EP3192563A1 - Radiation shielding vault and method of constructing thereof - Google Patents
Radiation shielding vault and method of constructing thereof Download PDFInfo
- Publication number
- EP3192563A1 EP3192563A1 EP17156031.1A EP17156031A EP3192563A1 EP 3192563 A1 EP3192563 A1 EP 3192563A1 EP 17156031 A EP17156031 A EP 17156031A EP 3192563 A1 EP3192563 A1 EP 3192563A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vault
- facility
- room
- radiotherapy
- radiation shielding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims description 34
- 239000000463 material Substances 0.000 claims abstract description 32
- 238000001959 radiotherapy Methods 0.000 description 71
- 230000008878 coupling Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 239000004567 concrete Substances 0.000 description 6
- 239000011150 reinforced concrete Substances 0.000 description 6
- 238000009418 renovation Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000009969 flowable effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000011440 grout Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000002725 brachytherapy Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/343—Structures characterised by movable, separable, or collapsible parts, e.g. for transport
- E04B1/34315—Structures characterised by movable, separable, or collapsible parts, e.g. for transport characterised by separable parts
- E04B1/34321—Structures characterised by movable, separable, or collapsible parts, e.g. for transport characterised by separable parts mainly constituted by panels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B15/00—Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
- B05B15/20—Arrangements for agitating the material to be sprayed, e.g. for stirring, mixing or homogenising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B9/00—Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
- B05B9/03—Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
- B05B9/04—Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
- B05B9/08—Apparatus to be carried on or by a person, e.g. of knapsack type
- B05B9/0805—Apparatus to be carried on or by a person, e.g. of knapsack type comprising a pressurised or compressible container for liquid or other fluent material
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D31/00—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
- E02D31/008—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against entry of noxious gases, e.g. Radon
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/343—Structures characterised by movable, separable, or collapsible parts, e.g. for transport
- E04B1/34384—Assembling details for foldable, separable, collapsible or retractable structures
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H1/00—Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
- E04H1/12—Small buildings or other erections for limited occupation, erected in the open air or arranged in buildings, e.g. kiosks, waiting shelters for bus stops or for filling stations, roofs for railway platforms, watchmen's huts or dressing cubicles
- E04H1/1205—Small buildings erected in the open air
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H3/00—Buildings or groups of buildings for public or similar purposes; Institutions, e.g. infirmaries or prisons
- E04H3/08—Hospitals, infirmaries, or the like; Schools; Prisons
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F3/00—Shielding characterised by its physical form, e.g. granules, or shape of the material
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F7/00—Shielded cells or rooms
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B2001/925—Protection against harmful electro-magnetic or radio-active radiations, e.g. X-rays
Definitions
- the present invention relates to a complete radiation therapy facility, including a therapeutic radiation producing (or emitting) device and the shielding structures necessary to safely produce the therapeutic radiation and methods for making and using the same. More particularly, but not exclusively, the present invention relates to a radiotherapy vault and integrated clinical functions suitable for use on a temporary basis, such as during the time an existing facility is undergoing an equipment upgrade or facility renovation.
- the various structural features which are illustrated and described herein result, collectively, in a fully equipped and integrated radiotherapy clinical facility.
- a further structural feature of the disclosed integrated solution is the overall size compactness given the performance demands and requirements.
- Radiation emitting equipment has a number of well known applications. Radiation emitting equipment is used to inspect packages and cargo at borders and to perform non-destructive testing. In the medical field, radiation emitting equipment is used in the diagnosis and treatment of a number of diseases. Not surprisingly, the manufacturers of this equipment are continually making improvements. Radiation emitted by equipment of the type described as “therapeutic” or “for treatment” is often referred to as "high energy", and is typically greater than 1mv.
- radiotherapy For example, radiation therapy (a.k.a. radiotherapy) has become widely used in the treatment of cancer and several other non-malignant conditions, and modern radiotherapy equipment has improved abilities to target and destroy specific tissues while sparing surrounding healthy tissue.
- radiotherapy equipment has improved abilities to target and destroy specific tissues while sparing surrounding healthy tissue.
- the use of up-to-date radiotherapy equipment can yield improved patient outcomes as well as provide other benefits to the operators of the facility, such as increased ease of use, increased efficiency, and/or increased patient throughput.
- the present invention addresses this need.
- the present invention provides systems and techniques for constructing and using integrated radiotherapy treatment facilities which include radiation producing equipment and radiation shielding vaults. While the actual nature of the invention covered herein can only be determined with reference to the claims appended hereto, certain aspects of the invention that are characteristic of the embodiments disclosed herein are described briefly as follows.
- the present invention provides a temporary, building code compliant radiotherapy facility for use during the time when an existing facility is being upgraded or modernized.
- the present invention provides a method of maintaining radiotherapy treatment continuity during an equipment transition.
- the present invention provides a building code compliant temporary radiotherapy facility which can be erected and put into use rapidly and cost effectively.
- the present invention provides a new method of constructing a foundation for radiation shielding vaults.
- the present invention provides a new method of coupling a radiation shielding vault to a foundation.
- the present invention provides a new approach for supporting radiation shielding material over a treatment area and distributing the load of that radiation shielding material to a supporting foundation.
- the present invention provides for the construction of a radiotherapy facility wherein the foundation which supports the treatment room is decoupled from the foundation which supports the mass of radiation shielding material above the treatment room.
- the present invention provides a new design for providing a roof over a radiation treatment vault.
- the present invention provides a new mechanism for installing the shielding door for a vault.
- the present invention integrates required clinical, radiotherapy room and accelerator equipment with required electrical and mechanical support systems in a singular compact and complete solution.
- the present invention involves the provision of a fully functioning temporary radiotherapy facility intended for short term use.
- the temporary facility may be provided at a designated site and used to treat patients during the time when an existing radiotherapy facility is being upgraded or modernized. Upon completion of the upgrade, the temporary facility may be removed from the site and redeployed to another site in need of a similar service.
- temporary radiotherapy facility 10 includes a treatment room 20 including a radiotherapy device 25 and a control station 22 for the radiotherapy device 25.
- the interior of facility 10 includes waiting area 30, reception/scheduling area 31, gowning area 35, restroom 34, and storage areas 32, 38.
- the mechanical area 33 contains any necessary heating and chiller equipment and is accessed externally, as is an additional storage area 36.
- the facility further includes an electrical closet 27, staff sink 28 and a potable and waste water tanks 29.
- Access to treatment room 20 is via a radiation shielded door 40 and corridor 37.
- the patient lies on the treatment table 24 and the radiotherapy is administered via radiotherapy device 25 in accordance with the treatment parameters input by the operator at the control station 22.
- the facility 10 When fully constructed, the facility 10 complies with applicable building codes. Further, the facility 10 is “habitable” in the context of supporting patients and medical personnel during the time of use.
- code compliant and building codes are intended to encompass an ability to construct and configure the basic structural elements of the disclosed combination so as to meet or adhere to what would be required according to applicable building codes. Since the codes of local municipalities might change over time, the structural embodiment disclosed herein is geared toward the code requirements as currently set forth in the 2009 Edition of the ICC International Building Code® (ISBN: 1580017258 ), including those other codes referenced therein.
- Facility 10 has been designed using a number of prefabricated modules so as to speed the process of assembling and disassembling the structure, and may be referred to as a Temporary Radiotherapy Vault (TRV).
- TRV Temporary Radiotherapy Vault
- the ground floor is composed of four different modules, each of which has a generally rectangular footprint.
- Modules 101, 102 and 103 are equal in length and are placed along side each other and module 104 is placed across the ends of modules 101, 102, and 103 (right side of FIG. 1 ).
- Alternative configurations or embodiments could incorporate more than four different modules.
- the treatment room is entirely contained within module 102.
- Modules 101, 102 and 103 are designed such that, when assembled, they define a number of void spaces 50, 52, 54, 56, 58, and 60 around the treatment room 20.
- These void spaces i.e., the vessel
- a radiation shielding material M such as a flowable granular fill having a density range of 80-125lb/ft 3 .
- Aligned void spaces e.g. 50 and 54, 54 and 52, 52 and 58
- the granular fill i.e., the shielding material M
- the shielding material M cannot crack due to settling or seismic events.
- Roof modules 105 and 106 are designed so as to be placed above modules 101, 102 and 103 and to have their trusses 84 and 82 spanning from the shear wall 64 in module 101 to the shear wall 62 in module 103.
- a supporting panel 80 is then mounted between the trusses 84 and 82, and together with panels 81, 83 integrated into the roof modules 106, 105 supports the shielding material M over the treatment room 20 while maintaining a gap 110 between the underside of the panels 80, 81, 83 and the uppermost portion of the treatment room 20.
- Alternative configurations and embodiments could incorporate additional roof modules in lieu of supporting panels.
- the load of the shielding material directly above the treatment room 20 can be distributed through the trusses to the shear walls 62, 64 rather than bearing on the treatment room itself.
- This gap isolates the treatment room and protects it from the effects of any foundation shifting or sinking that may occur due to the excessive weight of the shielding material above it.
- the upper level shielding areas 70, 72 and 74 that are not directly above the treatment room 20 are open to the lower level void spaces 50, 52, 54, 58.
- Connecting rods 88 span between the upper portions of the trusses 84, 82 and help give shape and support to fabric or membrane roof 92 which is installed once all the shielding material has been delivered.
- module 104 While some of the floor space for control station 22 is provided by module 104, it is preferable to have the relevant computer equipment hardwired to the radiotherapy device 25 in module 102.
- the computer equipment is provided on a wheeled cart so that it can move into the position shown in FIG. 1 from a storage position in module 102.
- the precise quantity and desired distribution of radiation shielding material is dependent on the characteristics of the radiation emitted from device 25.
- the facility 10 is configured to employ an isocentrically arranged high energy linear accelerator, which typically operates in the range of 4-25MV.
- An example would be Varian Medical Systems Trilogy, Palo Alto, CA.
- the total weight of the shielding material may be 1,000,000 lbs or 2,000,000 lbs or more.
- neutron shielding is provided by lining the treatment room with wood panels and borated polyethylene sheets.
- the facility 10 could also be used to perform other types of radiotherapy, such as gamma knife or high dose rate brachytherapy (HDR), which typically operate in the range of 1-3MV.
- HDR high dose rate brachytherapy
- the facility 10 may also be adapted for use with cyclotrons operating in the range of 10-15MV or proton accelerators operating in the range of 40-250MV.
- the foundation 200 for the TRV comprises a pattern ( FIG. 4 ) of elongated beams of reinforced concrete.
- Individual beams of reinforced concrete are conventionally referred to as grade beams, since they are typically constructed at or above grade level.
- the grade beams for the TRV foundation are recessed several inches below-grade (e.g. 3-6inches). The use of below- grade, grade beams makes it easier to return the site to its original condition once the TRV has been removed, since one could simply backfill over the below-grade, grade beams.
- the pattern includes a number of parallel and orthogonal beams and beam segments. These beams underlie various portions of the TRV structure and the layout of FIG. 4 corresponds to the floor plan of FIG. 1 .
- parallel beams 210 and 212 underlie the elongated sides of module 102 and short transverse beams 214, 215 and 216 span between beams 210 and 212 at multiple locations along the lengths of beams 210 and 212.
- These short transverse beams 214, 215, 216 serve to provide a degree of integration or coupling between beams 210 and 212, and they also serve to underlie and provide support for the base frame 26 in module 102 to which the radiotherapy device 25 is mounted.
- beams 214, 215, 216 do not intersect with the outside beams 220 or 230, and thus these outside beams are relatively decoupled from their respective inner beam 212, 210.
- the presence of beams 214, 215, 216 assures that beam 210 is more coupled to beam 212 than it is to beam 230.
- beams 220 and 230 are designed to underlie and provide support to the shear walls 62 and 64 in modules 103 and 101 respectively.
- these shear walls 62, 64 bear the load of all the suspended shielding material that is positioned over the treatment room 20. Because this is a large mass of material, it provides significant inertial resistance to any lateral movement that would develop during a seismic event (i.e. earthquake).
- a seismic event i.e. earthquake
- the dead load of the suspended shielding material is also positioned far enough away from the therapy room 20, to avoid any impairment to the supporting beams 214, 215,216 which may impact the rooms geometry and level.
- Supports 160 are generally in the form of an I beam and have a planar base 164 and top plate 162 coupled by a vertical section 166. Support 160 is designed to be mounted in an elongated horizontal slot 168 such as the one formed in grade beam 240. Grade beams 240 and 250 are illustrated in FIG. 4 .
- the planar base 164 of support 160 being recessed into slot 168, the sidewalls of slot 168 provide lateral coupling through contact with the sides of base 164 and vertical span 166. If the slot 168 is initially too long to provide adequate lateral coupling contact, such contact can be facilitated by providing grout into the ends of slot 168.
- support 160 may be reconfigured so as to include additional or different vertical spans between top plate 162 and base 168.
- vertical plates may be added to the ends of the support 160 so as to provide additional coupling between the top plate 162 and the base 168. These end plates would be orthogonal to the vertical span 166 and would increase the overall rigidity of the supports 160.
- Supports 260 are similar to supports 160 in that they also have a planar mounting plate 262 and a planar base 264 and the planar base 264 is received in slot 222 of a grade beam 221.
- the slot 222 includes a pair of intersecting slots such that slot 222 is considered to be elongated in two orthogonal directions.
- the base 264 of support 260 is also of a "+" or intersecting configuration, and in use the base of support 260 is received in slot 222 and engages therewith so as to provide lateral contact coupling in multiple directions.
- Supports 260 may also be supplemented with additional vertical plates.
- additional vertical plates In particular, it is contemplated that four vertical end plates would be attached to the four ends of support 260. Two opposing plates would be attached orthogonal to vertical support 266 and two would be orthogonal to vertical support 268.
- FIGS. 9 and 10 illustrate the door cassette 300 installed in module 101.
- Door cassette 300 includes a shielding door 40, its surrounding frame parts 320, 330, 324, and a radiation shielding transom area 310 directly above the door 40.
- the entire cassette 300 is configured to be lifted out of module 101 as a whole.
- the lower portion of frame 324 i.e. the threshold
- the hinge side of frame 330 abuts against channel steel in the module 101 and is bolted in place via clamps 336.
- the opposing door side of frame 320 has a clearance that is filled with shim plate 338 and then the door side of frame 320 is bolted to module 101 via clamps 337.
- additional shielding plates 66 are provided in module 101 to provide shielding otherwise lost due to corridor 37, which cannot being filled with granular fill shielding material M.
- One contemplated method according to the present invention involves the identification of a radiotherapy facility having an existing radiotherapy device needing to be taken out of service. Typically, a facility would self identify its needs.
- a site for a temporary radiotherapy facility is identified.
- the site should be suitably close to the existing facility so as to minimize disruption, and may be an empty field or parking lot.
- a foundation for the temporary device is created at the identified site.
- the foundation can be a simple concrete slab, but preferably it is a pattern of recessed grade beams as described previously.
- the temporary radiotherapy facility typically includes a radiotherapy device within a radiation shielding vault, and it may correspond to the TRV previously described.
- the vault may include at least about 1,000,000 lbs of radiation shielding material, such as the granular fill or some other type, as previously described, including water.
- Removal of the temporary facility may include removal of some or all of the components of the TRV and some or all of the radiation shielding material included in the void spaces.
- the TRV is equipped with radiotherapy equipment substantially similar to the equipment to be installed at the existing facility. In this way, the personnel can receive training on the new equipment while operating in the TRV.
- Another inventive method contemplated herein involves maintaining treatment continuity to a patient population during the renovation or construction of a radiotherapy facility. This may be accomplished in connection with an existing (first) radiotherapy facility having a first radiotherapy device, wherein services are provided at the existing facility to a patient population by support staff, the support staff including at least one treatment individual.
- the treatment individual may be, for example, a doctor, a nurse, a therapist, a dosimetrist, or a physicist.
- a second radiotherapy facility is constructed to treat the patient population on a temporary basis, the second facility having a second radiotherapy device within a radiation shielding vault, such as the TRV described previously.
- the treatment individual Upon completion of the temporary facility, the treatment individual is transitioned to the second facility, and he/she provides services at the second facility to the patient population during the renovation and/or upgrade of the first radiotherapy facility. Then, upon completion of the renovation and/or upgrade of the first radiotherapy facility, the treatment individual is transitioned back to the first facility (or to a newly-constructed third facility) where he/she can continue to serve the same patient population.
- the period of transition may be occasioned by an equipment modernization and/or the construction of a wholly-new facility.
- isocenter is a point in three-dimensional space around which all movable axes of the treatment machine revolve.
- a stable isocenter is critical.
- isocenter is defined and specified as a sphere having a radius of no more than 0.5 mm in diameter.
- the targeted treatment area usually a tumor, is placed at isocenter during treatment.
- various components of the treatment machine gantry, collimator, and couch
- All structures can sink, shift, or even move. They are engineered to do this without any overall impairment to the structure.
- a shift in a wall, floor or ceiling in a therapy room has consequences not normally part of the engineer's design challenge.
- soil settlement is controlled since the slab can bridge over settlement areas, just like a sheet of plywood would bridge your shoe depressions in the mud. If there is any settlement, it will be mitigated by the slab, or at least slowed down so as to happen over a longer period of time, typically years.
- Rapid settlement in localized areas can have an effect on grade beams, since they do not have the benefit of the monolithic slab.
- the disclosed approach as set forth herein, is to build in tolerance by making the therapy room an independent structural sanctuary that is not impacted by any settlement caused by the huge shielding mass, especially the mass directly above the treatment room. This is achieved by creating a six inch gap between the therapy room structure and the supported shielding mass above. Further contributing to this achievement is allowing the grade beams to move independently and further, separating the shielding mass load from the therapy room load by a suitable distance on independent grade beams.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Health & Medical Sciences (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- Electromagnetism (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Toxicology (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- General Health & Medical Sciences (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
- This application claims the benefit of
U.S. Provisional Application No. 61/256,984, filed October 31, 2009 - The present invention relates to a complete radiation therapy facility, including a therapeutic radiation producing (or emitting) device and the shielding structures necessary to safely produce the therapeutic radiation and methods for making and using the same. More particularly, but not exclusively, the present invention relates to a radiotherapy vault and integrated clinical functions suitable for use on a temporary basis, such as during the time an existing facility is undergoing an equipment upgrade or facility renovation. The various structural features which are illustrated and described herein result, collectively, in a fully equipped and integrated radiotherapy clinical facility. A further structural feature of the disclosed integrated solution is the overall size compactness given the performance demands and requirements.
- Radiation emitting equipment has a number of well known applications. Radiation emitting equipment is used to inspect packages and cargo at borders and to perform non-destructive testing. In the medical field, radiation emitting equipment is used in the diagnosis and treatment of a number of diseases. Not surprisingly, the manufacturers of this equipment are continually making improvements. Radiation emitted by equipment of the type described as "therapeutic" or "for treatment" is often referred to as "high energy", and is typically greater than 1mv.
- For example, radiation therapy (a.k.a. radiotherapy) has become widely used in the treatment of cancer and several other non-malignant conditions, and modern radiotherapy equipment has improved abilities to target and destroy specific tissues while sparing surrounding healthy tissue. As a result, the use of up-to-date radiotherapy equipment can yield improved patient outcomes as well as provide other benefits to the operators of the facility, such as increased ease of use, increased efficiency, and/or increased patient throughput.
- Despite these benefits, it has not been practical for many existing radiotherapy facilities to modernize. Existing radiotherapy equipment, like many other types of radiation emitting equipment, is typically housed within a radiation shielding vault so as to protect the surrounding personnel from the harmful effects of the radiation. Because of the high radiation levels involved (i.e. typically greater than 1MV) existing vaults are often constructed underground and/or with concrete walls that are several feet thick. As a result, the process of removing existing equipment, installing a modern replacement unit, and performing any necessary remodeling and reconfiguration is typically a three to five month process, with some projects taking up to a year. The prospect of a radiotherapy facility being out of service for such an extended duration, with the resultant disruption of treatment to patients, loss of revenue to the facility, and potential loss of referrals, is simply unacceptable to many facility operators. As a result, it is estimated that there are thousands of medical linear accelerators in use today which are technically obsolete and in need of immediate replacement.
- In one form, the present invention addresses this need.
- The present invention provides systems and techniques for constructing and using integrated radiotherapy treatment facilities which include radiation producing equipment and radiation shielding vaults. While the actual nature of the invention covered herein can only be determined with reference to the claims appended hereto, certain aspects of the invention that are characteristic of the embodiments disclosed herein are described briefly as follows.
- According to one aspect, the present invention provides a temporary, building code compliant radiotherapy facility for use during the time when an existing facility is being upgraded or modernized.
- According to another aspect, the present invention provides a method of maintaining radiotherapy treatment continuity during an equipment transition.
- According to another aspect, the present invention provides a building code compliant temporary radiotherapy facility which can be erected and put into use rapidly and cost effectively.
- According to another aspect, the present invention provides a new method of constructing a foundation for radiation shielding vaults.
- According to another aspect, the present invention provides a new method of coupling a radiation shielding vault to a foundation.
- According to another aspect, the present invention provides a new approach for supporting radiation shielding material over a treatment area and distributing the load of that radiation shielding material to a supporting foundation.
- According to another aspect, the present invention provides for the construction of a radiotherapy facility wherein the foundation which supports the treatment room is decoupled from the foundation which supports the mass of radiation shielding material above the treatment room.
- According to another aspect, the present invention provides a new design for providing a roof over a radiation treatment vault.
- According to another aspect, the present invention provides a new mechanism for installing the shielding door for a vault.
- According to another aspect, the present invention integrates required clinical, radiotherapy room and accelerator equipment with required electrical and mechanical support systems in a singular compact and complete solution.
- These and other aspects are discussed below.
- Although the characteristic features of this invention will be particularly pointed out in the claims, the invention itself, and the manner in which it may be made and used, may be better understood by referring to the following description taken in connection with the accompanying figures forming a part thereof.
-
FIG. 1 shows the floor plan of a completed radiotherapy facility according to one embodiment. -
FIG. 2 is a side elevational view, in full section, of theFIG. 1 facility. -
FIG. 3 is an end elevational view, in full section, of theFIG. 1 facility. -
FIG. 4 is a top plan view layout of the foundation for theFIG. 1 facility. -
FIG. 5 is a partial, end sectional view of the foundation as viewed along line 5-5 in
FIG. 4 . -
FIG. 6 is a diagrammatic perspective view showing the installation of a support in a foundation beam. -
FIG. 7 is a diagrammatic perspective view showing the installation of another support in a foundation beam. -
FIG. 8 is a diagrammatic perspective view showing the installation of supports in a concrete slab as per existing installations of the system corresponding toUS 6,973,758 (the Rad Pro). -
FIG. 9 is an elevational view showing the radiation shielding door cassette installed in the facility ofFIG. 1 . -
FIG. 10 is a partial, top view, as viewed along line 10-10 inFIG. 9 . - For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is hereby intended. Alterations and further modifications in the illustrated devices, and such further applications of the principles of the invention as illustrated herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
- In one form, the present invention involves the provision of a fully functioning temporary radiotherapy facility intended for short term use. The temporary facility may be provided at a designated site and used to treat patients during the time when an existing radiotherapy facility is being upgraded or modernized. Upon completion of the upgrade, the temporary facility may be removed from the site and redeployed to another site in need of a similar service.
- Referring to
FIGS. 1-3 ,temporary radiotherapy facility 10 includes atreatment room 20 including aradiotherapy device 25 and acontrol station 22 for theradiotherapy device 25. The interior offacility 10 includeswaiting area 30, reception/scheduling area 31,gowning area 35,restroom 34, andstorage areas mechanical area 33 contains any necessary heating and chiller equipment and is accessed externally, as is anadditional storage area 36. The facility further includes anelectrical closet 27,staff sink 28 and a potable andwaste water tanks 29. - Access to
treatment room 20 is via a radiation shieldeddoor 40 andcorridor 37. Once inside thetreatment room 20, the patient lies on the treatment table 24 and the radiotherapy is administered viaradiotherapy device 25 in accordance with the treatment parameters input by the operator at thecontrol station 22. - When fully constructed, the
facility 10 complies with applicable building codes. Further, thefacility 10 is "habitable" in the context of supporting patients and medical personnel during the time of use. As used herein, "code compliant" and "building codes" are intended to encompass an ability to construct and configure the basic structural elements of the disclosed combination so as to meet or adhere to what would be required according to applicable building codes. Since the codes of local municipalities might change over time, the structural embodiment disclosed herein is geared toward the code requirements as currently set forth in the 2009 Edition of the ICC International Building Code® (ISBN: 1580017258), including those other codes referenced therein. -
Facility 10 has been designed using a number of prefabricated modules so as to speed the process of assembling and disassembling the structure, and may be referred to as a Temporary Radiotherapy Vault (TRV). As shown inFIG. 1 , the ground floor is composed of four different modules, each of which has a generally rectangular footprint.Modules module 104 is placed across the ends ofmodules FIG. 1 ). Alternative configurations or embodiments could incorporate more than four different modules. - In this illustrated configuration, the treatment room is entirely contained within
module 102.Modules void spaces treatment room 20. These void spaces (i.e., the vessel) are designed to be filled with a radiation shielding material M, such as a flowable granular fill having a density range of 80-125lb/ft3. Aligned void spaces (e.g. 50 and 54, 54 and 52, 52 and 58) are in fluid communication such that, once filled with the shielding material, a substantially continuous barrier of the radiation shielding material is created around thetreatment room 20. By remaining in a perpetually flowable state, the granular fill (i.e., the shielding material M), cannot crack due to settling or seismic events. -
Roof modules modules trusses module 101 to the shear wall 62 inmodule 103. A supportingpanel 80 is then mounted between thetrusses roof modules treatment room 20 while maintaining agap 110 between the underside of thepanels 80, 81, 83 and the uppermost portion of thetreatment room 20. Alternative configurations and embodiments could incorporate additional roof modules in lieu of supporting panels. As a result, the load of the shielding material directly above thetreatment room 20 can be distributed through the trusses to the shear walls 62, 64 rather than bearing on the treatment room itself. This gap isolates the treatment room and protects it from the effects of any foundation shifting or sinking that may occur due to the excessive weight of the shielding material above it. As shown inFIGS. 2 and3 , the upperlevel shielding areas 70, 72 and 74 that are not directly above thetreatment room 20 are open to the lowerlevel void spaces 50, 52, 54, 58.Connecting rods 88 span between the upper portions of thetrusses membrane roof 92 which is installed once all the shielding material has been delivered. - While some of the floor space for
control station 22 is provided bymodule 104, it is preferable to have the relevant computer equipment hardwired to theradiotherapy device 25 inmodule 102. In this case, the computer equipment is provided on a wheeled cart so that it can move into the position shown inFIG. 1 from a storage position inmodule 102. - The precise quantity and desired distribution of radiation shielding material is dependent on the characteristics of the radiation emitted from
device 25. As illustrated, thefacility 10 is configured to employ an isocentrically arranged high energy linear accelerator, which typically operates in the range of 4-25MV. An example would be Varian Medical Systems Trilogy, Palo Alto, CA. In order to provide the appropriate level of shielding, the total weight of the shielding material may be 1,000,000 lbs or 2,000,000 lbs or more. To the extent the linear accelerator is operated at high MV energies (i.e. above 10MV), neutron shielding is provided by lining the treatment room with wood panels and borated polyethylene sheets. - The
facility 10 could also be used to perform other types of radiotherapy, such as gamma knife or high dose rate brachytherapy (HDR), which typically operate in the range of 1-3MV. Thefacility 10 may also be adapted for use with cyclotrons operating in the range of 10-15MV or proton accelerators operating in the range of 40-250MV. - Existing modular vaults corresponding to
US 6,973,758 (i.e. the Rad Pro System) have been constructed on a reinforced concrete slab foundation in a number of permanent installations. The base of the Pro System pods was typically elevated several inches above the slab by a series ofstub columns 150 as shown inFIG. 8 . Thesestub columns 150 were fabricated from high strength steel and included a hollow vertical supportingcolumn 153 withhorizontal plates vertical column 153 was in the shape of a rectangular solid with a square horizontal cross section. Shear lugs 154 were welded to the underside of the bottom plate in the form of a pair of vertical extension plates intersecting at right angles so as to generally form a "+". In use, a squarecross section recess 155 was first provided in theconcrete slab 156. Therecess 155 was then filled with grout (not shown) and the shear lugs 154 were set into the grout filled recesses. - With reference to
FIGS. 4-7 , thefoundation 200 for the TRV (facility 10) comprises a pattern (FIG. 4 ) of elongated beams of reinforced concrete. Individual beams of reinforced concrete are conventionally referred to as grade beams, since they are typically constructed at or above grade level. The grade beams for the TRV foundation are recessed several inches below-grade (e.g. 3-6inches). The use of below- grade, grade beams makes it easier to return the site to its original condition once the TRV has been removed, since one could simply backfill over the below-grade, grade beams. - The pattern includes a number of parallel and orthogonal beams and beam segments. These beams underlie various portions of the TRV structure and the layout of
FIG. 4 corresponds to the floor plan ofFIG. 1 . Of note,parallel beams module 102 and shorttransverse beams beams beams transverse beams beams base frame 26 inmodule 102 to which theradiotherapy device 25 is mounted. On the other hand, beams 214, 215, 216 do not intersect with theoutside beams inner beam beams beam 210 is more coupled tobeam 212 than it is tobeam 230. - This is significant because
beams modules platforms 80, 81, 83 and trusses 82, 84, these shear walls 62, 64 bear the load of all the suspended shielding material that is positioned over thetreatment room 20. Because this is a large mass of material, it provides significant inertial resistance to any lateral movement that would develop during a seismic event (i.e. earthquake). As a result, in order to satisfy various building codes, it is generally necessary to have a lateral coupling between the foundation and the shear wall that can withstand the significant lateral stresses. The dead load of the suspended shielding material is also positioned far enough away from thetherapy room 20, to avoid any impairment to the supportingbeams 214, 215,216 which may impact the rooms geometry and level. - With reference to
FIGS. 6 and 7 , coupling between the TRV modules and the foundation grade beams is provided by one of two types of supports.Supports 160 are generally in the form of an I beam and have aplanar base 164 andtop plate 162 coupled by avertical section 166.Support 160 is designed to be mounted in an elongatedhorizontal slot 168 such as the one formed ingrade beam 240. Grade beams 240 and 250 are illustrated inFIG. 4 . By virtue of theplanar base 164 ofsupport 160 being recessed intoslot 168, the sidewalls ofslot 168 provide lateral coupling through contact with the sides ofbase 164 andvertical span 166. If theslot 168 is initially too long to provide adequate lateral coupling contact, such contact can be facilitated by providing grout into the ends ofslot 168. - While illustrated as having only a single
vertical span 166,support 160 may be reconfigured so as to include additional or different vertical spans betweentop plate 162 andbase 168. For example, vertical plates may be added to the ends of thesupport 160 so as to provide additional coupling between thetop plate 162 and thebase 168. These end plates would be orthogonal to thevertical span 166 and would increase the overall rigidity of thesupports 160. -
Supports 260 are similar tosupports 160 in that they also have a planar mountingplate 262 and aplanar base 264 and theplanar base 264 is received inslot 222 of agrade beam 221. However, theslot 222 includes a pair of intersecting slots such thatslot 222 is considered to be elongated in two orthogonal directions. Thebase 264 ofsupport 260 is also of a "+" or intersecting configuration, and in use the base ofsupport 260 is received inslot 222 and engages therewith so as to provide lateral contact coupling in multiple directions. -
Supports 260 may also be supplemented with additional vertical plates. In particular, it is contemplated that four vertical end plates would be attached to the four ends ofsupport 260. Two opposing plates would be attached orthogonal tovertical support 266 and two would be orthogonal tovertical support 268. -
FIGS. 9 and10 illustrate thedoor cassette 300 installed inmodule 101.Door cassette 300 includes a shieldingdoor 40, its surroundingframe parts shielding transom area 310 directly above thedoor 40. Theentire cassette 300 is configured to be lifted out ofmodule 101 as a whole. When inserted into position, the lower portion of frame 324 (i.e. the threshold) is recessed into a corresponding opening in the floor of module 101 (not shown). The hinge side offrame 330 abuts against channel steel in themodule 101 and is bolted in place viaclamps 336. The opposing door side offrame 320 has a clearance that is filled withshim plate 338 and then the door side offrame 320 is bolted tomodule 101 viaclamps 337. With reference toFIG. 1 ,additional shielding plates 66 are provided inmodule 101 to provide shielding otherwise lost due tocorridor 37, which cannot being filled with granular fill shielding material M. - One contemplated method according to the present invention involves the identification of a radiotherapy facility having an existing radiotherapy device needing to be taken out of service. Typically, a facility would self identify its needs.
- Next, a site for a temporary radiotherapy facility is identified. The site should be suitably close to the existing facility so as to minimize disruption, and may be an empty field or parking lot. A foundation for the temporary device is created at the identified site. The foundation can be a simple concrete slab, but preferably it is a pattern of recessed grade beams as described previously.
- Next, a temporary radiotherapy facility is assembled on the foundation. The temporary radiotherapy facility typically includes a radiotherapy device within a radiation shielding vault, and it may correspond to the TRV previously described. The vault may include at least about 1,000,000 lbs of radiation shielding material, such as the granular fill or some other type, as previously described, including water.
- When the need for the radiotherapy facility ceases to exist, for example because the renovation has been completed, the facility is removed. For a typical replacement, this would be less than 12 months. Removal of the temporary facility may include removal of some or all of the components of the TRV and some or all of the radiation shielding material included in the void spaces.
- In one refinement, the TRV is equipped with radiotherapy equipment substantially similar to the equipment to be installed at the existing facility. In this way, the personnel can receive training on the new equipment while operating in the TRV.
- Another inventive method contemplated herein involves maintaining treatment continuity to a patient population during the renovation or construction of a radiotherapy facility. This may be accomplished in connection with an existing (first) radiotherapy facility having a first radiotherapy device, wherein services are provided at the existing facility to a patient population by support staff, the support staff including at least one treatment individual. The treatment individual may be, for example, a doctor, a nurse, a therapist, a dosimetrist, or a physicist.
- A second radiotherapy facility is constructed to treat the patient population on a temporary basis, the second facility having a second radiotherapy device within a radiation shielding vault, such as the TRV described previously. Upon completion of the temporary facility, the treatment individual is transitioned to the second facility, and he/she provides services at the second facility to the patient population during the renovation and/or upgrade of the first radiotherapy facility. Then, upon completion of the renovation and/or upgrade of the first radiotherapy facility, the treatment individual is transitioned back to the first facility (or to a newly-constructed third facility) where he/she can continue to serve the same patient population. The period of transition may be occasioned by an equipment modernization and/or the construction of a wholly-new facility.
- In order to be effectively used, radiotherapy equipment must be carefully calibrated. One of the alignment and/or calibration characteristics is referred to as "isocenter" which is a point in three-dimensional space around which all movable axes of the treatment machine revolve. As would be understood, a stable isocenter is critical. In certain applications, isocenter is defined and specified as a sphere having a radius of no more than 0.5 mm in diameter. The targeted treatment area, usually a tumor, is placed at isocenter during treatment. As various components of the treatment machine (gantry, collimator, and couch) are moved to different angles during the treatment delivery, it is essential that no part of the machine flex or move in any manner that would cause the target, at isocenter, to be missed.
- All structures can sink, shift, or even move. They are engineered to do this without any overall impairment to the structure. A shift in a wall, floor or ceiling in a therapy room, however, has consequences not normally part of the engineer's design challenge. With a slab foundation, soil settlement is controlled since the slab can bridge over settlement areas, just like a sheet of plywood would bridge your shoe depressions in the mud. If there is any settlement, it will be mitigated by the slab, or at least slowed down so as to happen over a longer period of time, typically years.
- Rapid settlement in localized areas can have an effect on grade beams, since they do not have the benefit of the monolithic slab. The disclosed approach, as set forth herein, is to build in tolerance by making the therapy room an independent structural sanctuary that is not impacted by any settlement caused by the huge shielding mass, especially the mass directly above the treatment room. This is achieved by creating a six inch gap between the therapy room structure and the supported shielding mass above. Further contributing to this achievement is allowing the grade beams to move independently and further, separating the shielding mass load from the therapy room load by a suitable distance on independent grade beams.
- While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character. Only certain embodiments have been shown and described, and all changes, equivalents, and modifications that come within the spirit of the invention described herein are desired to be protected. Thus, the specifics of this description and the attached drawings should not be interpreted to limit the scope of this invention to the specifics thereof. Rather, the scope of this invention should be evaluated with reference to the claims appended hereto.
- In reading the claims it is intended that when words such as "a", "an", "at least one", and "at least a portion" are used there is no intention to limit the claims to only one item unless specifically stated to the contrary in the claims. Further, when the language "at least a portion" and/or "a portion" is used, the claims may include a portion and/or the entire items unless specifically stated to the contrary. Likewise, where the term "input" is used in connection with a device or system component, such as a fluid processing unit or electrical device, it should be understood to comprehend singular or plural and one or more signal channels or fluid lines as appropriate in the context. Finally, all publications, patents, and patent applications cited in this specification are herein incorporated by reference to the extent not inconsistent with the present disclosure as if each were specifically and individually indicated to be incorporated by reference and set forth in its entirety herein.
- Various aspects of the invention are set out in the following numbered paragraphs:
- 1. A method for providing radiotherapy while an existing radiotherapy device is taken out of service, the method comprising:
- providing a radiotherapy facility having an existing radiotherapy device needing to be taken out of service;
- providing a site for a temporary radiotherapy facility to be used while the existing radiotherapy device is taken out of service;
- providing a foundation for the temporary radiotherapy facility at the site;
- constructing a temporary radiotherapy facility on the foundation, the temporary radiotherapy facility including a radiotherapy device within a radiation shielding vault, the radiation shielding vault including at least about 1,000,000 lbs of radiation shielding material; and
- removing the temporary radiotherapy facility from the site less than 12 months from the time the existing equipment is taken out of service, wherein removing the temporary radiotherapy facility includes removing the radiotherapy device and the radiation shielding vault from the site.
- 2. The method of paragraph 1 wherein the radiotherapy device within the temporary facility comprises a high energy radiotherapy device.
- 3. The method of any preceding paragraph wherein removing the facility includes removing at least about 1,000,000 lbs of radiation shielding material.
- 4. The method of any preceding paragraph wherein the site comprises land which is owned or leased by the operator of the facility.
- 5. The method of any preceding paragraph wherein the temporary facility is used while the existing facility is upgraded and/or remodeled.
- 6. The method of
paragraph 5 wherein the existing facility is upgraded to a radiotherapy device substantially similar to the radiotherapy device in the temporary facility such that use of the radiotherapy device in the temporary facility can serve as training for the use of the upgraded device. - 7. The method of any preceding paragraph wherein the foundation comprises a pattern of reinforced concrete beams recessed below grade.
- 8. The method of any preceding paragraph wherein the temporary facility is constructed on a plurality supports extending from the foundation and terminating in an above ground mounting plate.
- 9. The method of paragraph 8 wherein the supports have a base plate and the base plate of the supports is provided in recesses in the foundation.
- 10. The method of paragraph 9 wherein the base plate of the supports is provided in elongated slots formed in the foundation.
- 11. The method of any preceding paragraph wherein the vault includes a treatment room having side walls and wherein the weight of radiation shielding material above the treatment room is born by shear walls that are spaced from the side walls.
- 12. The method of paragraph 11 wherein each shear wall is positioned over a reinforced concrete grade beam.
- 13. A method for maintaining treatment continuity to a patient population during the renovation or construction of a radiotherapy facility, comprising:
- providing a first radiotherapy facility having a first radiotherapy device, wherein services are provided at the first facility to a patient population by support staff, the support staff including at least one treatment individual;
- constructing a second radiotherapy facility to treat the patient population on a short term basis, the second facility having a second radiotherapy device within a radiation shielding vault;
- transitioning the treatment individual to the second facility, wherein services are provided at the second facility to the patient population for a period of less than 12 months; and then
- transitioning the treatment individual back to the first facility or to a newly constructed third facility, whereby the treatment individual is able to serve the patient population during a period of transition.
- 14. The method of paragraph 13 wherein the second facility is removed after the treatment individual is transitioned back to the first facility or to the newly constructed third facility.
- 15. The method of paragraph 14 wherein removal of the second facility includes removal of at least about 1,000,000 lbs of shielding material.
- 16. A radiation shielding vault, comprising:
- a foundation comprising a pattern of reinforced concrete beams;
- a plurality of modules supported by the foundation and connected so as to form a central area adapted for human occupation and a radiation shielding barrier substantially surrounding the central treatment area; and
- a radiation emitting device in the central area.
- 17. The radiation shielding vault of paragraph 16 wherein the beams are recessed below the surrounding grade.
- 18. The vault of any preceding paragraph wherein the modules are supported above the surrounding grade via a plurality of supports extending vertically from the grade beams.
- 19. The foundation of any preceding paragraph wherein the pattern includes interconnected beams extending in different directions.
- 20. The foundation of any preceding paragraph wherein the pattern includes interconnected beams extending in generally orthogonal directions.
- 21. The foundation of any preceding paragraph wherein the pattern includes a first beam, a second beam, a third beam and a fourth beam.
- 22. The foundation of paragraph 21 wherein the fourth beam is interconnected with the first beam, the second beam, and the third beam.
- 23. The foundation of
paragraph 21 or 22 wherein a fifth beam is interconnected with the first and the second beams but not the third beam. - 24. The foundation of paragraph 23 wherein a sixth beam is interconnected with the first and the second beam but not the third beam.
- 25. The foundation of any preceding paragraph wherein at least two spaced beams provide a foundation for a pair of spaced apart shear walls
- 26. The foundation of paragraph 16 wherein said plurality of modules are connected to said foundation by the use of a mounting plate inserted into a slot defined by a grade beam.
- 27. A radiation shielding vault, comprising:
- a central vault room having sidewalls;
- a radiation emitting device in the central vault room; and
- a platform for holding a quantity of radiation shielding material above the central vault room;
- wherein the platform is supported by shear walls disposed outside the sidewalls of the central vault room.
- 28. The vault of
paragraph 27 wherein the platform is disposed between two trusses. - 29. The vault of any preceding paragraph wherein the shear walls are supported by grade beams.
- 30. The vault of any preceding paragraph wherein the radiation emitting equipment is supported by a first grade beam and the shear walls are supported by a pair of second grade beams disposed on either side of the first grade beam.
- 31. The vault of any preceding paragraph wherein radiation shielding material is provided between the shear walls and the sidewalls of the central vault room.
- 32. A method of supporting a radiation vault on a concrete foundation, comprising
providing a plurality of elongated slots in the concrete of the foundation and a plurality of supports, the plurality of supports having a base plate and a top plate;
inserting a support into each one of the slots such that the base plate of the support is disposed in the slot; and
supporting the vault with the top plates of the supports. - 33. The method of
paragraph 32 wherein at least one of the slots is elongated in multiple directions. - 34. The method of any preceding paragraph wherein the supports are removed after the vault is removed.
- 35. A radiation shielding vault comprising:
- a ground level comprising a central room and radiation shielding material substantially surrounding the central room;
- an upper level over the central room, the upper level comprising a plurality of modules; and
- a fabric or other light weight material over the plurality of modules so as to form a roof for the vault.
- 36. The vault of
paragraph 35 wherein the upper level includes a pair of spaced apart trusses. - 37. The vault of any preceding paragraph wherein the upper portions of the trusses are coupled by connecting rods or supports and the roof is in contact with the connecting rods or supports.
- 38. The vault of any preceding paragraph wherein the top surface of the trusses is pitched.
- 39. A method comprising:
- providing a ground floor module for a radiation shielding vault and a shielding door cassette, the cassette including a shielding door, its associated frame, and a shielded transom area above the door
- inserting the shielding door cassette into the module, wherein the at least a portion of the cassette is received in a recess in the floor of the module; and
- coupling the cassette to the module.
- 40. A radiotherapy facility for administering radiotherapy comprising:
- a radiotherapy treatment room; and
- flowable radiation shielding material supported and suspended above the central treatment room without being in contact with or bearing upon the central treatment room or affecting the height or level of the treatment room.
Claims (7)
- A radiation shielding vault, comprising:a central vault room having sidewalls;a radiation emitting device in the central vault room; anda platform for holding a quantity of radiation shielding material above the central vault room;wherein the platform is supported by shear walls disposed outside the sidewalls of the central vault room.
- The vault of claim 1 wherein the platform is disposed between two trusses.
- The vault of any preceding claim wherein the shear walls are supported by grade beams.
- The radiation shielding vault of claim 3 wherein the shear walls are supported by grade beams recessed below the surrounding grade.
- The vault of any preceding claim wherein the radiation emitting equipment is supported by a first grade beam and the shear walls are supported by a pair of second grade beams disposed on either side of the first grade beam.
- The vault of any preceding claim wherein radiation shielding material is provided between the shear walls and the sidewalls of the central vault room.
- A method of constructing a radiation shielding vault, the method comprising:forming a central vault room having sidewalls;locating a radiation emitting device in the central vault room;providing a platform for holding a quantity of radiation shielding material above the central vault room; andsupporting the platform with shear walls that are disposed outside the sidewalls of the central vault room such that the radiation shielding material is supported and suspended above the central vault room without being in contact with or bearing upon the central vault room or affecting the height or level of the central vault room.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL17156031T PL3192563T3 (en) | 2009-10-31 | 2010-10-29 | Habitable radiation shielding vault and method of constructing thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25698409P | 2009-10-31 | 2009-10-31 | |
PCT/US2010/054601 WO2011053748A2 (en) | 2009-10-31 | 2010-10-29 | Relocatable radiation vault and methods of assembly and use |
EP10827506.6A EP2493565B1 (en) | 2009-10-31 | 2010-10-29 | Method for providing radiotherapy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10827506.6A Division EP2493565B1 (en) | 2009-10-31 | 2010-10-29 | Method for providing radiotherapy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3192563A1 true EP3192563A1 (en) | 2017-07-19 |
EP3192563B1 EP3192563B1 (en) | 2021-05-12 |
Family
ID=43922988
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10827506.6A Active EP2493565B1 (en) | 2009-10-31 | 2010-10-29 | Method for providing radiotherapy |
EP17156031.1A Active EP3192563B1 (en) | 2009-10-31 | 2010-10-29 | Habitable radiation shielding vault and method of constructing thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10827506.6A Active EP2493565B1 (en) | 2009-10-31 | 2010-10-29 | Method for providing radiotherapy |
Country Status (11)
Country | Link |
---|---|
US (3) | US9027297B2 (en) |
EP (2) | EP2493565B1 (en) |
JP (1) | JP5984672B2 (en) |
CA (1) | CA2778958C (en) |
DK (1) | DK3192563T3 (en) |
ES (2) | ES2883170T3 (en) |
HU (2) | HUE055849T2 (en) |
MX (1) | MX348557B (en) |
PL (2) | PL2493565T3 (en) |
PT (2) | PT2493565T (en) |
WO (1) | WO2011053748A2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8707630B1 (en) * | 2010-11-01 | 2014-04-29 | Walgreen Co. | Pharmacy workspace with clinic station |
US8776446B1 (en) * | 2010-11-01 | 2014-07-15 | Walgreen Co. | Pharmacist workstation |
US8776445B1 (en) * | 2010-11-01 | 2014-07-15 | Walgreen Co. | Pharmacy workspace |
US8800215B2 (en) * | 2011-08-22 | 2014-08-12 | Performance Contracting, Inc. | Self-contained portable container habitat for use in radiological environments |
US9435898B2 (en) * | 2011-11-17 | 2016-09-06 | The Board Of Trustees Of The Leland Stanford Junior University | Dedicated cardiac PET |
EP3058574B1 (en) * | 2013-10-15 | 2019-12-04 | Rad Technology Medical Systems, LLC | Radiation vault module with adjustable base frame |
US10180008B2 (en) | 2014-03-19 | 2019-01-15 | Pm Holdings, Llc | Hybrid operating room for combined surgical and fixed imaging services in an ambulatory surgical center |
CN107567307B (en) * | 2014-12-04 | 2021-10-12 | L·菲利普·沃尔 | Hybrid operating room for combined surgical and stationary imaging services in ambulatory surgical centers |
CN106032729A (en) | 2015-03-17 | 2016-10-19 | 瓦里安医疗器械贸易(北京)有限公司 | Prefabricated modular radiotherapy vault room design |
US20180258659A1 (en) * | 2017-03-07 | 2018-09-13 | New England Lead Burning Company, Inc. | Bunker system for radiation therapy equipment |
US10878974B2 (en) | 2018-12-14 | 2020-12-29 | Rad Technology Medical Systems, Llc | Shielding facility and method of making thereof |
US11479960B1 (en) * | 2019-06-11 | 2022-10-25 | Weller Construction, Inc. | Oncology vault structure |
EP4189187A1 (en) * | 2020-07-30 | 2023-06-07 | Lefkus, John | Building elements and structures having materials with shielding properties |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002093588A2 (en) * | 2001-05-14 | 2002-11-21 | Rad Technology Llc | Shielded structure for radiation treatment equipment and method of assembly |
WO2004003934A1 (en) * | 2002-07-01 | 2004-01-08 | Elekta Ab (Publ) | A mobile building unit as well as a building and a method for constructing the building |
WO2008100827A1 (en) * | 2007-02-12 | 2008-08-21 | Murphy Brent D | Mobile radiation treatment facility |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1706496A (en) * | 1927-06-30 | 1929-03-26 | Pieri Pompeo | Earthquake and tornado proof building |
US3229429A (en) * | 1960-04-27 | 1966-01-18 | Conrad Ivan Willard | Secure conference systems |
US3334597A (en) * | 1965-07-20 | 1967-08-08 | Frances R Ruskin | Radiation-proof structure |
US3721052A (en) * | 1970-05-04 | 1973-03-20 | Houilleres Bassin Du Nord | Multi-storey building comprising unit compartments |
US3793796A (en) * | 1971-09-24 | 1974-02-26 | R Hughes | Modular building system |
US4050215A (en) * | 1972-04-13 | 1977-09-27 | John Sergio Fisher | Premanufactured modular housing building construction |
US4126972A (en) * | 1976-06-28 | 1978-11-28 | Almer Silen | Tornado protection building |
JPS53140842A (en) * | 1977-12-05 | 1978-12-08 | Hasegawa Komuten Kk | Building method of multilayer dwelling complex and so on |
JPS5851115B2 (en) * | 1979-02-19 | 1983-11-14 | ナショナル住宅産業株式会社 | Door unit transom mounting structure |
JPS594992B2 (en) * | 1980-09-11 | 1984-02-02 | 花王株式会社 | Microbial production of ω-haloalkanoic acids |
JPS5940992B2 (en) * | 1980-12-16 | 1984-10-03 | 積水ハウス株式会社 | How to correct the height of the frame frame after building the building |
US4373307A (en) * | 1981-04-06 | 1983-02-15 | Earthquake Preparedness Co., Inc. | Adjustable earthquake backstop support for mobile homes |
US4785593A (en) | 1986-10-27 | 1988-11-22 | Munoz Jr Jose C | Structural building system |
US4823523A (en) * | 1987-01-06 | 1989-04-25 | Donald N. Coupard | Electromagnetic radiation shielding enclosure and shielding components |
US4841692A (en) * | 1988-01-29 | 1989-06-27 | Donald N. Coupard | Shielded access apparatus for use in an enclosure for preventing propagation of electromagnetic energy into or out of the enclosure |
JP3303218B2 (en) * | 1993-03-11 | 2002-07-15 | 株式会社竹中工務店 | Reconstruction method |
JP3175586B2 (en) * | 1996-04-25 | 2001-06-11 | 日本鋼管株式会社 | Column and pile connection method |
US5755062A (en) * | 1996-06-20 | 1998-05-26 | Slater; Electus P. | Portable structure for housing sensitive equipment and method of fabricating same |
US5695443A (en) * | 1996-07-26 | 1997-12-09 | Brent; Robert W. | High energy radiation emission shelter and method of making the same |
US6051185A (en) * | 1996-12-18 | 2000-04-18 | Sterigenics International | Apparatus for performing gamma irradiation |
JP2000160687A (en) * | 1998-12-01 | 2000-06-13 | Fujita Corp | Construction method for composite structure and precast concrete column |
US6178714B1 (en) * | 1999-07-06 | 2001-01-30 | Robert S. Carney, Jr. | Modular temporary building |
DE10234357A1 (en) * | 2001-07-27 | 2003-07-10 | Schaller Margitta | Kit for temporary shelters uses steel concrete base plates as foundations for room cells with sanitary and communication rooms with walls and roof elements |
US6626264B1 (en) * | 2001-10-30 | 2003-09-30 | Igt | Radio frequency shielded and acoustically insulated enclosure |
JP2003221974A (en) * | 2002-01-31 | 2003-08-08 | Ykk Ap Inc | Door and mounting structure for door |
DE10261099B4 (en) | 2002-12-20 | 2005-12-08 | Siemens Ag | Ion beam system |
KR20030016326A (en) * | 2003-01-13 | 2003-02-26 | 이용권 | Doorframe for sliding door |
US7291854B2 (en) * | 2005-07-18 | 2007-11-06 | Trinity Health Corporation | Radiation attenuation corridor |
JP4614232B2 (en) * | 2005-09-21 | 2011-01-19 | 大成建設株式会社 | Radiation room with split radiation shielding doors |
AU2007227250A1 (en) * | 2006-03-20 | 2007-09-27 | Project Frog, Inc. | Rapidly deployable modular building and methods |
US7530616B2 (en) | 2006-05-19 | 2009-05-12 | Breya, Llc. | Mobile radiation therapy |
US20080276554A1 (en) * | 2007-05-07 | 2008-11-13 | Sheetz Michael A | Modular Radiation Shielding System and Related Methods |
JP5464814B2 (en) * | 2008-03-25 | 2014-04-09 | 大成建設株式会社 | Composite structure building |
US7930857B2 (en) * | 2008-07-29 | 2011-04-26 | Green Horizon Manufacturing, LLC | Deployable prefabricated structure with an extension structure and a deployable floor |
JP5851115B2 (en) | 2011-04-28 | 2016-02-03 | ライオン株式会社 | toothbrush |
JP5940992B2 (en) | 2013-01-29 | 2016-06-29 | 三井金属鉱業株式会社 | Exhaust gas purification catalyst |
-
2010
- 2010-10-29 EP EP10827506.6A patent/EP2493565B1/en active Active
- 2010-10-29 PL PL10827506T patent/PL2493565T3/en unknown
- 2010-10-29 ES ES17156031T patent/ES2883170T3/en active Active
- 2010-10-29 PT PT108275066T patent/PT2493565T/en unknown
- 2010-10-29 ES ES10827506.6T patent/ES2625156T3/en active Active
- 2010-10-29 CA CA2778958A patent/CA2778958C/en active Active
- 2010-10-29 HU HUE17156031A patent/HUE055849T2/en unknown
- 2010-10-29 EP EP17156031.1A patent/EP3192563B1/en active Active
- 2010-10-29 PL PL17156031T patent/PL3192563T3/en unknown
- 2010-10-29 MX MX2012004940A patent/MX348557B/en active IP Right Grant
- 2010-10-29 JP JP2012537089A patent/JP5984672B2/en active Active
- 2010-10-29 DK DK17156031.1T patent/DK3192563T3/en active
- 2010-10-29 HU HUE10827506A patent/HUE033391T2/en unknown
- 2010-10-29 PT PT171560311T patent/PT3192563T/en unknown
- 2010-10-29 WO PCT/US2010/054601 patent/WO2011053748A2/en active Application Filing
-
2012
- 2012-04-30 US US13/459,694 patent/US9027297B2/en active Active
-
2015
- 2015-05-11 US US14/708,917 patent/US20150240473A1/en not_active Abandoned
-
2021
- 2021-12-02 US US17/541,034 patent/US11982081B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002093588A2 (en) * | 2001-05-14 | 2002-11-21 | Rad Technology Llc | Shielded structure for radiation treatment equipment and method of assembly |
US6973758B2 (en) | 2001-05-14 | 2005-12-13 | Rad Technology, Llc | Shielded structure for radiation treatment equipment and method of assembly |
WO2004003934A1 (en) * | 2002-07-01 | 2004-01-08 | Elekta Ab (Publ) | A mobile building unit as well as a building and a method for constructing the building |
WO2008100827A1 (en) * | 2007-02-12 | 2008-08-21 | Murphy Brent D | Mobile radiation treatment facility |
Also Published As
Publication number | Publication date |
---|---|
PL3192563T3 (en) | 2021-11-29 |
PT2493565T (en) | 2017-05-25 |
WO2011053748A2 (en) | 2011-05-05 |
WO2011053748A3 (en) | 2011-09-15 |
MX2012004940A (en) | 2012-11-23 |
ES2625156T3 (en) | 2017-07-18 |
EP3192563B1 (en) | 2021-05-12 |
CA2778958A1 (en) | 2011-05-05 |
EP2493565B1 (en) | 2017-02-15 |
US20150240473A1 (en) | 2015-08-27 |
PT3192563T (en) | 2021-08-13 |
MX348557B (en) | 2017-06-19 |
WO2011053748A8 (en) | 2011-06-16 |
EP2493565A2 (en) | 2012-09-05 |
US20220090371A1 (en) | 2022-03-24 |
PL2493565T3 (en) | 2017-09-29 |
CA2778958C (en) | 2018-05-01 |
EP2493565A4 (en) | 2014-07-02 |
ES2883170T3 (en) | 2021-12-07 |
HUE033391T2 (en) | 2017-12-28 |
US9027297B2 (en) | 2015-05-12 |
US11982081B2 (en) | 2024-05-14 |
DK3192563T3 (en) | 2021-08-16 |
JP5984672B2 (en) | 2016-09-06 |
JP2013509515A (en) | 2013-03-14 |
HUE055849T2 (en) | 2021-12-28 |
US20130111825A1 (en) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11982081B2 (en) | Relocatable radiation vault and methods of assembly and use | |
US10876675B2 (en) | Radiation vault module with adjustable base frame | |
US6973758B2 (en) | Shielded structure for radiation treatment equipment and method of assembly | |
US5695443A (en) | High energy radiation emission shelter and method of making the same | |
US20180110666A1 (en) | Prefabricated modular radiation therapy vault design | |
US6894300B2 (en) | Ion beam facility | |
US20080203331A1 (en) | Mobile radiation treatment facility | |
Eickhoff et al. | HICAT-The German hospital-based light ion cancer therapy project | |
EP4189187A1 (en) | Building elements and structures having materials with shielding properties | |
EP3883645B1 (en) | Mobile radiation oncology coach system with internal and/or external shielding for same | |
Flanz et al. | Overview of the MGH-Northeast Proton Therapy Center plans and progress | |
Maitz et al. | Shielding requirements on-site loading and acceptance testing of the Leksell gamma knife | |
CN117703137A (en) | Radioactive source room structure and construction method | |
Ryskamp et al. | Design of the WSU Epithermal Neutron Beam Extraction Facility for BNCT | |
Reimoser | Development and Engineering Design of a Novel Exocentric Carbon-Ion Gantry for Cancer Therapy: The" Riesenrad" Gantry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2493565 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: OQUIST, CHERI A. Inventor name: LANDAU, ERIC Inventor name: LEFKUS III, JOHN J. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180119 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181219 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E04H 3/08 20060101ALI20201111BHEP Ipc: A61N 5/10 20060101AFI20201111BHEP Ipc: E02D 31/00 20060101ALI20201111BHEP Ipc: G21F 3/00 20060101ALI20201111BHEP Ipc: G21F 7/00 20060101ALI20201111BHEP |
|
INTG | Intention to grant announced |
Effective date: 20201125 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LANDAU, ERIC Inventor name: OQUIST, CHERI A. Inventor name: LEFKUS III, JOHN J. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2493565 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010066981 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1391783 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3192563 Country of ref document: PT Date of ref document: 20210813 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20210806 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20210811 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20210402095 Country of ref document: GR Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 37920 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210812 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210912 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2883170 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211207 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E055849 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010066981 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210912 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 37920 Country of ref document: SK Effective date: 20211029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211029 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210512 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211030 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211029 Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220506 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231028 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20231030 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231102 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231130 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231030 Year of fee payment: 14 Ref country code: SE Payment date: 20231028 Year of fee payment: 14 Ref country code: PT Payment date: 20231029 Year of fee payment: 14 Ref country code: NO Payment date: 20231108 Year of fee payment: 14 Ref country code: IT Payment date: 20231030 Year of fee payment: 14 Ref country code: IE Payment date: 20231109 Year of fee payment: 14 Ref country code: FR Payment date: 20231027 Year of fee payment: 14 Ref country code: FI Payment date: 20231030 Year of fee payment: 14 Ref country code: DK Payment date: 20231030 Year of fee payment: 14 Ref country code: DE Payment date: 20231031 Year of fee payment: 14 Ref country code: CH Payment date: 20231124 Year of fee payment: 14 Ref country code: AT Payment date: 20231109 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231030 Year of fee payment: 14 Ref country code: BE Payment date: 20231028 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |