EP3271092B1 - Method for producing metal strips - Google Patents

Method for producing metal strips Download PDF

Info

Publication number
EP3271092B1
EP3271092B1 EP16709931.6A EP16709931A EP3271092B1 EP 3271092 B1 EP3271092 B1 EP 3271092B1 EP 16709931 A EP16709931 A EP 16709931A EP 3271092 B1 EP3271092 B1 EP 3271092B1
Authority
EP
European Patent Office
Prior art keywords
metal strip
profile
adaptation
contour
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16709931.6A
Other languages
German (de)
French (fr)
Other versions
EP3271092A1 (en
Inventor
Jürgen Seidel
Uwe BAUMGÄRTEL
Ralf Wachsmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55527922&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3271092(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3271092A1 publication Critical patent/EP3271092A1/en
Application granted granted Critical
Publication of EP3271092B1 publication Critical patent/EP3271092B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/02Profile, e.g. of plate, hot strip, sections

Definitions

  • the invention relates to a method for producing metal strips in a rolling mill with a desired profile contour according to the preamble of patent claim 1 or 3.
  • Background of the present invention is the fact that the requirements for the setting accuracy of a profile of a metal strip increase at least at individual predetermined bandwidth positions, so-called reference positions, as well as the dimensional accuracy of the profile contour of the metal strip.
  • box sections may be required, d.
  • H. Metal bands with a flat cross-section in the middle, which decreases more towards the band edges; This requirement is made for example on metal bands, which are to be divided later in the longitudinal direction.
  • concave band profiles i. H. Band profiles, which have thicker or raised edges compared to their middle region, and metal bands with Kantenwulsten usually not desired.
  • the international patent application discloses WO 1995/034388 a detection system for detecting the profile of a metal strip at the exit of a finishing train.
  • the band profile K detected there is compared with a predetermined target profile at this position, and the use of profile actuators is proposed in order to minimize the deviation of the measured profile from the target profile in subsequent bands.
  • the EP 0 618 020 B1 aims to adapt the profile of a metal strip at the exit of a hot strip mill to a predetermined target contour.
  • mechanical actuators are used so that a possibly determined deviation between a calculated, ie predicted band shape and the predetermined target contour is minimized.
  • a measured band profile C40 (at the position 40 mm from the band edge) is used for correction or adjustment of control systems.
  • a prediction value for the band profile and setting values for profile actuators when rolling an nth metal band at a predetermined reference position are simulated and calculated with the aid of a mathematical-physical process model. If necessary, the simulation takes into account restrictions and the use of different profile actuators.
  • an adaptation value is calculated on the basis of the difference between said prediction value and a measured actual value for the strip profile of the nth metal strip at said reference position.
  • the reference position is a predetermined bandwidth position measured from the natural edge of the metal strip, for example 25 or 40 mm.
  • said prediction value and the said adaptation value are determined or predefined only at a single reference position in order to define individual target values for the band profile of the metal band on this basis.
  • the invention has the object, a known method for producing metal strips in one To further develop rolling plant to the effect that - in the future production of metal strips - a more accurate forecast of the profile contour of the metal strip across the width and a more accurate adjustment of profile actuators of the rolling mill is possible.
  • the prognosis value for the profile contour is calculated in the context of the simulation of the rolling process before the rolling of the metal strip.
  • the prediction value according to the method of claim 3 is not calculated in the simulation before rolling, but by a recalculation after the rolling of the metal strip.
  • the aim in both methods is that the calculated forecast values coincide with the predetermined target values; However, due to process- or analgen-specific peculiarities, it may happen that the forecast values do not exactly match, but only approximately with the target values.
  • metal strip also includes metal sheet.
  • roller mill includes both single scaffolding, such as heavy plate scaffolding, Steckel or Twin Steckel scaffolding, etc., but also whole finishing mills with a.
  • reference position bi preferably designates a subjacent of the general positions m in the width direction of the metal strip. While normal bandwidth positions are defined by their respective distance from the center of the metal strip in the width direction, reference positions are defined by a respective predetermined distance from the belt edge or natural edge of the metal strip. For standardized reference positions, eg. B. 25 mm, 40 mm or another reference position, z. B. 100 mm from the natural edge of the metal strip are typically given values for the profile contour, z. As C25, C40 or C100 values. The reference positions are preferably the same for different bandwidths or for all metal bands. Whether the C ... values are target values, forecast values or adaptation values is determined from the context.
  • process model means a mathematical / physical model for simulating a rolling process. In particular, it is suitable to calculate prognosis values and profile contours for the metal strip as well as the setting values of profile actuators.
  • the process model is also referred to as "Profile Contour and Flatness Control” PCFC.
  • later production or “future production” means a manufacturing or rolling time after the determination of the new adaptation value for the at least n'te metal strip. Later manufacturing can be further Obtain longitudinal sections of the same nth metal strip or a completely new metal strip n + x.
  • n + 2 denotes the second metal strip to be produced after the nth metal strip, in particular to be rolled.
  • the respective future to be rolled band is thus generally designated for the corresponding preset calculation each n + x.
  • the previously calculated adaptation values are used here.
  • profile contour and “band profile”, each seen in the width direction of the metal strip, are used synonymously.
  • the core idea of the claimed claimed invention is that an adaptation value as the difference between a measured actual value and a calculated, ie predicted value for the profile contour of the metal strip not only, as usual in the prior art, at only one (number) determined Reference position, but at a plurality of reference positions is determined.
  • This advantageously a Bandkonturadaption is possible.
  • This plurality of determined adaptation values over the bandwidth can be taken into account in the calculation and adjustment of the profile actuators and in the calculation of the profile contour or in the calculation of the prognosis values for the metal strips to be rolled in the future.
  • the profile actuators can advantageously be more accurate with regard to the desired target values for a long longitudinal section of the nth metal strip or for the profile contour of the n + x'ten metal strip or the profile contour in the future to be rolled metal bands. Also the calculation of Forecast values for the profile contour is therefore more accurate for the n + x'th metal strip, ie for metal strips to be rolled in the future.
  • the short term adaptation value is then calculated as the sum of the initial value and the difference between the actual value C actual (n) bi for the profile contour and the prediction value C P (n) bi of the nth metal band at the reference position bi.
  • the long-term adaptation value ⁇ C L bi is optionally taken from the corresponding adaptation group to which the metal band n + x belongs.
  • the long-term adaptation value may also result from an averaging of the total adaptation values (long-term and short-term adaptation value) of j bands that have been rolled in the same adaptation group in the past.
  • the maximum number used in the past rolled bands j can e.g. 100 or 50 and is freely definable.
  • the difference in a band thus affects the long-term adaptation value only for a jth part.
  • the determined long-term adaptation value can be used in the PCFC preset calculation to 100% or only partially, depending on freely definable boundary conditions.
  • the definition and the calculation of the long-term adaptation value ⁇ C L (n) bi may presuppose the knowledge of the short-term adaptation value ⁇ C K (n) bi.
  • the Kurzzeitadaptionswert can also be used alone.
  • the long-term and / or short-term adaptation value it is also possible to determine a total adaptation value for determining the setting values of the profile actuators and for determining the contour of the band at the reference points bi according to claim 6. This total adaptation value is then calculated as the sum of the short-term adaptation value and the long-term adaptation value in each case at a reference position bi.
  • the determined short-term adaptation value, the determined long-term adaptation value or the determined sum adaptation value can be used in the calculation for presetting the profile actuators either to 100% or only to a desired part.
  • the desired proportion can be selected depending on freely definable boundary conditions.
  • z. B. 33 or 50% the adaptation effect is attenuated or smoothed.
  • the change of short-term adaptation values from band to band may be limited by a maximum value, e.g. B. 10 microns, are limited to not weight any individual measurement errors too high.
  • the short term adaptation value may be furnace dependent or dependent on other process variables.
  • the Kurzzeitadaptionswert usually refers to the profile differences of the last band n. In exceptional cases, z. B. the Profile difference be related to the penultimate band. Then n corresponds to the band n-1 or generally nx.
  • the adaptation values calculated according to the invention at the individual width positions bi of the metal strip can advantageously also be used to determine the adaptation contour of the metal strip by connecting the individual existing adaptation values with one another to at least one suitable attachment function.
  • the adaptation contour can be guided by the adaptation values ⁇ C ( n + x ) bi determined for the metal band n + x, or the adaptation contour runs close to the adaptation values depending on the approach function or smoothing function (approximation).
  • An approach function is thus used to connect adaptation values, interpolation, smoothing, extrapolation or approximation and is for example so designated.
  • adaptation values are present at at least two reference positions bi, and preferably at least one further adaptation contour value is present at a further bandwidth position m, which is not a reference position.
  • bandwidth positions are typically dictated by the process model.
  • the adaptation contour can be determined either only over a limited section or area or over the entire width of the metal strip.
  • the density of the known adaptation values may be different in individual regions over the width of the metal strip.
  • the adaptation contour can also be determined without further determination by an interpolation function; In this case, the adaptation contour simply exists in the adjacent sequence the plurality of adaptation values.
  • the maximum number I of bandwidth positions, in particular reference positions is less than 10.
  • the said and determined adaptation contour for the n + x'th metal band is added to a non-adapted calculated profile contour predicted by the process model in order to obtain an adapted profile contour for the n + x'th metal band.
  • a first width section may be, for example, in the middle width area and second width section or further width sections may be, for example, in the edge area, also called edge area of the metal strip.
  • the attachment functions or the adaptation contour or the adapted profile contour over the two width sections are preferably selected such that the contour progressions are continuously differentiable at the border from one band section to another, in particular have the same pitch. This condition avoids that the contours at the boundary between the two band sections have a kink; instead, they go smoothly together.
  • the adaptation contour or the adapted profile contour over a width section of the metal strip can be extrapolated into an adjacent width section for determining an extrapolated adapted adaptation contour or an extrapolated adapted profile contour over the adjacent width region, in particular if no adaptation values or measured profile contour values are known there.
  • the said at least one starting function or approximation function or interpolation function for connecting individual adaptation or profile contour values or the said extrapolation function can be formed from a linear function, a polynomial function of any order, an exponential function, a trigonometric function, a spline function or a combination of different functions.
  • the starting functions or interpolation functions can also be different for different width sections of the metal strip.
  • the imaginary plane also called the width plane, acts as a mirror plane at half the width or width of the metal strip, which extends in the longitudinal direction of the metal strip.
  • the adapted profile contour values or the adapted profile contour can initially only for a band half, z. B. the band half can be determined on the operating side and below for the other band half, z. B. mirrored for the band half on the drive side.
  • the measured actual value of the profile contour can be used as a direct measured value at the reference position bi or as a profile measured value smoothed by a compensation function across the width, for example a measured value interpolation function.
  • the measured actual values C ist (n) bi in the profile contour can be determined at a defined tape length position or averaged over a tape segment length or averaged over an entire tape length.
  • the adapted profile contour determined according to the invention is determined with regard to profile anomalies, such as, for example, band bulges, d. H. unwanted thickening in the band edge region, or steep band profile waste, especially in the edge region of the metal strip analyzed.
  • profile anomalies such as, for example, band bulges, d. H. unwanted thickening in the band edge region, or steep band profile waste, especially in the edge region of the metal strip analyzed.
  • the analysis is preferably carried out online or in a real-time mode.
  • the profile actuators can be suitably adjusted to actively combat or reduce said profile anomalies in subsequently rolled sections in the longitudinal direction of the same metal strip or subsequently rolled metal strips.
  • the band profile level 40 mm away from the natural edge of the metal strip automatically by the process model within allowable predetermined profile level limits between, for example, C40 target min and C40 target max set to a value, usually raised, so that the maximum allowable bead height is not exceeded or reduced or / and there is a targeted use of profile actuators (eg roller displacement, etc.) to reduce the bead height.
  • C40 target min and C40 target max set to a value, usually raised, so that the maximum allowable bead height is not exceeded or reduced or / and there is a targeted use of profile actuators (eg roller displacement, etc.) to reduce the bead height.
  • the body band profile ie the profile contour in the middle region of the metal band
  • the edge band profile using the contour adaptation can be adjusted more precisely in two steps.
  • the profile actuators for the rear scaffolds or last stitches are set so that the nominal profile is also set at the edge of the strip or so that an overall contour is shaped.
  • target profile values for different width positions can be specified, all of which are set or / and which are kept or monitored within certain limits.
  • a target profile value C25 30 ⁇ m can be set in the edge region or the deviation can be minimized and at the same time the limit C100> 15 ⁇ m can be maintained for a target profile value in the bodyband region.
  • the profile value in the band edge region may be e.g. C25 or alternatively the bodyband profile value e.g. C100 as the primary target variable and given differently from band to band.
  • the band contour values or the band contours are adapted (as described) at these reference points.
  • the adapted profile contour function consisting of m max profile contour values C (n + x) m, is advantageously analyzed with respect to band profile anomalies, and by means of the process model the information of the analyzed finished band contour errors is transmitted to the calculation of the interstitial or intermediate stitch contours by means of transfer functions or weighting factors not described in detail.
  • the determined adaptation values at the positions bi are transmitted to the calculation of the interstand or intersection contours by means of transfer functions or weighting factors not described in greater detail.
  • band contour anomalies bead height, bead width, edge drop between two defined profile points (eg C25-C100) as well as profile deviations in the middle band range (or at C100, C125, C150 or C200) thus allow a targeted analysis of whether band contour errors occur at the edge, in the middle range or in both ranges.
  • profile actuators of the different frameworks are iteratively used in a more targeted manner in order to avoid or reduce band profile anomalies.
  • profile actuators e.g. variable work roll cooling systems, zone cooling or local roll heating for influencing the thermal crown, a work roll displacement in conjunction with roll grinding ("anti-bead roller” or “tapered roll”, CVC roller coiling) Rollers, higher order polynomial or trigonometric functions), band edge heaters, band zone cooling, work roll bends, and / or scaffolds with pair-cross function.
  • roll grinding anti-bead roller” or “tapered roll”, CVC roller coiling
  • band edge heaters band zone cooling
  • work roll bends e.g. variable work roll cooling systems, zone cooling or local roll heating for influencing the thermal crown
  • band edge heaters e.g. variable work roll cooling systems, zone cooling or local roll heating for influencing the thermal crown
  • work roll bends e.g. variable work roll cooling systems, zone cooling or
  • FIG. 1 shows a cross section, ie the profile contour of a metal strip registered in a coordinate system, wherein the abscissa the band width position m and bi and the ordinate a profile value for the profile contour is applied.
  • the coordinate system is designed to the curved profile contour so that it is placed in the middle of the width of the curved profile contour.
  • Positive values for the bandwidth position extend in FIG. 1 to the right and negative values for the bandwidth position extend in FIG. 1 to the left, respectively in the width direction of the metal band.
  • the profile values are accordingly ablated perpendicularly from the abscissa and indicated with positive signs.
  • the profile values describe, in particular, the curvature of the metal strip at a specific bandwidth position in relation to the center of the metal strip.
  • FIG. 1 are initially two profile contours to recognize, namely on the one hand a measured profile contour, in FIG. 1 shown as a dashed line. In addition, as a solid line z.
  • B Predictive profile contour without adaptation, which was calculated using a process model.
  • the predicted profile contour, as in FIG. 1 is not yet adapted in the context of the invention, as will be described below.
  • the predicted profile contour corresponds to a juxtaposition of calculated profile contour values or the profile contour or prognosis values connected to one another via an approach or interpolation function.
  • Essential for the adaptation according to the invention is the determination of a corresponding adaptation value ⁇ C (n) bi, which determines the profile deviation, ie the difference between the actual value C actual (n) bi and the associated prognostic value C P (n) bi at the plurality of bandwidth positions b1 to b4 describes.
  • the bandwidth positions bi are arbitrary positions in the width direction of the metal strip; Usually, latitude positions are defined by their positive or negative distance from the mid-band. In some standardized cases, however, these bandwidth positions can advantageously also be defined by their distance from the respective natural edge of the metal strip on the drive side or / and on the operating side of the metal strip, then respectively in the direction of the strip center.
  • the bandwidth positions thus defined are typically referred to as reference positions. These normalized reference positions are then typically associated with specific profile values, which are then referred to as C40 or C100, for example become. The figure behind the C then corresponds to the distance of the bandwidth position of the respective natural edge of the metal strip.
  • FIG. 1 the profile contour is shown over the entire width of the metal strip from the drive side to the operating side.
  • Figures 2 and 5 For reasons of simplification, only the right half of the profile contour of the metal strip is shown in each case. In this half determined adaptation values or differences between predicted and measured profile contour can be assumed at least approximately by mirroring for the left half of the profile contour.
  • a smoothing function is preferably applied by the entire measured band contour in order to suppress any noise of the band contour signals.
  • the calculation of the profile contour and the corresponding adaptation according to the invention can be symmetrical only for one band half or asymmetrically over the entire width.
  • FIG. 2 illustrates the inventive method for producing a metal strip or in particular for adapting the profile contour of the metal strip.
  • Figure 2.1 first describes the determination according to the invention of the adaptation values on an n-th metal band, shown in simplified form only for the right-hand band half and on the example of only two adaptation points.
  • Figure 2.1 can on the previous description of the FIG. 1 to get expelled; this applies to the Figure 2.1 alike.
  • the bandwidth positions or the points in the width direction where a calculation of a profile value takes place are generally numbered consecutively with the parameter m, in particular if they are counted from the center of the band CL.
  • the reference positions bi are equally bandwidth positions, which are not defined by the band center but by their distance from the natural edge of the metal band.
  • the parameter m is also used as an indication of the entire contour or total number of contour calculation points in contrast to the parameter bi, which is to be understood regularly only as an indication of discrete values (reference positions).
  • Fig. 2.2 illustrates the determination of an adaptation contour according to the invention.
  • the adaptation contour is determined for the following band n + x. On the band n can z. For example, the width may be different than for band n + x. Only the adaptation values bi at the band n or / and long-term daptation are used Averaging is determined for a number of bands j and used for a following band n + x.
  • the adaptation contour and the point sequence ⁇ C (n + x) m (with the index m) is always used only in connection with the band n + x.
  • the adaptation contour can be determined by extrapolation.
  • the interpolation or extrapolation is used to interpolate or extrapolate on the profile values at other bandwidth positions m based on the given profile values at the reference positions.
  • Figure 2.3 illustrates how the previously according to Figure 2.2 For the n + 1'te metal strip determined adaptation contour can now be considered in the forecast and subsequent production to be rolled n + 1'ten metal strip.
  • Figure 2.3 shows, inter alia, the calculated adapted profile contour C p (n + 1) m and the calculated adapted predicted values C P (n + 1) b1 and C P (n + 1) b2 and a related calculated predicted profile contour C P (n + 1) m OA , with oA: without adaptation, here by way of example for the n + 1'th metal strip, ie here as an example for the next metal strip to be rolled.
  • Adaptation values ⁇ C (n) b1 and ⁇ C (n) b2 determined for the nth metal band can be added to the prediction values at the corresponding reference positions in order to obtain improved adaptive prognosis values for the predicted adapted profile values or profile contour there.
  • the new adapted prognosis values or the new profile contour obtained in this way can advantageously be used to set the profile actuators even more precisely with respect to desired target values and / or target contours in the production of the n + 1'th, in general the n + x'ten metal band to be able to.
  • the width position m may also be reference positions bi.
  • the difference or adaptation .DELTA.C (n) m between measured and calculated correction is at the in Figure 2.2 shown example for ease of description / illustration shown only for a metal band.
  • this difference is formed on the last rolled metal strip and / or on the penultimate rolled metal strip and / or on a plurality of metal strips of the same type, optionally with different weighting, and in this way a sum adaptation value is determined.
  • FIG. 3 shows an application example for the use of the contour adaptation according to the invention for reducing or avoiding unwanted beads in the edge region of a metal strip.
  • contour adaptation Without the use of contour adaptation, it may happen that bands with supposedly normal profile contours are calculated or predicted; see the dashed output contour after the first calculation step without contour adaptation in FIG. 3 .
  • FIG. 3 shown adapted profile contour C P (n + x) m are determined for the n + x'te metal strip.
  • the advantage of the profile contour C P (n + x) m adapted according to the invention over the non-adapted predicted profile contour C P (n + x) m OA is in FIG.
  • the profile adaptation according to the invention provides an improved calculation result for determining a more accurate profile contour and opens up new possibilities for improving the profile contour, here in particular for reducing the bead height. For example, for the metal strip according to FIG. 3 calculates an edge bead height W1, which is higher than a threshold value for an allowable bead height, then the process model within given allowable limits z. B.
  • C40 target min and C40 target max the profile value at the corresponding edge position, here 40 mm from the natural edge of the metal strip away, automatically set to a new value, raised here, so that the maximum allowable bead height is not exceeded or reduced.
  • a raised force level within the limits of the process and equipment limits in the rear stands of a finishing train or in a reversing stand in the later back stitches can be used. This can be achieved by a rolling force redistribution, ie a relief of the front scaffolds or earlier stitches and a greater load on the rear scaffolding or later stitches and / or by driving up one or more scaffolds (last scaffold or last stitch or scaffolding within the finishing train or middle stitch) happen.
  • Figure 4.1 shows examples of advantageous Walktkraftumveranderen to the bead height W1 (see Figure 4.2 ) to reduce.
  • the knowledge of the expected profile contour due to the physical modeling of the relationships and the said adapted profile contour a plurality of width positions bi across the width of the metal strip is further actively utilized to assist in setting a nominal strip profile at the strip edge, e.g. B. at position C25, in addition, the band profile in the band center area - expressed by CBody or C100 - in allowable minimum and maximum limits C100 min , C100 max to hold, as is an example in FIG. 5 is shown.
  • additional process limits are introduced and the minimum and maximum band profile limits for multiple band contour points, eg. C25 and C100.
  • the improved result (2nd calculation section) represents the band contour with the solid line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von Metallbändern in einer Walzanlage mit einer gewünschten Profilkontur gemäß dem Oberbegriff des Patentanspruchs 1 oder 3.The invention relates to a method for producing metal strips in a rolling mill with a desired profile contour according to the preamble of patent claim 1 or 3.

Hintergrund der vorliegenden Erfindung ist die Tatsache, dass die Anforderungen an die Setzgenauigkeit eines Profils eines Metallbandes zumindest an einzelnen vorgegebenen Bandbreitenpositionen, sogenannten Referenzpositionen, sowie auch an die Maßhaltigkeit der Profilkontur des Metallbandes steigen. Je nach geplantem Einsatzgebiet eines Metallbandes werden z. B. parabelförmige Warmbandprofilkonturen mit einer vorbestimmten Profilhöhe an einer bestimmten Referenzposition erwartet, um die Weiterverarbeitung in einem nachgeschalteten Kaltwalzwerk (Tandemstraße) zu vereinfachen. Alternativ können auch Kastenprofile gefordert sein, d. h. Metallbänder mit einem in der Mitte flachen Querschnitt, welcher zu den Bandkanten hin stärker abfällt; diese Forderung wird beispielsweise an Metallbänder gestellt, welche später in Längsrichtung geteilt werden sollen. Dagegen werden konkave Bandprofile, d. h. Bandprofile, welche dickere bzw. erhöhte Kanten im Vergleich zu ihrem Mittenbereich haben, sowie Metallbänder mit Kantenwulsten üblicherweise nicht gewünscht.Background of the present invention is the fact that the requirements for the setting accuracy of a profile of a metal strip increase at least at individual predetermined bandwidth positions, so-called reference positions, as well as the dimensional accuracy of the profile contour of the metal strip. Depending on the planned application of a metal strip z. B. parabolic hot strip profile contours expected with a predetermined profile height at a certain reference position to facilitate further processing in a downstream cold rolling mill (tandem mill). Alternatively, box sections may be required, d. H. Metal bands with a flat cross-section in the middle, which decreases more towards the band edges; This requirement is made for example on metal bands, which are to be divided later in the longitudinal direction. Conversely, concave band profiles, i. H. Band profiles, which have thicker or raised edges compared to their middle region, and metal bands with Kantenwulsten usually not desired.

Um die gewünschten Bandprofile möglichst präzise herstellen zu können werden im Stand der Technik bereits verschiedene Ansätze vorgeschlagen.In order to produce the desired band profiles as precisely as possible, various approaches have already been proposed in the prior art.

So offenbart die internationale Patentanmeldung WO 1995/034388 ein Erfassungssystem zum Erfassen des Profils eines Metallbandes am Ausgang einer Fertigwalzstraße. Das dort erfasste Bandprofil K wird mit einem vorgegebenen Zielprofil an dieser Position verglichen, und es wird der Einsatz von Profilstellgliedern vorgeschlagen, um die Abweichung des gemessenen Profils von dem Zielprofil bei nachfolgenden Bändern zu minimieren. Weiterhin erfolgt eine Entscheidung, ob eine gemessene Bandprofilform akzeptabel ist oder nicht und es werden Maßnahmen vorgeschlagen, z. B. Änderung der thermischen Crownform der Arbeitswalzen, um die Profilform gegebenenfalls zu verbessern.Thus, the international patent application discloses WO 1995/034388 a detection system for detecting the profile of a metal strip at the exit of a finishing train. The band profile K detected there is compared with a predetermined target profile at this position, and the use of profile actuators is proposed in order to minimize the deviation of the measured profile from the target profile in subsequent bands. Furthermore, a Deciding if a measured band profile shape is acceptable or not and proposing measures, e.g. B. Change of the thermal crown shape of the work rolls to improve the profile shape, if necessary.

Auch die EP 0 618 020 B1 ,auf der der Oberbegriff der Ansprüche 1 bzw. 3 basiert, zielt darauf ab, das Profil eines Metallbandes am Ausgang einer Warmbandstraße an eine vorgegebene Zielkontur anzupassen. Zu diesem Zweck werden mechanische Stellglieder so zum Einsatz gebracht, dass eine eventuell festgestellte Abweichung zwischen einer errechneten, d. h. prognostizierten Bandform und der vorgegebenen Zielkontur minimiert wird. Auch wird ein gemessenes Bandprofil C40 (an der Position 40 mm von der Bandkante) zur Korrektur bzw. zur Einstellung von Regelsystemen verwendet.Also the EP 0 618 020 B1 , on which the preamble of claims 1 and 3 is based, aims to adapt the profile of a metal strip at the exit of a hot strip mill to a predetermined target contour. For this purpose, mechanical actuators are used so that a possibly determined deviation between a calculated, ie predicted band shape and the predetermined target contour is minimized. Also, a measured band profile C40 (at the position 40 mm from the band edge) is used for correction or adjustment of control systems.

Weiterhin ist das Vorgehen gemäß dem Oberbegriff des Patentanspruchs 1 oder/und 3 im Stand der Technik bekannt. Demnach werden ein Prognosewert für das Bandprofil und Einstellwerte für Profilstellglieder beim Walzen eines n'ten Metallbandes an einer vorbestimmten Referenzposition mit Hilfe eines mathematisch physikalischen Prozess-Modells simuliert und berechnet. Die Simulation erfolgt gegebenenfalls unter Berücksichtigung von Restriktionen und Einsatz von verschiedenen Profil-Stellgliedern. Nach einem erfolgten Walzen des n'ten Metallbandes wird ein Adaptionswert berechnet auf Basis der Differenz zwischen dem besagten Prognosewert und einem gemessenen Ist-Wert für das Bandprofil des n'ten Metallbandes an der besagten Referenzposition. Bei der Referenzposition handelt es sich um eine vorbestimmte Bandbreitenposition gemessen von der Naturkante des Metallbandes, beispielsweise 25 oder 40 mm. Nach dem Stand der Technik wird der besagte Prognosewert und der besagte Adaptionswert lediglich an einer einzigen Referenzposition bestimmt bzw. vorgegeben, um auf dieser Basis einzelne Zielvorgaben für das Bandprofil des Metallbandes zu definieren.Furthermore, the procedure according to the preamble of claim 1 or / and 3 is known in the art. Accordingly, a prediction value for the band profile and setting values for profile actuators when rolling an nth metal band at a predetermined reference position are simulated and calculated with the aid of a mathematical-physical process model. If necessary, the simulation takes into account restrictions and the use of different profile actuators. After a rolling of the nth metal strip, an adaptation value is calculated on the basis of the difference between said prediction value and a measured actual value for the strip profile of the nth metal strip at said reference position. The reference position is a predetermined bandwidth position measured from the natural edge of the metal strip, for example 25 or 40 mm. According to the prior art, said prediction value and the said adaptation value are determined or predefined only at a single reference position in order to define individual target values for the band profile of the metal band on this basis.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein bekanntes Verfahren zum Herstellen von Metallbändern in einer Walzanlage dahingehend weiterzubilden, dass - bei der zukünftigen Herstellung von Metallbändern - eine genauere Prognose der Profilkontur des Metallbandes über der Breite sowie eine genauere Einstellung von Profilstellgliedern der Walzanlage möglich ist.Based on this prior art, the invention has the object, a known method for producing metal strips in one To further develop rolling plant to the effect that - in the future production of metal strips - a more accurate forecast of the profile contour of the metal strip across the width and a more accurate adjustment of profile actuators of the rolling mill is possible.

Diese Aufgabe wird durch das in Patentanspruch 1 und 3 beanspruchte Verfahren gelöst.This object is achieved by the method claimed in claims 1 and 3.

Beim dem Verfahren nach Anspruch 1 wird der Prognosewert für die Profilkontur im Rahmen der Simulation des Walzprozesses vor dem Walzen des Metallbandes berechnet. Im Unterschied dazu wird der Prognosewert gemäß dem Verfahren nach Anspruch 3 nicht in der Simulation vor dem Walzen, sondern durch eine Nachberechnung nach dem erfolgten Walzen des Metallbandes berechnet.In the method according to claim 1, the prognosis value for the profile contour is calculated in the context of the simulation of the rolling process before the rolling of the metal strip. In contrast, the prediction value according to the method of claim 3 is not calculated in the simulation before rolling, but by a recalculation after the rolling of the metal strip.

Anders ausgedrückt: Alternativ kann es sich bei der Adaptionswertberechnung je nach Adaptionsphilosophie bei dem Prognosewert gemäß Anspruch 1 um den im Rahmen der Simulation des Walzprozesses errechneten Wert des Profils mit Verwendung von Presetwerten (erwartete Walzkraft etc.) oder gemäß Anspruch 3 um das Ergebnis einer Nachrechnung mit Ist-Bedingungen (gemessene Walzkräfte etc.) handeln.In other words, alternatively, the adaptation value calculation depending on the adaptation philosophy in the prognosis value according to claim 1 to the calculated in the simulation of the rolling process value of the profile with the use of preset values (expected rolling force, etc.) or according to claim 3 to the result of recalculation Act with actual conditions (measured rolling forces, etc.).

Grundsätzlich wird bei beiden Verfahren angestrebt, dass die berechneten Prognosewerte mit den vorgegebenen Zielwerten übereinstimmen; aufgrund von prozess- oder analgenspezifischen Besonderheiten kann es jedoch vorkommen, dass die Prognosewerte nicht genau, sondern nur näherungsweise mit den Zielwerten übereinstimmen.In principle, the aim in both methods is that the calculated forecast values coincide with the predetermined target values; However, due to process- or analgen-specific peculiarities, it may happen that the forecast values do not exactly match, but only approximately with the target values.

Die Berechnung der Prognosewerte für die Bandprofile an den verschiedenen Referenzpositionen bi erfolgt bei gleicher Einstellung der Profilstellglieder. Dies gilt in beiden beanspruchten Verfahren.The calculation of the prediction values for the band profiles at the different reference positions bi is carried out with the same setting of the profile actuators. This applies in both claimed methods.

Der Begriff "Metallband" schließt auch Metallblech mit ein.The term "metal strip" also includes metal sheet.

Der Begriff "Walzanlage" schließt sowohl Einzelgerüste, beispielsweise Grobblechgerüste, Steckel- oder Twin-Steckel-Gerüste etc., aber auch ganze Fertigwalzstraßen mit ein.The term "rolling mill" includes both single scaffolding, such as heavy plate scaffolding, Steckel or Twin Steckel scaffolding, etc., but also whole finishing mills with a.

Der Begriff "Referenzposition bi" bezeichnet vorzugsweise einen Unterfall der allgemeinen Positionen m in Breitenrichtung des Metallbandes. Während normale Bandbreitenpositionen durch ihren jeweiligen Abstand von der Mitte des Metallbandes in Breitenrichtung definiert werden, werden Referenzpositionen durch einen jeweils vorgegebenen Abstand von der Bandkante oder Naturkante des Metallbandes definiert. Für genormte Referenzpositionen, z. B. 25 mm, 40 mm oder eine andere Referenzposition, z. B. 100 mm von der Naturkante des Metallbandes werden typischerweise Werte für die Profilkontur vorgegeben, z. B. als C25-, C40- oder C100-Werte. Die Referenzpositionen sind für verschiedene Bandbreiten bzw. für alle Metallbänder vorzugsweise gleich. Ob es sich bei den C...-Werten um Zielwerte, Prognosewerte oder Adaptionswerte handelt, ergibt sich jeweils aus dem Zusammenhang.The term "reference position bi" preferably designates a subjacent of the general positions m in the width direction of the metal strip. While normal bandwidth positions are defined by their respective distance from the center of the metal strip in the width direction, reference positions are defined by a respective predetermined distance from the belt edge or natural edge of the metal strip. For standardized reference positions, eg. B. 25 mm, 40 mm or another reference position, z. B. 100 mm from the natural edge of the metal strip are typically given values for the profile contour, z. As C25, C40 or C100 values. The reference positions are preferably the same for different bandwidths or for all metal bands. Whether the C ... values are target values, forecast values or adaptation values is determined from the context.

Der Begriff "Prozessmodell" meint ein mathematisches / physikalisches Modell zur Simulation eines Walzprozesses. Es ist insbesondere geeignet, Prognosewerte und Profilkonturen für das Metallband sowie die Einstellwerte von Profilstellgliedern zu berechnen. Das Prozessmodell wird auch als "Profile Contour and Flatness Control" PCFC bezeichnet.The term "process model" means a mathematical / physical model for simulating a rolling process. In particular, it is suitable to calculate prognosis values and profile contours for the metal strip as well as the setting values of profile actuators. The process model is also referred to as "Profile Contour and Flatness Control" PCFC.

Der Begriff "berechneter Wert" meint "Prognosewert". Analog meint "berechnete Kontur" "prognostizierte Kontur".The term "calculated value" means "forecast value". Similarly, "calculated contour" means "predicted contour".

Der Begriff "späteres Herstellen" oder "zukünftiges Herstellen" meint ein Herstellen bzw. Walzen zeitlich nach der Ermittlung des neuen Adaptionswertes für das mindestens n'te Metallband. Das spätere Herstellen kann sich auf weitere Längsabschnitte desselben n'ten Metallbandes oder auf ein komplett neu herzustellendes Metallband n+x beziehen.The term "later production" or "future production" means a manufacturing or rolling time after the determination of the new adaptation value for the at least n'te metal strip. Later manufacturing can be further Obtain longitudinal sections of the same nth metal strip or a completely new metal strip n + x.

Der Begriff "n+x" mit x=1, 2, 3, ... etc x∈

Figure imgb0001
bezeichnet ein zukünftig nach dem n'ten Metallband hergestelltes bzw. herzustellendes Metallband. So bezeichnet beispielsweise n+2 das zweite nach dem n'ten Metallband herzustellende, insbesondere zu walzende Metallband.The term "n + x" with x = 1, 2, 3, ... etc x∈
Figure imgb0001
refers to a future produced after the n'ten metal strip or metal strip. For example, n + 2 denotes the second metal strip to be produced after the nth metal strip, in particular to be rolled.

Das jeweils zukünftig zu walzende Band wird also allgemein für die entsprechende Preset-Berechnung jeweils n+x bezeichnet. Hierbei werden die zuvor berechneten Adaptionswerte verwendet.The respective future to be rolled band is thus generally designated for the corresponding preset calculation each n + x. The previously calculated adaptation values are used here.

Die Begriffe "Profilkontur" und "Bandprofil", jeweils in Breitenrichtung des Metallbandes gesehen, werden gleichbedeutend verwendet.The terms "profile contour" and "band profile", each seen in the width direction of the metal strip, are used synonymously.

Der Kerngedanke der vorliegenden beanspruchten Erfindung besteht darin, dass ein Adaptionswert als Differenz zwischen einem gemessenen Ist-Wert und einem errechneten, d. h. prognostizierten Wert für die Profilkontur des Metallbandes nicht nur, wie im Stand der Technik bisher üblich, an nur einer (Zahlwert) bestimmten Referenzposition, sondern an einer Mehrzahl von Referenzpositionen ermittelt wird. Hiermit ist vorteilhafterweise eine Bandkonturadaption möglich. Diese Mehrzahl von ermittelten Adaptionswerten über der Bandbreite kann/können bei der Berechnung und Einstellung der Profilstellglieder und bei der Berechnung der Profilkontur bzw. bei der Berechnung der Prognosewerte für die zukünftig zu walzende Metallbänder berücksichtigt werden. Durch das Vorsehen der Mehrzahl von Adaptionswerten und aufgrund genauerer Kenntnis der Profilkontur können die Profilstellglieder vorteilhafterweise genauer im Hinblick auf die angestrebten Zielwerte für einen weiten Längsabschnitt des n'ten Metallbandes oder für die Profilkontur des n+x'ten Metallbandes bzw. die Profilkontur bei zukünftig zu walzenden Metallbändern eingestellt werden. Auch die Berechnung von Prognosewerten für die Profilkontur ist damit für das n+x'te Metallband, d. h. für zukünftig zu walzende Metallbänder genauer möglich.The core idea of the claimed claimed invention is that an adaptation value as the difference between a measured actual value and a calculated, ie predicted value for the profile contour of the metal strip not only, as usual in the prior art, at only one (number) determined Reference position, but at a plurality of reference positions is determined. This advantageously a Bandkonturadaption is possible. This plurality of determined adaptation values over the bandwidth can be taken into account in the calculation and adjustment of the profile actuators and in the calculation of the profile contour or in the calculation of the prognosis values for the metal strips to be rolled in the future. By providing the plurality of adaptation values and due to more accurate knowledge of the profile contour, the profile actuators can advantageously be more accurate with regard to the desired target values for a long longitudinal section of the nth metal strip or for the profile contour of the n + x'ten metal strip or the profile contour in the future to be rolled metal bands. Also the calculation of Forecast values for the profile contour is therefore more accurate for the n + x'th metal strip, ie for metal strips to be rolled in the future.

Gemäß einem vorteilhaften Ausführungsbeispiel wird bei der Ermittlung der Adaptionswerte an den Referenzpunkten bi zwischen Kurzzeitadaptionswerten und Langzeitadaptionswerten unterschieden. Dies ermöglicht es vorteilhafterweise, dass das an mindestens einem Band n Gelernte für ein später zu walzendes Band n+x genutzt wird, denn gleiche Profilkonturabweichungen zwischen gemessenen und prognostizierten Profilkonturwerten treten bei einem Folgeband oder bei einem später unter ähnlichen Bedingungen gewalzten Band immer wieder recht häufig auf.According to an advantageous embodiment, a distinction is made in the determination of the adaptation values at the reference points bi between short-term adaptation values and long-term adaptation values. This advantageously makes it possible to use the learned at at least one band n n for a later to be rolled band n + x, because the same profile contour deviations between measured and predicted profile contour values occur again and again quite frequently in a follower band or at a later rolled under similar conditions on.

Die Berechnung des Kurzzeitadaptionswertes erfolgt gemäß der Formel: Δ C n bi = Δ C K n bi = Δ C K n x bi + C Ist n bi C P n bi

Figure imgb0002

  • mit K: Kurzzeitadaption und
  • ΔCK (n-x)bi : Alter Kurzzeitadaptionswert
  • CIst (n)bi: Gemessener Ist-Wert für die Profilkontur des n'ten Bandes
  • CP (n)bi: Errechneter Prognosewert bzw. errechnetes Bandprofil
  • x=1, 2, 3 ...
  • n: betreffendes Metallband
The calculation of the short-term adaptation value takes place according to the formula: Δ C n bi = Δ C K n bi = Δ C K n - x bi + C is n bi - C P n bi
Figure imgb0002
  • with K: short-term adaptation and
  • Δ C K ( nx ) bi : age short term adaptation value
  • C Is ( n ) bi : Measured actual value for the profile contour of the nth band
  • C P ( n ) bi: Calculated forecast value or calculated band profile
  • x = 1, 2, 3 ...
  • n: concerned metal band

Bei Anwendung dieser Formel für den Kurzzeitadaptionswert wird der Summand ΔCK(n-x)bi bei Neustart eines Walzprozesses, z. B. nach einem Arbeitswalzenwechsel, mit z. B. 0 oder einem anderen typischen Anfangswert vorbesetzt. Der Kurzzeitadaptionswert berechnet sich dann als Summe aus dem Anfangswert und der Differenz zwischen dem Ist-Wert CIst(n)bi für die Profilkontur und dem Prognoswert CP(n)bi des n'ten Metallbandes an der Referenzposition bi.Using this formula for the short term adaptation value, the summand ΔC K (nx) bi at restart of a rolling process, e.g. B. after a work roll change, with z. 0 or another typical initial value. The short-term adaptation value is then calculated as the sum of the initial value and the difference between the actual value C actual (n) bi for the profile contour and the prediction value C P (n) bi of the nth metal band at the reference position bi.

Der Langzeitadaptionswert ΔCL bi an einer Referenzposition bi ergibt sich durch Ausführen folgender Schritte:

  • Ermitteln der Adaptionswerte durch Wiederholen der Schritte a) bis f) nach Anspruch 1 oder 3 an der Mehrzahl I von Referenzpositionen bi für eine Mehrzahl von vordem n+x'ten Metallband gewalzten Metallbändern einer Adaptionsgruppe; und
  • Berechnen der Langzeitadaptionswerte ΔCLbi durch Bildung der Mittelwerte der Adaptionswerte oder Bildung der Mittelwerte der Differenzen zwischen Ist-Werten und Prognosewerten für die Profilkontur für die Mehrzahl von Metallbändern jeweils an einer der Referenzpositionen bi.
The long-term adaptation value ΔC L bi at a reference position bi is obtained by performing the following steps:
  • Determining the adaptation values by repeating steps a) to f) according to claim 1 or 3 at the plurality I of reference positions bi for a plurality of metal bands of an adaptation group rolled prior to n + x th metallic strip; and
  • Calculating the long-term adaptation values ΔC L bi by forming the average values of the adaptation values or forming the mean values of the differences between actual values and prognosis values for the profile contour for the plurality of metal bands, each at one of the reference positions bi.

Für die Bestimmung des Prognosewertes CP(n+x)bi des Metallbandes n+x gemäß Anspruch 1 oder 3 wird gegebenenfalls der Langzeitadaptionswert ΔCLbi aus der entsprechenden Adaptionsgruppe entnommen, zu der das Metallband n+x gehört.For the determination of the prognosis value C P (n + x) bi of the metal strip n + x according to claim 1 or 3, the long-term adaptation value ΔC L bi is optionally taken from the corresponding adaptation group to which the metal band n + x belongs.

Anders ausgedrückt kann sich auch der Langzeitadaptionswert aus einer Mittelwertebildung der Gesamtadaptionswerte (Langzeit- und Kurzzeitadaptionswert) von j Bändern, die der gleichen Adaptionsgruppe in der Vergangenheit gewalzt worden sind, ergeben.In other words, the long-term adaptation value may also result from an averaging of the total adaptation values (long-term and short-term adaptation value) of j bands that have been rolled in the same adaptation group in the past.

Die maximal herangezogene Anzahl in der Vergangenheit gewalzter Bänder j kann z.B. 100 oder 50 betragen und ist frei festlegbar. Die Differenz bei einem Band wirkt sich auf den Langzeitadaptionswert also nur zu einem j-ten Teil aus. Der ermittelte Langzeitadaptionswert kann bei der PCFC-Preset-Berechnung zu 100% oder nur zu einem Teil, abhängig von frei festlegbaren Randbedingungen, verwendet werden.The maximum number used in the past rolled bands j can e.g. 100 or 50 and is freely definable. The difference in a band thus affects the long-term adaptation value only for a jth part. The determined long-term adaptation value can be used in the PCFC preset calculation to 100% or only partially, depending on freely definable boundary conditions.

Die Definition und die Berechnung des Langzeitadaptionswertes ΔCL(n)bi können die Kenntnis des Kurzzeitadaptionswertes ΔCK(n)bi voraussetzen. Demgegenüber kann in Ausnahmefällen der Kurzzeitadaptionswert auch alleine verwendet werden.The definition and the calculation of the long-term adaptation value ΔC L (n) bi may presuppose the knowledge of the short-term adaptation value ΔC K (n) bi. In contrast, in exceptional cases, the Kurzzeitadaptionswert can also be used alone.

Alternativ zu dem Langzeit- und/oder Kurzzeitadaptionswert kann auch ein Gesamtadaptionswert zur Ermittlung der Einstellwerte der Profilstellglieder und zur Bandkonturbestimmung an den Referenzpunkten bi gemäß Anspruch 6 ermittelt werden. Dieser Gesamtadaptionswert berechnet sich dann als Summe aus dem Kurzzeitadaptionswert und dem Langzeitadaptionswert jeweils an einer Referenzposition bi.As an alternative to the long-term and / or short-term adaptation value, it is also possible to determine a total adaptation value for determining the setting values of the profile actuators and for determining the contour of the band at the reference points bi according to claim 6. This total adaptation value is then calculated as the sum of the short-term adaptation value and the long-term adaptation value in each case at a reference position bi.

Wie sich die Adaptionswerte, gerechneten Profilwerte und Messwerte etc. an einer Referenzposition von Band zu Band für 4 Bänder der gleichen Langzeitadaptionsgruppe verhalten können, wird in dem nachfolgenden Beispiel verdeutlicht:

Figure imgb0003
How the adaptation values, calculated profile values and measured values etc. can behave at a reference position from band to band for 4 bands of the same long-term adaptation group is illustrated in the following example:
Figure imgb0003

Gemäß einem weiteren Ausführungsbeispiel können der ermittelte Kurzzeitadaptionswert, der ermittelte Langzeitadaptionswert oder der ermittelte Summenadaptionswert bei der Berechnung zur Voreinstellung der Profilstellglieder entweder zu 100 % oder nur zu einem gewünschten Teil verwendet werden. Der gewünschte Anteil kann abhängig von frei festlegbaren Randbedingungen gewählt werden. Je nach gewählter Gewichtung, z. B. 33 oder 50 % wird der Adaptionseffekt gedämpft bzw. geglättet. Die Änderung des Kurzzeitadaptionswerte von Band zu Band kann durch einen Maximalwert, z. B. 10 µm, begrenzt werden, um eventuelle einzelne Messfehler nicht zu hoch zu gewichten. Auch kann der Kurzzeitadaptionswert ofenabhängig oder abhängig von anderen Prozessgrößen sein. Der Kurzzeitadaptionswert bezieht sich i. d. R. auf die Profildifferenzen des letztens Bandes n. In Ausnahmefällen kann z. B. die Profildifferenz auf das vorletzte Band bezogen sein. Dann entspricht n dem Band n-1 bzw. allgemein n-x.According to a further embodiment, the determined short-term adaptation value, the determined long-term adaptation value or the determined sum adaptation value can be used in the calculation for presetting the profile actuators either to 100% or only to a desired part. The desired proportion can be selected depending on freely definable boundary conditions. Depending on the selected weighting, z. B. 33 or 50%, the adaptation effect is attenuated or smoothed. The change of short-term adaptation values from band to band may be limited by a maximum value, e.g. B. 10 microns, are limited to not weight any individual measurement errors too high. Also, the short term adaptation value may be furnace dependent or dependent on other process variables. The Kurzzeitadaptionswert usually refers to the profile differences of the last band n. In exceptional cases, z. B. the Profile difference be related to the penultimate band. Then n corresponds to the band n-1 or generally nx.

Die erfindungsgemäß berechneten Adaptionswerte an den einzelnen Breitenpositionen bi des Metallbandes können vorteilhafterweise auch dazu verwendet werden, die Adaptionskontur des Metallbandes zu ermitteln, indem die einzelnen vorhandenen Adaptionswerte mit mindestens einer geeigneten Ansatzfunktion miteinander zur Adaptionskontur verbunden werden. Die Adaptionskontur kann durch die I für das Metallband n+x ermittelten Adaptionswerte ΔC(n+x)bi geführt werden oder die Adaptionskontur läuft je nach Ansatzfunktion bzw. Glättungsfunktion dicht an den Adaptionswerten vorbei (Approximation). Eine Ansatzfunktion wird also zur Verbindung von Adaptionswerten, Interpolation, Glättung, Extrapolation oder Approximation verwendet und beispielsweise so bezeichnet. Adaptionswerte liegen in der Regel an mindestens zwei Referenzpositionen bi vor, und vorzugsweise liegt mindestens ein weiterer Adaptionskonturwert an einer weiteren Bandbreitenposition m vor, bei der es sich nicht um eine Referenzposition handelt. Weitere Bandbreitenpositionen werden typischerweise durch das Prozessmodell vorgegebenen. Je nachdem für welche Bandbreitenpositionen die Adaptionswerte bekannt sind, kann die Adaptionskontur entweder nur über einem begrenzten Abschnitt bzw. Bereich oder über der gesamten Breite des Metallbandes ermittelt werden. Die Dichte der bekannten Adaptionswerte kann in einzelnen Bereichen über der Breite des Metallbandes unterschiedlich sein. Vorzugsweise ist die Dichte der bekannten Adaptionswerte im Randbereich des Metallbandes, dort vorzugsweise an den Referenzpositionen, größer als in dem Mittenbereich, auch Bodybereich genannt. Dies liegt darin begründet, dass die Anforderungen an die Genauigkeit der Profilkontur im Randbereich oftmals höher sind als im Mittenbereich. Ist für einen extremen Sonderfall jeder geglättete Messpunkt, den ein Profilmessgerät liefert, ein Adaptionspunkt bi, so kann die Adaptionskontur auch ohne weitere Bestimmung von einer Interpolationsfunktion ermittelt werden; in diesem Fall besteht die Adaptionskontur einfach in der benachbarten Abfolge der Vielzahl von Adaptionswerten. Im Regelfall beträgt die maximale Anzahl I von Bandbreitenpositionen, insbesondere Referenzpositionen, jedoch weniger als 10.The adaptation values calculated according to the invention at the individual width positions bi of the metal strip can advantageously also be used to determine the adaptation contour of the metal strip by connecting the individual existing adaptation values with one another to at least one suitable attachment function. The adaptation contour can be guided by the adaptation values Δ C ( n + x ) bi determined for the metal band n + x, or the adaptation contour runs close to the adaptation values depending on the approach function or smoothing function (approximation). An approach function is thus used to connect adaptation values, interpolation, smoothing, extrapolation or approximation and is for example so designated. As a rule, adaptation values are present at at least two reference positions bi, and preferably at least one further adaptation contour value is present at a further bandwidth position m, which is not a reference position. Other bandwidth positions are typically dictated by the process model. Depending on which bandwidth positions the adaptation values are known for, the adaptation contour can be determined either only over a limited section or area or over the entire width of the metal strip. The density of the known adaptation values may be different in individual regions over the width of the metal strip. Preferably, the density of the known adaptation values in the edge region of the metal strip, there preferably at the reference positions, greater than in the central region, also called body region. This is due to the fact that the requirements for the accuracy of the profile contour in the edge region are often higher than in the middle region. If, for an extreme special case, every smoothed measuring point supplied by a profilometer has an adaptation point bi, then the adaptation contour can also be determined without further determination by an interpolation function; In this case, the adaptation contour simply exists in the adjacent sequence the plurality of adaptation values. As a rule, the maximum number I of bandwidth positions, in particular reference positions, is less than 10.

Gemäß einem vorteilhaften Ausführungsbeispiel der Erfindung wird die besagte und ermittelte Adaptionskontur für das n+x'te Metallband mit einer von dem Prozessmodel prognostizierten, nicht adaptierten berechneten Profilkontur addiert, um im Ergebnis eine adaptierte Profilkontur für das n+x'te Metallband zu erhalten.According to an advantageous exemplary embodiment of the invention, the said and determined adaptation contour for the n + x'th metal band is added to a non-adapted calculated profile contour predicted by the process model in order to obtain an adapted profile contour for the n + x'th metal band.

Die Ermittlung der Ansatzfunktionen bzw. Interpolationsfunktionen der Adaptionskontur oder der adaptierten Profilkontur kann unterschiedlich für unterschiedliche Breitenabschnitte des Metallbandes erfolgen. Ein erster Breitenabschnitt kann beispielsweise in dem mittleren Breitenbereich und zweiter Breitenabschnitt oder weitere Breitenabschnitte können beispielsweise im Randbereich, auch genannt Kantenbereich des Metallbandes liegen.The determination of the approach functions or interpolation functions of the adaptation contour or of the adapted profile contour can be carried out differently for different width sections of the metal strip. A first width section may be, for example, in the middle width area and second width section or further width sections may be, for example, in the edge area, also called edge area of the metal strip.

Bei zwei Breitenabschnitten, die in Breitenrichtung aneinandergrenzen, werden die Ansatzfunktionen bzw. wird die Adaptionskontur oder die adaptierte Profilkontur über den beiden Breitenabschnitten vorzugsweise so gewählt, dass die Konturverläufe an der Grenze von einem zum anderen Bandabschnitt stetig differenzierbar sind, insbesondere eine gleiche Steigung haben. Durch diese Bedingung wird vermieden, dass die Konturen an der Grenze zwischen den beiden Bandabschnitten einen Knick aufweisen; stattdessen gehen sie dann glatt ineinander über.In the case of two width sections adjoining in the width direction, the attachment functions or the adaptation contour or the adapted profile contour over the two width sections are preferably selected such that the contour progressions are continuously differentiable at the border from one band section to another, in particular have the same pitch. This condition avoids that the contours at the boundary between the two band sections have a kink; instead, they go smoothly together.

Die Adaptionskontur oder die adaptierte Profilkontur über einem Breitenabschnitt des Metallbandes können in einen benachbarten Breitenabschnitt hinein extrapoliert werden zum Ermitteln einer extrapolierten adaptierten Adaptionskontur oder einer extrapolierten adaptierten Profilkontur über dem benachbarten Breitenbereich, insbesondere wenn dort keine Adaptionswerte oder gemessenen Profilkonturwerte bekannt sind.The adaptation contour or the adapted profile contour over a width section of the metal strip can be extrapolated into an adjacent width section for determining an extrapolated adapted adaptation contour or an extrapolated adapted profile contour over the adjacent width region, in particular if no adaptation values or measured profile contour values are known there.

Die besagte mindestens eine Ansatzfunktion bzw. Approximationsfunktion oder Interpolartionsfunktion zur Verbindung einzelner Adaptions- oder Profilkonturwerte oder die besagte Extrapolationsfunktion können aus einer linearen Funktion, einer Polynomfunktion beliebiger Ordnung, einer Exponentialfunktion, einer trigonometrischen Funktion, einer Splinefunktion oder einer Kombination von verschiedenen Funktionen gebildet sein. Auch die Ansatzfunktionen bzw. Interpolartionsfunktionen können für verschiedene Breitenabschnitte des Metallbandes unterschiedlich sein.The said at least one starting function or approximation function or interpolation function for connecting individual adaptation or profile contour values or the said extrapolation function can be formed from a linear function, a polynomial function of any order, an exponential function, a trigonometric function, a spline function or a combination of different functions. The starting functions or interpolation functions can also be different for different width sections of the metal strip.

Anstelle des gemessenen Ist-Wertes der Profilkontur des Metallbandes an der Referenzposition bi kann auch ein Mittelwert aus gemessenen Ist-Werten an den spiegelbildlichen Referenzpositionen bi auf der rechten und linken Hälfte des Metallbandes - in Walzrichtung gesehen - verwendet werden. Dabei fungiert die fiktive Ebene, auch Breitenebene genannt, auf halber Breite bzw. Breitenhöhe des Metallbandes, die sich in Längsrichtung des Metallbandes erstreckt, als Spiegelebene.Instead of the measured actual value of the profile contour of the metal strip at the reference position bi, it is also possible to use an average of measured actual values at the mirror-image reference positions bi on the right and left half of the metal strip, as viewed in the rolling direction. The imaginary plane, also called the width plane, acts as a mirror plane at half the width or width of the metal strip, which extends in the longitudinal direction of the metal strip.

Die adaptierten Profilkonturwerte oder die adaptierte Profilkontur können zunächst auch nur für eine Bandhälfte, z. B. die Bandhälfte auf der Bedienseite ermittelt werden und nachfolgend für die andere Bandhälfte, z. B. für die Bandhälfte auf der Antriebsseite gespiegelt werden.The adapted profile contour values or the adapted profile contour can initially only for a band half, z. B. the band half can be determined on the operating side and below for the other band half, z. B. mirrored for the band half on the drive side.

Der gemessene Ist-Wert der Profilkontur kann als direkter Messwert an der Referenzposition bi oder als ein durch eine Ausgleichsfunktion über der Breite, beispielsweise eine Messwert-Interpolationsfunktion, geglätteter Profilmesswert verwendet werden.The measured actual value of the profile contour can be used as a direct measured value at the reference position bi or as a profile measured value smoothed by a compensation function across the width, for example a measured value interpolation function.

Die gemessenen Ist-Werte CIst(n)bi bei der Profilkontur können an einer definierten Bandlängenposition ermittelt oder über einer Bandsegmentlänge gemittelt oder über einer gesamten Bandlänge gemittelt werden.The measured actual values C ist (n) bi in the profile contour can be determined at a defined tape length position or averaged over a tape segment length or averaged over an entire tape length.

Vorteilhafterweise wird die erfindungsgemäß ermittelte adaptierte Profilkontur im Hinblick auf Profilanomalien, wie beispielsweise Bandwulste, d. h. unerwünschte Verdickungen im Bandkantenbereich, oder steile Bandprofilabfälle, insbesondere im Kantenbereich des Metallbandes analysiert. Die Analyse erfolgt vorzugsweise online bzw. in einem Echtzeitbetrieb. Dann können die Profilstellglieder geeignet eingestellt werden, um die besagten Profilanomalien bei nachfolgend gewalzten Abschnitten in Längsrichtung desselben Metallbandes oder bei nachfolgend gewalzten Metallbändern aktiv zu bekämpfen bzw. zu reduzieren.Advantageously, the adapted profile contour determined according to the invention is determined with regard to profile anomalies, such as, for example, band bulges, d. H. unwanted thickening in the band edge region, or steep band profile waste, especially in the edge region of the metal strip analyzed. The analysis is preferably carried out online or in a real-time mode. Then, the profile actuators can be suitably adjusted to actively combat or reduce said profile anomalies in subsequently rolled sections in the longitudinal direction of the same metal strip or subsequently rolled metal strips.

Ohne Nutzung der erfindungsgemäßen Adaptionskontur kann es vorkommen, dass Metallbänder mit normalen Profilkonturen errechnet werden, und dass sich aber in der Praxis dennoch Bandwulste an den Kanten ausbilden. Die erfindungsgemäß ermöglichte Ermittlung der Adaptionskontur und die dadurch ermöglichte Ermittlung einer präziseren adaptierten Profilkontur eröffnet neue Möglichkeiten der verbesserten Ermittlung der Profilkontur. Wird z. B. für ein Metallband eine Kantenwulsthöhe errechnet, die höher ist als ein zulässiger Schwellenwert, so wird von dem Prozessmodell im Rahmen von zulässigen vorgegebenen Profilniveaugrenzen zwischen beispielsweise C40-Zielmin und C40-Zielmax das Bandprofilniveau 40 mm entfernt von der Naturkante des Metallbandes automatisch auf einen Wert gesetzt, in der Regel angehoben, so dass die maximale zulässige Wulsthöhe nicht überschritten bzw. reduziert wird oder/und es erfolgt ein gezielter Einsatz von Profilstellgliedern (z. B. Walzenverschiebung etc.) um die Wulsthöhe zu vermindern.Without the use of the adaptation contour according to the invention, it may happen that metal bands are calculated with normal profile contours, and that, however, in practice, band bulges form on the edges. The inventively made possible determination of the adaptation contour and the thus made possible determination of a more precise adapted profile contour opens up new possibilities of improved determination of the profile contour. If z. B. calculated for a metal band an edge bead height which is higher than an allowable threshold, the band profile level 40 mm away from the natural edge of the metal strip automatically by the process model within allowable predetermined profile level limits between, for example, C40 target min and C40 target max set to a value, usually raised, so that the maximum allowable bead height is not exceeded or reduced or / and there is a targeted use of profile actuators (eg roller displacement, etc.) to reduce the bead height.

Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind Gegenstand der abhängigen Ansprüche, insbesondere der Ansprüche 21 bis 23.Further advantageous embodiments of the method according to the invention are the subject matter of the dependent claims, in particular of claims 21 to 23.

Unter Ausnutzung des Materialquerflussverhaltens kann ergänzend in zwei Schritten das Bodybandprofil, d. h. die Profilkontur im Mittenbereich des Metallbandes, und das Kantenbandprofil unter Nutzung der Konturadaption genauer eingestellt werden. Zunächst werden die Profilstellglieder im vorderen Bereich der Walzanlage bzw. bei den ersten Stichen eines Reversierwalzwerkes so eingesetzt, dass sich das Bodyprofil einstellt. Im zweiten Schritt werden die Profilstellglieder für die hinteren Gerüste oder letzten Stiche so eingestellt, dass das nominelle Profil an der Bandkante ebenfalls eingestellt bzw. so eine Gesamtkontur geformt (designed) wird.Taking advantage of the material transverse flow behavior, the body band profile, ie the profile contour in the middle region of the metal band, and the edge band profile using the contour adaptation can be adjusted more precisely in two steps. First, the profile actuators in the front Area of the rolling mill or in the first stitches of a reversing mill used so that adjusts the body profile. In the second step, the profile actuators for the rear scaffolds or last stitches are set so that the nominal profile is also set at the edge of the strip or so that an overall contour is shaped.

Es sind also mehrere Zielprofilwerte für verschiedene Breitenpositionen vorgebbar, die alle eingestellt oder/und die in bestimmten Grenzen gehalten bzw. überwacht werden. Beispielsweise kann durch ein erweitertes Prozessmodell ein Zielprofilwert C25 = 30µm im Randbereich eingestellt oder die Abweichung minimiert werden und gleichzeitig für einen Zielprofilwert im Bodybandbereich die Grenze C100 > 15µm einhalten werden.Thus, several target profile values for different width positions can be specified, all of which are set or / and which are kept or monitored within certain limits. For example, by an extended process model, a target profile value C25 = 30 μm can be set in the edge region or the deviation can be minimized and at the same time the limit C100> 15 μm can be maintained for a target profile value in the bodyband region.

Es kann bei der Setzstrategie der Profilwert im Bandkantenbereich z.B. C25 oder alternativ der Bodybandprofilwert z.B. C100 als primäres Ziel variabel und von Band zu Band unterschiedlich vorgegeben werden. Zweckmäßigerweise werden (wie beschrieben) an diesen Referenzpunkten die Bandkonturwerte bzw. die Bandkonturen adaptiert.In the setting strategy, the profile value in the band edge region may be e.g. C25 or alternatively the bodyband profile value e.g. C100 as the primary target variable and given differently from band to band. Appropriately, the band contour values or the band contours are adapted (as described) at these reference points.

Die adaptierte Profilkonturfunktion, bestehend aus mmax Profilkonturwerten C(n+x)m wird vorteilhafterweise bezüglich Bandprofilanomalien analysiert, und mittels des Prozessmodells wird die Information der analysierten Fertigbandkonturfehler mittels nicht näher beschriebenen Übertragungsfunktionen oder Wichtungsfaktoren auf die Berechnung der Zwischengerüst- oder Zwischenstichkonturen übertragen. Alternativ oder zusätzlich werden die ermittelten Adaptionswerte an den Positionen bi mittels nicht näher beschriebenen Übertragungsfunktionen oder Wichtungsfaktoren auf die Berechnung der Zwischengerüst- oder Zwischenstichkonturen übertragen.The adapted profile contour function, consisting of m max profile contour values C (n + x) m, is advantageously analyzed with respect to band profile anomalies, and by means of the process model the information of the analyzed finished band contour errors is transmitted to the calculation of the interstitial or intermediate stitch contours by means of transfer functions or weighting factors not described in detail. Alternatively or additionally, the determined adaptation values at the positions bi are transmitted to the calculation of the interstand or intersection contours by means of transfer functions or weighting factors not described in greater detail.

Die genaue quantitative Kenntnis des Ortes der Bandkonturanomalien (Wulsthöhe, Wulstbreite, Kantenabfall zwischen zwei definierten Profilpunkten (z.B. C25-C100) sowie Profilabweichungen in dem mittleren Bandbereich (bzw. an C100, C125, C150 oder C200) erlauben also eine gezielte Analyse, ob Bandkonturfehler an der Kante, im mittleren Bereich oder in beiden Bereichen auftreten. Mit dieser Kenntnis werden in einer Profil- und Planheitsberechnung iterativ die Profilstellglieder der verschiedenen Gerüste gezielter eingesetzt, um Bandprofilanomalien zu vermeiden oder zu reduzieren.The exact quantitative knowledge of the location of the band contour anomalies (bead height, bead width, edge drop between two defined profile points (eg C25-C100) as well as profile deviations in the middle band range (or at C100, C125, C150 or C200) thus allow a targeted analysis of whether band contour errors occur at the edge, in the middle range or in both ranges. With this knowledge, in a profile and flatness calculation, the profile actuators of the different frameworks are iteratively used in a more targeted manner in order to avoid or reduce band profile anomalies.

Hierdurch lassen sich Profilstellglieder, wie z.B. variable Arbeitswalzenkühlsysteme, Zonenkühlung oder lokale Walzenerwärmung zur Beeinflussung des thermischen Crowns, eine Arbeitswalzenverschiebung in Verbindung mit Walzenschliffen (Spezial-Walzenschliffe zur Bekämpfung von Bandwulsten ("Anti-Wulst-Walze") oder zur Bekämpfung von Bandkantenabfällen ("Tapered Roll"), CVC-Walzen, CVC-Walzen mit einem Schliff höherer Ordnung bzw. Polynom n-ter Ordnung bzw. trigonometrische Funktionen), Bandkantenheizungen, Bandzonenkühlungen, Arbeitswalzenbiegungen und/oder Gerüste mit Pair-Cross-Funktion einsetzen. Neben den mechanischen und thermischen Profilstellgliedern wird ggf. auch die Walzkraftumverteilung zur Konturbeeinflussung gezielt verwendet.This allows profile actuators, e.g. variable work roll cooling systems, zone cooling or local roll heating for influencing the thermal crown, a work roll displacement in conjunction with roll grinding ("anti-bead roller" or "tapered roll", CVC roller coiling) Rollers, higher order polynomial or trigonometric functions), band edge heaters, band zone cooling, work roll bends, and / or scaffolds with pair-cross function. In addition to the mechanical and thermal profile actuators, the rolling force redistribution for influencing the contour may also be used selectively.

Der Beschreibung sind insgesamt 5 Figuren beigefügt, wobei

Figur 1
die Profilkontur eines Metallbandes mit zum Verständnis der Erfindung wesentlichen Begriffsdefinition;
Figuren 2.1, 2.2 und 2.3
eine Veranschaulichung des erfindungsgemäßen Verfahrens;
Figur 3
eine erste Möglichkeit zur Reduzierung eines unerwünschten Wulstes am Rand des Metallprofils auf Basis des erfindungsgemäßen Verfahrens;
Figuren 4.1 und 4.2
eine zweite Möglichkeit zur Reduzierung von unerwünschten Wulsten am Rand des Metallbandes; und
Figur 5
die Einstellung der Profilkontur des Metallbandes durch Vorgabe von Zielwerten an mehreren Referenzpositionen
veranschaulicht.The description is a total of 5 figures attached, where
FIG. 1
the profile contour of a metal strip with essential for the understanding of the invention definition of terms;
Figures 2.1, 2.2 and 2.3
an illustration of the method according to the invention;
FIG. 3
a first possibility for reducing an undesirable bead on the edge of the metal profile based on the method according to the invention;
Figures 4.1 and 4.2
a second possibility for reducing unwanted beads on the edge of the metal strip; and
FIG. 5
the setting of the profile contour of the metal strip by specifying target values at several reference positions
illustrated.

Die Erfindung wird nachfolgend unter Bezugnahme auf die genannten Figuren in Form von Ausführungsbeispielen detailliert beschrieben.The invention will be described in detail below with reference to the said figures in the form of embodiments.

Figur 1 zeigt einen Querschnitt, d. h. die Profilkontur eines Metallbandes eingetragen in ein Koordinatensystem, wobei auf der Abszisse die Bandbreitenposition m bzw. bi und auf der Ordinate ein Profilwert für die Profilkontur aufgetragen ist. Das Koordinatensystem ist so an die gewölbte Profilkontur angelegt, dass es in der Breitenmitte auf die gewölbte Profilkontur aufgelegt ist. Positive Werte für die Bandbreitenposition erstrecken sich in Figur 1 nach rechts und negative Werte für die Bandbreitenposition erstrecken sich in Figur 1 nach links, jeweils in Breitenrichtung des Metallbandes. Einzelne Profilwerte, die jeweils konkreten Positionen in Breitenrichtung des Metallbandes zugeordnet sind, bezeichnen die Abweichung der Profilkontur von einer rechteckförmigen Profilkontur, wie sie durch die horizontale Abszisse m/bi repräsentiert wird. Die Profilwerte werden dementsprechend ausgehend von der Abszisse senkrecht nach unten abgetragen und mit positiven Vorzeichen angegeben. Anders ausgedrückt: Die Profilwerte beschreiben insbesondere die Wölbung des Metallbandes an einer bestimmten Bandbreitenposition gegenüber der Mitte des Metallbandes. Der Profilwert CL ist in Figur 1 mit CL=0 vorgegeben, weil dieser Profilwert den Ursprung des Koordinatensystems bildet. FIG. 1 shows a cross section, ie the profile contour of a metal strip registered in a coordinate system, wherein the abscissa the band width position m and bi and the ordinate a profile value for the profile contour is applied. The coordinate system is designed to the curved profile contour so that it is placed in the middle of the width of the curved profile contour. Positive values for the bandwidth position extend in FIG. 1 to the right and negative values for the bandwidth position extend in FIG. 1 to the left, respectively in the width direction of the metal band. Individual profile values, which are each assigned to specific positions in the width direction of the metal strip, denote the deviation of the profile contour from a rectangular profile contour, as represented by the horizontal abscissa m / bi. The profile values are accordingly ablated perpendicularly from the abscissa and indicated with positive signs. In other words, the profile values describe, in particular, the curvature of the metal strip at a specific bandwidth position in relation to the center of the metal strip. The profile value CL is in FIG. 1 specified with CL = 0, because this profile value forms the origin of the coordinate system.

In Figur 1 sind zunächst zwei Profilkonturen zu erkennen, nämlich zum einen eine gemessene Profilkontur, in Figur 1 dargestellt als gestrichelte Linie. Darüber hinaus ist als durchgezogene Linie eine z. B. prognostizierte Profilkontur ohne Adaption zu erkennen, die mit Hilfe eines Prozessmodells berechnet wurde. Die prognostizierte Profilkontur, wie in Figur 1 gezeigt, ist noch nicht adaptiert im Sinne der Erfindung, wie nachfolgend noch beschrieben wird.In FIG. 1 are initially two profile contours to recognize, namely on the one hand a measured profile contour, in FIG. 1 shown as a dashed line. In addition, as a solid line z. B. Predictive profile contour without adaptation, which was calculated using a process model. The predicted profile contour, as in FIG. 1 is not yet adapted in the context of the invention, as will be described below.

Kerngedanke der vorliegenden Erfindung ist eine Adaption der prognostizierten Profilkontur bzw. eine Adaption der Profilkonturwerte, auch Prognosewerte CP(n)bi genannt, des n'ten Metallbandes, jeweils an einer Mehrzahl von Bandbreitenpositionen bi mit i=1,2,3 usw., in Figur 1 an den Positionen bi=b1 bis b4. Die prognostizierte Profilkontur entspricht einer Aneinanderreihung von berechneten Profilkonturwerten oder den über eine Ansatz- oder Interpolationsfunktion miteinander verbundenen Profilkontur- oder Prognosewerten. Wesentlich für die erfindungsgemäße Adaption ist die Ermittlung eines entsprechenden Adaptionswertes ΔC(n)bi, welcher die Profilabweichung, d. h. die Differenz zwischen dem Ist-Wert CIst(n)bi und dem zugehörigen Prognosewert CP(n)bi an der Mehrzahl von Bandbreitenpositionen b1 bis b4 beschreibt.The core idea of the present invention is an adaptation of the predicted profile contour or an adaptation of the profile contour values, also called prognostic values C P (n) bi, of the nth metal band, each at a plurality of bandwidth positions bi with i = 1,2,3 etc. , in FIG. 1 at the positions bi = b1 to b4. The predicted profile contour corresponds to a juxtaposition of calculated profile contour values or the profile contour or prognosis values connected to one another via an approach or interpolation function. Essential for the adaptation according to the invention is the determination of a corresponding adaptation value ΔC (n) bi, which determines the profile deviation, ie the difference between the actual value C actual (n) bi and the associated prognostic value C P (n) bi at the plurality of bandwidth positions b1 to b4 describes.

Grundsätzlich handelt es sich bei den Bandbreitenpositionen bi um beliebige Positionen in Breitenrichtung des Metallbandes; normalerweise werden Breitenpositionen durch ihren positiven oder negativen Abstand von der Bandmitte definiert. In einigen genormten Fällen können diese Bandbreitenpositionen jedoch vorteilhafterweise auch über ihren Abstand von der jeweiligen Naturkante des Metallbandes an der Antriebsseite oder/und an der Bedienseite des Metallbandes, dann jeweils in Richtung Bandmitte gemessen, definiert werden. Die so definierten Bandbreitenpositionen werden typischerweise als Referenzpositionen bezeichnet. Diesen normierten Referenzpositionen sind dann typischerweise auch konkrete Profilwerte zugeordnet, die dann beispielsweise als C40 oder C100 bezeichnet werden. Die Zahlenangabe hinter dem C entspricht dann dem Abstand der Bandbreitenposition von der jeweiligen Naturkante des Metallbandes.Basically, the bandwidth positions bi are arbitrary positions in the width direction of the metal strip; Usually, latitude positions are defined by their positive or negative distance from the mid-band. In some standardized cases, however, these bandwidth positions can advantageously also be defined by their distance from the respective natural edge of the metal strip on the drive side or / and on the operating side of the metal strip, then respectively in the direction of the strip center. The bandwidth positions thus defined are typically referred to as reference positions. These normalized reference positions are then typically associated with specific profile values, which are then referred to as C40 or C100, for example become. The figure behind the C then corresponds to the distance of the bandwidth position of the respective natural edge of the metal strip.

In Figur 1 ist die Profilkontur über der gesamten Breite des Metallbandes von der Antriebsseite bis zur Bedienseite gezeigt. In den nachfolgenden Figuren 2 und 5 ist jeweils aus Gründen der Vereinfachung lediglich die rechte Hälfte der Profilkontur des Metallbandes gezeigt. In dieser Hälfte ermittelte Adaptionswerte bzw. Differenzen zwischen prognostizierter und gemessener Profilkontur können zumindest näherungsweise durch Spiegelung auch für die linke Hälfte der Profilkontur angenommen werden.In FIG. 1 the profile contour is shown over the entire width of the metal strip from the drive side to the operating side. In the following Figures 2 and 5 For reasons of simplification, only the right half of the profile contour of the metal strip is shown in each case. In this half determined adaptation values or differences between predicted and measured profile contour can be assumed at least approximately by mirroring for the left half of the profile contour.

Alternativ können die gemessenen und berechneten Werte für die Profilkontur auch durch Mittelwertbildung der Konturwerte an den spiegelbildlichen Positionen i=1, i=-1; i=2, i=-2; i=3, i=-3 und/oder i=4, i=-4 auf der Antriebs- und Bedienseite gebildet werden. Negative Indexwerte sollen nur verdeutlichen, dass es sich um eine gegenüberliegende Seite handelt. Vorzugsweise wird hierbei durch die gesamte gemessene Bandkontur eine Glättungsfunktion gelegt um ein eventuelles Rauschen der Bandkontursignale zu unterdrücken. Die Berechnung der Profilkontur und die entsprechende erfindungsgemäße Adaption können symmetrisch nur für eine Bandhälfte oder asymmetrisch über der gesamten Breite erfolgen.Alternatively, the measured and calculated values for the profile contour can also be obtained by averaging the contour values at the mirror-image positions i = 1, i = -1; i = 2, i = -2; i = 3, i = -3 and / or i = 4, i = -4 are formed on the drive and operator side. Negative index values are only intended to make it clear that this is an opposite page. In this case, a smoothing function is preferably applied by the entire measured band contour in order to suppress any noise of the band contour signals. The calculation of the profile contour and the corresponding adaptation according to the invention can be symmetrical only for one band half or asymmetrically over the entire width.

Figur 2 veranschaulicht das erfindungsgemäße Verfahren zur Herstellung eines Metallbandes bzw. insbesondere zur Adaption der Profilkontur des Metallbandes. FIG. 2 illustrates the inventive method for producing a metal strip or in particular for adapting the profile contour of the metal strip.

Die Figuren 2.1 - 2.3 stellen den Sachverhalt anhand eines vereinfachten Beispiels dar. Es wurde nur eine Kurzzeitadaption angewandt. Ziel der Figuren ist es, den Effekt der Konturadaption und die Profiladaption an mehreren hier 2 Referenzpunkten bi zu veranschaulichen.The Figures 2.1 - 2.3 illustrate the situation using a simplified example. Only a short-term adaptation was used. The aim of the figures is to illustrate the effect of the contour adaptation and the profile adaptation at several reference points 2 bi.

Figur 2.1 beschreibt dabei zunächst die erfindungsgemäße Bestimmung der Adaptionswerte an einem n'ten Metallband, vereinfacht dargestellt nur für die rechte Bandhälfte und am Beispiel von lediglich zwei Adaptionspunkten. Für die Beschreibung der Figur 2.1 kann auf die zuvor erfolgte Beschreibung der Figur 1 verwiesen werden; diese gilt für die Figur 2.1 gleichermaßen. Lediglich ergänzend sei nochmals erwähnt, dass die Bandbreitenpositionen bzw. die Punkte in Breitenrichtung, wo eine Berechnung eines Profilwertes stattfindet, im Allgemeinen mit dem Parameter m durchnummeriert werden, insbesondere dann, wenn sie von der Bandmitte CL aus gezählt werden. Bei den Referenzpositionen bi handelt es sich gleichermaßen um Bandbreitenpositionen, die jedoch nicht von der Bandmitte, sondern über ihren Abstand von der Naturkante des Metallbandes definiert werden. Figure 2.1 first describes the determination according to the invention of the adaptation values on an n-th metal band, shown in simplified form only for the right-hand band half and on the example of only two adaptation points. For the description of Figure 2.1 can on the previous description of the FIG. 1 to get expelled; this applies to the Figure 2.1 alike. Merely as a supplement, it should be mentioned again that the bandwidth positions or the points in the width direction where a calculation of a profile value takes place are generally numbered consecutively with the parameter m, in particular if they are counted from the center of the band CL. The reference positions bi are equally bandwidth positions, which are not defined by the band center but by their distance from the natural edge of the metal band.

Nicht nur in Fig. 2.1, sondern auch in den nachfolgenden Figuren wird der Parameter m auch als Hinweis auf die gesamte Kontur oder gesamte Anzahl von Konturberechnungspunkten verwendet im Unterschied zu dem Parameter bi, der regelmäßig nur als Hinweis auf diskrete Werte (Referenzpositionen) verstanden werden soll.Not only in Fig. 2.1 but also in the following figures, the parameter m is also used as an indication of the entire contour or total number of contour calculation points in contrast to the parameter bi, which is to be understood regularly only as an indication of discrete values (reference positions).

Die Abstände dieser Referenzpositionen bi von der Bandkante sind in Fig. 2.1 und 2.2 sowie 2.3 für die verschiedenen Bandbreiten n und n+1 gleich.The distances of these reference positions bi from the band edge are in Fig. 2.1 and 2.2 as well as 2.3 for the different bandwidths n and n + 1 alike.

Fig. 2.1 veranschaulicht die erfindungsgemäße Ermittlung einzelner Adaptionswerte ΔC(n)b1 und ΔC(n)b2 als Differenz zwischen einzelnen Prognosewerten CP(n)bi mit i=1 und i=2 und den Ist-Werten CIst(n)bi für die Profilkontur des n'ten Metallbandes. Fig. 2.1 illustrates the determination according to the invention of individual adaptation values ΔC (n) b1 and ΔC (n) b2 as the difference between individual prognostic values C P (n) bi with i = 1 and i = 2 and the actual values C Ist (n) bi for the profile contour of the nth metal band.

Fig. 2.2 veranschaulicht die erfindungsgemäße Ermittlung einer Adaptionskontur. Die Adaptionskontur wird für das Folgeband n+x bestimmt. Am Band n kann z. B. die Breite anders sein als bei Band n+x. Es werden lediglich die Adaptionswerte bi am Band n oder / und bei verwendeter Langzeitdapation durch eine Mittelwertsbildung für eine Anzahl Bänder j bestimmt und für ein Folgeband n+x verwendet. Die Adaptionskontur und die Punktfolge ΔC (n+x)m (mit dem Index m) wird immer nur im Zusammenhang für das Band n+x verwendet. Fig. 2.2 illustrates the determination of an adaptation contour according to the invention. The adaptation contour is determined for the following band n + x. On the band n can z. For example, the width may be different than for band n + x. Only the adaptation values bi at the band n or / and long-term daptation are used Averaging is determined for a number of bands j and used for a following band n + x. The adaptation contour and the point sequence ΔC (n + x) m (with the index m) is always used only in connection with the band n + x.

In Fig. 2.2 und Fig. 2.3 sind die in Fig. 2.1 ermittelten Adaptionswerte ΔC(n)b1 und ΔC(n)b2 eingetragen. Sie werden dort in dem vereinfachten Beispiel für das Folgeband n+x (mit x=1) für die Adaptionskonturbestimmung verwendet. Deshalb können die obigen Adaptionswerte auch mit ΔC(n+x)b1 und ΔC(n+x)b2 (mit x=1) bezeichnet werden. Neben diesen beiden Adaptionswerten an den Referenzpositionen b1 und b2 wird für die Ermittlung der Adaptionskontur auch noch ein weiterer trivialer Wert, hier der Wert in der Bandmitte, in Figur 2.2 mit m=1 bezeichnet, berücksichtigt. Der Wert ΔCL in der Bandmitte ist ΔCL=0, weil das Koordinatensystem als durch diesen Punkt verlaufend angeordnet wurde. Die Adaptionswerte wurden an den Punkten b1 und b2 am Band n ermittelt und für Band n+1 verwendet (x ist hier=1).In Fig. 2.2 and Fig. 2.3 are the in Fig. 2.1 entered adaptation values Δ C (n) b 1 and Δ C ( n ) b 2 entered. They are used there in the simplified example for the following band n + x (with x = 1) for the adaptation contour determination. Therefore, the above adaptation values (x n +) are designated 2 (x = 1) b 1 and Δ C b with Δ C (n + x). In addition to these two adaptation values at the reference positions b1 and b2, another trivial value, in this case the value in the middle of the band, is also used to determine the adaptation contour Figure 2.2 with m = 1, taken into account. The value .DELTA.CL in the center of the band is .DELTA.CL = 0 because the coordinate system has been arranged as passing through this point. The adaptation values were determined at points b1 and b2 on band n and used for band n + 1 (x is = 1).

Die Adaptionskontur ΔC(n+1) m für das n+1'te Metallband ergibt sich dann, wie in Figur 2.2 gezeigt, als zumindest stückweise Ansatz- oder Interpolationsfunktion durch die Bandmitte CL=0 und die zwei genannten Adaptionswerte und an den Referenzpunkten C100 und C25, wobei die beiden letzteren gemessen werden als Abstand von der Naturkante des Metallbandes.The adaptation contour ΔC (n + 1) m for the n + 1'th metal band then results, as in Figure 2.2 shown as at least piecemeal approach or interpolation function through the band center CL = 0 and the two mentioned adaptation values and at the reference points C100 and C25, the latter two being measured as the distance from the natural edge of the metal strip.

Die Bildung einer Ansatz- bzw. Interpolationsfunktion und die Interpolation zwischen der Bandmitte und dem Referenzpunkt b1 sowie die entsprechende Bildung und Interpolation zwischen dem Referenzpunkt b1 und dem Referenzpunkt b2 können grundsätzlich separat und unabhängig voneinander in den jeweiligen Bandbreitenabschnitten erfolgen. Um einen Knick an einer Übergangsstelle von zwei Interpolationsfunktionen, in Figur 2.2 beispielsweise an der Position b1 zu vermeiden, wird an die Formulierung der beiden Teilinterpolationsfunktionen die zusätzliche Bedingung gefüllt, dass diese beiden benachbarten Teilinterpolationsfunktionen an der Übergangsstelle stetig differenzierbar sein müssen, d. h. insbesondere dass die jeweiligen Funktionen dort gleiche Steigungen haben müssen. Diese Vorgehensweise wird grundsätzlich für alle Adaptionsbereiche in Breitenrichtung des Metallbandes durchgeführt. In diesem aufgeführten Beispiel (symmetrisch) startet die Adaptionskontur an der Bandmitte CL mit einer horizontalen Tangente.The formation of an approach or interpolation function and the interpolation between the band center and the reference point b1 and the corresponding formation and interpolation between the reference point b1 and the reference point b2 can basically be done separately and independently of each other in the respective bandwidth sections. To make a kink at a transition point of two interpolation functions, in Figure 2.2 For example, at position b1, the additional condition that the two adjacent partial interpolation functions are continuous at the transition point is filled in with the formulation of the two partial interpolation functions must be differentiable, ie in particular that the respective functions must have the same slopes there. This procedure is basically carried out for all adaptation areas in the width direction of the metal strip. In this example (symmetrically), the adaptation contour starts at the center of the tape CL with a horizontal tangent.

Von dem letzten Adaptionswert, in Figur 2.2 an der Referenzposition i=2, bis zum Randpunkt mmax des Metallbandes, wo kein Profilwert vorgegeben ist, kann die Adaptionskontur durch Extrapolation ermittelt werden. Die Interpolation oder Extrapolation wird benutzt, um auf Basis der vorgegebenen Profilwerte an den Referenzpositionen auf die Profilwerte an anderen Bandbreitenpositionen m zu interpolieren bzw. zu extrapolieren.From the last adaptation value, in Figure 2.2 at the reference position i = 2, up to the edge point m max of the metal strip, where no profile value is specified, the adaptation contour can be determined by extrapolation. The interpolation or extrapolation is used to interpolate or extrapolate on the profile values at other bandwidth positions m based on the given profile values at the reference positions.

Figur 2.3 veranschaulicht, wie die zuvor gemäß Figur 2.2 für das n+1'te Metallband ermittelte Adaptionskontur nun bei der Prognose und anschließenden Herstellung zu walzenden n+1'ten Metallbandes berücksichtigt werden kann. Figure 2.3 illustrates how the previously according to Figure 2.2 For the n + 1'te metal strip determined adaptation contour can now be considered in the forecast and subsequent production to be rolled n + 1'ten metal strip.

Figur 2.3 zeigt u. a. die berechnete adaptierte Profilkontur Cp(n+1)m sowie die berechneten adaptierten Prognosewerte CP(n+1)b1 und CP(n+1)b2 sowie gestrichelt eine zugehörige berechnete prognostizierte Profilkontur CP(n+1)mOA, mit o.A.: ohne Adaption, hier beispielhaft für das n+1'te Metallband, d. h. hier beispielhaft für das nächste zu walzende Metallband. Figure 2.3 shows, inter alia, the calculated adapted profile contour C p (n + 1) m and the calculated adapted predicted values C P (n + 1) b1 and C P (n + 1) b2 and a related calculated predicted profile contour C P (n + 1) m OA , with oA: without adaptation, here by way of example for the n + 1'th metal strip, ie here as an example for the next metal strip to be rolled.

Die zuvor gemäß Figur 2.1 für das n'te Metallband ermittelten Adaptionswerte ΔC(n)b1 und ΔC(n)b2 können auf die Prognosewerte an den entsprechenden Referenzpositionen aufaddiert werden, um auf diese Weise dort jeweils verbesserte adaptische Prognosewerte für die prognostizierte adaptierte Profilwerte oder Profilkontur zu erhalten.The previously according to Figure 2.1 Adaptation values ΔC (n) b1 and ΔC (n) b2 determined for the nth metal band can be added to the prediction values at the corresponding reference positions in order to obtain improved adaptive prognosis values for the predicted adapted profile values or profile contour there.

Alternativ oder zusätzlich kann die zuvor gemäß Fig. 2.2 für das n+1'te Metallband ermittelte Adaptionskontur ΔC (n+1)m auf die für das n+1'te Metallband ermittelte prognostizierte Profilkontur Cp(n+1)mOA aufaddiert werden, um auf diese Weise eine entsprechend verbesserte bzw. adaptierte Profilkontur Cp(n+1)m zu erhalten; siehe auch Anspruch 9.Alternatively or additionally, the previously according to Fig. 2.2 for the n + 1'te metal band determined adaptation contour .DELTA.C (n + 1) m to the determined for the n + 1'te metal strip predicted profile contour C p (n + 1) m OA are added in order in this way to obtain a correspondingly improved or adapted profile contour C p (n + 1) m; see also claim 9.

Die auf diese Weise gewonnenen neuen adaptierten Prognosewerte oder die neue Profilkontur können vorteilhafterweise verwendet werden, um die Profilstellglieder bei der Herstellung des n+1'ten, allgemein des n+x'ten Metallbandes noch genauer im Hinblick auf gewünschte Zielwerte oder/und Zielkonturen einstellen zu können.The new adapted prognosis values or the new profile contour obtained in this way can advantageously be used to set the profile actuators even more precisely with respect to desired target values and / or target contours in the production of the n + 1'th, in general the n + x'ten metal band to be able to.

Mathematisch ausgedrückt berechnen sich die adaptierten Bandkonturwerte bzw. die adaptierte Bandkontur für das zu walzende beispielsweise n+1'te Metallband gemäß folgender Formel: C P n + 1 m OA + Δ C n + 1 m = C P n + 1 m

Figure imgb0004
mit

CP(n+1)m
korrigierte bzw. adaptierte Profilkontur des n+1'ten Metallbandes über der Bandbreite m;
CP(n+1)mOA
eine berechnete bzw. prognostizierte Profilkontur des n+1'ten Metallbandes über der Bandbreite m ohne Adaption;
ΔC(n+1)m
Adaptionskontur: Werte der Adaptionskontur an der Position m für das Metallband n+1
m = 1 m max .
Figure imgb0005
Expressed mathematically, the adapted band contour values or the adapted band contour for the n + 1 metal band to be rolled, for example, are calculated according to the following formula: C P n + 1 m OA + Δ C n + 1 m = C P n + 1 m
Figure imgb0004
With
C P (n + 1) m
corrected or adapted profile contour of the n + 1'th metal band over the bandwidth m;
C P (n + 1) m OA
a calculated or predicted profile contour of the n + 1'th metal band over the bandwidth m without adaptation;
.DELTA.C (n + 1) m
Adaptation contour: values of the adaptation contour at the position m for the metal strip n + 1
m = 1 ... m Max ,
Figure imgb0005

Bei der Breitenposition m kann es sich auch um Referenzpositionen bi handeln.The width position m may also be reference positions bi.

Die Differenz bzw. die Adaption ΔC(n)m zwischen gemessener und errechneter Korrektur wird bei dem in Figur 2.2 gezeigten Beispiel zwecks vereinfachter Beschreibung/Darstellung nur für ein Metallband gezeigt. In der Regel wird diese Differenz am zuletzt gewalzten Metallband und/oder am vorletzten gewalzten Metallband und/oder an mehreren Metallbändern gleicher Art gegebenenfalls mit unterschiedlicher Wichtung gebildet und auf diese Weise ein Summenadaptionswert ermittelt.The difference or adaptation .DELTA.C (n) m between measured and calculated correction is at the in Figure 2.2 shown example for ease of description / illustration shown only for a metal band. As a rule, this difference is formed on the last rolled metal strip and / or on the penultimate rolled metal strip and / or on a plurality of metal strips of the same type, optionally with different weighting, and in this way a sum adaptation value is determined.

Figur 3 zeigt ein Anwendungsbeispiel für die Nutzung der erfindungsgemäßen Konturadaption zur Reduzierung bzw. Vermeidung von unerwünschten Wulsten im Randbereich eines Metallbandes. Bei diesem ersten in Figur 3 gezeigten Ausführungsbeispiel erfolgt die Reduzierung der Wulste durch eine gezielte Erhöhung eines Wertes für die Profilkontur an einer Referenzposition, in Figur 3 die Position C40, d. h. 40 mm von der Naturkante des Metallbandes entfernt. FIG. 3 shows an application example for the use of the contour adaptation according to the invention for reducing or avoiding unwanted beads in the edge region of a metal strip. At this first in FIG. 3 Shown embodiment shown, the reduction of the beads by a targeted increase in a value for the profile contour at a reference position, in FIG. 3 Position C40, ie 40 mm away from the natural edge of the metal strip.

Ohne Nutzung der Konturadaption kann es vorkommen, dass Bänder mit vermeintlich normalen Profilkonturen errechnet bzw. prognostiziert werden; siehe die gestrichelte Ausgangskontur nach dem ersten Rechenschritt ohne Konturadaption in Figur 3. Nach Durchführung der erfindungsgemäßen und zuvor insbesondere unter Bezugnahme auf Figur 2.3 beschriebenen Konturadaption durch Addition der für das Band n+x prognostizierten Profilkontur und einer für ein vorheriges Band ermittelten Adaptionskontur kann erfindungsgemäß die in Figur 3 gezeigte adaptierte Profilkontur CP(n+x)m für das n+x'te Metallband ermittelt werden. Der Vorteil der erfindungsgemäß adaptierten Profilkontur CP(n+x)m gegenüber der nicht adaptierten prognostizierten Profilkontur CP(n+x)mOA ist in Figur 3 klar erkennbar, denn die adaptierte Profilkontur lässt den unerwünschten Wulst mit der Wulsthöhe W1 im Randbereich des Metallbandes überhaupt erst erkennen; die nicht adaptierte prognostizierte Profilkontur (gestrichelte Linie) ließ den Wulst nicht so deutlich erkennen. Insofern liefert die erfindungsgemäße Profiladaption ein verbessertes Rechenergebnis zur Ermittlung einer genaueren Profilkontur und eröffnet neue Möglichkeiten zur Verbesserung der Profilkontur, hier insbesondere zur Reduzierung der Wulsthöhe. Wird beispielsweise für das Metallband gemäß Figur 3 eine Kantenwulsthöhe W1 errechnet, die höher ist als ein Schwellenwert für eine zulässige Wulsthöhe, so wird von dem Prozessmodell im Rahmen vorgegebener Zulässigkeitsgrenzen z. B. C40-Zielmin und C40-Zielmax der Profilwert an der entsprechenden Bandkantenposition, hier 40 mm von der Naturkante des Metallbandes entfernt, automatisch auf einen neuen Wert gesetzt, hier angehoben, so dass die maximale zulässige Wulsthöhe nicht überschritten oder reduziert wird. Durch die besagte Erhöhung des vorgegebenen Profilwertes um den Betrag ΔP reduziert sich in dem in Figur 3 gezeigten Beispiel die Wulsthöhe von W1 auf W2.Without the use of contour adaptation, it may happen that bands with supposedly normal profile contours are calculated or predicted; see the dashed output contour after the first calculation step without contour adaptation in FIG. 3 , After carrying out the invention and previously with particular reference to Figure 2.3 described contour adaptation by addition of the predicted for the band n + x profile contour and a determined for a previous band adaptation contour can according to the invention in FIG. 3 shown adapted profile contour C P (n + x) m are determined for the n + x'te metal strip. The advantage of the profile contour C P (n + x) m adapted according to the invention over the non-adapted predicted profile contour C P (n + x) m OA is in FIG. 3 clearly recognizable, because the adapted profile contour makes the unwanted bead with the bead height W1 in the edge region of the metal strip detect in the first place; the unadapted predicted profile contour (dashed line) did not show the bead so clearly. In this respect, the profile adaptation according to the invention provides an improved calculation result for determining a more accurate profile contour and opens up new possibilities for improving the profile contour, here in particular for reducing the bead height. For example, for the metal strip according to FIG. 3 calculates an edge bead height W1, which is higher than a threshold value for an allowable bead height, then the process model within given allowable limits z. B. C40 target min and C40 target max the profile value at the corresponding edge position, here 40 mm from the natural edge of the metal strip away, automatically set to a new value, raised here, so that the maximum allowable bead height is not exceeded or reduced. By said increase of the predetermined profile value by the amount Δ P is reduced in the in FIG. 3 shown example, the bead height of W1 to W2.

Alternativ oder ergänzend kann für die gleichen Bedingungen und die gleiche Profilkontur wie gemäß Figur 3 mit Nutzung der adaptierten Profilkontur zur Kontrolle der Wulsthöhe ein angehobenes Kraftniveau im Rahmen der Prozess- und Anlagenlimits in den hinteren Gerüsten einer Fertigstraße oder bei einem Reversiergerüst in den späteren hinteren Stichen genutzt werden. Dies kann durch eine Walzkraftumverteilung, d. h. eine Entlastung der vorderen Gerüste bzw. der früheren Stiche und eine stärkere Belastung der hinteren Gerüste bzw. späteren Stiche oder/und durch Auffahren von einem oder mehreren Gerüsten (letztes Gerüst bzw. letzter Stich oder Gerüst innerhalb der Fertigstraße bzw. mittlerer Stich) geschehen. Figur 4.1 zeigt Beispiele von vorteilhaften Walzkraftumverteilungen, um die Wulsthöhe W1 (siehe Figur 4.2) zu reduzieren. Durch eine iterativ bestimmte höhere Last in den hinteren Gerüsten erhöht sich die Arbeitswalzenabplattung. Hierdurch reduziert sich bzw. verschwindet die Wulst W2 nach der Walzkraftumverteilung, siehe die gestrichelte Linie in Figur 4.2 (2. Rechnungsschritt). Die mechanischen Profilstellglieder werden in dem iterativen Rechenprozess diesen neue Randbedingungen angepasst und das z. B. C40-Zielprofil eingestellt.Alternatively or in addition, for the same conditions and the same profile contour as in FIG. 3 With the use of the adapted profile contour for controlling the bead height, a raised force level within the limits of the process and equipment limits in the rear stands of a finishing train or in a reversing stand in the later back stitches can be used. This can be achieved by a rolling force redistribution, ie a relief of the front scaffolds or earlier stitches and a greater load on the rear scaffolding or later stitches and / or by driving up one or more scaffolds (last scaffold or last stitch or scaffolding within the finishing train or middle stitch) happen. Figure 4.1 shows examples of advantageous Walktkraftumverteilungen to the bead height W1 (see Figure 4.2 ) to reduce. An iteratively determined higher load in the rear scaffold increases the work roll flattening. As a result, the bead W2 reduces or disappears after the rolling force redistribution, see the dashed line in FIG Figure 4.2 (2nd billing step). The mechanical profile actuators are adapted in the iterative calculation process this new boundary conditions and the z. B. C40 destination profile set.

Die Kenntnis der zu erwartenden Profilkontur aufgrund der physikalischen Modellierung der Zusammenhänge und der besagten adaptierten Profilkontur an mehreren Breitenpositionen bi über der Breite des Metallbandes wird weiterhin aktiv genutzt, um bei der Einstellung eines nominellen Bandprofils an der Bandkante, z. B. an der Position C25, zusätzlich auch das Bandprofil im Bandmittenbereich - ausgedrückt durch CBody bzw. C100 - in zulässigen minimalen und maximalen Grenzen C100min, C100max zu halten, wie dies für ein Beispiel in Figur 5 dargestellt ist. Bei einem fortschrittlichen Profil-Presetting werden vorteilhafterweise zusätzlich Prozesslimits eingeführt und die minimalen und maximalen Bandprofillimits für mehrere Bandkonturpunkte, z. B. C25 und C100, berücksichtigt. Das verbesserte Ergebnis (2. Rechenabschnitt) stellt die Bandkontur mit der durchgezogenen Linie dar.The knowledge of the expected profile contour due to the physical modeling of the relationships and the said adapted profile contour a plurality of width positions bi across the width of the metal strip is further actively utilized to assist in setting a nominal strip profile at the strip edge, e.g. B. at position C25, in addition, the band profile in the band center area - expressed by CBody or C100 - in allowable minimum and maximum limits C100 min , C100 max to hold, as is an example in FIG. 5 is shown. In an advanced profile presetting advantageously additional process limits are introduced and the minimum and maximum band profile limits for multiple band contour points, eg. C25 and C100. The improved result (2nd calculation section) represents the band contour with the solid line.

Claims (24)

  1. Method for producing metal strips in a rolling installation with a desired profile contour, comprising the following steps:
    a) presetting a target value for the profile contour at at least one reference position bi in width direction for at least an nth metal strip;
    b) simulating a rolling process at the rolling installation for producing the metal strip with the aid of a process model, wherein setting values for profile setting elements and a prognosis value CP(n)bi for the profile contour of the nth metal strip at the reference position bi are so calculated that the target value is achieved as far as possible - sofar as present - with consideration of old adaptation values at the reference position bi and possible restrictions;
    c) setting the profile setting elements by the calculated setting values;
    d) rolling the nth metal strip;
    e) measuring the actual value Cist(n)bi of the profile contour of the rolled nth metal strip at the reference position bi; and
    f) determining a new adaptation value ΔC(n)bi on the basis of the difference between the actual value Cist(n)bi and the prognosis value CP(n)bi for the profile contour of the nth metal strip at the reference position bi;
    characterised in that
    the steps a), b) and c) are carried out before the rolling of the at least nth metal strip for a plurality I, wherein I ≥ 2, of reference positions bi, wherein 1 ≤ i ≤ I in at least one width section of the at least nth metal strip and that the steps e) and f) are carried out after rolling of the at least nth metal strip for the plurality I of reference positions bi in order to determine the new adaptation values ΔC(n)bi at the plurality I of the reference positions bi in the at least one width section of the at least nth metal strip; and
    g) during later production of a further longitudinal section of the nth metal strip or of an n + xth metal strip, wherein x = 1, 2, etc., at least the steps a) to d) are repeated, wherein n = n + x, wherein the new adaptation values ΔC(n)bi determined previously according to step f) at least for the nth metal strip are taken into account for the plurality I of the reference positions bi in the calculation of the settings of the profile setting elements and the calculation of the prognosis values according to step b) for the n + xth metal strip as old adaptation values.
  2. Method according to claim 1, characterised by determination of the new adaptation values ΔC(n)bi according to step f) at the reference positions bi of the nth metal strip at least partly in the form of a short-term adaptation value ΔCK(n)bi according to the following formula: ΔC n bi = ΔC K n bi = ΔC K n x bi + C Ist n bi C P n bi
    Figure imgb0008
    wherein
    K: short-term adaptation;
    x=1,2,3...;
    ΔCK(n-x)bi: old short-term adaptation value;
    Cist(n)bi: measured actual value for the profile contour of the nth metal strip at the reference position bi; and
    CP(n)bi: calculated prognosis value or calculated strip profile.
  3. Method for producing metal strips in a rolling installation with a desired profile contour, comprising the following steps:
    a) presetting a target value for the profile contour at at least one reference position bi in width direction for at least an nth metal strip;
    b) simulating a rolling process at the rolling installation for producing the metal strip with the aid of a process model, wherein setting values for profile setting elements - sofar as present with configuration of old adaptation values at the reference position bi and possible restrictions - are so calculated that the target value is achieved as far as possible;
    c) setting the profile setting elements by the calculated adjustment values;
    d) rolling the nth metal strip;
    e) measuring the actual value Cist(n)bi of the profile contour of the rolled nth metal strip at the reference position bi;
    e') calculating a recalculated prognosis value C'P(n)bi for the profile contour of the nth metal strip at the reference position bi on the basis of the rolling installation conditions and current processing positions, such as they were present during rolling of the nth metal strip according to step d); and
    f) determining a new adaptation value ΔC(n)bi on the basis of the difference between the actual value Cist(n)bi and the recalculated prognosis value C'P(n)bi for the profile contour of the nth metal strip at the reference position bi;
    characterised in that
    the steps a), b) and c) are carried out before the rolling of the at least nth metal strip for a plurality I, wherein I ≥ 2, of reference positions bi, wherein 1 ≤ i ≤ I, in at least one width section of the at least nth metal strip and that the steps e), e') and f) are carried out after rolling of the at least nth metal strip for the plurality I of reference positions bi in order to determine the new adaptation values ΔC(n)bi at the plurality I of the reference positions bi in the at least one width section of the at least nth metal strip; and
    g) during later production of a further length section of the nth metal strip or of an n + xth metal strip, wherein x = 1, 2, etc., at least the steps a) to d) are repeated, wherein n = n + x, wherein the new adaptation values ΔC(n)bi determined previously according to step f) at least for the nth metal strip are taken into account for the plurality I of the reference positions bi in the calculation of the settings of the profile setting elements and in the calculation of the prognosis values according to step b) for the n + xth metal strip as old adaptation values.
  4. Method according to claim 3,
    characterised by
    determination of the new adaptation values ΔC(n)bi according to step f) at the reference positions bi of the nth metal strip at least partly in the form of a short-term adaptation value ΔCK(n)bi according to the following formula: ΔC n bi = ΔC K n bi = ΔC K n x bi + C Ist n bi C P n bi
    Figure imgb0009
    wherein
    K: short-term adaptation,
    x=1, 2, 3 ...;
    ΔCK(n-x)bi: old short-term adaptation value;
    Cist(n)bi: measured actual value for the profile contour of the nth metal strip at the reference position bi; and
    CP(n)bi: recalculated prognosis value or recalculated strip profile.
  5. Method according to any one of the preceding claims,
    characterised by
    determination of the new adaptation values ΔC(n)bi according to step f) in claim 1) or 3) at the reference positions bi at least partly in the form of long-term adaptation values ΔCLbi by carrying out the following steps:
    determining the adaptation values by repeating the steps a) to f) according to claim 1 or 3 at the plurality I of reference positions bi for a plurality of metal strips, which are rolled before the n + xth metal strip, of an adaptation group; and
    calculating the long-term adaptation values ΔCLbi by formation of the mean values of the adaptation values or formation of the mean values of the differences between actual values and prognosis values for the profile contour for the plurality of metal strips in each instance at one of the reference positions bi.
  6. Method according to claim 2, 4 and 5,
    characterised by
    determination of the adaptation values ΔC(n)bi according to step f) each time in the form of the sum adaptation value ΔCs(n)bi as a sum of the short-term adaptation value ΔCK(n)bi and the long-term adaptation value ΔCLbi for use for the metal strip n + x.
  7. Method according to any one of claims 2, 4, 5 and 6,
    characterised by
    determination of the adaptation value ΔC(n)bi according to step f) and/or use of the adaptation value ΔC(n)bi in the form of a short-term adaptation value, long-term adaptation value or sum adaptation value, the value being weighted by a weighting factor g, wherein 0 ≤ g ≤ 1, or by a weighting function.
  8. Method according to any one of the preceding claims,
    characterised by
    determination of an adaptation contour ΔC(n+ x)m for the n + xth metal strip in the form of a set-up function, which is preferably conducted by the adaptation values, which are determined at the at least nth metal strip, at at least two of the reference positions bi and preferably additionally by at least one further calculation point - calculated/predetermined by the process model - at at least one further strip width position m.
  9. Method according to claim 8,
    characterised by
    determination of an adapted profile contour CP(n + x)m for the n + xth metal strip by the addition of a non-adapted calculated profile contour CP(n+x)moA - forecast by the process model - for the n + xth metal strip and the calculated adaptation contour ΔC(n+x)m for the n + xth metal strip.
  10. Method according to claim 8 or 9,
    characterised in that
    determination of the adaptation contour or of the adapted profile contour for ≥ 2 width sections of the metal strip is carried out, wherein the first width section of the metal strip lies in, for example, the central region and the second width section or further width sections lies or lie in, for example, the edge region of the metal strip.
  11. Method according to claim 34,
    characterised in that
    in the case of two sections adjoining one another in width direction the adaptation contour or the adapted profile contour over the two width sections is preferably selected so that the contour courses can be continuously differentiated at the boundary of one strip section to the other strip section, in particular so that they have the same gradients.
  12. Method according to one of claims 10 and 11,
    characterised in that
    the set-up function is formed over at least one of the width sections from a linear function, a polynomial function, an exponential function, a trigonometric function, a spline function or a combination of different functions.
  13. Method according to claim 12, characterised in that the set-up functions are different for the different adjacent width sections.
  14. Method according to claim 8 or 9,
    characterised in that
    the adaptation contour or the adapted profile contour over one width section of the metal strip is extrapolated to an adjacent width section for determination of an extrapolated adaptation contour or an extrapolated adapted profile contour over the adjacent width region.
  15. Method according to any one of the preceding claims,
    characterised in that
    instead of the measured actual value Cist(n)bi of the profile contour of the metal strip at the reference position bi a mean value from the measured actual values at the mirror-image reference positions bi on the righthand half and lefthand half of the metal strip seen in rolling direction is used.
  16. Method according to one of claims 1 and 9,
    characterised in that
    the prognosis values CP(n + x)bi or/and the adapted profile contour CP(n + x)m is or are initially determined for only one strip half, for example the strip half on the control side, and subsequently mirrored for the other strip half, for example the strip half on the drive side, at the strip centre plane extending in longitudinal direction of the metal strip.
  17. Method according to any one of the preceding claims,
    characterised in that
    the measured actual value Cist(n)bi of the profile contour is used as a direct measured value at the reference position bi or as a profile measurement value smoothed by an equalising function.
  18. Method according to any one of claims 9 to 17,
    characterised in that
    the adapted profile contour CP(n+x)m is analysed with respect to profile anomalies, such as strip beads or steep edge drops, particularly in the edge region of the metal strip.
  19. Method according to claim 18,
    characterised in that
    when calculated strip beads are present the adapted profile contour CP(n+x)m is iteratively improved by means of the process model by successively increasing a value of the profile contour at at least one of the reference positions bi within the scope of the allowable profile setting limits and by appropriate resetting of the profile setting elements in order to reduce the height of the strip bead.
  20. Method according to claim 18,
    characterised in that
    calculated strip beads are reduced or avoided by increasing the load in the last roll stand (run-out stand) or the last roll stands of a rolling train or in the last rolling passes of a stand of the rolling installation by redistributing the load from the front to the rear or by deselecting at least one roll stand or rolling pass within the scope of the processing and installation limits.
  21. Method according to any one of the preceding claims,
    characterised in that for production of the n + xth metal strip:
    the profile setting elements are so set in step b) that the target values predetermined for a plurality of reference positions bi or calculated prognosis values CP(n + x)bi for the profile contour are achieved within allowable minimum or maximum profile limits; or
    the profile setting elements are so set in step b) that the target value predetermined for a reference position bi is achieved or the deviation from the target value is minimal and at the same time the strip profile is maintained at at least one further strip width position within allowable minimum or maximum profile limits.
  22. Method according to any one of the preceding claims,
    characterised in that
    the determined adaptation values at the positions bi and/or the adapted profile contour and/or the adaptation contour in the process model is or are taken into account - particularly transferred to the preceding rolling passes or stands with weighting factors or transfer functions - for calculation of the intermediate stand contours or intermediate pass contours of the front stands or the preceding passes and for optimised adjustment of the profile setting elements.
  23. Method according to any one of the preceding claims,
    characterised in that
    the reference position bi is defined by way of its spacing from the edge of the metal strip.
  24. Method according to any one of the preceding claims,
    characterised in that
    for the setting of the target contour, with use of the strip contour adaptation, the following profile setting elements are employed: variable working roll cooling systems or zonal cooling means or local roll heating means for influencing the thermal crown and/or working roll displacements in conjunction with roll grinding (special roll grinds for combatting strip beads or strip edge drops, "tapered roll", CVC rolls, CVC rolls with a grind of higher order or polynomial nth order or trigonometric functions), strip edge heating means, strip zone cooling means, working roll bending means and/or stands with a roll pair cross function.
EP16709931.6A 2015-03-16 2016-03-15 Method for producing metal strips Active EP3271092B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015204700 2015-03-16
PCT/EP2016/055525 WO2016146621A1 (en) 2015-03-16 2016-03-15 Method for producing metal strips

Publications (2)

Publication Number Publication Date
EP3271092A1 EP3271092A1 (en) 2018-01-24
EP3271092B1 true EP3271092B1 (en) 2019-06-19

Family

ID=55527922

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16709931.6A Active EP3271092B1 (en) 2015-03-16 2016-03-15 Method for producing metal strips

Country Status (8)

Country Link
US (1) US10625317B2 (en)
EP (1) EP3271092B1 (en)
JP (1) JP6704925B2 (en)
KR (1) KR102122217B1 (en)
CN (1) CN107530748B (en)
RU (1) RU2690580C2 (en)
TW (1) TWI627001B (en)
WO (1) WO2016146621A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3479916A1 (en) 2017-11-06 2019-05-08 Primetals Technologies Germany GmbH Selected adjustment of contour by setting specifications
DE102018212074A1 (en) * 2018-07-19 2020-01-23 Sms Group Gmbh Method for determining manipulated variables for active profile and flatness actuators for a roll stand and for profile and central flatness values for hot-rolled metal strip
CN109871590B (en) * 2019-01-23 2020-11-06 燕山大学 Hot rolled strip section profile reproduction method
US11919059B2 (en) 2019-01-28 2024-03-05 Primetals Technologies Germany Gmbh Changing the effective contour of a running surface of a working roll during hot rolling of rolling stock in a roll stand to form a rolled strip
CN110434172B (en) * 2019-07-16 2020-05-08 北京科技大学 Load distribution calculation method for continuous rolling of furnace coil and finishing mill group
EP3943210A1 (en) * 2020-07-23 2022-01-26 Primetals Technologies Austria GmbH Casting rolling composite system for the production of a hot rolled strip from a steel melt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000181A1 (en) 1991-06-28 1993-01-07 Siemens Aktiengesellschaft Regulation system in the manufacture of hot rolled strips by means of a multi-stand hot rolling mill
WO2003078086A1 (en) 2002-03-15 2003-09-25 Siemens Aktiengesellschaft Computer-aided method for determining desired values for controlling elements of profile and surface evenness

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU410840A1 (en) * 1972-11-23 1974-01-15
US4070887A (en) * 1976-11-01 1978-01-31 Tube Machinery Corporation Roll former for tube mill
SU908447A1 (en) * 1980-06-17 1982-02-28 Институт черной металлургии Method of controlling metal strip hot rolling process
DE69121789T2 (en) * 1990-06-04 1997-04-03 Hitachi Ltd Control device for controlling a controlled system and control method therefor
US5768927A (en) * 1991-03-29 1998-06-23 Hitachi Ltd. Rolling mill, hot rolling system, rolling method and rolling mill revamping method
SE9202982D0 (en) * 1992-10-12 1992-10-12 Anders Sjoeberg PLAATKLIPPNING
DE4309986A1 (en) * 1993-03-29 1994-10-06 Schloemann Siemag Ag Method and device for rolling a rolled strip
GB9411820D0 (en) 1994-06-13 1994-08-03 Davy Mckee Poole Strip profile control
US5927117A (en) * 1996-10-11 1999-07-27 Central Iron & Steel Research Institute Ministry Metallurgical Industry Methods to measure and control strip shape in rolling
DE19851554C2 (en) * 1998-11-09 2001-02-01 Siemens Ag Method and device for presetting a rolling mill
AU2002214044A1 (en) * 2000-11-11 2002-05-21 Firma Carl Wezel Method for producing strip-shaped input stock, especially from metal, which is profiled in subsequent sections, and corresponding device
DE10116273A1 (en) * 2001-03-31 2002-10-10 Sms Demag Ag Method for operating a rolling mill and a correspondingly trained rolling mill
JP3719226B2 (en) * 2002-03-26 2005-11-24 Jfeスチール株式会社 Method for producing a metal plate with good plate profile
JP3649208B2 (en) * 2002-05-22 2005-05-18 株式会社日立製作所 Tandem rolling equipment control method and tandem rolling equipment
EP1481742B1 (en) * 2003-05-30 2007-07-18 Siemens Aktiengesellschaft Control computer and computer-aided determination method for a profile and flatness control for a rolling mill
US7185519B2 (en) * 2003-09-15 2007-03-06 The Bradbury Company, Inc. Methods and apparatus for monitoring and conditioning strip material
DE102004020132A1 (en) * 2003-12-23 2005-07-28 Sms Demag Ag Method for rolling of sheets or strips in a roll stand including working rolls,intermediate rolls, and backing rolls useful for rolling sheets or strips in roll stands using working rolls supported on backing or intermediate rolls
WO2007025370A1 (en) * 2005-08-29 2007-03-08 Gcg Holdings Ltd Eccentric rotary stamping apparatus and method of forming moving sheet metal
CN101648216B (en) * 2009-09-11 2011-09-21 燕山大学 Method for setting plate shape and plate convexity off-line prediction of PC rolling mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000181A1 (en) 1991-06-28 1993-01-07 Siemens Aktiengesellschaft Regulation system in the manufacture of hot rolled strips by means of a multi-stand hot rolling mill
WO2003078086A1 (en) 2002-03-15 2003-09-25 Siemens Aktiengesellschaft Computer-aided method for determining desired values for controlling elements of profile and surface evenness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ADAM RANDALL ET AL.: "Adaptive finishing mill setup model and gage control upgrade for LTV Steel Cleveland Works' 80-in. hot strip mill", IRON AND STEEL ENGINEER, August 1997 (1997-08-01), pages 31 - 40, XP000702214

Also Published As

Publication number Publication date
RU2017129842A3 (en) 2019-04-16
US20180056349A1 (en) 2018-03-01
CN107530748B (en) 2019-11-05
KR102122217B1 (en) 2020-06-12
TW201641171A (en) 2016-12-01
JP2018511483A (en) 2018-04-26
RU2017129842A (en) 2019-04-16
KR20170117147A (en) 2017-10-20
EP3271092A1 (en) 2018-01-24
US10625317B2 (en) 2020-04-21
WO2016146621A1 (en) 2016-09-22
CN107530748A (en) 2018-01-02
RU2690580C2 (en) 2019-06-04
JP6704925B2 (en) 2020-06-03
TWI627001B (en) 2018-06-21

Similar Documents

Publication Publication Date Title
EP3271092B1 (en) Method for producing metal strips
DE69710817T2 (en) Rolling process and rolling mill for strip to reduce edge sharpening
DE112012006981B4 (en) Process for producing strip steel with different target thicknesses in the longitudinal direction with a continuous hot rolling mill
EP0121148B1 (en) Method of making hot rolled strip with a high quality section and flatness
EP2691188B1 (en) Operating method for a rolling train
EP3107666B1 (en) Simple advance control of a wedge position of an advance frame
DE19719318C2 (en) Process for influencing the belt contour in the edge area of a roller belt
WO1993000181A1 (en) Regulation system in the manufacture of hot rolled strips by means of a multi-stand hot rolling mill
DE60016999T2 (en) Method and device for regulating the strip shape during strip rolling
DE19618712B4 (en) Control method for a roll stand for rolling a strip
EP3823771B1 (en) Method for ascertaining control variables for active profile and flatness control elements for a rolling stand and profile and average flatness values for hot-rolled metal strip
WO2011038965A1 (en) Method for the model-based determination of actuator nominal values for the asymmetric actuators of the roll stands of a hot wide strip mill
DE19729773C5 (en) Method and device for rolling a metal strip
EP4178735B1 (en) Method and computer program product for calculating a pass schedule for a stable rolling process
DE69226690T3 (en) SIX-ROLLER MILL
DE3401894A1 (en) Method for the production of rolled strip with high strip shape accuracy and flatness
DE3943093A1 (en) Controlling the flatness of rolled sheet - using a signal to control various devices acting to change the shape and condition of the work rolls
EP2483004A1 (en) Method for the model-based determination of actuator nominal values for the symmetric and asymmetric actuators of the roll stands of a hot wide strip mill
DE19644131C2 (en) Method for optimizing the distribution of strip width at the ends of a strip passing through a rolling train in one or more passes
EP3174647B1 (en) Method for producing hot-rolled seamless pipes having thickened ends
DE10159608B9 (en) Rolling process and rolling train for a band with a weld
DE3331335C2 (en)
DE102022211278B3 (en) Method and computer program for adjusting the target thickness value for regulating the thickness of a strip to be newly rolled for at least one rolling stand
EP1188493B1 (en) Control method for rolling a strip in a rolling stand
DE69031246T2 (en) Rolling process in a five-roll mill

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1144832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005146

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016005146

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

26 Opposition filed

Opponent name: PRIMETALS TECHNOLOGIES GERMANY GMBH

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200315

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502016005146

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

27O Opposition rejected

Effective date: 20211207

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 9

Ref country code: GB

Payment date: 20240320

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502016005146

Country of ref document: DE

PLAE Information related to rejection of opposition modified

Free format text: ORIGINAL CODE: 0009299REJO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 9

R27O Information related to the rejection of opposition modified: opposition rejected

Effective date: 20240508