étant établi selon ladite direction TC, ladite amplitude maximale étant déterminée dans une plage de périodes spatiales comprise entre 8 et 25 mm,
  • normalisant ladite amplitude maximale par une concentration nominale C0 dudit élément ou par la somme des concentrations nominales des deux éléments considérés.
The ingot can have a spectral intensity criterion less than 0.01, preferably less than 0.007 and preferably less than 0.005, said spectral intensity criterion being calculated by:
  • determining a maximum amplitude of a Fourier transform of a profile representative of an intermittent macrosegregation of an element whose content by weight is greater than 0.5% or the sum of two elements of the alloy whose individual content is greater at 0.5%, the profile being established in said direction TC, said maximum amplitude being determined in a range of spatial periods between 8 and 25 mm,
  • normalizing said maximum amplitude by a nominal concentration C 0 of said element or by the sum of the nominal concentrations of the two elements considered.

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et représentés sur les figures listées ci-dessous.Other advantages and characteristics will emerge more clearly from the description which follows of particular embodiments of the invention, given by way of non-limiting examples, and shown in the figures listed below.

FiguresFigures

  • Les figures 1A à 1E illustrent un exemple de dispositif et de procédé selon l'art antérieur et selon l'invention. La figure 1A présente les principaux composants du dispositif tandis que les figures 1B et 1C représentent respectivement une distribution spatiale et temporelle de l'amplitude d'un champ magnétique glissant selon l'art antérieur. Les figures 1D et 1E présentent respectivement une distribution spatiale et temporelle de l'amplitude d'un champ magnétique glissant instationnaire selon des modes de réalisation de l'invention.The figures 1A to 1E illustrate an example of a device and method according to the prior art and according to the invention. The figure 1A presents the main components of the device while the figures 1B and 1C respectively represent a spatial and temporal distribution of the amplitude of a sliding magnetic field according to the prior art. The figures 1D and 1E respectively exhibit a spatial and temporal distribution of the amplitude of an unsteady sliding magnetic field according to embodiments of the invention.
  • La figure 2 représente une courbe dite de résonance de surface libre du marais, représentant des valeurs, dites critiques, de l'intensité et de la fréquence d'un courant d'induction auxquelles une résonance de la surface libre du marais apparaît, cela en mettant en œuvre un procédé de brassage électromagnétique.The figure 2 represents a curve known as the resonance of the free surface of the marsh, representing values, known as critical, of the intensity and the frequency of an induction current at which a resonance of the free surface of the marsh appears, this by implementing an electromagnetic mixing process.
  • La figure 3 est une radiographie d'une tranche verticale d'un produit obtenu en mettant en œuvre un premier exemple de procédé, représentatif de l'art antérieur, selon un premier exemple, dit exemple 1, représentatif de l'art antérieur.The figure 3 is an X-ray of a vertical slice of a product obtained by implementing a first example of a process, representative of the prior art, according to a first example, known as Example 1, representative of the prior art.
  • La figure 4 montre un exemple de profil de concentration en Zn le long d'une ligne horizontale de la tranche verticale représentée sur la figure 3 et les zones d'analyse et de référence.The figure 4 shows an example of a Zn concentration profile along a horizontal line of the vertical slice shown in the figure 3 and the analysis and reference areas.
  • La figure 5A montre les traitements numériques successivement effectués sur chaque profil obtenu avec une résolution de 0,1 mm. La figure 5B montre un profil résultant des traitements effectués.The figure 5A shows the digital processing successively carried out on each profile obtained with a resolution of 0.1 mm. The figure 5B shows a profile resulting from the treatments performed.
  • Les figures 6A et 6B illustrent des profils de caractérisation d'un produit obtenu en mettant en œuvre un procédé selon l'exemple 1. La figure 6A montre des profils de concentration en Zn le long de plusieurs lignes horizontales de la tranche verticale représentée sur la figure 3. La figure 6B montre les profils résultant des traitements numériques effectués.The figures 6A and 6B illustrate characterization profiles of a product obtained by implementing a process according to Example 1. The figure 6A shows Zn concentration profiles along several horizontal lines of the vertical slice shown on the figure 3 . The figure 6B shows the profiles resulting from the digital processing performed.
  • La figure 7 montre des transformées de Fourier des profils représentés sur la figure 6B.The figure 7 shows Fourier transforms of the profiles represented on the figure 6B .
  • La figure 8 représente une courbe dite de résonance de surface libre du marais, obtenue en mettant en œuvre un procédé d'un deuxième exemple, dit exemple 2, selon l'invention.The figure 8 represents a curve known as the free surface resonance of the marsh, obtained by implementing a method of a second example, called example 2, according to the invention.
  • Les figures 9, 10A, 10B et 11 illustrent une caractérisation d'un produit obtenu en mettant en œuvre un procédé selon ce deuxième exemple. La figure 9 est une radiographie d'une tranche verticale du produit. La figure 10A montre des profils de concentration en Zn le long de plusieurs lignes horizontales de la tranche verticale représentée sur la figure 9. La figure 10B montre les profils résultant des traitements numériques effectués sur les profils illustrés sur la figure 9. La figure 11 montre des transformées de Fourier de ces différents profils.The figures 9 , 10A , 10B and 11 illustrate a characterization of a product obtained by implementing a process according to this second example. The figure 9 is an x-ray of a vertical slice of the product. The figure 10A shows Zn concentration profiles along several horizontal lines of the vertical slice shown on the figure 9 . The figure 10B show them profiles resulting from digital processing carried out on the profiles illustrated on the figure 9 . The figure 11 shows Fourier transforms of these different profiles.
Description détaillée de l'inventionDetailed description of the invention

Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier.Unless otherwise indicated, all indications concerning the chemical composition of alloys are expressed as a percentage by weight based on the total weight of the alloy. The expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of the alloys is made in accordance with the regulations of The Aluminum Association, known to those skilled in the art.

La figure 1A illustre un exemple de procédé de coulée connu de l'art antérieur. Dans cet exemple, un alliage d'aluminium 1 s'écoule dans une lingotière 2, à travers une ouverture 2i. La lingotière 2 s'étend selon un axe Z vertical. Elle est délimitée par une enceinte périphérique dont la section, dans un plan horizontal XY, est parallélépipédique. Un fluide de refroidissement 3, par exemple de l'eau, s'écoule contre la paroi du produit solidifié. Ce procédé est connu en tant que coulée semi-continue par refroidissement direct (« Direct-Chill Casting »). Un faux-fond 4 peut être translaté de façon à s'éloigner de l'ouverture 2i au cours de la coulée. La lingotière 2 s'étend, parallèlement à un premier axe horizontal X, selon une épaisseur e et, parallèlement à un deuxième axe horizontal Y, perpendiculaire à l'axe X, selon une longueur ℓ. L'épaisseur e est par exemple supérieure à 300 mm. C'est au-delà d'une telle épaisseur que les macroségrégations intermittentes 11 apparaissent de façon marquée.The figure 1A illustrates an example of a casting process known from the prior art. In this example, an aluminum alloy 1 flows into an ingot mold 2, through an opening 2i. The mold 2 extends along a vertical Z axis. It is delimited by a peripheral enclosure whose section, in a horizontal XY plane, is parallelepiped. A cooling fluid 3, for example water, flows against the wall of the solidified product. This process is known as semi-continuous casting by direct cooling ("Direct-Chill Casting"). A false bottom 4 can be translated so as to move away from the opening 2i during the casting. The mold 2 extends, parallel to a first horizontal axis X, along a thickness e and, parallel to a second horizontal axis Y, perpendicular to the axis X, along a length ℓ. The thickness e is for example greater than 300 mm. It is beyond such a thickness that the intermittent macrosegregations 11 appear markedly.

Sous l'effet du refroidissement, une zone solide 1s se forme, à proximité de l'enceinte refroidie, autour d'une zone liquide 1ℓ, désignée par le terme « marais ». L'interface entre la zone liquide 1ℓ et la zone solide 1s est un front 10, ce dernier progressant vers le centre de la lingotière au fur et à mesure que la solidification de l'alliage a lieu. A l'issue du refroidissement, un lingot parallélépipédique, également désigné par le terme « produit », est formé.Under the effect of cooling, a solid zone 1s forms, near the cooled enclosure, around a liquid zone 1ℓ, designated by the term "marsh". The interface between the liquid zone 1ℓ and the solid zone 1s is a front 10, the latter progressing towards the center of the mold as the solidification of the alloy takes place. After cooling, a parallelepipedal ingot, also designated by the term “product”, is formed.

L'alliage est un alliage d'aluminium de la série 1XXX, 2XXX, 3XXX, 4XXX, 5XXX, 6XXX, 7XXX ou 8XXX. Les alliages dont la fraction massique en éléments d'alliage est supérieure à 1%, voire supérieure à 3% ou encore à 5% sont particulièrement adaptés à un procédé selon l'invention, car plus cette fraction massique de ces éléments d'alliages est importante, plus les macroségrégations intermittentes sont marquées. L'invention est particulièrement avantageuse pour les produits en alliage 2XXX, 5XXX, 6XXX ou 7XXX dont l'épaisseur est au moins égale à 400 mm voire 450 mm.The alloy is an aluminum alloy of the 1XXX, 2XXX, 3XXX, 4XXX, 5XXX, 6XXX, 7XXX or 8XXX series. Alloys in which the mass fraction of alloying elements is greater than 1%, or even greater than 3% or even more than 5% are particularly suitable for a process according to the invention, because the higher this mass fraction of these alloying elements is. important, the more the intermittent macrosegregations are marked. The invention is particularly advantageous for products made of a 2XXX, 5XXX, 6XXX or 7XXX alloy, the thickness of which is at least equal to 400 mm or even 450 mm.

On a représenté un générateur de champ magnétique 5, apte à générer un champ magnétique B destiné à être appliqué à la zone liquide 1ℓ de l'alliage. Un tel générateur peut être un aimant permanent ou un inducteur électromagnétique, ce dernier générant un champ magnétique lorsqu'il est parcouru par un courant électrique, dit courant d'induction.There is shown a magnetic field generator 5, capable of generating a magnetic field B intended to be applied to the liquid zone 1ℓ of the alloy. Such a generator can be a permanent magnet or an electromagnetic inductor, the latter generating a magnetic field when it is traversed by an electric current, called an induction current.

Le champ magnétique B appliqué à la zone liquide 1ℓ est un champ alternatif, d'amplitude B 0 et de fréquence f. L'effet de ce champ magnétique est d'appliquer un brassage du marais, sous l'effet de forces de Lorentz s'appliquant sur la zone liquide métallique 1ℓ. En effet, l'application d'un champ magnétique B engendre, dans l'alliage, la formation d'un courant électrique J résultant, au sein de la zone liquide de l'alliage soumis au champ magnétique, en l'apparition d'une force de Lorentz F telle que FJ × B où × désigne l'opérateur produit vectoriel, et ∝ désigne une relation de proportionnalité. Cette force de Lorentz présente une composante oscillante à une fréquence double de la fréquence f du champ magnétique.The magnetic field B applied to the liquid zone 1ℓ is an alternating field, of amplitude B 0 and of frequency f . The effect of this magnetic field is to apply a mixing of the marsh, under the effect of Lorentz forces applying to the metallic liquid zone 1ℓ. Indeed, the application of a magnetic field B generates, in the alloy, the formation of an electric current J resulting, within the liquid zone of the alloy subjected to the magnetic field, in the appearance of a Lorentz force F such that FJ × B where × denotes the vector product operator, and ∝ denotes a relation of proportionality. This Lorentz force exhibits an oscillating component at a frequency twice the frequency f of the magnetic field.

Du fait de l'épaisseur de la lingotière, la fréquence f est choisie de manière à permettre une pénétration suffisante du champ magnétique B dans le marais, de façon à obtenir un brassage efficace du liquide. La fréquence f est d'autant plus faible que l'épaisseur du produit est élevée. Dans le cas d'un alliage d'aluminium d'épaisseur supérieure à 300 mm, la fréquence est de préférence inférieure à 5 Hz, et de façon encore plus avantageuse inférieure à 2 Hz ou à 1Hz.Due to the thickness of the mold, the frequency f is chosen so as to allow sufficient penetration of the magnetic field B in the swamp, so as to obtain efficient mixing of the liquid. The frequency f is all the lower the greater the thickness of the product. In the case of an aluminum alloy with a thickness greater than 300 mm, the frequency is preferably less than 5 Hz, and even more advantageously less than 2 Hz or 1 Hz.

Le générateur 5 est apte à générer un champ magnétique glissant. Le terme champ magnétique glissant désigne un champ magnétique alternatif, dont l'amplitude B 0 n'est pas constante, et varie entre une valeur minimale et une amplitude maximale B 0 max ,

Figure imgb0004
l'amplitude maximale B 0 max
Figure imgb0005
se propageant selon un axe de propagation Δ, de préférence rectiligne. Par amplitude, on entend la valeur maximale que prend une grandeur périodique. De préférence, l'axe de propagation appartient à un plan parallèle à la direction de coulée.The generator 5 is able to generate a sliding magnetic field. The term sliding magnetic field designates an alternating magnetic field, the amplitude B 0 of which is not constant, and varies between a minimum value and a maximum amplitude B 0 max ,
Figure imgb0004
maximum amplitude B 0 max
Figure imgb0005
propagating along a propagation axis Δ, preferably rectilinear. By amplitude, we mean the maximum value that a periodic quantity takes. Preferably, the axis of propagation belongs to a plane parallel to the direction of casting.

La distance λ séparant deux maximas d'amplitude du champ magnétique est la longueur d'onde du champ magnétique glissant. La figure 1B représente un exemple de distribution de l'amplitude B 0 d'un champ magnétique glissant le long d'un axe de propagation Δ à un instant t (trait continu), et à un instant t + Δt (trait pointillé). Sur l'axe de propagation, on a représenté une coordonnée r correspondant à la position d'un point du marais. La figure 1C illustre une évolution temporelle d'un champ magnétique alternatif glissant en ce point. Du fait de la propagation de la valeur d'amplitude maximale B 0 max ,

Figure imgb0006
l'amplitude du champ magnétique, en ce point, varie entre une valeur minimale B 0 min
Figure imgb0007
et la valeur B 0 max
Figure imgb0008
cette dernière n'évoluant pas dans le temps.The distance λ separating two amplitude maxima of the magnetic field is the wavelength of the sliding magnetic field. The figure 1B represents an example of the distribution of the amplitude B 0 of a magnetic field sliding along a propagation axis Δ at an instant t (solid line), and at an instant t + Δt (dotted line). On the axis of propagation, there is represented a coordinate r corresponding to the position of a point of the marsh. The figure 1C illustrates a temporal evolution of an alternating magnetic field sliding at this point. Due to the propagation of the maximum amplitude value B 0 max ,
Figure imgb0006
the amplitude of the magnetic field, at this point, varies between a minimum value B 0 min
Figure imgb0007
and the value B 0 max
Figure imgb0008
the latter not changing over time.

Un générateur de champ magnétique glissant 5 peut être constitué par plusieurs inducteurs électromagnétiques disposés autour de l'enceinte périphérique. La force de Lorentz, en un point de coordonnées r du marais, comporte une composante oscillante, modulée selon une fréquence 2f double de la fréquence du champ magnétique. L'amplitude F 0 de la densité de force de Lorentz oscillante peut être explicitée selon l'expression : F 0 r = 1 2 σfλB 0 2 r

Figure imgb0009
σ désigne la conductivité électrique.A sliding magnetic field generator 5 can be formed by several electromagnetic inductors arranged around the peripheral enclosure. The Lorentz force, at a point of coordinates r of the marsh, comprises an oscillating component, modulated according to a frequency 2 f double the frequency of the magnetic field. The amplitude F 0 of the oscillating Lorentz force density can be explained according to the expression: F 0 r = 1 2 σfλB 0 2 r
Figure imgb0009
where σ denotes the electrical conductivity.

On peut définir une vitesse de glissement VG du champ magnétique VG = (2) auquel cas l'expression (1) peut être exprimée comme suit : F 0 r = 1 2 σV G B 0 2 r

Figure imgb0010
We can define a sliding speed V G of the magnetic field V G = (2) in which case the expression (1) can be expressed as follows: F 0 r = 1 2 σV G B 0 2 r
Figure imgb0010

Ainsi, l'amplitude de la force de Lorentz, en un point r du marais dépend du carré de l'amplitude du champ magnétique appliqué en ce point. L'application d'un champ magnétique glissant se traduit, en un point du marais, par une modulation de son amplitude. Ainsi, l'amplitude du champ magnétique en un point du marais varie en fonction du temps, entre une amplitude minimale B 0 min

Figure imgb0011
et une amplitude maximale B 0 max .
Figure imgb0012
Il en est de même de la densité de force de Lorentz, cette dernière ayant, en un point r du marais, une valeur maximale lorsque l'amplitude du champ magnétique, en ce point, est maximale. En se plaçant dans le repère XYZ, lié à la lingotière 2, la propagation d'une valeur maximale de l'amplitude du champ magnétique B 0 max ,
Figure imgb0013
le long d'un axe de propagation, entraîne, simultanément, la propagation d'une force de Lorentz d'intensité maximale Fmax selon l'axe de propagation Δ. La combinaison des forces se propageant le long de l'axe de propagation établit un mouvement du liquide selon cet axe constituant un élément de pompe électromagnétique.Thus, the amplitude of the Lorentz force at a point r of the marsh depends on the square of the amplitude of the magnetic field applied at this point. The application of a sliding magnetic field results, at a point in the marsh, by a modulation of its amplitude. Thus, the amplitude of the magnetic field at a point in the marsh varies as a function of time, between a minimum amplitude B 0 min
Figure imgb0011
and a maximum amplitude B 0 max .
Figure imgb0012
The same is true of the Lorentz force density, the latter having, at a point r of the marsh, a maximum value when the amplitude of the magnetic field, at this point, is maximum. By placing itself in the XYZ reference, linked to the mold 2, the propagation of a maximum value of the amplitude of the magnetic field B 0 max ,
Figure imgb0013
along a propagation axis, simultaneously causes the propagation of a Lorentz force of maximum intensity F max along the propagation axis Δ. The combination of forces propagating along the axis of propagation establishes a movement of the liquid along this axis constituting an electromagnetic pump element.

Les inventeurs ont constaté qu'en modulant, dans le temps, l'amplitude maximale de la force de Lorentz Fmax se propageant dans le marais, les macroségrégations intermittentes sont atténuées, voire disparaissent, et cela particulièrement sur des lingots dont l'épaisseur est supérieure à 300 mm.The inventors have observed that by modulating, over time, the maximum amplitude of the Lorentz force F max propagating in the marsh, the intermittent macrosegregations are attenuated, or even disappear, and this particularly on ingots whose thickness is greater than 300 mm.

Cette modulation temporelle peut être obtenue par une variation d'un paramètre, dit paramètre magnétique de force, commandant l'amplitude de la densité de force de Lorentz explicitée dans les équations (1) et (3), par exemple :

  • la valeur de l'amplitude maximale B 0 max
    Figure imgb0014
    du champ magnétique ;
  • de la fréquence f du champ magnétique ;
  • la longueur d'onde λ du champ magnétique glissant.
This temporal modulation can be obtained by a variation of a parameter, called the magnetic force parameter, controlling the amplitude of the Lorentz force density explained in equations (1) and (3), for example:
  • the value of the maximum amplitude B 0 max
    Figure imgb0014
    the magnetic field;
  • the frequency f of the magnetic field;
  • the wavelength λ of the sliding magnetic field.

Lorsque le champ magnétique glissant est généré par une pluralité d'inducteurs électromagnétiques disposés à la périphérie de la lingotière, la modulation temporelle de la densité de force de Lorentz peut être obtenue en modifiant le pas polaire, c'est-à-dire le déphasage entre les courants d'induction circulant dans chaque inducteur. Une telle modification permet de faire varier la longueur d'onde λ du champ magnétique glissant, c'est-à-dire la distance entre deux maximas se propageant selon l'axe de propagation. La fréquence du courant d'induction circulant dans les inducteurs peut être variable, ce qui modifie la fréquence f du champ magnétique. L'amplitude du courant d'induction peut également être variable, ce qui modifie la valeur de l'amplitude maximale B 0 max

Figure imgb0015
du champ magnétique. Sur la figure 1D, on a représenté un mode de réalisation dans lequel la valeur de l'amplitude maximale B 0 max
Figure imgb0016
du champ magnétique et la longueur d'onde λ du champ magnétique glissant sont variables au cours du temps. Ainsi, on a représenté une distribution spatiale de l'amplitude B 0(t) dans le marais, à un instant t (trait continu), ainsi qu'une distribution spatiale de l'amplitude B 0(t + Δt), à un instant t + Δt (trait pointillé). Durant l'intervalle temporel Δt, l'amplitude maximale B 0 max
Figure imgb0017
varie entre B 0 max t
Figure imgb0018
et B 0 max t + Δ t .
Figure imgb0019
De même, la longueur d'onde λ a été modifiée, passant de λ(t) à λ(t + Δt). Sur la figure 1E, qui représente une évolution temporelle d'un champ magnétique alternatif glissant en un point, on a représenté un mode de réalisation dans lequel la valeur de l'amplitude maximale B 0 max
Figure imgb0020
du champ magnétique varie, au cours du temps, pour une fréquence f et une longueur d'onde λ constantes.When the sliding magnetic field is generated by a plurality of electromagnetic inductors arranged at the periphery of the mold, the temporal modulation of the Lorentz force density can be obtained by modifying the pole pitch, that is to say the phase shift between the induction currents flowing in each inductor. Such a modification makes it possible to vary the wavelength λ of the sliding magnetic field, that is to say the distance between two maxima propagating along the axis of propagation. The frequency of the induction current flowing in the inductors can be variable, which modifies the frequency f of the magnetic field. The amplitude of the induction current can also be variable, which changes the value of the maximum amplitude B 0 max
Figure imgb0015
of the magnetic field. On the figure 1D , there is shown an embodiment in which the value of the maximum amplitude B 0 max
Figure imgb0016
of the magnetic field and the wavelength λ of the sliding magnetic field are variable over time. Thus, we have shown a spatial distribution of the amplitude B 0 ( t ) in the marsh, at an instant t (solid line), as well as a spatial distribution of the amplitude B 0 ( t + Δ t ), at an instant t + Δ t (dotted line). During the time interval Δ t , the maximum amplitude B 0 max
Figure imgb0017
varies between B 0 max t
Figure imgb0018
and B 0 max t + Δ t .
Figure imgb0019
Likewise, the wavelength λ has been changed from λ ( t ) to λ ( t + Δ t ). On the figure 1E , which represents a temporal evolution of an alternating magnetic field sliding at a point, an embodiment has been shown in which the value of the maximum amplitude B 0 max
Figure imgb0020
of the magnetic field varies, over time, for a constant frequency f and a wavelength λ .

De ce fait, dans les exemples représentés sur les figures 1D et 1E, l'amplitude maximale de la force de Lorentz, se propageant dans le marais, varie entre t et t + Δt, entre les valeurs Fmax (t) et Fmax (t + Δt).Therefore, in the examples shown on the figures 1D and 1E , the maximum amplitude of the Lorentz force, propagating in the marsh, varies between t and t + Δ t , between the values F max ( t ) and F max ( t + Δ t ).

La modulation temporelle d'un paramètre de force est mise en œuvre pendant la coulée, durant une durée significative, de préférence supérieure à 50% voire à 80% de la durée de la coulée. Cette modulation temporelle peut par exemple être appliquée durant au moins 30 minutes, voire au moins 1 heure.The temporal modulation of a force parameter is implemented during the casting, for a significant period, preferably greater than 50% or even 80% of the duration of the casting. This temporal modulation can for example be applied for at least 30 minutes, or even at least 1 hour.

Un champ magnétique glissant B peut notamment être généré à partir de deux inducteurs disposés sur une même face du lingot. Les inducteurs sont disposés de préférence face à une grande face du lingot, c'est-à-dire une des deux faces du lingot présentant la plus grande section verticale. Les inducteurs peuvent être superposés l'un à l'autre, de façon à engendrer un déphasage dit vertical, ou disposés côte à côte, de façon à engendrer un déphasage horizontal. Dans les exemples décrits ci-après, on a utilisé un dispositif décrit dans la demande WO2014/155357 , et plus précisément selon la configuration décrite en lien avec les figures 19 et 20A, dans laquelle trois inducteurs, orientés selon l'axe vertical Z, sont disposés face à chaque grande face du lingot.A sliding magnetic field B can in particular be generated from two inductors arranged on the same face of the ingot. The inductors are preferably placed facing a large face of the ingot, that is to say one of the two sides of the ingot having the largest vertical section. The inductors can be superimposed on one another, so as to generate a so-called vertical phase shift, or arranged side by side, so as to generate a horizontal phase shift. In the examples described below, a device described in the application was used. WO2014 / 155357 , and more precisely according to the configuration described in connection with the figures 19 and 20A , in which three inductors, oriented along the vertical axis Z, are arranged facing each major face of the ingot.

Le champ magnétique glissant peut également être généré à partir d'un ou plusieurs aimants permanents disposés à la périphérie de la lingotière et mis en mouvement par rapport à cette dernière. Par exemple, il est possible de générer un champ magnétique glissant en faisant tourner un aimant permanent.The sliding magnetic field can also be generated from one or more permanent magnets arranged at the periphery of the mold and set in motion with respect to the latter. For example, it is possible to generate a sliding magnetic field by rotating a permanent magnet.

Une variation des paramètres du champ magnétique glissant, qu'il s'agisse de son amplitude, de sa fréquence ou de sa longueur d'onde permet d'appliquer une force de Lorentz non stationnaire dans le marais. Les inventeurs ont constaté que cela permet d'atténuer l'apparition des macroségrégations intermittentes voire de les faire disparaître. De telles conditions influent probablement sur les recirculations se produisant spontanément dans le marais, et réduisent leurs conséquences.A variation of the parameters of the sliding magnetic field, be it its amplitude, its frequency or its wavelength, makes it possible to apply a non-stationary Lorentz force in the swamp. The inventors have observed that this makes it possible to attenuate the appearance of intermittent macrosegregations or even to make them disappear. Such conditions probably influence the recirculations occurring spontaneously in the marsh, and reduce their consequences.

De préférence, dans le marais, la vitesse de variation de la densité maximale de force de Lorentz est supérieure à 0.05 N.m-3.s-1, et de préférence supérieure à 0.1 N.m-3.s-1, et de préférence supérieure à 0.2 N.m-3.s-1. Dans un mode de réalisation la vitesse maximale de variation de la densité maximale de force de Lorentz pendant la coulée est au moins de 1 N.m-3.s-1 et de préférence au moins de 2 N.m-3.s-1.Preferably, in the marsh, the rate of variation of the maximum Lorentz force density is greater than 0.05 Nm -3 .s -1 , and preferably greater than 0.1 Nm -3 .s -1 , and preferably greater than 0.2 Nm -3 .s -1 . In one embodiment, the maximum rate of variation of the maximum Lorentz force density during casting is at least 1 Nm -3 .s -1 and preferably at least 2 Nm -3 .s -1 .

De préférence, la variation d'un ou plusieurs paramètres de force a lieu dans un intervalle temporel inférieur ou égal aux durées caractéristiques des recirculations générées par convection naturelle. Ces durées varient selon l'épaisseur du lingot et de la vitesse de coulée. En considérant des épaisseurs e comprises entre 300 mm et 700 mm, et des vitesses de coulée comprises entre 30 mm/min et 80 mm/min, les durées caractéristiques des recirculations s'étendent entre 20 secondes (épaisseur de 300 mm, vitesse de coulée de 30 mm/min) et 10 minutes (épaisseur de 700 mm, vitesse de coulée de 80 mm/min). Ainsi, les paramètres de force varient dans un intervalle temporel Δt déterminé en fonction de ces durées caractéristiques. Par variation, on entend une variation significative, d'au moins 10% du paramètre de force considéré, et de préférence d'au moins 20% voire 30% du paramètre de force.Preferably, the variation of one or more force parameters takes place in a time interval less than or equal to the characteristic durations of the recirculations generated by natural convection. These times vary depending on the thickness of the ingot and the casting speed. Considering thicknesses e between 300 mm and 700 mm, and casting speeds of between 30 mm / min and 80 mm / min, the characteristic times of recirculations extend between 20 seconds (thickness of 300 mm, casting speed of 30 mm / min) and 10 minutes (thickness of 700 mm, casting speed of 80 mm / min). Thus, the force parameters vary in a time interval Δ t determined as a function of these characteristic times. The term “variation” is understood to mean a significant variation of at least 10% of the force parameter considered, and preferably of at least 20% or even 30% of the force parameter.

La variation d'un paramètre de force peut être périodique, la période temporelle de variation pouvant être de l'ordre d'une durée caractéristique de recirculation, c'est-à-dire être comprise entre 20 secondes et 10 minutes selon les conditions de dimensions et de vitesse de la coulée. De préférence, dans le marais, pendant la période temporelle de variation, la densité maximale de force de Lorentz varie d'au moins 30 N.m-3, et avantageusement d'au moins 40 N.m-3, et de préférence d'au moins 50 N.m-3, et encore plus préférentiellement d'au moins 60 N.m-3.The variation of a force parameter can be periodic, the time period of variation being of the order of a characteristic recirculation duration, that is to say between 20 seconds and 10 minutes depending on the conditions of dimensions and speed of the casting. Preferably, in the marsh, during the time period of variation, the maximum density Lorentz force varies by at least 30 Nm -3 , and advantageously at least 40 Nm -3 , and preferably at least 50 Nm -3 , and even more preferably at least 60 Nm -3 .

La variation d'un paramètre de force peut également être monotone au cours de la coulée, par exemple selon une fonction croissante ou décroissante entre le début et la fin de la coulée, la valeur du paramètre de force variant de façon continue ou par incréments successifs.The variation of a force parameter can also be monotonic during the casting, for example according to an increasing or decreasing function between the start and the end of the casting, the value of the force parameter varying continuously or in successive increments. .

Avantageusement, au cours de la coulée, la force de Lorentz d'intensité maximale n'est pas égale à zéro. Typiquement, elle est égale à zéro lorsque le courant dans les inducteurs ou les bobines est égale à zéro. Donc de manière avantageuse, la variation du paramètre de force n'est pas obtenue par une interruption périodique du champ glissant.Advantageously, during the casting, the Lorentz force of maximum intensity is not equal to zero. Typically, it is zero when the current in the inductors or coils is zero. So advantageously, the variation of the force parameter is not obtained by a periodic interruption of the sliding field.

Avantageusement, au cours de la coulée, la force de Lorentz d'intensité maximale est supérieure à 80 N/m3, de préférence supérieure à 100 N/m3, de préférence supérieure à 120 N/m3, de manière encore plus préférée supérieure à 140 N/m3. Les inventeurs ont en effet constaté que la suppression des macroségrégations intermittentes n'était pas optimum lorsque la force était trop faible comme le montre l'exemple 5 (Fig 20 a à d). La valeur minimale à partir de laquelle la suppression des macroségrégations intermittentes est améliorée dépend de l'ensemble des paramètres de coulée, en particulier du mode de brassage, de la position des inducteurs par rapport à la plaque et de la composition de l'alliage.Advantageously, during the casting, the Lorentz force of maximum intensity is greater than 80 N / m 3 , preferably greater than 100 N / m 3 , preferably greater than 120 N / m 3 , even more preferably. greater than 140 N / m 3 . The inventors have in fact observed that the suppression of intermittent macrosegregations was not optimum when the force was too low, as shown in Example 5 ( Fig 20 a to d). The minimum value from which the suppression of intermittent macrosegregations is improved depends on all the casting parameters, in particular the stirring mode, the position of the inductors relative to the plate and the composition of the alloy.

Selon un mode de réalisation, la fréquence f et/ou l'amplitude maximale B 0 max

Figure imgb0021
du champ magnétique sont modifiées respectivement en faisant varier la fréquence et l'amplitude du courant d'induction circulant dans des inducteurs. Pour cela, le procédé peut comprendre une étape préalable de définition d'un domaine de fonctionnement, c'est-à-dire une plage de variation de la fréquence et/ou de l'intensité du courant d'induction. Cette étape préalable comprend la détermination d'une ou de plusieurs valeurs de couples fréquence/intensité, dites valeurs critiques, générant, à la surface libre 1sup du marais, une résonance, la résonance se traduisant par l'apparition d'oscillations significatives de ladite surface libre 1sup, cette dernière étant représentée sur la figure 1A. Ces oscillations significatives sont généralement observées à l'œil nu. Par oscillation significative, on entend par exemple une oscillation dont l'amplitude est supérieure ou égale à 5 mm selon l'axe vertical Z. Par exemple, la fréquence du courant est fixée et on augmente l'intensité du courant d'induction jusqu'à ce qu'une oscillation significative soit observée.According to one embodiment, the frequency f and / or the maximum amplitude B 0 max
Figure imgb0021
of the magnetic field are modified respectively by varying the frequency and the amplitude of the induction current flowing in the inductors. For this, the method can comprise a preliminary step of defining an operating domain, that is to say a range of variation of the frequency and / or of the intensity of the induction current. This preliminary step includes the determination of one or more values of frequency / intensity pairs, called critical values, generating, at the free surface 1 sup of the marsh, a resonance, the resonance resulting in the appearance of significant oscillations of said free surface 1 sup , the latter being shown on the figure 1A . These significant oscillations are usually seen with the naked eye. By significant oscillation is meant, for example, an oscillation whose amplitude is greater than or equal to 5 mm along the vertical axis Z. For example, the frequency of the current is fixed and the intensity of the induction current is increased up to that a significant oscillation is observed.

En considérant différentes valeurs critiques de fréquence (ou d'intensité), il est possible de déterminer expérimentalement une courbe de résonance R, dans un plan fréquence/intensité correspondant aux différents couples (fréquence/intensité) auxquels une résonance est observée à la surface libre du marais. A partir de cette courbe R, on détermine une plage de variation de l'intensité et/ou de la fréquence, de façon à éviter ou limiter l'apparition d'une résonance de la surface libre du marais. En effet, la courbe de résonance délimite une zone de stabilité et une zone d'instabilité, dans laquelle la coulée peut devenir dangereuse. Cependant, le fait de moduler la fréquence ou l'intensité du courant d'induction, et donc la fréquence f ou l'amplitude maximale B 0 max

Figure imgb0022
du champ magnétique glissant, permet de s'approcher temporairement de la courbe de résonance R, par exemple de façon périodique, tout en restant dans la zone de stabilité. Cela permet de maximiser l'intensité de la force de Lorentz, et donc le brassage du marais, tout en restant dans des configurations de sécurité acceptables. En effet, au voisinage de la courbe de résonance, l'effet de brassage est particulièrement important.By considering different critical values of frequency (or intensity), it is possible to experimentally determine a resonance curve R, in a frequency / intensity plane corresponding to the different pairs (frequency / intensity) at which a resonance is observed at the free surface of the marsh. From this curve R, a range of variation of the intensity and / or of the frequency is determined, so as to avoid or limit the appearance of a resonance of the free surface of the marsh. In fact, the resonance curve delimits a zone of stability and a zone of instability, in which the casting can become dangerous. However, modulating the frequency or intensity of the induction current, and therefore the frequency f or the maximum amplitude B 0 max
Figure imgb0022
of the sliding magnetic field, makes it possible to temporarily approach the resonance curve R, for example periodically, while remaining in the zone of stability. This maximizes the intensity of the Lorentz force, and therefore swamp mixing, while remaining within acceptable safety configurations. Indeed, in the vicinity of the resonance curve, the stirring effect is particularly important.

Une telle courbe de résonance R dépend des conditions de coulée, c'est-à-dire des dimensions de la lingotière, de la vitesse de coulée, de la configuration du champ magnétique appliqué, cette dernière dépendant du générateur de champ magnétique, c'est-à-dire des inducteurs ou du ou des aimants permanents utilisés. Une courbe de résonance R est représentée sur la figure 2, cette courbe ayant été obtenue en coulant un lingot d'épaisseur 525 mm x 1650 mm, selon une vitesse de coulée de 45 mm/min, un brassage magnétique étant effectué par l'application d'un champ magnétique par trois inducteurs disposés devant chaque grande face du lingot et déphasés de 90° pour former un élément de pompe électromagnétique horizontale, comme précédemment évoqué. Sur cette figure, on a également représenté des abaques représentant un pourcentage de l'intensité d'une force de Lorentz, dite nominale, 100 % correspondant à l'intensité du courant d'induction maximale utilisable dans l'installation lorsque la fréquence est égale à 0.2 Hz. Cette intensité correspond à l'apparition d'une résonance à la fréquence de 0.2 Hz. De préférence, l'intensité et la fréquence du courant d'induction se situent dans un espace délimité par la courbe représentant un certain pourcentage de l'intensité de la force de Lorentz nominale, par exemple 10% de cette intensité, et la courbe de résonance.Such a resonance curve R depends on the casting conditions, that is to say the dimensions of the mold, the casting speed, the configuration of the applied magnetic field, the latter depending on the magnetic field generator, c ' that is to say inductors or permanent magnet (s) used. An R resonance curve is shown on the figure 2 , this curve having been obtained by casting an ingot with a thickness of 525 mm x 1650 mm, at a casting speed of 45 mm / min, a magnetic stirring being carried out by the application of a magnetic field by three inductors arranged in front of each large face of the ingot and out of phase by 90 ° to form a horizontal electromagnetic pump element, as previously mentioned. In this figure, there is also shown graphs representing a percentage of the intensity of a Lorentz force, called nominal, 100% corresponding to the intensity of the maximum induction current usable in the installation when the frequency is equal at 0.2 Hz. This intensity corresponds to the appearance of a resonance at the frequency of 0.2 Hz. Preferably, the intensity and the frequency of the induction current are located in a space delimited by the curve representing a certain percentage of the intensity of the nominal Lorentz force, for example 10% of this intensity, and the resonance curve.

De manière préférée, le procédé comporte une variation de la fréquence du courant d'induction parcourant un inducteur. Les inventeurs ont trouvé qu'il était avantageux de faire varier la fréquence car la variation de pénétration du champ qui en résulte permet de faire varier plus efficacement le gradient de force dans l'épaisseur et la profondeur du puits liquide. Par ailleurs, l'électronique de puissance fait que la variation de fréquence est plus rapide que la variation d'intensité ; ce qui donne un degré de liberté supplémentaire vers les périodes plus faibles de forçage instationnaire. Il est en effet avantageux de découpler les temps caractéristiques hydrodynamiques des temps caractéristiques de la solidification pour éviter les macroségrégations intermittentes.Preferably, the method comprises a variation of the frequency of the induction current flowing through an inductor. The inventors have found that it is advantageous to vary the frequency because the variation in the penetration of the field which results therefrom makes it possible to vary the force gradient in the thickness and the depth of the liquid well more effectively. In addition, the power electronics make the frequency variation faster than the variation intensity; which gives an additional degree of freedom towards the weaker periods of unsteady forcing. It is in fact advantageous to decouple the hydrodynamic characteristic times from the characteristic solidification times in order to avoid intermittent macrosegregations.

Un autre exemple de courbe est représenté sur la figure 8 et sera commenté ultérieurement en lien avec les exemples. Sur les figures 2 et 8, on a représenté la courbe de résonance R, déterminée expérimentalement, ainsi que la courbe représentant une Force de Lorentz dont l'intensité est égale à 10% de la force de Lorentz nominale préalablement définie.Another example of a curve is shown on the figure 8 and will be commented on later in connection with the examples. On the figures 2 and 8 , we have shown the resonance curve R, determined experimentally, as well as the curve representing a Lorentz force whose intensity is equal to 10% of the nominal Lorentz force defined beforehand.

La variation d'un ou plusieurs paramètres de force peut notamment permettre d'alterner des périodes durant lesquelles le nombre adimensionnel de Hartmann Ha est respectivement faible, typiquement inférieur à 1, et élevé, typiquement supérieur à 3, voire 5. Le nombre adimensionnel de Hartmann Ha est un nombre couramment utilisé dans le domaine de la magnétohydrodynamique. Il représente un ratio entre la viscosité magnétique et la viscosité d'un liquide chargé s'écoulant dans un champ magnétique. Plus ce nombre est important, plus la contribution des forces de Lorentz est importante. De préférence le nombre adimensionnel de Hartmann Ha alterne avec un ratio entre valeurs faibles et fortes d'au moins 3 ou d'au moins 5. Une telle configuration est préférée, car elle permet d'alterner des périodes durant lesquelles l'énergie cinétique appliquée par le champ magnétique s'oppose à la convection naturelle du métal liquide, et des périodes durant lesquelles la convection naturelle prédomine.The variation of one or more force parameters can in particular make it possible to alternate periods during which the dimensionless number of Hartmann Ha is respectively low, typically less than 1, and high, typically greater than 3, or even 5. The dimensionless number of Hartmann Ha is a number commonly used in the field of magnetohydrodynamics. It represents a ratio between the magnetic viscosity and the viscosity of a charged liquid flowing in a magnetic field. The greater this number, the greater the contribution of Lorentz forces. Preferably, the dimensionless Hartmann Ha number alternates with a ratio between weak and strong values of at least 3 or of at least 5. Such a configuration is preferred, since it makes it possible to alternate periods during which the kinetic energy applied. by the magnetic field opposes the natural convection of the liquid metal, and periods during which natural convection predominates.

Comme décrit en lien avec les exemples présentés ci-après, les produits obtenus par un procédé selon l'invention présentent une macroségrégation intermittente limitée par rapport à des procédés de l'art antérieur, voire non perceptible. Dans les exemples qui suivent, la caractérisation des produits a été réalisée en analysant des profils horizontaux (selon l'axe TC) d'une radiographie réalisée à mi-largeur selon un plan vertical L/TC, ces profils étant étalonnés pour obtenir la distribution spatiale d'éléments d'alliage lourds de type Zn ou Cu. Les zones enrichies en tels éléments lourds, plus absorbantes, apparaissent sous la forme de taches sombres sur le négatif des radiographies effectuées et donc des taches claires sur les radiographies présentées. Un exemple d'obtention du profil de concentration en Zn à partir d'une radiographie d'un alliage Al-Zn est présenté sur la figure 4.As described in connection with the examples presented below, the products obtained by a method according to the invention exhibit intermittent macrosegregation which is limited compared to methods of the prior art, or even not perceptible. In the following examples, the characterization of the products was carried out by analyzing horizontal profiles (along the TC axis) of an X-ray taken at mid-width along a vertical L / TC plane, these profiles being calibrated to obtain the distribution spatial elements of heavy alloys of Zn or Cu type. The areas enriched in such heavy elements, more absorbent, appear in the form of dark spots on the negative of the radiographs taken and therefore light spots on the radiographs presented. An example of obtaining the Zn concentration profile from an X-ray of an Al-Zn alloy is shown on the figure 4 .

Les termes L , TL et TC, connus de l'homme du métier, correspondent respectivement à la dimension du lingot selon l'axe vertical, l'axe dit « travers long » et selon l'axe dit « travers court ».The terms L, TL and TC, known to those skilled in the art, correspond respectively to the dimension of the ingot along the vertical axis, the so-called “long transverse” axis and along the so-called “short transverse” axis.

De façon complémentaire ou alternative, on peut réaliser des analyses chimiques selon des profils horizontaux, de façon à quantifier la distribution spatiale desdits éléments chimiques selon l'axe TC. Une macroségrégation intermittente peut être caractérisée par un écart maximal en masse d'un élément d'alliage, en l'occurrence Zn, dans la zone la plus marquée par les macroségrégations intermittentes, c'est-à-dire au voisinage de T/2.5.Complementarily or alternatively, chemical analyzes can be carried out along horizontal profiles, so as to quantify the spatial distribution of said chemical elements along the TC axis. Intermittent macrosegregation can be characterized by a maximum deviation in mass of an alloying element, in this case Zn, in the zone most marked by intermittent macrosegregation, that is to say in the vicinity of T / 2.5 .

Pour quantifier la macroségrégation intermittente, les profils de concentration, obtenus par radiographie ou par toute autre méthode, avec une résolution spatiale de 0,1 mm ont été traités comme illustré sur la figure 5A. Le profil obtenu avec la résolution de 0,1 mm est le profil brut référencé profil A. Une moyenne glissante sur 2 mm permet de s'affranchir de la microségrégation, le profil lissé obtenu est référencé profil B. Une autre moyenne glissante du profil brut sur 50 mm permet de s'affranchir des macroségrégations intermittentes, et d'obtenir le profil de macroségrégation continue, le profil obtenu étant un profil dit de base, référencé profil C. Le profil C est soustrait au profil B pour obtenir un profil dit corrigé, correspondant à la macroségrégation intermittente, le profil corrigé étant référencé profil D. Un tel profil est représenté sur la Figure 5B. Comme on peut le voir sur cette figure 5B, le profil corrigé est principalement représentatif de la macroségrégation intermittente, et n'est pas ou peu affecté par la macroségrégation continue centrale et par la microségrégation. Un tel profil corrigé permet de caractériser la macroségrégation intermittente.To quantify intermittent macrosegregation, the concentration profiles, obtained by radiography or by any other method, with a spatial resolution of 0.1 mm were processed as shown in Figure figure 5A . The profile obtained with the resolution of 0.1 mm is the raw profile referenced profile A. A sliding average over 2 mm makes it possible to avoid microsegregation, the smoothed profile obtained is referenced profile B. Another sliding average of the raw profile over 50 mm makes it possible to get rid of intermittent macro-segregations, and to obtain the continuous macro-segregation profile, the profile obtained being a so-called basic profile, referenced profile C. Profile C is subtracted from profile B to obtain a so-called corrected profile , corresponding to intermittent macrosegregation, the corrected profile being referenced profile D. Such a profile is shown on the Figure 5B . As can be seen from this figure 5B , the corrected profile is mainly representative of intermittent macrosegregation, and is not or only slightly affected by central continuous macrosegregation and by microsegregation. Such a corrected profile makes it possible to characterize the intermittent macrosegregation.

On peut alors calculer un écart maximal de concentration dans une zone d'analyse ZA située entre T/2.3 et T/3.3, cet écart maximal pouvant être exprimé selon l'équation suivante : Δ C ZA = max C ZA min C ZA

Figure imgb0023
où max (CZA) et min (CZA) désignent respectivement les concentrations maximale et minimale de l'élément considéré mesurées entre T/2.3 et T/3.3.We can then calculate a maximum difference in concentration in an analysis zone Z A located between T / 2.3 and T / 3.3, this maximum difference being able to be expressed according to the following equation: Δ VS ZA = max VS ZA - min VS ZA
Figure imgb0023
where max (C ZA ) and min (C ZA ) denote respectively the maximum and minimum concentrations of the element considered measured between T / 2.3 and T / 3.3.

L'élément considéré est un élément dont la teneur en poids dans l'alliage est supérieure ou égale à 0.5%. Il peut s'agir, de préférence, de l'élément majeur de l'alliage, le terme élément majeur correspondant à la définition donnée par The Aluminum Association.The element considered is an element whose content by weight in the alloy is greater than or equal to 0.5%. It may preferably be the major element of the alloy, the term major element corresponding to the definition given by The Aluminum Association.

L'écart maximal ΔCZA peut être normalisé par la concentration nominale C0 de l'élément considéré. Les produits selon l'invention présentent de préférence une valeur d'un tel ratio normalisé inférieure à 10% et de préférence inférieure à 8% ou même inférieure à 6 %. Cependant la valeur absolue de ΔCZA peut être influencée par l'épaisseur du produit, la nature de l'élément considéré, notamment son coefficient de partage et/ou sa concentration. Il est donc utile pour caractériser les produits obtenus par le procédé selon l'invention de calculer, à titre de référence, un écart maximal dans une zone de référence ZR peu sensible aux macroségrégations intermittentes, située entre T/6 et T/12, cet écart maximal pouvant être exprimé selon l'équation suivante: Δ C ZR = max C ZR min C ZR

Figure imgb0024
où max (CZR) et min (CZR) désignent respectivement les concentrations maximale et minimale de l'élément considéré mesurées entre T/6 et T/12.The maximum difference Δ C ZA can be normalized by the nominal concentration C 0 of the element considered. The products according to the invention preferably have a value of such a standardized ratio of less than 10% and preferably less than 8% or even less than 6%. However, the absolute value of ΔC ZA can be influenced by the thickness of the product, the nature of the element considered, in particular its partition coefficient and / or its concentration. It is therefore useful, in order to characterize the products obtained by the method according to the invention, to calculate, as a reference, a maximum deviation in a reference zone Z R not very sensitive to intermittent macro-segregations, located between T / 6 and T / 12, this maximum deviation being able to be expressed according to the following equation: Δ VS ZR = max VS ZR - min VS ZR
Figure imgb0024
where max (C ZR ) and min (C ZR ) denote respectively the maximum and minimum concentrations of the element considered measured between T / 6 and T / 12.

On obtient ainsi un critère de dispersion ε permettant d'évaluer pour l'élément considéré la macroségrégation intermittente : ε = Δ C ZA / Δ C ZR

Figure imgb0025
We thus obtain a dispersion criterion ε making it possible to evaluate the intermittent macrosegregation for the element considered: ε = Δ VS ZA / Δ VS ZR
Figure imgb0025

Pour s'affranchir de variations locales de composition, il est avantageux, pour déterminer ΔCZA et ΔCZR , de calculer une moyenne sur au moins 5 profils de concentration distants d'au moins 10 mm.To avoid local variations in composition, it is advantageous, in order to determine Δ C ZA and ΔC ZR , to calculate an average over at least 5 concentration profiles at least 10 mm apart.

Plus ε est faible, moins les macroségrégations intermittentes sont marquées. Les produits obtenus par le procédé selon l'invention ont de préférence un critère de dispersion ε inférieur à 3.3, de préférence inférieur à 3, plus avantageusement inférieur à 2.5, encore plus avantageusement inférieur à 2 et de manière préférée inférieur à 1.5.The weaker ε, the less marked the intermittent macrosegregations. The products obtained by the process according to the invention preferably have a dispersion criterion ε less than 3.3, preferably less than 3, more advantageously less than 2.5, even more advantageously less than 2 and preferably less than 1.5.

Selon une nomenclature connue de l'homme du métier, T/n désigne une distance par rapport à un bord du lingot, selon un axe horizontal, T/2 correspondant au centre du lingot.According to a nomenclature known to those skilled in the art, T / n denotes a distance from an edge of the ingot, along a horizontal axis, T / 2 corresponding to the center of the ingot.

Il est également utile de réaliser une analyse par transformée de Fourier du profil brut de composition et de le normaliser par la composition nominale de l'élément. Une telle analyse permet d'identifier des périodes spatiales caractérisant la macroségrégation intermittente. La macroségrégation intermittente présente des périodes comprises entre 8 et 25 mm. Quand la macroségrégation intermittente est importante, on observe donc un pic de l'amplitude des composantes de Fourier pour des périodes spatiales comprises entre 8 et 25 mm. On détermine un critère adimensionnel d'intensité spectrale ζ qui correspond à l'amplitude maximale des composantes de Fourier dans une plage de période spatiale comprise entre 8 et 25 mm, normalisée par la concentration nominale C0 de l'élément considéré. Les produits obtenus par le procédé selon l'invention ont de préférence un critère ζ inférieur à 0.01, de préférence inférieur à 0.007 et de manière préférée inférieur à 0.005.It is also useful to perform a Fourier transform analysis of the raw composition profile and normalize it by the nominal composition of the element. Such an analysis makes it possible to identify spatial periods characterizing intermittent macrosegregation. Intermittent macrosegregation has periods between 8 and 25 mm. When intermittent macro-segregation is important, we therefore observe a peak in the amplitude of the Fourier components for spatial periods between 8 and 25 mm. One determines an adimensional criterion of spectral intensity ζ which corresponds to the maximum amplitude of Fourier components in a spatial period range between 8 and 25 mm, normalized by the nominal concentration C 0 of the element considered. The products obtained by the process according to the invention preferably have a criterion critère less than 0.01, preferably less than 0.007 and preferably less than 0.005.

Les critères de dispersion ε et d'intensité spectrale ζ sont avantageusement appliqués à l'élément majeur de l'alliage considéré, typiquement au Zn pour un alliage 7xxx ou au Cu pour un alliage 2xxx. On peut également appliquer ces critères à la somme de deux éléments, par exemple la somme Zn + Cu dans certains alliages 7xxx ou la somme Mg + Si dans les alliages 6xxx. Ces critères peuvent également s'appliquer à un élément dont la teneur en poids dans l'alliage est supérieure ou égale à 0. 5% ou à la somme de deux éléments de l'alliage dont la teneur individuelle est supérieure à 0.5%,The criteria of dispersion ε and of spectral intensity ζ are advantageously applied to the major element of the alloy in question, typically to Zn for a 7xxx alloy or to Cu for a 2xxx alloy. These criteria can also be applied to the sum of two elements, for example the sum of Zn + Cu in certain 7xxx alloys or the sum of Mg + Si in the 6xxx alloys. These criteria can also be applied to an element whose content by weight in the alloy is greater than or equal to 0.5% or to the sum of two elements of the alloy whose individual content is greater than 0.5%,

Dans le cas où l'on considère la somme de deux éléments, les valeurs pour normaliser l'écart maximal ΔC ZA, et/ou la transformée de Fourier correspondent à la somme des concentrations nominales des éléments considérés.In the case where the sum of two elements is considered, the values for normalizing the maximum deviation Δ C ZA , and / or the Fourier transform correspond to the sum of the nominal concentrations of the elements considered.

Les lingots de section rectangulaire obtenus par le procédé selon l'invention peuvent être utilisés tels que coulés ou après corroyage, optionnellement après mise en solution et trempe et vieillissement pour les alliages à durcissement structural. Avantageusement les lingots de section rectangulaire obtenus par le procédé selon l'invention sont laminés et/ou forgés.The rectangular cross-section ingots obtained by the process according to the invention can be used as they are cast or after wringing, optionally after dissolution and quenching and aging for the alloys with age hardening. Advantageously, the ingots of rectangular section obtained by the process according to the invention are rolled and / or forged.

Exemple 1.Example 1.

On a réalisé une coulée d'un alliage AA7035 sans brassage électromagnétique. La composition de l'alliage coulé comprenant une concentration nominale en Zn de 5,6 % en poids, une concentration nominale en Mg de 1.3% en poids. Le format du lingot était de 1650 mm x 525 mm. Cet exemple est représentatif de l'art antérieur. L'affinage du grain a été réalisé avec une concentration d'affinant AITiB 5 :1 de 1Kg/t. La vitesse de coulée était de 35 mm/min. La figure 3 représente une radiographie du lingot à mi-largeur selon un plan L / TC, sur laquelle la macroségrégation centrale négative et les macroségrégations intermittentes sont clairement identifiables. Sur la figure 6A, on a représenté différents profils bruts horizontaux de la teneur en Zn, selon un axe TC, ainsi que des profils lissés B sont obtenu par une moyenne glissante sur 2 mm déduits de la figure 3. La radiographie permet de quantifier que les éléments à l'origine d'un contraste par rapport à l'aluminium, à savoir dans le cas présent le Zn. Cette remarque s'applique à l'exemple 2 suivant. On observe clairement la macroségrégation centrale négative, maximale à T/2, les macroségrégations intermittentes étant observées entre T/2.3 et T/3.3. Sur la figure 6B, on a représenté les différents profils corrigés de la teneur en Zn (profils D), selon un axe TC, obtenus après soustraction de chaque profil lissé (profil B) par un profil de base (profil C) représentatif de la macroségrégation continue.An AA7035 alloy was cast without electromagnetic stirring. The composition of the cast alloy comprising a nominal Zn concentration of 5.6% by weight, a nominal Mg concentration of 1.3% by weight. The format of the ingot was 1650 mm x 525 mm. This example is representative of the prior art. The grain refining was carried out with an AITiB 5: 1 refining concentration of 1Kg / t. The casting speed was 35 mm / min. The figure 3 shows a mid-width x-ray of the ingot on an L / TC plane, in which the central negative macrosegregation and intermittent macrosegregation are clearly identifiable. On the figure 6A , different horizontal raw profiles of the Zn content have been shown, along a TC axis, as well as smoothed profiles B are obtained by a sliding average over 2 mm deduced from the figure 3 . Radiography makes it possible to quantify only the elements causing a contrast with respect to aluminum, namely in this case Zn. This remark applies to Example 2 below. The central negative macrosegregation is clearly observed, maximum at T / 2, intermittent macrosegregation being observed between T / 2.3 and T / 3.3. On the figure 6B , the various profiles corrected for the Zn content (profiles D), along a TC axis, obtained after subtraction of each smoothed profile (profile B) by a base profile (profile C) representative of the continuous macrosegregation, have been shown.

La valeur des écarts maximaux de la teneur en Zn était 0,75% en poids pour ΔCZA et 0,19% en poids pour ΔCZR, la valeur des écarts maximaux normalisés dans la zone d'analyse et dans la zone de référence étant ainsi respectivement 13.3% et 3.5%. La valeur du critère de dispersion ε tel que défini par l'équation (6) était 3.9. La transformée de Fourier de chaque profil a été calculée, et est représentée sur la figure 7, après normalisation par la composition nominale de Zn : 5.6 % en poids. L'axe des abscisses représente la période spatiale, comprise entre 0 et 30 mm. On observe différents pics prédominants, correspondant à différentes périodes spatiales réparties entre 8 et 25 mm, et plus particulièrement entre 10 mm et 25 mm. Le critère d'intensité spectrale ζ, qui correspond à l'amplitude maximale des composantes de Fourier entre 8 et 25 mm, normalisée par la concentration nominale C0 du Zn, était pour l'ensemble des profils au moins 0.01.The value of the maximum deviations of the Zn content was 0.75% by weight for Δ C ZA and 0.19% by weight for ΔC ZR , the value of the maximum deviations normalized in the analysis zone and in the reference zone thus being 13.3% and 3.5% respectively. The value of the dispersion criterion ε as defined by equation (6) was 3.9. The Fourier transform of each profile has been calculated, and is represented on the figure 7 , after normalization by the nominal composition of Zn: 5.6% by weight. The x-axis represents the spatial period, between 0 and 30 mm. Different predominant peaks are observed, corresponding to different spatial periods distributed between 8 and 25 mm, and more particularly between 10 mm and 25 mm. The spectral intensity criterion ζ, which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm, normalized by the nominal concentration C 0 of Zn, was for all the profiles at least 0.01.

Exemple 2.Example 2.

Au cours d'un deuxième exemple, on a réalisé une coulée d'un alliage AA7035 avec un brassage électromagnétique. La composition de l'alliage coulaitr comprenait une concentration nominale en cen Zinc de 5,6 % en poids et une concentration nominale en Magnésium de 1.3% en poids.. Le format du lingot était de 1650 mm x 525 mm. L'affinage du grain a été réalisé avec une concentration d'affinant AITiB 5 :1 de 1Kg/t. La vitesse de coulée s'élevait à 35 mm/min. Le brassage électromagnétique a été obtenu par la mise en place, en regard de chaque face L/TL du lingot, (correspondant à un plan YZ dans le repère indiqué sur la figure 1A), de trois inducteurs orientés selon l'axe vertical Z, parcourus par un courant alternatif, de fréquence 0.25 Hz, déphasés l'un par rapport à l'autre de 60° et espacés l'un de l'autre de 0.6 m, constituant ainsi un élément de pompe électromagnétique. La distance entre les inducteurs et le lingot s'élevait à 172 mm. Les éléments de pompe électromagnétiques sur chaque face étaient orientés en sens inverse. Les inducteurs généraient un champ magnétique glissant selon un plan horizontal, l'axe de glissement étant parallèle à la direction TL, la longueur d'onde λ était 3,6 m. La densité maximale de la force de Lorentz induite dans le marais liquide a été variée entre environ 180 N/m3 et 240 N/m3 avec une vitesse de variation de 2 N.m-3.s-1 en modifiant la valeur nominale du courant dans les inducteurs. La courbe de résonance, correspondant à ces conditions de coulée, est représentée sur la figure 8. La variation de l'intensité du courant d'induction est représentée, sur cette figure par une double flèche.In a second example, a casting of an AA7035 alloy was carried out with electromagnetic stirring. The composition of the cast alloy included a nominal Zinc concentration of 5.6% by weight and a nominal Magnesium concentration of 1.3% by weight. The ingot size was 1650mm x 525mm. The grain refining was carried out with an AITiB 5: 1 refining concentration of 1Kg / t. The casting speed was 35 mm / min. The electromagnetic stirring was obtained by placing, opposite each face L / TL of the ingot, (corresponding to a YZ plane in the reference mark indicated on the figure 1A ), three inductors oriented along the vertical axis Z, traversed by an alternating current, frequency 0.25 Hz, phase-shifted with respect to each other by 60 ° and spaced from each other by 0.6 m, thus constituting an electromagnetic pump element. The distance between the inductors and the ingot was 172 mm. The electromagnetic pump elements on each face were oriented in the opposite direction. The inductors generated a magnetic field sliding along a horizontal plane, the sliding axis being parallel to the TL direction, the wavelength λ was 3.6 m. The maximum density of the Lorentz force induced in the liquid marsh was varied between about 180 N / m 3 and 240 N / m 3 with a variation speed of 2 Nm -3 .s -1 by modifying the nominal value of the current in the inductors. The resonance curve, corresponding to these conditions of casting, is shown on the figure 8 . The variation in the intensity of the induction current is represented in this figure by a double arrow.

La figure 9 représente une radiographie du lingot selon un plan L/TC, sur laquelle la macroségrégation centrale négative à T/2 est identifiable. Sur la figure 10A, on a représenté différents profils horizontaux bruts de la teneur en Zn (profil A) et lissés (profils B), selon un axe TC. On distingue la macroségrégation centrale négative, maximale à T/2. Sur la figure 10B, on a représenté les différents profils horizontaux de la teneur en Zn, selon un axe TC, de type profil corrigé (profils D) obtenus après soustraction du profil correspondant à la macroségrégation continue.The figure 9 shows an X-ray of the ingot according to an L / TC plane, on which the central negative macrosegregation at T / 2 is identifiable. On the figure 10A different gross horizontal profiles of the Zn content (profile A) and smoothed (profiles B) have been shown, along a TC axis. One distinguishes the negative central macrosegregation, maximal at T / 2. On the figure 10B , the different horizontal profiles of the Zn content have been shown, along a TC axis, of corrected profile type (D profiles) obtained after subtraction of the profile corresponding to the continuous macrosegregation.

La valeur des écarts maximaux de la teneur en Zn était 0,24% en poids pour ΔCZA et 0,28% en poids pour ΔCZR, la valeur des écarts maximaux normalisés dans la zone d'analyse et dans la zone de référence étant respectivement 4.3% et 5%. La valeur du critère de dispersion ε telle que définie par l'équation (6) était 0,9 : la macroségrégation intermittente dans la zone d'analyse entre T/2.3 et T/3.3 a été éliminée. La transformée de Fourier de chaque profil a été calculée, et est représentée sur la figure 11, après normalisation par la composition nominale de Zn : 5.6 % en poids. L'axe des abscisses représente la période spatiale, comprise entre 0 et 30 mm. On n'observe plus de pics prédominants. Le critère d'intensité spectrale ζ, qui correspond à l'amplitude maximale des composantes de Fourier entre 8 et 25 mm normalisée par la concentration nominale C0 du Zn, était pour l'ensemble des profils inférieur à 0.005.The value of the maximum deviations of the Zn content was 0.24% by weight for Δ C ZA and 0.28% by weight for Δ C ZR , the value of the maximum deviations normalized in the analysis zone and in the zone of reference being respectively 4.3% and 5%. The value of the dispersion criterion ε as defined by equation (6) was 0.9: intermittent macrosegregation in the analysis zone between T / 2.3 and T / 3.3 has been eliminated. The Fourier transform of each profile has been calculated, and is represented on the figure 11 , after normalization by the nominal composition of Zn: 5.6% by weight. The x-axis represents the spatial period, between 0 and 30 mm. There are no longer any predominant peaks observed. The spectral intensity criterion ζ, which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the nominal concentration C 0 of Zn, was for all the profiles less than 0.005.

Exemple 3Example 3

Dans cet exemple, on a réalisé une coulée d'un alliage AA 7050 sans brassage électromagnétique. La composition de l'alliage était de 6.3% en poids de Zn, de 2.2% en poids de Mg et de 2.1% en poids de Cu. Le format du lingot était 1650x525mm. L'affinage du grain est effectué à l'aide d'un fil affinant AITiC3 :0.15 avec un taux d'ajout de 1kg/tonne. La vitesse de coulée était de 45mm/min. Il constitue la référence de l'exemple 4.In this example, an AA 7050 alloy was cast without electromagnetic stirring. The composition of the alloy was 6.3% by weight Zn, 2.2% by weight Mg and 2.1% by weight Cu. The format of the ingot was 1650x525mm. The grain refining is carried out using an AITiC3: 0.15 refining wire with an addition rate of 1 kg / tonne. The casting speed was 45mm / min. It constitutes the reference of Example 4.

La figure 12 représente une radiographie du lingot selon un plan L/TC, sur laquelle la macroségrégation centrale négative à T/2 est identifiable. Sur la figure 13a, on a représenté le profil horizontal lissé de la somme de deux éléments Zn et Cu (profils B) selon un axe TC, déduit de la radiographie de la figure 12. En effet, la radiographie ne permet de quantifier que les éléments à l'origine d'un contraste par rapport à l'aluminium, à savoir dans le cas présent le Zn et le Cu. Cette remarque s'applique aux exemples 4 et 5 suivants. Sur la figure 13b, on a représenté les différents profils horizontaux de la concentration en Zn+Cu, selon un axe TC, de type profil corrigé (Profils D) obtenus après soustraction du profil correspondant à la macroségrégation continue. La valeur des écarts maximaux de la somme Zn+ Cu était 0.81% en poids pour ΔCZA et 0.19% pour ΔCZR. La valeur du critère de dispersion ε telle que définie par l'équation (6) était 4.4. La figure 14 représente la transformée de Fourier de chaque profil, après normalisation par la somme des compositions nominales en Zn et Cu : 8.3% en poids. L'axe des abscisses représente la période spatiale, comprise entre 0 et 30 mm. Le critère d'intensité spectrale ζ, qui correspond à l'amplitude maximale des composants de Fourier entre 8 et 25 mm normalisée par la somme des compositions nominales en Zn et Cu, était pour un des profils supérieur à 0.01 ou pour l'ensemble des profils supérieurs à 0.007.The figure 12 shows an X-ray of the ingot according to an L / TC plane, on which the central negative macrosegregation at T / 2 is identifiable. On the figure 13a , we have shown the smooth horizontal profile of the sum of two elements Zn and Cu (profiles B) along an axis TC, deduced from the radiography of the figure 12 . Indeed, the radiography only makes it possible to quantify the elements causing a contrast with respect to aluminum, namely in this case Zn and Cu. This remark applies to Examples 4 and 5 which follow. On the figure 13b , we have represented the different horizontal profiles of the Zn + Cu concentration, along a TC axis, of corrected profile type (D profiles) obtained after subtraction of the profile corresponding to the continuous macrosegregation. The value of the maximum deviations of the sum Zn + Cu was 0.81% by weight for ΔC ZA and 0.19% for ΔC ZR . The value of the dispersion criterion ε as defined by equation (6) was 4.4. The figure 14 represents the Fourier transform of each profile, after normalization by the sum of the nominal compositions of Zn and Cu: 8.3% by weight. The x-axis represents the spatial period, between 0 and 30 mm. The spectral intensity criterion ζ, which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the sum of the nominal compositions in Zn and Cu, was for one of the profiles greater than 0.01 or for all of the profiles greater than 0.007.

Exemple 4Example 4

Dans cet exemple, on a réalisé une coulée d'alliage en AA 7050. La composition de l'alliage était de 6.3% en poids de Zn, de 2.2% en poids de Mg et de 2.1% en poids de Cu. La section du lingot était de 1650x525mm. L'affinage du grain est effectué à l'aide d'un fil affinant AITiC3 :0.15 avec un taux d'ajout de 1kg/tonne. La vitesse de coulée était de 45mm/min. Le brassage électromagnétique a été obtenu par la mise en place, en regard de chaque face L/TL du lingot, (correspondant à un plan YZ dans le repère indiqué sur la figure 1A) de trois bobines orientées selon l'axe z et parcourues par un courant alternatif qui était déphasé, dans la bobine centrale, de 90° par rapport au courant dans les bobines extrêmes. La longueur d'onde du champ glissant était de 2,4 m. Les éléments de pompe électromagnétique ainsi obtenus étaient disposés en miroir par rapport à chaque face L/TL du lingot, la direction de glissement étant parallèle à la direction travers-long, les glissements générés divergeant depuis la mi- largeur du lingot. Le forçage instationnaire a été obtenu par l'imposition d'une variation cyclique de la fréquence du courant électrique alternatif qui parcourait les bobines, tel qu'illustré par la double flèche dans le diagramme fréquence vs intensité de la figure 15. La densité maximale de la force de Lorentz ainsi générée par la variation de la fréquence entre 0.450 et 0.600Hz a été variée entre environ 110 N/m3 et 150 N/m3 sur une période de 3 min ce qui correspond à une vitesse de variation d'environ 0.22 N/m3/s.In this example, an alloy was cast in AA 7050. The composition of the alloy was 6.3% by weight of Zn, 2.2% by weight of Mg and 2.1% by weight of Cu. The cross section of the ingot was 1650x525mm. The grain refining is carried out using an AITiC3: 0.15 refining wire with an addition rate of 1 kg / tonne. The casting speed was 45mm / min. The electromagnetic stirring was obtained by placing, opposite each face L / TL of the ingot, (corresponding to a YZ plane in the reference mark indicated on the figure 1A ) three coils oriented along the z axis and traversed by an alternating current which was out of phase, in the central coil, by 90 ° with respect to the current in the extreme coils. The wavelength of the sliding field was 2.4 m. The electromagnetic pump elements thus obtained were arranged in a mirror with respect to each face L / TL of the ingot, the sliding direction being parallel to the cross-long direction, the generated sliding diverging from the mid-width of the ingot. The unsteady forcing was obtained by imposing a cyclic variation of the frequency of the alternating electric current which traversed the coils, as illustrated by the double arrow in the frequency vs intensity diagram of the figure 15 . The maximum density of the Lorentz force thus generated by the variation of the frequency between 0.450 and 0.600Hz was varied between approximately 110 N / m 3 and 150 N / m 3 over a period of 3 min which corresponds to a speed of variation of about 0.22 N / m 3 / s.

La figure 16 représente une radiographie du lingot selon un plan L/TC, sur laquelle la macroségrégation centrale négative à T/2 est identifiable. Les macroségrégations intermittentes sont très fortement atténuées par rapport à la référence (Fig 12), comme le montrent les figures 17a et 17b.The figure 16 shows an X-ray of the ingot according to an L / TC plane, on which the central negative macrosegregation at T / 2 is identifiable. Intermittent macrosegregations are very strongly attenuated compared to the reference ( Fig 12 ), as shown in figures 17a and 17b .

Sur la figure 17a, on a représenté le profil horizontal lissé de la somme des éléments en Zn+Cu (profils B) selon un axe TC, déduit de la radiographie de la figure 16. Sur la figure 17b, on a représenté les différents profils horizontaux de la somme des deux éléments Zn et Cu, selon un axe TC, de type profil corrigé (Profils D) obtenus après soustraction du profil correspondant à la macroségrégation continue. La valeur des écarts maximaux de la teneur en Zn + Cu était 0.30% en poids pour ΔCZA et 0.14% pour ΔCZR. La valeur du critère de dispersion ε telle que définie par l'équation (6) était 2.2. La macroségrégation intermittente dans la zone d'analyse a donc été réduite et est représentée à la figure 18, après normalisation par la somme des compositions nominales en Zn et Cu : 8.3% en poids. L'axe des abscisses représente la période spatiale, comprise entre 0 et 30 mm. Le critère d'intensité spectrale ζ, qui correspond à l'amplitude maximale des composants de Fourier entre 8 et 25 mm normalisée par la somme des compositions nominales en Zn et Cu, était pour l'ensemble des profils inférieur à 0.005.On the figure 17a , the smooth horizontal profile of the sum of the Zn + Cu elements (profiles B) along an axis TC, deduced from the radiography of the figure 16 . On the figure 17b , the different horizontal profiles of the sum of the two elements Zn and Cu have been shown, along an axis TC, of corrected profile type (Profiles D) obtained after subtraction of the profile corresponding to the continuous macrosegregation. The value of the maximum deviations of the Zn + Cu content was 0.30% by weight for ΔC ZA and 0.14% for ΔC ZR . The value of the dispersion criterion ε as defined by equation (6) was 2.2. Intermittent macro-segregation in the analysis area has therefore been reduced and is shown on the left. figure 18 , after normalization by the sum of the nominal compositions of Zn and Cu: 8.3% by weight. The x-axis represents the spatial period, between 0 and 30 mm. The spectral intensity criterion ζ, which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the sum of the nominal compositions in Zn and Cu, was for all the profiles less than 0.005.

Exemple 5Example 5

Dans cet exemple, on a réalisé une coulée d'alliage AA7050 La composition de l'alliage était de 6.3% en poids de Zn, de 2.2% en poids de Mg et de 2.1% en poids de Cu, les teneurs des autres éléments étaient toutes inférieures à 0.5% en poids. La section du lingot était de 1650x525mm. L'affinage du grain est effectué à l'aide d'un fil affinant AlTiC3 :0.15 avec un taux d'ajout de 1kg/tonne. La vitesse de coulée était de 45mm/min. Le brassage électromagnétique a été obtenu par la mise en place, en regard de chaque face L/TL du lingot, (correspondant à un plan YZ dans le repère indiqué sur la figure 1A) de trois bobines orientées selon l'axe z et parcourues par un courant alternatif qui était déphasé, dans la bobine centrale, de 90° par rapport au courant dans les bobines extrêmes. La longueur d'onde du champ glissant était de 2,4 m. Les éléments de pompe électromagnétique ainsi obtenus étaient disposés en miroir par rapport à chaque face L/TL du lingot, la direction de glissement étant parallèle à la direction travers-long, les glissements générés divergeant depuis la mi- largeur du lingot.In this example, a casting of AA7050 alloy was carried out.The composition of the alloy was 6.3% by weight of Zn, 2.2% by weight of Mg and 2.1% by weight of Cu, the contents of the other elements were all less than 0.5% by weight. The cross section of the ingot was 1650x525mm. The grain refining is carried out using an AlTiC3: 0.15 refining wire with an addition rate of 1 kg / tonne. The casting speed was 45mm / min. The electromagnetic stirring was obtained by placing, opposite each face L / TL of the ingot, (corresponding to a YZ plane in the reference mark indicated on the figure 1A ) three coils oriented along the z axis and traversed by an alternating current which was out of phase, in the central coil, by 90 ° with respect to the current in the extreme coils. The wavelength of the sliding field was 2.4 m. The electromagnetic pump elements thus obtained were arranged in a mirror with respect to each face L / TL of the ingot, the sliding direction being parallel to the cross-long direction, the generated sliding diverging from the mid-width of the ingot.

Le forçage instationnaire a été obtenu par l'imposition d'une variation à partir de zéro de l'intensité du courant électrique alternatif qui parcourait les bobines, tel qu'illustré par les flèches dans le diagramme fréquence vs intensité de la figure 19. L'intensité de la force volumique maximale de Lorentz ainsi générée par la variation de l'intensité a varié typiquement de 0 N/m3 à 140 N/m3 en 4 min ce qui correspond à une vitesse de variation de 0.58 N/m3/s. A la suite, on a fait varier l'intensité de la force volumique maximale de Lorentz entre 140 N/m3 et 360 N/m3 en 5 min ce qui correspond à une vitesse de variation de 0.73 N/m3/s.The unsteady forcing was obtained by imposing a variation from zero in the intensity of the alternating electric current flowing through the coils, as illustrated by the arrows in the frequency vs intensity diagram of the figure 19 . The intensity of the maximum Lorentz volume force thus generated by the variation in intensity typically varied from 0 N / m 3 to 140 N / m 3 in 4 min, which corresponds to a rate of variation of 0.58 N / m3 / s. Subsequently, the intensity of the maximum Lorentz volume force was varied between 140 N / m 3 and 360 N / m 3 in 5 min, which corresponds to a rate of change of 0.73 N / m 3 / s.

Les résultats obtenus sont illustrés par les deux tranches verticales radiographiées représentées sur les figure 20a (variation de l'intensité entre 0 N/m3 à 140 N/m3 en 4min) et figure 21a (variation de la force entre 140 N/m3 à 360 N/m3 en 5min) qui sont en continuité l'une de l'autre.The results obtained are illustrated by the two radiographed vertical slices represented on the figure 20a (variation in intensity between 0 N / m 3 to 140 N / m 3 in 4min) and figure 21a (variation of the force between 140 N / m 3 to 360 N / m 3 in 5min) which are in continuity with one another.

Sur la figure 20b, on a représenté le profil horizontal lissé de la somme des éléments majeurs Zn+Cu (profils B) selon un axe TC, déduit de la radiographie de la figure 20a. Sur la figure 20c, on a représenté les différents profils horizontaux de la somme des éléments Zn+Cu, selon un axe TC, de type profil corrigé (Profils D) obtenus après soustraction du profil correspondant à la macroségrégation continue. La valeur des écarts maximaux de la teneur en Zn+Cu était 0.70% en poids pour ΔCZA et 0.22% pour ΔCZR. La valeur du critère de dispersion ε telle que définie par l'équation (6) était 3.2. La figure 20d représente la transformée de Fourier de chaque profil, après normalisation par la somme des compositions nominales en Zn et Cu : 8.3 % en poids. L'axe des abscisses représente la période spatiale, comprise entre 0 et 30 mm. Le critère d'intensité spectrale ζ, qui correspond à l'amplitude maximale des composants de Fourier entre 8 et 25 mm normalisée par la somme des compositions nominales en Zn et Cu, était pour l'ensemble des profils inférieur à 0.01. On remarque toutefois que le critère d'intensité spectrale ζ montre des valeurs supérieures à 0.005.On the figure 20b , the smooth horizontal profile of the sum of the major elements Zn + Cu (profiles B) along a TC axis, deduced from the radiography of the figure 20a . On the figure 20c , the different horizontal profiles of the sum of the Zn + Cu elements have been shown, along a TC axis, of corrected profile type (D profiles) obtained after subtraction of the profile corresponding to the continuous macrosegregation. The value of the maximum deviations of the Zn + Cu content was 0.70% by weight for ΔC ZA and 0.22% for ΔC ZR . The value of the dispersion criterion ε as defined by equation (6) was 3.2. The figure 20d represents the Fourier transform of each profile, after normalization by the sum of the nominal compositions of Zn and Cu: 8.3% by weight. The x-axis represents the spatial period, between 0 and 30 mm. The spectral intensity criterion ζ, which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the sum of the nominal compositions in Zn and Cu, was for all the profiles less than 0.01. It is noted however that the criterion of spectral intensity ζ shows values higher than 0.005.

Sur la figure 21b, on a représenté le profil horizontal lissé de la somme des éléments majeurs Zn+Cu (profils B) selon un axe TC, déduit de la radiographie de la figure 21a. Sur la figure 21c, on a représenté les différents profils horizontaux de la somme des éléments majeurs Zn+Cu, selon un axe TC, de type profil corrigé (Profils D) obtenus après soustraction du profil correspondant à la macroségrégation continue. La valeur des écarts maximaux de la teneur en Zn+Cu était 0.37% en poids pour ΔCZA et 0.15% pour ΔCZR. La valeur du critère de dispersion ε telle que définie par l'équation (6) était 2.4. La figure 21d représente la transformée de Fourier de chaque profil, après normalisation par la somme des compositions nominales en Zn et Cu :8.3 % en poids. L'axe des abscisses représente la période spatiale, comprise entre 0 et 30 mm. Le critère d'intensité spectrale ζ, qui correspond à l'amplitude maximale des composants de Fourier entre 8 et 25 mm normalisée par la somme des compositions nominales en Zn et Cu, était pour l'ensemble des profils inférieur à 0.005.On the figure 21b , the smooth horizontal profile of the sum of the major elements Zn + Cu (profiles B) along a TC axis, deduced from the radiography of the figure 21a . On the figure 21c , the different horizontal profiles of the sum of the major elements Zn + Cu have been shown, along an axis TC, of corrected profile type (Profiles D) obtained after subtraction of the profile corresponding to the continuous macrosegregation. The value of the maximum deviations of the Zn + Cu content was 0.37% by weight for ΔC ZA and 0.15% for ΔC ZR . The value of the dispersion criterion ε as defined by equation (6) was 2.4. The figure 21d represents the Fourier transform of each profile, after normalization by the sum of the nominal compositions of Zn and Cu: 8.3% by weight. The x-axis represents the spatial period, between 0 and 30 mm. The spectral intensity criterion ζ, which corresponds to the maximum amplitude of the Fourier components between 8 and 25 mm normalized by the sum of the nominal compositions in Zn and Cu, was for all the profiles less than 0.005.

On observe ainsi que la suppression des macroségrégations intermittentes est améliorée si la force est supérieure à 140 N/m3. En effet, lorsque la force est trop faible, on constate que les valeurs du critère de dispersion ε d'intensité spectrale ζ sont supérieures aux valeurs préférées de l'invention. Les inventeurs supposent ainsi qu'un forçage instationnaire qui consisterait à interrompre périodiquement le champ glissant ne permettrait pas de supprimer de manière avantageuse les macroségrégations intermittentes.It is thus observed that the suppression of intermittent macrosegregations is improved if the force is greater than 140 N / m 3 . Indeed, when the force is too low, it is observed that the values of the dispersion criterion ε of spectral intensity ζ are greater than the preferred values of the invention. The inventors thus assume that an unsteady forcing which would consist of periodically interrupting the sliding field would not make it possible to advantageously suppress the intermittent macrosegregations.

Claims (14)

  1. Method for casting an aluminium alloy ingot in a substantially rectangular ingot mould comprising the following steps:
    - preparing the aluminium alloy;
    - casting the aluminium alloy in the ingot mould, along a vertical casting axis, the alloy being cooled, during the casting, by a runoff of a coolant in contact with the solidified metal;
    - during the casting, application of a magnetic field of which the amplitude (B0) is periodically varied according to a frequency (f), said magnetic field being generated by at least one magnetic field generator arranged at the periphery of the ingot mould, in such a way as to apply a Lorentz force (F) at different points of a liquid portion of the alloy in the process of solidification;
    - the magnetic field applied being a traveling magnetic field, propagating along an axis of propagation, in such a way that a maximum amplitude B 0 max
    Figure imgb0036
    of the magnetic field propagates along said axis of propagation, defining a propagation wavelength (λ), said traveling magnetic field driving a propagation, along said axis of propagation, a Lorentz force of maximum intensity (Fmax );
    the method being characterised in that a magnetic parameter referred to as a force parameter, governing the Lorentz force of maximum intensity (Fmax ), is variable in a predetermined time interval (Δt), said parameter being:
    ▪ said maximum amplitude B 0 max
    Figure imgb0037
    of the magnetic field;
    ▪ and/or said frequency (f) of the magnetic field;
    ▪ and/or the propagation wavelength (λ) of the magnetic field;
    in such a way as to obtain a modulation, in said time interval, of said Lorentz force of maximum intensity (Fmax ) propagating along the axis of propagation.
  2. Method according to claim 1, wherein the section of the ingot mould, in a horizontal plane, defines a thickness (e) and a length (ℓ), the thickness being less than or equal to the length, the thickness being greater than 300 mm and preferably at least 400 mm.
  3. Method according to any of the preceding claims, wherein the frequency of the magnetic field is less than 5 Hz, or 2 Hz or 1 Hz.
  4. Method according to any of the preceding claims wherein, the Lorentz force of maximum intensity (Fmax ), propagating along the axis of propagation, varies by at least 30 N.m-3 in a time interval (Δt) between 20 seconds and 10 minutes.
  5. Method according to any of the preceding claims wherein, the magnetic field is such that the absolute value of the variation of the density of the maximum Lorentz force is greater than or equal to 0.05 N.m-3.s-1 during said time interval (Δt).
  6. Method according to any of the preceding claims, wherein the axis of propagation of the maximum amplitude of the magnetic field belongs to a plane parallel to the direction of casting.
  7. Method according to any of the preceding claims, wherein during the casting, the variation in the force parameter is periodical, the period being between 20s and 20 minutes, or between 1 minute and 15 minutes, or between 2 minutes and 10 minutes.
  8. Method according to any of the preceding claims, wherein the generators are electromagnetic inducers, each electromagnetic inducer having a current flowing through it referred to as induction current, the method comprising, during said time interval:
    - a variation in the intensity of the induction current;
    - and/or a variation of a frequency of the induction current;
    - and/or a variation of a distance between an electromagnetic inducer and the ingot mould.
  9. Method according to claim 8, comprising a variation in the intensity or in the frequency of the induction current flowing through an inducer, the method comprising:
    - a prior step of defining at least one critical value of the intensity and of the frequency of the induction current generating, on a free surface (1sup) of the aluminium alloy flowing in the ingot mould, a resonant wave;
    - a determination of a range of variation in the intensity or in the frequency of the induction current according to said critical value defined beforehand.
  10. Method according to claim 9 comprising, during said prior step, a definition of a plurality of critical values of the intensity and of the frequency of the induction current, in such a way as to define a resonance curve (R), representing the values of intensity and of frequency generating a resonance of said free surface, the method comprising a determination of a range of variation in the intensity or in the frequency of the induction current in a range delimited by said resonance curve.
  11. Method according to any of claims 1 to 7, wherein at least one generator is a permanent magnet, the method comprising:
    - a variation in a distance between the permanent magnet and the ingot mould;
    - and/or a rotation of the permanent magnet, and a variation in the rotation speed of the magnet;
    - and/or a rotation of two permanent magnets.
  12. Method according to any of the preceding claims, wherein the aluminium alloy is chosen from alloys of types 2XXX, 5XXX, 6XXX or 7XXX and wherein the thickness is at least 400 mm or 450 mm.
  13. Aluminium alloy ingot, obtained by the method object of any of claims 1 to 12 having, for an element of the alloy, of which the content by weight is greater than 0.5%, or for the sum of two elements of the alloy of which the individual content by weight is greater than 0.5%, a dispersion criterion less than 3.3, preferably less than 3, more advantageously less than 2.5, even more advantageously less than 2 and preferably less than 1.5, the dispersion criterion being defined according to the following expressions: ε = Δ C ZA / Δ C ZR
    Figure imgb0038
    Δ C ZA = max C ZA min C ZA
    Figure imgb0039
    Δ C ZR = max C ZR min C ZR
    Figure imgb0040
    where:
    - max (CZA) and min (CZA) respectively designate the maximum and minimum concentrations of the element considered or of the sum of the two elements considered measured in a zone of analysis (ZA), having intermittent macrosegregations, for example between T/2.3 and T/3.3;
    - max (CZR) and min (CZR) respectively designate the maximum and minimum concentrations of the element considered or of the sum of the two elements considered measured in a reference zone (ZR), considered as little affected by the intermittent macrosegregations, for example between T/6 and T/12;
    said concentrations being measured on at least one profile established at mid-width in a vertical plane L/TC and according to the direction TC, said profile being representative of said intermittent macrosegregations of the element considered according to the direction TC.
  14. Aluminium alloy ingot, according to claim 13 of which a spectral intensity criterion (ζ) is less than 0.01, preferably less than 0.007 and preferably less than 0.005, said spectral intensity criterion being calculated by:
    - Determining a maximum amplitude of a Fourier transform of a profile representative of an intermittent macrosegregation of an element of which the content by weight is greater than 0.5% or the sum of two elements of the alloy of which the individual content is greater than 0.5%, the profile being established according to said direction TC, said maximum amplitude being determined in a range of spatial periods between 8 and 25 mm,
    - standardising said maximum amplitude by a nominal concentration C0 of said element or by the sum of the nominal concentrations of the two elements considered.
EP17731208.9A 2016-05-30 2017-05-17 Method for producing sheet ingots by vertical casting of an aluminium alloy Active EP3463716B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1654834A FR3051698B1 (en) 2016-05-30 2016-05-30 METHOD OF MANUFACTURING LAMINATION INGOTS BY VERTICAL CASTING OF AN ALUMINUM ALLOY
PCT/FR2017/051195 WO2017207886A1 (en) 2016-05-30 2017-05-17 Method for producing sheet ingots by vertical casting of an aluminium alloy

Publications (2)

Publication Number Publication Date
EP3463716A1 EP3463716A1 (en) 2019-04-10
EP3463716B1 true EP3463716B1 (en) 2021-02-17

Family

ID=56322234

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17731208.9A Active EP3463716B1 (en) 2016-05-30 2017-05-17 Method for producing sheet ingots by vertical casting of an aluminium alloy

Country Status (8)

Country Link
US (1) US20210220905A1 (en)
EP (1) EP3463716B1 (en)
CN (1) CN109311081A (en)
CA (1) CA3024166A1 (en)
ES (1) ES2858125T3 (en)
FR (1) FR3051698B1 (en)
RU (1) RU2018145016A (en)
WO (1) WO2017207886A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074072B1 (en) * 2017-11-27 2022-02-11 Constellium Issoire LOW SPEED, LOW FREQUENCY ALUMINUM CASTING PROCESS
WO2019175884A1 (en) * 2018-03-14 2019-09-19 Nord Israel Research And Development Ltd. Method of optimizing electromagnetic stirring in metallurgical technologies

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842895A (en) * 1972-01-10 1974-10-22 Massachusetts Inst Technology Metal alloy casting process to reduce microsegregation and macrosegregation in casting
FR2530510B1 (en) 1982-07-23 1985-07-05 Cegedur ELECTROMAGNETIC CASTING PROCESS FOR METALS IN WHICH AT LEAST ONE MAGNETIC FIELD DIFFERENT FROM THE CONTAINMENT FIELD
JPS61253153A (en) * 1985-05-02 1986-11-11 Kobe Steel Ltd Production of hot workable phosphor-bronze
GB9013199D0 (en) * 1990-06-13 1990-08-01 Alcan Int Ltd Apparatus and process for direct chill casting of metal ingots
US5246060A (en) 1991-11-13 1993-09-21 Aluminum Company Of America Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
SE514946C2 (en) * 1998-12-01 2001-05-21 Abb Ab Method and apparatus for continuous casting of metals
CN1425519A (en) * 2002-10-25 2003-06-25 东北大学 Aluminium alloy low frequency electromagnetic oscillation semicontinuous casting crystal grain fining method and device
DE102007038281B4 (en) * 2007-08-03 2009-06-18 Forschungszentrum Dresden - Rossendorf E.V. Method and device for the electromagnetic stirring of electrically conductive liquids
NL2001248C2 (en) * 2008-02-01 2009-08-06 Stichting Netherlands Inst For Method and device for controlling the flow during the solidification of a metallic alloy.
RU2457064C1 (en) 2011-03-03 2012-07-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Method of continuous and semicontinuous casing of aluminium alloys and device to this end
GB201305822D0 (en) * 2013-03-28 2013-05-15 Pavlov Evgeny Improvements in and relating to apparatus and methods
CN103600045B (en) * 2013-11-18 2015-10-07 上海大学 The metal continuous cast technique that electromagnetic exciting composite machine stirs and device for casting of metal
CN105057622B (en) * 2015-08-21 2016-08-31 中南大学 A kind of method suppressing DC Cast aluminium alloy gold macroscopic segregation of cast ingot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017207886A1 (en) 2017-12-07
RU2018145016A (en) 2020-07-09
CA3024166A1 (en) 2017-12-07
CN109311081A (en) 2019-02-05
ES2858125T3 (en) 2021-09-29
EP3463716A1 (en) 2019-04-10
FR3051698A1 (en) 2017-12-01
FR3051698B1 (en) 2020-12-25
US20210220905A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
EP3463716B1 (en) Method for producing sheet ingots by vertical casting of an aluminium alloy
EP3717146B1 (en) Aluminium alloy flat product having improved thickness properties
Hua et al. Grain refinement of Sn–Pb alloy under a novel combined pulsed magnetic field during solidification
Li et al. Grain refinement and improvement of solidification defects in direct-chill cast billets of A4032 alloy by melt conditioning
CA1203069A (en) Process and device for electromagnetic casting of metals
EP1239981B1 (en) Method for vertical continuous casting of metals using electromagnetic fields and casting installation therefor
EP0005676A2 (en) Electromagnetic agitating process applied to continuous casting
Cui et al. DC casting of light alloys under magnetic fields
EP3717147B1 (en) Low velocity and low frequency aluminium casting method
Chen et al. Experimental investigation of microsegregation in low frequency electromagnetic casting 7075 aluminum alloy
Yamada et al. Full Size Measurement and Simple Prediction on Macro Segregation of Aluminum Alloys Elements in Industrial Direct Chill Casting Slab
Aritaka et al. Mechanism for complex morphology due to mechanical vibration
Carlberg et al. On vertical drag defects formation during direct chill (DC) casting of aluminum billets
CA1204575A (en) Electromagnetic stirring method and device for molten metals, namely steels, in a continuous casting process
Guo et al. The effects of electromagnetic vibration on macrosegregation in AZ80 magnesium alloy billets
Liao et al. In situ characterization of porosity evolution in A356 alloy directionally solidified under different solidification velocities
Zhao et al. Grain Size and Macrosegregation Control of Large-Sized AA2219 Billets by Internal Electromagnetic Stirring in DC Casting
Erdegren et al. Simulation of surface solidification in direct-chill 6xxx aluminum billets
Ogata et al. Length scale of the dendritic array tailoring strength of a 5052 aluminum alloy
Kim et al. EFFECT OF MICROSTRUCTURE BY ELECTROMAGNETIC FIELD IN CONTINUOUS CASTING OF 7XXX SERIES ALUMINUM ALLOYS
Santos et al. Fatigue Crack Initiation on Semi-Solid Al–7Si–Mg Castings. Metals 2022, 12, 1061
Shepelev et al. Ultrasonic induced structural modification in Mg alloys
Joseph et al. Circulation of Grains During Ingot Casting
Eskin Mechanisms of macro-segregation in direct-chill casting of aluminum alloys
RU2019141258A (en) Modified method of casting metals in an electromagnetic field

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BERTHERAT, MARC

Inventor name: JARRY, PHILIPPE

Inventor name: TAINA, FABIO

Inventor name: MENET, PIERRE-YVES

Inventor name: ACHARD, JEAN-LOUIS

Inventor name: CABLEA, MIRCEA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017032674

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1360821

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210217

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210400801

Country of ref document: GR

Effective date: 20210519

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2858125

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017032674

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210517

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1360821

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210217

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240527

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240530

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240530

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240603

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240503

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240507

Year of fee payment: 8

Ref country code: NO

Payment date: 20240530

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240527

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217