EP3364228A1 - Forward-on-forward high dynamic range architecture for digital micromirror devices - Google Patents
Forward-on-forward high dynamic range architecture for digital micromirror devices Download PDFInfo
- Publication number
- EP3364228A1 EP3364228A1 EP18152342.4A EP18152342A EP3364228A1 EP 3364228 A1 EP3364228 A1 EP 3364228A1 EP 18152342 A EP18152342 A EP 18152342A EP 3364228 A1 EP3364228 A1 EP 3364228A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dmd
- plane
- image
- optics
- subject plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 56
- 238000005286 illumination Methods 0.000 claims description 24
- 230000006870 function Effects 0.000 description 11
- 238000003384 imaging method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1066—Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3102—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/005—Projectors using an electronic spatial light modulator but not peculiar thereto
- G03B21/008—Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/147—Optical correction of image distortions, e.g. keystone
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/001—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3102—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
- H04N9/312—Driving therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3102—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
- H04N9/312—Driving therefor
- H04N9/3126—Driving therefor for spatial light modulators in series
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3152—Modulator illumination systems for shaping the light beam
Definitions
- the specification relates generally to digital micromirror devices, and specifically to a forward-on-forward high dynamic range architecture for digital micromirror devices.
- High dynamic range and/or high contrast, projectors attempt to maximize contrast between black portions of projected images and white portions of projected images.
- HDR projectors are based on digital micromirror devices ("DMD", such as Digital Light Processing or DLPTM), and the high dynamic range is achieved with two stages of imaging: a first pre-modulator DMD that creates an initial "normal” contrast version of an image and a second prime imaging DMD that re-images the initial "normal” contrast version of the image from the first DMD, a second time (which can be at a higher resolution), to create blacker blacks in the final image and thus increasing the final image contrast.
- DMD digital micromirror devices
- Existing architectures of such HDR projectors use the first DMD in a reverse configuration and the second DMD in a forward configuration.
- the forward configuration which is the configuration in which most DMDs are designed to operate
- a DMD is illuminated at an angle to a plane of the DMD and an image formed by the DMD is reflected normal (perpendicular) to the plane of the DMD.
- the reverse configuration a plane of the DMD is illuminated perpendicularly, and an image formed by the DMD is reflected at an angle to the plane.
- this disclosure is directed to a system and/or device for a high dynamic range (“HDR") projector that includes a first pre-modulator digital micromirror device (“DMD”) and a second prime-modulator DMD, each operated in a forward configuration.
- the system includes optics which convey light from the first DMD to the second DMD, and at least one optical device which tilt a subject plane of the first DMD to an equivalent tilted subject plane, an equivalent lens plane of the optics, the equivalent tilted subject plane and an image plane of the second DMD all intersecting at a Scheimpflug intersection.
- elements may be described as “configured to” perform one or more functions or “configured for” such functions.
- an element that is configured to perform or configured for performing a function is enabled to perform the function, or is suitable for performing the function, or is adapted to perform the function, or is operable to perform the function, or is otherwise capable of performing the function.
- An aspect of the specification provides a device comprising: a first digital micromirror device (DMD) and a second DMD each operated in a forward configuration, such that each is illuminated at a respective non-normal angle and a respective output image is reflected at a normal angle, a subject plane of the first DMD being parallel to the first DMD; optics between the first DMD and the second DMD, the optics configured to convey light reflected from the first DMD to illuminate an image plane at the second DMD in the forward configuration, the optics including an equivalent lens plane; and at least one optical device between the first DMD and the second DMD, the at least one optical device configured to: tilt the subject plane of the first DMD to an equivalent tilted subject plane, the equivalent lens plane, the equivalent tilted subject plane and the image plane all intersecting at a Scheimpflug intersection.
- DMD digital micromirror device
- second DMD each operated in a forward configuration, such that each is illuminated at a respective non-normal angle and a respective output image is reflected
- the at least one optical device is further configured to: tilt the subject plane of the first DMD to the equivalent tilted subject plane such that the image plane at the second DMD is in uniform focus at the respective non-normal angle.
- the at least one optical device includes a prism with an exit face at an angle tilted relative to the subject plane of the first DMD.
- the at least one optical device includes a plurality of wedge prisms distributed between the first DMD and the second DMD.
- the at least one optical device includes a prism configured to convey illumination light to the subject plane of the first DMD at the respective non-normal angle and convey the respective output image through an exit face of the prism, the exit face at an angle relative to the subject plane, the angle being greater than zero, and the angle selected to optically tilt the subject plane of the first DMD to the equivalent tilted subject plane.
- the optics includes a prism configured to convey illumination light from the first DMD to the image plane of the second DMD at the respective non-normal angle and convey the respective output image of the second DMD through a respective exit face.
- the optics includes one or more lenses.
- the optics includes one or more apertures.
- the first DMD is further operated in a pre-modulator mode and the second DMD is further operated in a prime-modulator mode.
- the first DMD is modulated using first image data
- the second DMD is modulated using second image determined from one or more of the first image data, a target projected image and a pixel spread function of the device.
- Fig. 1 depicts a device 10 comprising: a first digital micromirror device (DMD) 11 and a second DMD 12 each operated in a forward configuration, such that each is illuminated at a respective non-normal angle and a respective output image is reflected at a normal angle, a subject plane 13 of the first DMD 11 being parallel to the first DMD 11; optics 14 between the first DMD 11 and the second DMD 12, the optics 14 configured to convey light reflected from the first DMD 11 to illuminate an image plane 15 at the second DMD 12 in the forward configuration, the optics 14 including an equivalent lens plane 16; and at least one optical device 17 between the first DMD 11 and the second DMD 12, the at least one optical device 17 configured to: tilt the subject plane 13 of the first DMD 11 to an equivalent tilted subject plane 18, the equivalent lens plane 16, the equivalent tilted subject plane 18 and the image plane 15 all intersecting at a Scheimpflug intersection 19.
- DMD digital micromirror device
- the equivalent lens plane 16, the equivalent tilted subject plane 18 and the image plane 15 meet a Scheimpflug condition such that light from the first DMD 11 is in uniform focus and/or is in substantially uniform focus at the second DMD 12 and/or at the image plane 15.
- the equivalent lens plane 16, the equivalent tilted subject plane 18 and the image plane 15 meet a Scheimpflug condition such that light imaged onto the second DMD 12, from the first DMD 11, has a uniform pixel spread function (PSF) across the second DMD 12.
- PSF uniform pixel spread function
- the at least one optical device 17 has the effect of tilting the subject plane 13 of the first DMD 11 to appear tilted with respect to the optics 14 and/or the second DMD 12 such that the Scheimpflug condition can be met. Indeed, optically, the first DMD 11 "appears" to be located at the equivalent tilted subject plane 18, as indicated by virtual DMD 21 located inside the at least one optical device 17.
- the at least one optical device 17 includes a prism with an exit face at an angle tilted relative to the subject plane 13 of the first DMD 11.
- the at least one optical device 17 tilts the subject plane 13 of the first DMD 11 to the equivalent tilted subject plane 18 such that the image plane 15 at the second DMD 12 is in uniform focus and/or is in substantially uniform focus at at the respective non-normal angle (e.g. a PSF across the second DMD 12 is uniform).
- the subject plane 13 of the first DMD 11 could not be uniformly focussed onto the second DMD 12 (e.g. nonuniform PSF) as, with the subject plane 13 being about parallel to the equivalent lens plane 16 of the optics 14, the Scheimpflug condition is impossible to meet.
- the subject plane 13 of the first DMD 11 in order to operate the first DMD 11 in the forward configuration, the subject plane 13 of the first DMD 11 must be about parallel to the equivalent lens plane 16 of the optics 14.
- the at least one optical device 17 enables the use of both DMDs 11, 12 in the forward configuration such that the Scheimpflug condition can be met.
- the optics 14 includes a single lens, however, it is appreciated that such a depiction represent a simplification of the optics 14, and furthermore, device 10 is represents a simplification of devices used in projectors.
- Fig. 2 and Fig. 3 depict a device 100 that can be used with, and/or incorporated into, a high dynamic range ("HDR") projector.
- Fig. 2 depicts a schematic side view of the device 100, including example optics
- Fig. 3 depicts a schematic side view of the device 100 with the optics of the device 100 unfolded (e.g. reflections from mirrors and/or reflective surfaces are removed for clarity with the optical path through the device 100 depicted without reflections), as well as a ray-trace diagram for three points at the first DMD 101, through the device 100.
- the device 100 is not depicted to scale in either of Fig. 2 or Fig. 3 . While device 100 is generally more complex than device 10, device 100 generally operates according to the same principles of device 10, as described hereafter.
- FIG. 2 an optical path 125 through the device 100 is depicted, and in Fig. 3 an unfolded optical path 225 between the DMDs 101, 102 is depicted schematically.
- the device 100 generally comprises: a first DMD 101, a second DMD 102, each operated in a forward configuration, such that each is illuminated at a respective non-normal angle and a respective output image is reflected at a normal angle, a subject plane 113 of the first DMD 101 being parallel to the first DMD 101; optics 114 between the first DMD 101 and the second DMD 102, the optics 114 configured to convey light reflected from the first DMD 101 to illuminate an image plane 115 at the second DMD 102 in the forward configuration, the optics 114 including an equivalent lens plane 116; and at least one optical device 117 between the first DMD 101 and the second DMD 102, the at least one optical device 117 configured to: tilt the subject plane 113 of the first DMD 101 to an equivalent tilted subject plane 118, the equivalent lens plane 116, the equivalent tilted subject plane 118 and the image plane 115 all intersecting at a Scheimpflug intersection (not depicted
- the relative locations of the subject plane 113, the equivalent lens plane 116, the equivalent tilted subject plane 118 and the image plane 115 are depicted in Fig. 3 without intervening reflecting surfaces (as in Fig. 2 ).
- the relative angles between the subject plane 113, the equivalent lens plane 116, the equivalent tilted subject plane 118 and the image plane 115 are clearer as reflections due to mirrors and/or reflecting surfaces are removed.
- the equivalent lens plane 116 is depicted in Fig. 3 , but not Fig. 2 , for clarity.
- At least one optical device 117 is further configured to: tilt the subject plane 113 of the first DMD 101 to the equivalent tilted subject plane 118 such that the image plane 115 at the second DMD 102 is uniformly focussed at the respective non-normal angle.
- the at least one optical device 117 includes a prism with an exit face 129 at an angle 130 tilted relative to the subject plane of the first DMD 101
- the first DMD 101 is illuminated by respective illumination light as indicated by path 125 incident on the first DMD 101, for example from a light source (not depicted) of a projector (not depicted), and the like.
- the illumination light generally comprises one or more of white light, red light, green light, blue light, infrared light, ultraviolet light and the like, having an aspect ratio similar to an aspect ratio of the first DMD 101.
- the illumination light comprises a series of colors of illumination light, for example two or more of a red light, a green light and a blue light that illuminates the first DMD 101 in a sequence.
- the device 100 can be a component of a single-chip imaging projector (e.g. one each of a pre-modulator DMD (e.g. the first DMD 101) and a prime-modulator DMD (e.g. the second DMD 102)), a two-chip imaging projector (e.g. two each of a pre-modulator DMD and a prime modulator DMD), and a three-chip imaging projector (e.g. three each of a pre-modulator DMD and a prime modulator DMD).
- a single-chip imaging projector e.g. one each of a pre-modulator DMD (e.g. the first DMD 101) and a prime-modulator DMD (e.g. the second DMD 102)
- a two-chip imaging projector e.g. two each of a pre-modulator DMD and a prime modulator DMD
- a three-chip imaging projector e.g. three each of a pre-modulator DMD and a prime modul
- an aspect ratio of each of the first DMD 101 and the second DMD 102 can be similar or different.
- different aspect ratios can be used when the first DMD 101 is under filled.
- each of the first DMD 101 and the second DMD 102 can be modulated using similar image data.
- the first DMD 101 can be modulated using first image data
- the second DMD 102 can be modulated using second image data which can comprise the first image such that regions of the second DMD 102 that correspond to dark areas of the image being generated for projection are illuminated by light from the first DMD 101 having a similar level of brightness, in order to achieve a high dynamic range.
- DMDs 101, 102 are operated in order to illuminate non-white pixels of the second DMD 102 with corresponding non-white light from the first DMD 101 and/or to not illuminate black pixels of the second DMD 102.
- the image data used to modulate the second DMD 102 operated in a prime-modulator mode can be calculated using a target image to be projected as well as data defining the first DMD 101 operated in a pre-modulator mode (which effectively is a light source for illuminating the second DMD 102).
- a pre-modulator mode which effectively is a light source for illuminating the second DMD 102
- non-HDR projection there is no pre-modulator (e.g. no first DMD 101) and illumination light on a prime-modulator (e.g. the second DMD 102) is assumed to be uniform.
- the input light to prime-modulator e.g. the second DMD 102
- the image data, used to modulate the first DMD 101 operated in a pre-modulator mode is determined to be whatever is needed to yield the target image to be projected (assuming illumination light is uniformly focussed and/or is substantially uniformly focussed at the first DMD 101).
- OutImage is the target image to be projected
- PremodImage is the image to be provided at the first DMD 101 operated in the pre-modulator mode
- PSF is the pixel spread function of device 100
- PrimeImage is the image to be provided at the second DMD 102 operated in the prime-modulator mode.
- the first DMD 101 is operated in a forward configuration, such that illumination light is received at a subject plane 113 of the first DMD 101 at a non-normal angle and a respective output image is reflected from the first DMD 101 at a normal angle (e.g. optical path 125 is normal and/or perpendicular to a plane of the first DMD 101, as represented by arrow 138, and/or subject plane 113 is parallel to the plane of the first DMD 101).
- a prism e.g.
- a total internal reflection (TIR) prism) of the at least one optical device 117 is configured to convey the illumination light to the subject plane 113 of the first DMD 101 at the non-normal angle and convey the respective output image through an exit face 129 of the prism of the at least one optical device 117.
- TIR total internal reflection
- a prism e.g. a TIR prism
- device 100 can include a TIR prism with an exit face parallel to the subject plane 113, and a separate wedge prism located after the exit face configured to tilt the subject plane 113 of the first DMD 101 to the equivalent tilted subject plane 118.
- wedge prism can be located within optics 114, as long as the equivalent lens plane 116, the equivalent tilted subject plane 118 and the image plane 115 all intersect at a Scheimpflug intersection.
- the exit face 129 is at an angle 130 relative to the subject plane 113, the angle 130 being greater than zero (e.g. not parallel to the subject plane 113 of the first DMD 101).
- the angle 130 is selected to tilt the subject plane 113 of the first DMD 101 to the equivalent tilted subject plane 118, similar to the operation of device 10.
- the second DMD 102 is also operated in the forward configuration, such that the image plane 115 intersects the equivalent tilted subject plane 118 and the equivalent lens plane 116 of the optics 114 to meet the Scheimpflug condition.
- the optics 114 include a prism 142 configured to convey illumination light from the first DMD 101 (e.g. from the equivalent tilted subject plane 118) to the image plane 115 of the second DMD 102 at the respective non-normal angle (as best seen in Fig. 3 ) and convey the respective output image of the second DMD 102 through a respective exit face 149 of the prism 142 (as best seen in Fig. 2 , and represented by optical path 125 reflected away from the second DMD 102 through prism 142.
- a prism 142 configured to convey illumination light from the first DMD 101 (e.g. from the equivalent tilted subject plane 118) to the image plane 115 of the second DMD 102 at the respective non-normal angle (as best seen in Fig. 3 ) and convey the respective output image of the second DMD 102 through a respective exit face 149 of the prism 142 (as best seen in Fig. 2 , and represented by optical path 125 reflected away from the second DMD
- light along each of paths 125, 225 is for on-state light and that off-state light is reflected out of device 100 and/or into respective light dump devices (e.g. one for each of DMDs 101, 102).
- respective light dump devices e.g. one for each of DMDs 101, 102
- device 100 can include such light dump devices and at least one optical device 117 and prism 142 can be adapted to convey respective off-state light from each of DMDs 101, 102 to respective light dump devices.
- Optics 114 between the DMDs 101, 102 can comprise one or more lenses, apertures and the like. As depicted, the optics 114 comprises five lenses and one aperture. Regardless, it is appreciated that optics 114 can be effectively modeled with a lens similar to the optics 14 depicted in Fig. 1 , with an equivalent lens plane 116.
- the lenses generally image the equivalent tilted subject plane 118 onto the image plane 115 such that the PSF of device 100 at the image plane 115 is generally uniform.
- the optics 114 can collimate the light at the equivalent tilted subject plane.
- angle 130 and the optics 114 are further selected to both meet the Scheimpflug condition and to meet physical constraints of a projector into which device 100 is integrated.
- DMDs are generally designed to be operated in a forward configuration with illumination light at a given angle.
- DLPTM based DMDs have illumination angles of about 24°
- other DLPTM based DMDs have illumination angles of about 34°, though other given angles are within the scope of present implementations.
- a given illumination angle of a DMD selected for use with device 100 is generally used to selecting the angle 130, as well as in selecting the optics 114.
- each of the DMDs 101, 102 can have the same illumination angle, or each of the DMDs 101, 102 can have illumination angle different from one another.
- the positions of each of the DMDs, 101, 102, the position of the at least one optical device 117, including the angle 130, and the optics 114 are selected such that the Scheimpflug condition is met
- the parameters of device 100 can further be selected using optical modelling software, using a desired physical configuration of the components of the device 100.
- a certain configuration of the optics 114 may be desired such that the device 100 has a given physical footprint and/or each of the DMDs 101, 102 can have a given set of operational conditions (including, but not limited to an angle of illumination in a forward configuration).
- such a configuration of device 100 allows both DMDs 101, 102 to be operated in a forward configuration, which generally allows a more efficient operation of a projector into which device 100 is incorporated, as compared to similar projectors that use a first DMD in a reverse configuration.
- devices 10, 100 include only one optical device configured to: tilt a subject plane of a first DMD to an equivalent tilted subject plane, in yet further implementations, more than one optical device can be used to tilt the subject plane of the first DMD to an equivalent tilted subject plane.
- Fig. 4 and Fig. 5 depict a device 400 that can be used with, and/or incorporated into, a high dynamic range ("HDR") projector.
- Fig. 4 depicts a schematic side view of the device 400, including example optics
- Fig. 5 depicts a schematic side view of the device 400 with the optics of the device 400 unfolded (e.g. reflections from mirrors and/or reflective surfaces are removed for clarity with the optical path through the device 400 depicted without reflections).
- the device 400 is not depicted to scale in either of Fig. 4 or Fig. 5 . While device 400 is generally more complex than device 10, device 400 generally operates according to the same principles of device 10, as described hereafter.
- the device 400 generally comprises: a first DMD 401, a second DMD 402, each operated in a forward configuration, such that each is illuminated at a respective non-normal angle and a respective output image is reflected at a normal angle, a subject plane 413 of the first DMD 401 being parallel to the first DMD 401; optics 414 between the first DMD 401 and the second DMD 402, the optics 414 configured to convey light reflected from the first DMD 401 to illuminate an image plane 415 at the second DMD 402 in the forward configuration, the optics 414 including an equivalent lens plane 416; and a plurality of optical devices 417-1, 417-2 between the first DMD 401 and the second DMD 402, the plurality of optical devices 417-1, 417-2 configured to: tilt the subject plane 413 of the first DMD 401 to an equivalent tilted subject plane 418, the equivalent lens plane 416, the equivalent tilted subject plane 418 and the image plane 415
- Device 400 further comprises a respective TIR prism 450-1, 450-2 at each of the DMDs 401, 402 configured to convey illumination light to a respective DMD 401, 402 and convey a respective output image away from the respective DMD 401, 402 (e.g. the illumination light for the second DMD 402 comprising the respective output image of the first DMD 401).
- Each of the TIR prism 450-1. 450-2 can be a component of the optics 414.
- the optics 414 otherwise comprises eight lenses symmetrically arranged along an optical path between the DMDs 401, 402; again, it is appreciated that the optics 414 can be modelled using a single lens as in device 10, having the equivalent lens plane 416.
- the subject plane 413, the equivalent lens plane 416, the equivalent tilted subject plane 418 and the image plane 415 are depicted in Fig. 5 , but not Fig. 4 , for clarity.
- the relative angles between the subject plane 413, the equivalent lens plane 416, the equivalent tilted subject plane 418 and the image plane 415 are clearer as reflections due to mirrors and/or reflecting surfaces are removed.
- the plurality of optical devices 417-1, 417-2 are further configured to: tilt the subject plane 413 of the first DMD 401 to the equivalent tilted subject plane 418 such that the image plane 415 at the second DMD 402 is in uniform focus and/or is in substantially uniform focus at the respective non-normal angle.
- the plurality of optical devices 417-1, 417-2 include a plurality of wedge prisms distributed between the first DMD 401 and the second DMD 402.
- optical device 417-1 comprises a first wedge prism having an exit face 429-1 angled with respect to the subject plane 418
- optical device 417-2 comprises a second wedge prism having an exit face 429-2 also angled with respect to the subject plane 418.
- first wedge prism e.g. optical device 417-1
- the second wedge prism e.g.
- optical device 417-2) is located after optics 114 (and before the TIR prism 450-2), it is appreciated that the total effect of the two wedge prisms on the subject plane 413, with respect to the image plane 415, is to tilt the subject plane 413 of the first DMD 401 to the equivalent tilted subject plane 418.
- device 400 demonstrates that any number of optical devices can be used to tilt the subject plane of a first DMD, operated in a forward configuration, to an equivalent tilted subject plane such that the equivalent tilted subject plane, an equivalent lens plane and an image plane intersect at a Scheimpflug intersection and/or meet the Scheimpflug condition.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Projection Apparatus (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Transforming Electric Information Into Light Information (AREA)
Abstract
Description
- The specification relates generally to digital micromirror devices, and specifically to a forward-on-forward high dynamic range architecture for digital micromirror devices.
- High dynamic range ("HDR"), and/or high contrast, projectors attempt to maximize contrast between black portions of projected images and white portions of projected images. Some HDR projectors are based on digital micromirror devices ("DMD", such as Digital Light Processing or DLP™), and the high dynamic range is achieved with two stages of imaging: a first pre-modulator DMD that creates an initial "normal" contrast version of an image and a second prime imaging DMD that re-images the initial "normal" contrast version of the image from the first DMD, a second time (which can be at a higher resolution), to create blacker blacks in the final image and thus increasing the final image contrast.
- Existing architectures of such HDR projectors use the first DMD in a reverse configuration and the second DMD in a forward configuration. In the forward configuration, which is the configuration in which most DMDs are designed to operate, a DMD is illuminated at an angle to a plane of the DMD and an image formed by the DMD is reflected normal (perpendicular) to the plane of the DMD. However, in the reverse configuration, a plane of the DMD is illuminated perpendicularly, and an image formed by the DMD is reflected at an angle to the plane.
- Operating the first DMD in the reverse configuration in HDR projectors has been necessary when using traditional projection optics because of the Scheimpflug principle, which describes under what conditions it is possible to focus two optical planes onto each other to achieve acceptable focus of light from the first DMD onto the second DMD. Indeed, if the first DMD were operated in the forward configuration using traditional optics, a subject plane of the first DMD could not be focussed on the second DMD, other than in a narrow region. As a result, the first DMD in existing-architecture HDR projectors is operated in the reverse configuration. However, operating the first DMD in the reverse configuration results in a system that is significantly less optically efficient, due to diffractive effects of the DMD mirror array, which acts as a blaze grating, and which can lead to increases in projector cost, size, noise and power consumption.
- In general, this disclosure is directed to a system and/or device for a high dynamic range ("HDR") projector that includes a first pre-modulator digital micromirror device ("DMD") and a second prime-modulator DMD, each operated in a forward configuration. The system includes optics which convey light from the first DMD to the second DMD, and at least one optical device which tilt a subject plane of the first DMD to an equivalent tilted subject plane, an equivalent lens plane of the optics, the equivalent tilted subject plane and an image plane of the second DMD all intersecting at a Scheimpflug intersection.
- In this specification, elements may be described as "configured to" perform one or more functions or "configured for" such functions. In general, an element that is configured to perform or configured for performing a function is enabled to perform the function, or is suitable for performing the function, or is adapted to perform the function, or is operable to perform the function, or is otherwise capable of performing the function.
- It is understood that for the purpose of this specification, language of "at least one of X, Y, and Z" and "one or more of X, Y and Z" can be construed as X only, Y only, Z only, or any combination of two or more items X, Y, and Z (e.g., XYZ, XY, YZ, XZ, and the like). Similar logic can be applied for two or more items in any occurrence of "at least one ..." and "one or more..." language.
- An aspect of the specification provides a device comprising: a first digital micromirror device (DMD) and a second DMD each operated in a forward configuration, such that each is illuminated at a respective non-normal angle and a respective output image is reflected at a normal angle, a subject plane of the first DMD being parallel to the first DMD; optics between the first DMD and the second DMD, the optics configured to convey light reflected from the first DMD to illuminate an image plane at the second DMD in the forward configuration, the optics including an equivalent lens plane; and at least one optical device between the first DMD and the second DMD, the at least one optical device configured to: tilt the subject plane of the first DMD to an equivalent tilted subject plane, the equivalent lens plane, the equivalent tilted subject plane and the image plane all intersecting at a Scheimpflug intersection.
- In some implementations, the at least one optical device is further configured to: tilt the subject plane of the first DMD to the equivalent tilted subject plane such that the image plane at the second DMD is in uniform focus at the respective non-normal angle.
- In some implementations, the at least one optical device includes a prism with an exit face at an angle tilted relative to the subject plane of the first DMD.
- In some implementations, the at least one optical device includes a plurality of wedge prisms distributed between the first DMD and the second DMD.
- In some implementations, the at least one optical device includes a prism configured to convey illumination light to the subject plane of the first DMD at the respective non-normal angle and convey the respective output image through an exit face of the prism, the exit face at an angle relative to the subject plane, the angle being greater than zero, and the angle selected to optically tilt the subject plane of the first DMD to the equivalent tilted subject plane.
- In some implementations, the optics includes a prism configured to convey illumination light from the first DMD to the image plane of the second DMD at the respective non-normal angle and convey the respective output image of the second DMD through a respective exit face.
- In some implementations, the optics includes one or more lenses.
- In some implementations, the optics includes one or more apertures.
- In some implementations, the first DMD is further operated in a pre-modulator mode and the second DMD is further operated in a prime-modulator mode. In some these implementations, the first DMD is modulated using first image data, and the second DMD is modulated using second image determined from one or more of the first image data, a target projected image and a pixel spread function of the device.
- For a better understanding of the various implementations described herein and to show more clearly how they may be carried into effect, reference will now be made, by way of example only, to the accompanying drawings in which:
-
Fig. 1 depicts a schematic side view of a device for use with a high dynamic range projector, the device including two DMDs, each operated in a forward configuration, optics which convey light reflected from the first DMD to illuminate an image plane at the second DMD in the forward configuration, and at least one optical device between the first DMD and the second DMD, the at least one optical device configured to: tilt a subject plane of the first DMD to an equivalent tilted subject plane, an equivalent lens plane of the optics, the equivalent tilted subject plane and the image plane all intersecting at a Scheimpflug intersection, according to non-limiting implementations -
Fig. 2 depicts a specific implementation of the device ofFig. 1 , according to non-limiting implementations. -
Fig. 3 depicts an unfolded version of the optics of the device ofFig. 2 , along with a ray-trace diagram through the device, according to non-limiting implementations. -
Fig. 4 depicts another specific implementation of the device ofFig. 1 , according to non-limiting implementations. -
Fig. 5 depicts an unfolded version of the optics of the device ofFig. 4 , according to non-limiting implementations. -
Fig. 1 depicts adevice 10 comprising: a first digital micromirror device (DMD) 11 and asecond DMD 12 each operated in a forward configuration, such that each is illuminated at a respective non-normal angle and a respective output image is reflected at a normal angle, asubject plane 13 of thefirst DMD 11 being parallel to thefirst DMD 11;optics 14 between thefirst DMD 11 and thesecond DMD 12, theoptics 14 configured to convey light reflected from thefirst DMD 11 to illuminate animage plane 15 at thesecond DMD 12 in the forward configuration, theoptics 14 including anequivalent lens plane 16; and at least oneoptical device 17 between thefirst DMD 11 and thesecond DMD 12, the at least oneoptical device 17 configured to: tilt thesubject plane 13 of thefirst DMD 11 to an equivalenttilted subject plane 18, theequivalent lens plane 16, the equivalent tiltedsubject plane 18 and theimage plane 15 all intersecting at aScheimpflug intersection 19. - In other words, the
equivalent lens plane 16, the equivalent tiltedsubject plane 18 and theimage plane 15 meet a Scheimpflug condition such that light from thefirst DMD 11 is in uniform focus and/or is in substantially uniform focus at thesecond DMD 12 and/or at theimage plane 15. Put another way, theequivalent lens plane 16, the equivalent tiltedsubject plane 18 and theimage plane 15 meet a Scheimpflug condition such that light imaged onto thesecond DMD 12, from thefirst DMD 11, has a uniform pixel spread function (PSF) across thesecond DMD 12. - The at least one
optical device 17 has the effect of tilting thesubject plane 13 of thefirst DMD 11 to appear tilted with respect to theoptics 14 and/or thesecond DMD 12 such that the Scheimpflug condition can be met. Indeed, optically, thefirst DMD 11 "appears" to be located at the equivalenttilted subject plane 18, as indicated byvirtual DMD 21 located inside the at least oneoptical device 17. - As depicted, the at least one
optical device 17 includes a prism with an exit face at an angle tilted relative to thesubject plane 13 of thefirst DMD 11. The result is that the at least oneoptical device 17 tilts thesubject plane 13 of thefirst DMD 11 to the equivalenttilted subject plane 18 such that theimage plane 15 at thesecond DMD 12 is in uniform focus and/or is in substantially uniform focus at at the respective non-normal angle (e.g. a PSF across thesecond DMD 12 is uniform). - Put yet another way, without the at least one
optical device 17 thesubject plane 13 of thefirst DMD 11 could not be uniformly focussed onto the second DMD 12 (e.g. nonuniform PSF) as, with thesubject plane 13 being about parallel to theequivalent lens plane 16 of theoptics 14, the Scheimpflug condition is impossible to meet. However, in order to operate thefirst DMD 11 in the forward configuration, thesubject plane 13 of thefirst DMD 11 must be about parallel to theequivalent lens plane 16 of theoptics 14. Hence, the at least oneoptical device 17 enables the use of bothDMDs - As depicted, the
optics 14 includes a single lens, however, it is appreciated that such a depiction represent a simplification of theoptics 14, and furthermore,device 10 is represents a simplification of devices used in projectors. - Hence, attention is next directed to
Fig. 2 andFig. 3 , each of which depict adevice 100 that can be used with, and/or incorporated into, a high dynamic range ("HDR") projector.Fig. 2 depicts a schematic side view of thedevice 100, including example optics, andFig. 3 depicts a schematic side view of thedevice 100 with the optics of thedevice 100 unfolded (e.g. reflections from mirrors and/or reflective surfaces are removed for clarity with the optical path through thedevice 100 depicted without reflections), as well as a ray-trace diagram for three points at thefirst DMD 101, through thedevice 100. Furthermore, it is understood that thedevice 100 is not depicted to scale in either ofFig. 2 orFig. 3 . Whiledevice 100 is generally more complex thandevice 10,device 100 generally operates according to the same principles ofdevice 10, as described hereafter. - Furthermore, in
Fig. 2 , anoptical path 125 through thedevice 100 is depicted, and inFig. 3 an unfoldedoptical path 225 between theDMDs - With reference to both
Fig. 2 andFig. 3 , thedevice 100 generally comprises: afirst DMD 101, asecond DMD 102, each operated in a forward configuration, such that each is illuminated at a respective non-normal angle and a respective output image is reflected at a normal angle, asubject plane 113 of thefirst DMD 101 being parallel to thefirst DMD 101;optics 114 between thefirst DMD 101 and thesecond DMD 102, theoptics 114 configured to convey light reflected from thefirst DMD 101 to illuminate animage plane 115 at thesecond DMD 102 in the forward configuration, theoptics 114 including anequivalent lens plane 116; and at least oneoptical device 117 between thefirst DMD 101 and thesecond DMD 102, the at least oneoptical device 117 configured to: tilt thesubject plane 113 of thefirst DMD 101 to an equivalenttilted subject plane 118, theequivalent lens plane 116, the equivalenttilted subject plane 118 and theimage plane 115 all intersecting at a Scheimpflug intersection (not depicted, but assumed to be nonetheless present, for example off the page ofFig. 3 ). - It is appreciated that the relative locations of the
subject plane 113, theequivalent lens plane 116, the equivalenttilted subject plane 118 and theimage plane 115 are depicted inFig. 3 without intervening reflecting surfaces (as inFig. 2 ). For example, in the unfolded view ofdevice 100 inFig. 3 , the relative angles between thesubject plane 113, theequivalent lens plane 116, the equivalenttilted subject plane 118 and theimage plane 115 are clearer as reflections due to mirrors and/or reflecting surfaces are removed. Theequivalent lens plane 116 is depicted inFig. 3 , but notFig. 2 , for clarity. - As with at least one
optical device 17, at least oneoptical device 117 is further configured to: tilt thesubject plane 113 of thefirst DMD 101 to the equivalenttilted subject plane 118 such that theimage plane 115 at thesecond DMD 102 is uniformly focussed at the respective non-normal angle. - As depicted, the at least one
optical device 117 includes a prism with anexit face 129 at anangle 130 tilted relative to the subject plane of thefirst DMD 101 - It is further assumed in
Fig. 2 andFig. 3 that thefirst DMD 101 is illuminated by respective illumination light as indicated bypath 125 incident on thefirst DMD 101, for example from a light source (not depicted) of a projector (not depicted), and the like. The illumination light generally comprises one or more of white light, red light, green light, blue light, infrared light, ultraviolet light and the like, having an aspect ratio similar to an aspect ratio of thefirst DMD 101. In some implementations, the illumination light comprises a series of colors of illumination light, for example two or more of a red light, a green light and a blue light that illuminates thefirst DMD 101 in a sequence. For example, thedevice 100 can be a component of a single-chip imaging projector (e.g. one each of a pre-modulator DMD (e.g. the first DMD 101) and a prime-modulator DMD (e.g. the second DMD 102)), a two-chip imaging projector (e.g. two each of a pre-modulator DMD and a prime modulator DMD), and a three-chip imaging projector (e.g. three each of a pre-modulator DMD and a prime modulator DMD). - Furthermore, an aspect ratio of each of the
first DMD 101 and thesecond DMD 102 can be similar or different. For example, different aspect ratios can be used when the first DMD 101 is under filled. - Either way, it is assumed that the
first DMD 101 can further operate in a pre-modulator mode and thesecond DMD 102 can further operate in a prime-modulator mode. In other words, each of thefirst DMD 101 and thesecond DMD 102 can be modulated using similar image data. For example, thefirst DMD 101 can be modulated using first image data, and thesecond DMD 102 can be modulated using second image data which can comprise the first image such that regions of thesecond DMD 102 that correspond to dark areas of the image being generated for projection are illuminated by light from thefirst DMD 101 having a similar level of brightness, in order to achieve a high dynamic range. For example,DMDs second DMD 102 with corresponding non-white light from thefirst DMD 101 and/or to not illuminate black pixels of thesecond DMD 102. The image data used to modulate thesecond DMD 102 operated in a prime-modulator mode can be calculated using a target image to be projected as well as data defining thefirst DMD 101 operated in a pre-modulator mode (which effectively is a light source for illuminating the second DMD 102). In non-HDR projection there is no pre-modulator (e.g. no first DMD 101) and illumination light on a prime-modulator (e.g. the second DMD 102) is assumed to be uniform. In HDR projection the input light to prime-modulator (e.g. the second DMD 102) is intentionally not uniform to achieve very black HDR blacks. So, given this non-uniformity, the image data, used to modulate thefirst DMD 101 operated in a pre-modulator mode, is determined to be whatever is needed to yield the target image to be projected (assuming illumination light is uniformly focussed and/or is substantially uniformly focussed at the first DMD 101). Mathematically, the target image is divided by the pre-image data to yield the primeimage data, which can be mathematically expressed as:
where OutImage is the target image to be projected, PremodImage is the image to be provided at thefirst DMD 101 operated in the pre-modulator mode, PSF is the pixel spread function ofdevice 100, and PrimeImage is the image to be provided at thesecond DMD 102 operated in the prime-modulator mode. Hence, given a target image (e.g. OutImage), and the PSF, the prime and premod images can be calculated to minimize the errors between the target and a source image. - With further reference to
Fig. 2 andFig. 3 , thefirst DMD 101 is operated in a forward configuration, such that illumination light is received at asubject plane 113 of thefirst DMD 101 at a non-normal angle and a respective output image is reflected from thefirst DMD 101 at a normal angle (e.g.optical path 125 is normal and/or perpendicular to a plane of thefirst DMD 101, as represented byarrow 138, and/orsubject plane 113 is parallel to the plane of the first DMD 101). A prism (e.g. a total internal reflection (TIR) prism) of the at least oneoptical device 117 is configured to convey the illumination light to thesubject plane 113 of thefirst DMD 101 at the non-normal angle and convey the respective output image through anexit face 129 of the prism of the at least oneoptical device 117. - It is further appreciated that while the prism of the at least one
optical device 117 is configured to both convey light to thefirst DMD 101 and also to tilt thesubject plane 113 of thefirst DMD 101 to the equivalent tiltedsubject plane 118, in other implementations a prism (e.g. a TIR prism) can be used to convey light to, and away from, thefirst DMD 101, and at least oneoptical device 117 can be a component separate from such a prism. For example,device 100 can include a TIR prism with an exit face parallel to thesubject plane 113, and a separate wedge prism located after the exit face configured to tilt thesubject plane 113 of thefirst DMD 101 to the equivalent tiltedsubject plane 118. Alternatively, such wedge prism can be located withinoptics 114, as long as theequivalent lens plane 116, the equivalent tiltedsubject plane 118 and theimage plane 115 all intersect at a Scheimpflug intersection. - The
exit face 129 is at anangle 130 relative to thesubject plane 113, theangle 130 being greater than zero (e.g. not parallel to thesubject plane 113 of the first DMD 101). Theangle 130 is selected to tilt thesubject plane 113 of thefirst DMD 101 to the equivalent tiltedsubject plane 118, similar to the operation ofdevice 10. Thesecond DMD 102 is also operated in the forward configuration, such that theimage plane 115 intersects the equivalent tiltedsubject plane 118 and theequivalent lens plane 116 of theoptics 114 to meet the Scheimpflug condition. - As depicted,
device 100, theoptics 114 include aprism 142 configured to convey illumination light from the first DMD 101 (e.g. from the equivalent tilted subject plane 118) to theimage plane 115 of thesecond DMD 102 at the respective non-normal angle (as best seen inFig. 3 ) and convey the respective output image of thesecond DMD 102 through arespective exit face 149 of the prism 142 (as best seen inFig. 2 , and represented byoptical path 125 reflected away from thesecond DMD 102 throughprism 142. - While not depicted, it is assumed that light along each of
paths device 100 and/or into respective light dump devices (e.g. one for each ofDMDs 101, 102). In other words, while not depicted, it is assumed thatdevice 100 can include such light dump devices and at least oneoptical device 117 andprism 142 can be adapted to convey respective off-state light from each ofDMDs -
Optics 114 between theDMDs optics 114 comprises five lenses and one aperture. Regardless, it is appreciated thatoptics 114 can be effectively modeled with a lens similar to theoptics 14 depicted inFig. 1 , with anequivalent lens plane 116. - Furthermore, the lenses generally image the equivalent tilted
subject plane 118 onto theimage plane 115 such that the PSF ofdevice 100 at theimage plane 115 is generally uniform. Optionally, theoptics 114 can collimate the light at the equivalent tilted subject plane. - In general, the
angle 130 and theoptics 114 are further selected to both meet the Scheimpflug condition and to meet physical constraints of a projector into whichdevice 100 is integrated. - It is further appreciated that in selecting the
angle 130 and theoptics 114 the illumination angle of thesecond DMD 102 is considered. In other words, DMDs are generally designed to be operated in a forward configuration with illumination light at a given angle. For example, DLP™ based DMDs have illumination angles of about 24°, while other DLP™ based DMDs have illumination angles of about 34°, though other given angles are within the scope of present implementations. Indeed, a given illumination angle of a DMD selected for use withdevice 100 is generally used to selecting theangle 130, as well as in selecting theoptics 114. Indeed, each of theDMDs DMDs DMDs optical device 117, including theangle 130, and theoptics 114 are selected such that the Scheimpflug condition is met - Indeed, the parameters of
device 100, including theangle 130 can further be selected using optical modelling software, using a desired physical configuration of the components of thedevice 100. For example, a certain configuration of theoptics 114 may be desired such that thedevice 100 has a given physical footprint and/or each of theDMDs - In any event, such a configuration of
device 100 allows bothDMDs device 100 is incorporated, as compared to similar projectors that use a first DMD in a reverse configuration. - It is yet further appreciated that while
devices - For example, attention is next directed to
Fig. 4 andFig. 5 , each of which depict adevice 400 that can be used with, and/or incorporated into, a high dynamic range ("HDR") projector.Fig. 4 depicts a schematic side view of thedevice 400, including example optics, andFig. 5 depicts a schematic side view of thedevice 400 with the optics of thedevice 400 unfolded (e.g. reflections from mirrors and/or reflective surfaces are removed for clarity with the optical path through thedevice 400 depicted without reflections). Furthermore, it is understood that thedevice 400 is not depicted to scale in either ofFig. 4 orFig. 5 . Whiledevice 400 is generally more complex thandevice 10,device 400 generally operates according to the same principles ofdevice 10, as described hereafter. - With reference to both
Fig. 4 andFig. 5 , thedevice 400 generally comprises: afirst DMD 401, asecond DMD 402, each operated in a forward configuration, such that each is illuminated at a respective non-normal angle and a respective output image is reflected at a normal angle, asubject plane 413 of thefirst DMD 401 being parallel to thefirst DMD 401;optics 414 between thefirst DMD 401 and thesecond DMD 402, theoptics 414 configured to convey light reflected from thefirst DMD 401 to illuminate animage plane 415 at thesecond DMD 402 in the forward configuration, theoptics 414 including anequivalent lens plane 416; and a plurality of optical devices 417-1, 417-2 between thefirst DMD 401 and thesecond DMD 402, the plurality of optical devices 417-1, 417-2 configured to: tilt thesubject plane 413 of thefirst DMD 401 to an equivalent tiltedsubject plane 418, theequivalent lens plane 416, the equivalent tiltedsubject plane 418 and theimage plane 415 all intersecting at a Scheimpflug intersection (not depicted, but assumed to be nonetheless present, for example off the page ofFig. 5 ). -
Device 400 further comprises a respective TIR prism 450-1, 450-2 at each of theDMDs respective DMD respective DMD 401, 402 (e.g. the illumination light for thesecond DMD 402 comprising the respective output image of the first DMD 401). Each of the TIR prism 450-1. 450-2 can be a component of theoptics 414. - Furthermore, the
optics 414 otherwise comprises eight lenses symmetrically arranged along an optical path between theDMDs optics 414 can be modelled using a single lens as indevice 10, having theequivalent lens plane 416. - It is appreciated that the
subject plane 413, theequivalent lens plane 416, the equivalent tiltedsubject plane 418 and theimage plane 415 are depicted inFig. 5 , but notFig. 4 , for clarity. For example, in the unfolded view ofdevice 400, the relative angles between thesubject plane 413, theequivalent lens plane 416, the equivalent tiltedsubject plane 418 and theimage plane 415 are clearer as reflections due to mirrors and/or reflecting surfaces are removed. - As with at least one
optical device 17, the plurality of optical devices 417-1, 417-2 are further configured to: tilt thesubject plane 413 of thefirst DMD 401 to the equivalent tiltedsubject plane 418 such that theimage plane 415 at thesecond DMD 402 is in uniform focus and/or is in substantially uniform focus at the respective non-normal angle. - As depicted, the plurality of optical devices 417-1, 417-2 include a plurality of wedge prisms distributed between the
first DMD 401 and thesecond DMD 402. For example, optical device 417-1 comprises a first wedge prism having an exit face 429-1 angled with respect to thesubject plane 418, and optical device 417-2 comprises a second wedge prism having an exit face 429-2 also angled with respect to thesubject plane 418. While the first wedge prism (e.g. optical device 417-1) is located before optics 414 (and after the TIR prism 450-1), and the second wedge prism (e.g. optical device 417-2) is located after optics 114 (and before the TIR prism 450-2), it is appreciated that the total effect of the two wedge prisms on thesubject plane 413, with respect to theimage plane 415, is to tilt thesubject plane 413 of thefirst DMD 401 to the equivalent tiltedsubject plane 418. - Indeed,
device 400 demonstrates that any number of optical devices can be used to tilt the subject plane of a first DMD, operated in a forward configuration, to an equivalent tilted subject plane such that the equivalent tilted subject plane, an equivalent lens plane and an image plane intersect at a Scheimpflug intersection and/or meet the Scheimpflug condition. - Persons skilled in the art will appreciate that there are yet more alternative implementations and modifications possible, and that the above examples are only illustrations of one or more implementations. The scope, therefore, is only to be limited by the claims appended hereto.
Claims (10)
- A device comprising:a first digital micromirror device (DMD) (11) and a second DMD (12) each operated in a forward configuration, such that each is illuminated at a respective non-normal angle and a respective output image is reflected at a normal angle, a subject plane (13) of the first DMD (11) being parallel to the first DMD (11);optics (14) between the first DMD (11) and the second DMD (12), the optics (14) configured to convey light reflected from the first DMD (11) to illuminate an image plane (15) at the second DMD (12) in the forward configuration, the optics (14) including an equivalent lens plane (16); andat least one optical device (17) between the first DMD (11) and the second DMD (12), the at least one optical device (17) configured to: tilt the subject plane (13) of the first DMD (11) to an equivalent tilted subject plane (18), the equivalent lens plane (16), the equivalent tilted subject plane (18) and the image plane (15) all intersecting at a Scheimpflug intersection.
- The device of claim 1, wherein the at least one optical device (17) is further configured to: tilt the subject plane (13) of the first DMD (11) to the equivalent tilted subject plane (18) such that the image plane (15) at the second DMD (12) is in uniform focus at the respective non-normal angle.
- The device of claim 1, wherein the at least one optical device (17) includes a prism (17) with an exit face at an angle tilted relative to the subject plane (13) of the first DMD (11).
- The device of claim 1, wherein the at least one optical device (17) includes a plurality of wedge prisms (417) distributed between the first DMD (11) and the second DMD (12).
- The device of claim 1, wherein the at least one optical device (17) includes a prism (117) configured to convey illumination light to the subject plane (13) of the first DMD (11) at the respective non-normal angle and convey the respective output image through an exit face of the prism, the exit face at an angle relative to the subject plane (13), the angle being greater than zero, and the angle selected to optically tilt the subject plane (13) of the first DMD (11) to the equivalent tilted subject plane (18).
- The device of any of claims 1 to 5, wherein the optics (14) includes a prism (142) configured to convey illumination light from the first DMD (11) to the image plane (15) of the second DMD (12) at the respective non-normal angle and convey the respective output image of the second DMD (12) through a respective exit face.
- The device of any of claims 1 to 6, wherein the optics (14) includes one or more lenses (114).
- The device of any of claims 1 to 7, wherein the optics (14) includes one or more apertures (114).
- The device of any of claims 1 to 8, wherein the first DMD (11) is further operated in a pre-modulator mode and the second DMD (12) is further operated in a prime-modulator mode.
- The device of claim 9, wherein the first DMD (11) is modulated using first image data, and the second DMD (12) is modulated using second image determined from one or more of the first image data, a target projected image and a pixel spread function of the device.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/434,635 US9983402B1 (en) | 2017-02-16 | 2017-02-16 | Forward-on-forward high dynamic range architecture for digital micromirror devices |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3364228A1 true EP3364228A1 (en) | 2018-08-22 |
EP3364228B1 EP3364228B1 (en) | 2020-12-16 |
Family
ID=61024574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18152342.4A Active EP3364228B1 (en) | 2017-02-16 | 2018-01-18 | Forward-on-forward high dynamic range architecture for digital micromirror devices |
Country Status (5)
Country | Link |
---|---|
US (1) | US9983402B1 (en) |
EP (1) | EP3364228B1 (en) |
JP (1) | JP7140452B2 (en) |
CN (1) | CN108449587B (en) |
HK (1) | HK1252470A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110716372B (en) * | 2018-07-12 | 2021-08-03 | 深圳光峰科技股份有限公司 | DMD adjusting device, adjusting system and multi-DMD optical-mechanical system |
US11503274B2 (en) | 2019-05-02 | 2022-11-15 | Disney Enterprises, Inc. | High speed binary compressive light field projection system |
EP4062219A1 (en) * | 2019-11-18 | 2022-09-28 | Ricoh Company, Ltd. | Projection lens system and image projection apparatus |
JP7427926B2 (en) * | 2019-11-19 | 2024-02-06 | 株式会社リコー | Optical system and image projection device |
CN115209061B (en) * | 2022-09-15 | 2022-12-16 | 中国人民解放军国防科技大学 | Real-time high-dynamic imaging method and system based on DMD |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3972584A (en) * | 1971-09-07 | 1976-08-03 | Redifon Limited | Compound optical system with image tilt compensation |
US20050185249A1 (en) * | 2004-02-12 | 2005-08-25 | Seiko Epson Cororation | Light modulation device and optical display device, and light modulation method and image display method |
US20070057164A1 (en) * | 2003-07-02 | 2007-03-15 | David Vaughnn | Scheimpflug normalizer |
EP2670144A1 (en) * | 2012-05-30 | 2013-12-04 | Christie Digital Systems USA, Inc. | Zonal illumination for high dynamic range projection |
US20150146175A1 (en) * | 2013-11-28 | 2015-05-28 | Christie Digital Systems Canada Inc. | Light modulator system including relay optics for correcting optical distortions |
US20160073100A1 (en) * | 2014-09-10 | 2016-03-10 | Delta Electronics, Inc. | Coded illuminator and light field projection device using the same |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4436392A (en) | 1983-01-03 | 1984-03-13 | Minnesota Mining And Manufacturing Company | Distortion correction for an overhead projector system |
GB9001509D0 (en) | 1990-01-23 | 1990-03-21 | Davy Mckee Poole | An optical imaging device for guiding a robot |
US6406150B1 (en) | 1999-07-09 | 2002-06-18 | Sarnoff Corporation | Compact rear projections system |
DE20109394U1 (en) | 2001-06-06 | 2001-08-16 | Carl Zeiss Jena Gmbh, 07745 Jena | Projection arrangement |
JP2006504116A (en) | 2001-12-14 | 2006-02-02 | ディジタル・オプティクス・インターナショナル・コーポレイション | Uniform lighting system |
CN1711778A (en) | 2002-12-04 | 2005-12-21 | 汤姆森许可贸易公司 | Two-stage projector architecture |
JP4207797B2 (en) | 2004-02-24 | 2009-01-14 | セイコーエプソン株式会社 | LIGHT MODULATION DEVICE, OPTICAL DISPLAY DEVICE, LIGHT MODULATION METHOD, AND IMAGE DISPLAY METHOD |
JP2007163547A (en) | 2005-12-09 | 2007-06-28 | Toppan Printing Co Ltd | Projection display device |
JP4645486B2 (en) | 2006-03-13 | 2011-03-09 | セイコーエプソン株式会社 | Image display device and projector |
TWI436150B (en) * | 2011-02-15 | 2014-05-01 | Asia Optical Co Inc | Projector with dual projection function and its external kit |
GB2505708B (en) * | 2012-09-11 | 2015-02-25 | Barco Nv | Projection system with safety detection |
US9188767B2 (en) * | 2013-11-04 | 2015-11-17 | Christie Digital Systems Usa, Inc. | Relay lens system for a high dynamic range projector |
US9232172B2 (en) | 2013-11-04 | 2016-01-05 | Christie Digital Systems Usa, Inc. | Two-stage light modulation for high dynamic range |
EP3779593A1 (en) | 2014-12-31 | 2021-02-17 | Dolby Laboratories Licensing Corp. | Methods and systems for high dynamic range image projectors |
JP2017032631A (en) | 2015-07-29 | 2017-02-09 | Necディスプレイソリューションズ株式会社 | Projector |
-
2017
- 2017-02-16 US US15/434,635 patent/US9983402B1/en active Active
-
2018
- 2018-01-18 EP EP18152342.4A patent/EP3364228B1/en active Active
- 2018-02-02 JP JP2018016940A patent/JP7140452B2/en active Active
- 2018-02-05 CN CN201810113636.5A patent/CN108449587B/en active Active
- 2018-09-13 HK HK18111778.5A patent/HK1252470A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3972584A (en) * | 1971-09-07 | 1976-08-03 | Redifon Limited | Compound optical system with image tilt compensation |
US20070057164A1 (en) * | 2003-07-02 | 2007-03-15 | David Vaughnn | Scheimpflug normalizer |
US20050185249A1 (en) * | 2004-02-12 | 2005-08-25 | Seiko Epson Cororation | Light modulation device and optical display device, and light modulation method and image display method |
EP2670144A1 (en) * | 2012-05-30 | 2013-12-04 | Christie Digital Systems USA, Inc. | Zonal illumination for high dynamic range projection |
US20150146175A1 (en) * | 2013-11-28 | 2015-05-28 | Christie Digital Systems Canada Inc. | Light modulator system including relay optics for correcting optical distortions |
US20160073100A1 (en) * | 2014-09-10 | 2016-03-10 | Delta Electronics, Inc. | Coded illuminator and light field projection device using the same |
Also Published As
Publication number | Publication date |
---|---|
EP3364228B1 (en) | 2020-12-16 |
CN108449587A (en) | 2018-08-24 |
JP2018156065A (en) | 2018-10-04 |
CN108449587B (en) | 2021-03-19 |
HK1252470A1 (en) | 2019-05-24 |
US9983402B1 (en) | 2018-05-29 |
JP7140452B2 (en) | 2022-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3364228A1 (en) | Forward-on-forward high dynamic range architecture for digital micromirror devices | |
CN107111216B (en) | High contrast discrete input prism for image projector | |
EP1411733A3 (en) | Broad gamut color display apparatus using an electromechanical grating device | |
US20150042564A1 (en) | Projector | |
JP2003295110A (en) | Image display device | |
US20190166348A1 (en) | Optically offset three-dimensional imager | |
WO2006088735A2 (en) | Method and apparatus for combining light paths of like-colored light sources | |
JP2006065202A (en) | Projection type picture display device | |
GB2567524A (en) | Image projection apparatus | |
TWI427347B (en) | Optical imaging system | |
US20020051094A1 (en) | Aperture element for video projector and video projector using the same aperture element | |
CN110876045B (en) | Projection method and projector | |
US20060092390A1 (en) | Projector | |
US20230388460A1 (en) | Digital display system and method | |
CN110873995B (en) | Projection method, projection system and projector | |
US20090290128A1 (en) | Tiled color filter for a projection system | |
KR20010080590A (en) | Image projection system | |
CN114175624A (en) | Control device, projection system, control method, and control program | |
JP2021081564A (en) | Optical system and image projection device | |
US10798350B2 (en) | Split aperture projector/camera | |
US20230362338A1 (en) | Optically reduced display pixel fill factor for increased display resolution | |
CN111433661B (en) | Compact multi-modulator projector | |
KR20080053792A (en) | Projector with laser source | |
JP2006078645A (en) | Optical engine for rear projection type monitor | |
KR20030048862A (en) | Laser display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190131 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602018010725 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G02B0026080000 Ipc: G03B0021140000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04N 9/31 20060101ALI20200415BHEP Ipc: G03B 21/00 20060101ALI20200415BHEP Ipc: G02B 27/10 20060101ALI20200415BHEP Ipc: G03B 21/14 20060101AFI20200415BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200514 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
INTC | Intention to grant announced (deleted) | ||
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTG | Intention to grant announced |
Effective date: 20201104 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018010725 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1346140 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210316 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1346140 Country of ref document: AT Kind code of ref document: T Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210316 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018010725 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210118 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210131 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
26N | No opposition filed |
Effective date: 20210917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210118 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180118 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231221 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231222 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231220 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231228 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |