EP3053956B1 - Zero-halogen cable insulation material for 125°c irradiation cross-linked epcv photovoltaics, and method for preparation thereof - Google Patents
Zero-halogen cable insulation material for 125°c irradiation cross-linked epcv photovoltaics, and method for preparation thereof Download PDFInfo
- Publication number
- EP3053956B1 EP3053956B1 EP14847072.7A EP14847072A EP3053956B1 EP 3053956 B1 EP3053956 B1 EP 3053956B1 EP 14847072 A EP14847072 A EP 14847072A EP 3053956 B1 EP3053956 B1 EP 3053956B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- parts
- zone
- ethylene
- halogen
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 34
- 238000002360 preparation method Methods 0.000 title description 4
- 229910052736 halogen Inorganic materials 0.000 title description 2
- 239000012774 insulation material Substances 0.000 title 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 44
- 229920002943 EPDM rubber Polymers 0.000 claims description 39
- 239000000155 melt Substances 0.000 claims description 35
- 239000000779 smoke Substances 0.000 claims description 35
- -1 polyethylene Polymers 0.000 claims description 33
- 229920001684 low density polyethylene Polymers 0.000 claims description 29
- 239000004702 low-density polyethylene Substances 0.000 claims description 29
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 27
- 239000000377 silicon dioxide Substances 0.000 claims description 27
- 235000012239 silicon dioxide Nutrition 0.000 claims description 27
- 239000004594 Masterbatch (MB) Substances 0.000 claims description 24
- 239000004698 Polyethylene Substances 0.000 claims description 24
- 229920000573 polyethylene Polymers 0.000 claims description 24
- 229920001296 polysiloxane Polymers 0.000 claims description 24
- 239000003381 stabilizer Substances 0.000 claims description 24
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 22
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 22
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 18
- 239000000178 monomer Substances 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 12
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 claims description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 9
- 239000005977 Ethylene Substances 0.000 claims description 9
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 9
- 235000013539 calcium stearate Nutrition 0.000 claims description 9
- 239000008116 calcium stearate Substances 0.000 claims description 9
- 229920001912 maleic anhydride grafted polyethylene Polymers 0.000 claims description 9
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 9
- 238000001556 precipitation Methods 0.000 claims description 9
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 9
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 9
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 9
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 9
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 6
- 238000004132 cross linking Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 239000003063 flame retardant Substances 0.000 description 7
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000010248 power generation Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- MAYZWDRUFKUGGP-VIFPVBQESA-N (3s)-1-[5-tert-butyl-3-[(1-methyltetrazol-5-yl)methyl]triazolo[4,5-d]pyrimidin-7-yl]pyrrolidin-3-ol Chemical compound CN1N=NN=C1CN1C2=NC(C(C)(C)C)=NC(N3C[C@@H](O)CC3)=C2N=N1 MAYZWDRUFKUGGP-VIFPVBQESA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DXZMANYCMVCPIM-UHFFFAOYSA-L zinc;diethylphosphinate Chemical compound [Zn+2].CCP([O-])(=O)CC.CCP([O-])(=O)CC DXZMANYCMVCPIM-UHFFFAOYSA-L 0.000 description 2
- ZGYIXVSQHOKQRZ-COIATFDQSA-N (e)-n-[4-[3-chloro-4-(pyridin-2-ylmethoxy)anilino]-3-cyano-7-[(3s)-oxolan-3-yl]oxyquinolin-6-yl]-4-(dimethylamino)but-2-enamide Chemical compound N#CC1=CN=C2C=C(O[C@@H]3COCC3)C(NC(=O)/C=C/CN(C)C)=CC2=C1NC(C=C1Cl)=CC=C1OCC1=CC=CC=N1 ZGYIXVSQHOKQRZ-COIATFDQSA-N 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 101150104684 UL44 gene Proteins 0.000 description 1
- YUWBVKYVJWNVLE-UHFFFAOYSA-N [N].[P] Chemical compound [N].[P] YUWBVKYVJWNVLE-UHFFFAOYSA-N 0.000 description 1
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 1
- 229920001276 ammonium polyphosphate Polymers 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 101150002378 gC gene Proteins 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- ZQKXQUJXLSSJCH-UHFFFAOYSA-N melamine cyanurate Chemical compound NC1=NC(N)=NC(N)=N1.O=C1NC(=O)NC(=O)N1 ZQKXQUJXLSSJCH-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920001558 organosilicon polymer Polymers 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000012856 weighed raw material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/46—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/005—Processes for mixing polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/203—Solid polymers with solid and/or liquid additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
- C08J3/226—Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/28—Treatment by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L31/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
- C08L31/02—Homopolymers or copolymers of esters of monocarboxylic acids
- C08L31/04—Homopolymers or copolymers of vinyl acetate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/28—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/448—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from other vinyl compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92704—Temperature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2431/00—Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
- C08J2431/02—Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
- C08J2431/04—Homopolymers or copolymers of vinyl acetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2451/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2451/06—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2483/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
- C08J2483/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/014—Additives containing two or more different additives of the same subgroup in C08K
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/22—Halogen free composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/066—LDPE (radical process)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
- C08L2312/06—Crosslinking by radiation
Definitions
- the present invention relates to a low-smoke halogen-free power cable material and a preparation method thereof, specifically relates to a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics and a preparation method thereof.
- Photovoltaic cable is an important part of the photovoltaic power generation.
- the security and reliability of photovoltaic cable are very important for photovoltaic power generation system, and mainly depend on the photovoltaic cable material.
- the most widely used material in the field of photovoltaic cable is XLPE-based material.
- XLPE-based photovoltaic cable material has disadvantages of large hardness, inconvenient installation in a narrow space, and being unable to achieve low-smoke halogen-free VW-1 flame retardant grade, etc.
- EPCV is a blend of rubber and plastic, and has excellent elasticity and high filling property from rubber and excellent mechanical properties and processability from plastic.
- the photovoltaic cable When EPCV is applied to photovoltaic cable, the photovoltaic cable not only has excellent mechanical properties and electrical properties, and also has excellent flame retardancy, which can achieve the halogen-free flame retardant VW-1 grade. Also, it does not include phosphorus-nitrogen based flame retardant and releases a very low amount of smoke in combustion process, which is truly green and environmentally friendly. Therefore, EPCV photovoltaic insulated material has excellent economic and social benefits.
- CN102766293A discloses an irradiation cross-linked low-smoke halogen-free red phosphorus-free flame retardant material, which comprises the following components: 10-80 parts by weight of ethylene-vinyl acetate copolymer, 5-30 parts by weight of ethylene-octylene copolymer and/or ethylene-butylene copolymer and/or ethylene propylene diene rubber, 0-100 parts by weight of polyethylene, 1-20 parts by weight of a polymer compatibilizer, 0.5-10 parts by weight of organosilicon polymer, 1-10 parts by weight of a composite anti-oxidant, 0-200 parts by weight of aluminum hydroxide and/or magnesium hydroxide and/or modified aluminum hydroxide and/or modified magnesium hydroxide, 0.1-100 parts by weight of high molecular weight ammonium polyphosphate and/or 0.1-50 parts by weight of a phosphate ester flame retardant and/or 0.1-50 parts by weight of melamine cyanurate.
- the material reaches American UL224VW-1 standard flame retardant grade when applied in heat-shrinkable sleeve, and reaches American UL1581VW-1 standard when applied in electric wires and cables, and does not contain halogen or red phosphorus, and thus is environmentally friendly.
- one of the objects of the present invention lies in providing a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics.
- the halogen-free insulated cable material has excellent insulating property and flame retardancy, and releases a very low amount of smoke when burning, and the light transmittance in the smoke is high. Meanwhile, the material has excellent mechanical properties and electrical properties.
- the weight parts of the ethylene propylene diene rubber is for example 6 parts, 7 parts, 8 parts, 9 parts, 10 parts, 11 parts, 12 parts, 13 parts, 14 parts, 15 parts, 16 parts, 17 parts, 18 parts or 19 parts.
- the weight parts of the polyethylene is for example 3 parts, 5 parts, 7 parts, 9 parts, 11 parts, 13 parts, 15 parts, 17 parts, 19 parts, 21 parts or 23 parts.
- the weight parts of the ethylene-vinyl acetate copolymer is for example 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, 8 parts or 9 parts.
- the weight parts of the compatibilizer is for example 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts or 4.5 parts.
- the weight parts of the aluminum hydroxide is for example 52 parts, 54 parts, 57 parts, 60 parts, 63 parts, 66 parts, 69 parts, 72 parts or 74 parts.
- the weight parts of the stabilizer is for example 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts or 4.5 parts.
- the weight parts of the silicone masterbatch is for example 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts or 4.5 parts.
- a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics being prepared from the following raw materials based on weight parts:
- a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics being prepared from the following raw materials based on weight parts:
- the above low-smoke halogen-free insulated cable materials used for 125°C irradiation cross-linked EPCV photovoltaics can be prepared by blending and granulating using a conventional internal mixer and extruding and granulating using a extruder from formula amounts of raw materials.
- the ethylene propylene diene rubber has an ethylene to propylene segment molar ratio of 60:40-70:30, with the third monomer being ethylidene norbornene which represents 1-3 wt% of the total weight of the three monomers, and has a number average molecular weight of 50-150 thousand, a mooney viscosity at 100°C of 30-70 Pa ⁇ s and a shore A hardness of 20-50.
- the polyethylene is a low density polyethylene and has a number average molecular weight of 80-160 thousand and a melt index at 190°C and 2.16 kg of 1-5 g/10min.
- the ethylene-vinyl acetate copolymer has a content of vinyl acetate of 40-60 wt% and a melt index at 190°C and 2.16 kg of 3-5 g/10min.
- the compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 1-2% and has a melt index at 190°C and 2.16 kg of 1-3 g/10min.
- the aluminum hydroxide is prepared by Bayer-sintering combination process.
- the aluminum hydroxide is modified by aminosilane, and the particle size D50 thereof is 1-3 microns.
- the stabilizer is composed of the following components based on weight parts: 30-50 parts of calcium stearate, 5-40 parts of zinc stearate, and 30-60 parts of pentaerythrite tetra[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- the silicone masterbatch is composed of the following components based on weight parts: 10-20 parts of low density polyethylene, 40-70 parts of siloxane, and 10-50 parts of silicon dioxide.
- the low density polyethylene has a number average molecular weight of 10-50 thousand and a melt index at 190°C and 2.16 kg of 5-10 g/10min.
- the siloxane is methylvinylsiloxane and has a number average molecular weight of 500-800 thousand.
- the silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 5000-6000.
- the second purpose of the present invention is to provide a method for preparing the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics.
- the low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics of the present invention can be obtained.
- a method for preparing the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics comprising the following steps:
- the banburying temperature is 160-180°C, and the banburying time is 15-25 min.
- the banburying temperature is for example 162°C, 164°C, 166°C, 168°C, 170°C, 172°C, 174°C, 176°C or 178°C.
- the banburying time is for example 16 min, 17 min, 18 min, 19 min, 20 min, 21 min, 22 min, 23 min or 24 min.
- the single screw extruder can be divided into five zones, and the operating temperature in each zone is 110-120°C for the first zone, 120-130°C for the second zone, 130-140°C for the third zone, 140-150°C for the fourth zone, and 150-160°C for the fifth zone.
- the temperature in the first zone is for example 111°C, 112°C, 113°C, 114°C, 115°C, 116°C, 117°C, 118°C or 119°C.
- the temperature in the second zone is for example 121°C, 122°C, 123°C, 124°C, 125°C, 126°C, 127°C, 128°C or 129°C.
- the temperature in the third zone is for example 131°C, 132°C, 133°C, 134°C, 135°C, 136°C, 137°C, 138°C or 139°C.
- the temperature in the fourth zone is for example 141°C, 142°C, 143°C, 144°C, 145°C, 146°C, 147°C, 148°C or 149°C.
- the temperature in the fifth zone is for example 151°C, 152°C, 153°C, 154°C, 155°C, 156°C, 157°C, 158°C or 159°C.
- the extruder in step (2), can be divided into four zones, and the operating temperature in each zone is 130-140°C for the first zone, 140-150°C for the second zone, 150-160°C for the third zone, and 160-180°C for the fourth zone.
- the temperature in the first zone is for example 131°C, 132°C, 133°C, 134°C, 135°C, 136°C, 137°C, 138°C or 139°C.
- the temperature in the second zone is for example 141°C, 142°C, 143°C, 144°C, 145°C, 146°C, 147°C, 148°C or 149°C.
- the temperature in the third zone is for example 151°C, 152°C, 153°C, 154°C, 155°C, 156°C, 157°C, 158°C or 159°C.
- the temperature in the fourth zone is for example 161°C, 163°C, 165°C, 167°C, 169°C, 171°C, 173°C, 175°C, 177°C or 179°C.
- the present invention has the following beneficial effects: the product of the present invention has excellent insulating property and flame retardancy, and can achieve the halogen-free flame retardant VW-1, and releases a very low amount of smoke when burning, making a light transmittance of greater than 90% in the smoke, and also has excellent mechanical properties and electrical properties, and can suffer capacitance change rate test at 90°C for 14 days in water according to UL44, fully meeting the property requirements of UL4703-2010 standard.
- a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics being prepared from the following raw materials based on weight parts: 13 parts of ethylene propylene diene rubber (EPDM), 10 parts of polyethylene, 5 parts of ethylene-vinyl acetate copolymer, 2 parts of compatibilizer, 65 parts of aluminum hydroxide, 3 parts of stabilizer, and 2 parts of silicone masterbatch.
- EPDM ethylene propylene diene rubber
- the ethylene propylene diene rubber has an ethylene to propylene segment molar ratio of 65:35, with the third monomer being ethylidene norbornene which represents 2 wt% of the total weight of the three monomers, and has a number average molecular weight of 100 thousand, a mooney viscosity at 100°C of 50 Pa ⁇ s and a shore A hardness of 45.
- the polyethylene is a low density polyethylene and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 5 g/10min.
- the ethylene-vinyl acetate copolymer has a content of vinyl acetate of 50 wt% and a melt index at 190°C and 2.16 kg of 5 g/10min.
- the compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 2% and has a melt index at 190°C and 2.16 kg of 2 g/10min.
- the aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 2 microns.
- the stabilizer is composed of the following components based on weight parts: 30 parts of calcium stearate, 10 parts of zinc stearate, and 60 parts of pentaerythrite tetra[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- the silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 50 parts of siloxane, and 40 parts of silicon dioxide.
- the low density polyethylene has a number average molecular weight of 40 thousand and a melt index at 190°C and 2.16 kg of 8 g/10min.
- the siloxane is methylvinylsiloxane and has a number average molecular weight of 800 thousand.
- the silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000.
- the preparation method of the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics comprises the following steps:
- the specific parameters for melt-blending each component using an internal mixer are that: the banburying temperature is 160-180°C, and the banburying time is 15-25 min.
- step (2) the single screw extruder can be divided into five zones, and the operating temperature in each zone is 110-120°C for the first zone, 120-130°C for the second zone, 130-140°C for the third zone, 140-150°C for the fourth zone, and 150-160°C for the fifth zone.
- step (3) the extruder can be divided into four zones, and the operating temperature in each zone is 130-140°C for the first zone, 140-150°C for the second zone, 150-160°C for the third zone, and 160-180°C for the fourth zone.
- a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics being prepared from the following raw materials based on weight parts: 14 parts of ethylene propylene diene rubber (EPDM), 5 parts of polyethylene, 5 parts of ethylene-vinyl acetate copolymer, 3 parts of compatibilizer, 68 parts of aluminum hydroxide, 2 parts of stabilizer, and 3 parts of silicone masterbatch.
- EPDM ethylene propylene diene rubber
- the ethylene propylene diene rubber has an ethylene to propylene segment molar ratio of 65:35, with the third monomer being ethylidene norbornene which represents 2 wt% of the total weight of the three monomers, and has a number average molecular weight of 100 thousand, a mooney viscosity at 100°C of 50 Pa ⁇ s and a shore A hardness of 45.
- the polyethylene is a low density polyethylene and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 5 g/10min.
- the ethylene-vinyl acetate copolymer has a content of vinyl acetate of 50 wt% and a melt index at 190°C and 2.16 kg of 5 g/10min.
- the compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 2% and has a melt index at 190°C and 2.16 kg of 2 g/10min.
- the aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 2 microns.
- the stabilizer is composed of the following components based on weight parts: 30 parts of calcium stearate, 10 parts of zinc stearate, and 60 parts of pentaerythrite tetra[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- the silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 50 parts of siloxane, and 40 parts of silicon dioxide.
- the low density polyethylene has a number average molecular weight of 40 thousand and a melt index at 190°C and 2.16 kg of 8 g/10min.
- the siloxane is methylvinylsiloxane and has a number average molecular weight of 800 thousand.
- the silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000 mesh.
- the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics being prepared from the following raw materials based on weight parts: 13 parts of ethylene propylene diene rubber (EPDM), 5 parts of polyethylene, 5 parts of ethylene-vinyl acetate copolymer, 2 parts of compatibilizer, 70 parts of aluminum hydroxide, 2 parts of stabilizer, and 3 parts of silicone masterbatch.
- EPDM ethylene propylene diene rubber
- the ethylene propylene diene rubber has an ethylene to propylene segment molar ratio of 65:35, with the third monomer being ethylidene norbornene which represents 2 wt% of the total weight of the three monomers, and has a number average molecular weight of 100 thousand, a mooney viscosity at 100°C of 50 Pa ⁇ s and a shore A hardness of 45.
- the polyethylene is a low density polyethylene and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 1-5 g/10min.
- the ethylene-vinyl acetate copolymer has a content of vinyl acetate of 50 wt% and a melt index at 190°C and 2.16 kg of 5 g/10min.
- the compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 2% and has a melt index at 190°C and 2.16 kg of 2 g/10min.
- the aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 2 microns.
- the stabilizer is composed of the following components based on weight parts: 30 parts of calcium stearate, 10 parts of zinc stearate, and 60 parts of pentaerythrite tetra[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- the silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 50 parts of siloxane, and 40 parts of silicon dioxide.
- the low density polyethylene has a number average molecular weight of 40 thousand and a melt index at 190°C and 2.16 kg of 4 g/10min.
- the siloxane is methylvinylsiloxane and has a number average molecular weight of 800 thousand.
- the silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000.
- the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics being prepared from the following raw materials based on weight parts: 15 parts of ethylene propylene diene rubber (EPDM), 5 parts of polyethylene, 5 parts of ethylene-vinyl acetate copolymer, 2 parts of compatibilizer, 69 parts of aluminum hydroxide, 2 parts of stabilizer, and 2 parts of silicone masterbatch.
- EPDM ethylene propylene diene rubber
- the ethylene propylene diene rubber has an ethylene to propylene segment molar ratio of 65:35, with the third monomer being ethylidene norbornene which represents 2 wt% of the total weight of the three monomers, and has a number average molecular weight of 100 thousand, a mooney viscosity at 100°C of 50 Pa ⁇ s and a shore A hardness of 45.
- the polyethylene is a low density polyethylene and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 4 g/10min.
- the ethylene-vinyl acetate copolymer has a content of vinyl acetate of 50 wt% and a melt index at 190°C and 2.16 kg of 5 g/10min.
- the compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 2% and has a melt index at 190°C and 2.16 kg of 2 g/10min.
- the aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 2 microns.
- the stabilizer is composed of the following components based on weight parts: 30 parts of calcium stearate, 10 parts of zinc stearate, and 60 parts of pentaerythrite tetra[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- the silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 50 parts of siloxane, and 40 parts of silicon dioxide.
- the low density polyethylene has a number average molecular weight of 40 thousand and a melt index at 190°C and 2.16 kg of 8 g/10min.
- the siloxane is methylvinylsiloxane and has a number average molecular weight of 800 thousand.
- the silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000.
- the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics being prepared from the following raw materials based on weight parts: 10 parts of ethylene propylene diene rubber (EPDM), 5 parts of polyethylene, 10 parts of ethylene-vinyl acetate copolymer, 1 parts of compatibilizer, 60 parts of aluminum hydroxide, 2 parts of stabilizer, and 1 parts of silicone masterbatch.
- EPDM ethylene propylene diene rubber
- the ethylene propylene diene rubber has an ethylene to propylene segment molar ratio of 60:40, with the third monomer being ethylidene norbornene which represents 1 wt% of the total weight of the three monomers, and has a number average molecular weight of 50 thousand, a mooney viscosity at 100°C of 30 Pa ⁇ s and a shore A hardness of 20.
- the polyethylene is a low density polyethylene (LDPE) and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 4 g/10min.
- the ethylene-vinyl acetate copolymer has a content of vinyl acetate of 40 % and a melt index at 190°C and 2.16 kg of 3 g/10min.
- the compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 1% and has a melt index at 190°C and 2.16 kg of 1 g/10min.
- the aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 1 microns.
- the stabilizer is composed of the following components based on weight parts: 50 parts of calcium stearate, 5 parts of zinc stearate, and 30 parts of pentaerythrite tetra[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- the silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 40 parts of siloxane, and 10 parts of silicon dioxide.
- the low density polyethylene has a number average molecular weight of 10 thousand and a melt index at 190°C and 2.16 kg of 5 g/10min.
- the siloxane is methylvinylsiloxane and has a number average molecular weight of 500 thousand.
- the silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 5000.
- the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics being prepared from the following raw materials based on weight parts: 18 parts of ethylene propylene diene rubber (EPDM), 12 parts of polyethylene, 8 parts of ethylene-vinyl acetate copolymer, 1.5 parts of compatibilizer, 66 parts of aluminum hydroxide, 3 parts of stabilizer, and 1.5 parts of silicone masterbatch.
- EPDM ethylene propylene diene rubber
- the ethylene propylene diene rubber has an ethylene to propylene segment molar ratio of 70:30, with the third monomer being ethylidene norbornene which represents 3 wt% of the total weight of the three monomers, and has a number average molecular weight of 150 thousand, a mooney viscosity at 100°C of 70 Pa ⁇ s and a shore A hardness of 50.
- the polyethylene is a low density polyethylene (LDPE) and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 4 g/10min.
- LDPE low density polyethylene
- the ethylene-vinyl acetate copolymer has a content of vinyl acetate of 60 % and a melt index at 190°C and 2.16 kg of 5 g/10min.
- the compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 1.5% and has a melt index at 190°C and 2.16 kg of 3 g/10min.
- the aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 3 microns.
- the stabilizer is composed of the following components based on weight parts: 40 parts of calcium stearate, 40 parts of zinc stearate, and 45 parts of pentaerythrite tetra[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- the silicone masterbatch is composed of the following components based on weight parts: 20 parts of low density polyethylene, 70 parts of siloxane, and 50 parts of silicon dioxide.
- the low density polyethylene has a number average molecular weight of 50 thousand and a melt index at 190°C and 2.16 kg of 10 g/10min.
- the siloxane is methylvinylsiloxane and has a number average molecular weight of 800 thousand.
- the silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000.
- the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics being prepared from the following raw materials based on weight parts: 18 parts of ethylene propylene diene rubber (EPDM), 20 parts of polyethylene, 2 parts of compatibilizer, 56 parts of aluminum hydroxide, 2 parts of stabilizer, and 2 parts of silicone masterbatch.
- EPDM ethylene propylene diene rubber
- the ethylene propylene diene rubber has an ethylene to propylene segment molar ratio of 65:35, with the third monomer being ethylidene norbornene which represents 2 wt% of the total weight of the three monomers, and has a number average molecular weight of 100 thousand, a mooney viscosity at 100°C of 50 Pa ⁇ s and a shore A hardness of 45.
- the polyethylene is a low density polyethylene and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 5 g/10min.
- the compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 2% and has a melt index at 190°C and 2.16 kg of 2 g/10min.
- the aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 2 microns.
- the stabilizer is composed of the following components based on weight parts: 30 parts of calcium stearate, 10 parts of zinc stearate, and 60 parts of pentaerythrite tetra[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- the silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 50 parts of siloxane, and 40 parts of silicon dioxide.
- the low density polyethylene has a number average molecular weight of 4 thousand and a melt index at 190°C and 2.16 kg of 8 g/10min.
- the siloxane is methylvinylsiloxane and has a number average molecular weight of 80 thousand.
- the silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000.
- the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- Example 1 The properties of the low-smoke halogen-free insulated cable materials used for 125°C irradiation cross-linked EPCV photovoltaics of Examples 1-7 are tested, and the specific data are shown in the following table.
- Test Item Example 1
- Example 2 Example 3
- Example 4 Example 5
- Example 6 Example 7
- the first day and the fourteenth day 1.5% 1.8% 1.4% 1.9% 1.3% 1.5% 1.6%
- the seventh day and the fourteenth day 0.5% 0.6% 0.6% 0.7% 0.5% 0.6% 0.4%
- the present application illustrates the detailed composition and method of the present invention by the above examples, but the present invention is not limited to the detailed composition and method, that is, it does not mean that the invention must be conducted relying on the above detailed composition and method.
- the present invention should understand that any modification to the present invention, any equivalent replacement of each raw material of the present invention and the addition of auxiliary ingredient, the selection of specific embodiment and the like all fall into the protection scope and the disclosure scope of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Inorganic Insulating Materials (AREA)
Description
- The present invention relates to a low-smoke halogen-free power cable material and a preparation method thereof, specifically relates to a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics and a preparation method thereof.
- With the conventional energy supply crisis in the world becoming increasingly serious, large-scale exploitation and utilization of petrochemical energy has become one of the main causes of environmental pollution and deterioration of human living environment, and thus finding new energy sources has become a hot issue in the world. In all kinds of new energy sources, solar photovoltaic power generation has the advantages of non-pollution, sustainability, large amount, wide distribution, various forms for application and so on, and thus is highly concerned by the world.
- Photovoltaic cable is an important part of the photovoltaic power generation. The security and reliability of photovoltaic cable are very important for photovoltaic power generation system, and mainly depend on the photovoltaic cable material. Currently, the most widely used material in the field of photovoltaic cable is XLPE-based material. However, in the application process, XLPE-based photovoltaic cable material has disadvantages of large hardness, inconvenient installation in a narrow space, and being unable to achieve low-smoke halogen-free VW-1 flame retardant grade, etc.
- EPCV is a blend of rubber and plastic, and has excellent elasticity and high filling property from rubber and excellent mechanical properties and processability from plastic. When EPCV is applied to photovoltaic cable, the photovoltaic cable not only has excellent mechanical properties and electrical properties, and also has excellent flame retardancy, which can achieve the halogen-free flame retardant VW-1 grade. Also, it does not include phosphorus-nitrogen based flame retardant and releases a very low amount of smoke in combustion process, which is truly green and environmentally friendly. Therefore, EPCV photovoltaic insulated material has excellent economic and social benefits.
-
CN102766293A discloses an irradiation cross-linked low-smoke halogen-free red phosphorus-free flame retardant material, which comprises the following components: 10-80 parts by weight of ethylene-vinyl acetate copolymer, 5-30 parts by weight of ethylene-octylene copolymer and/or ethylene-butylene copolymer and/or ethylene propylene diene rubber, 0-100 parts by weight of polyethylene, 1-20 parts by weight of a polymer compatibilizer, 0.5-10 parts by weight of organosilicon polymer, 1-10 parts by weight of a composite anti-oxidant, 0-200 parts by weight of aluminum hydroxide and/or magnesium hydroxide and/or modified aluminum hydroxide and/or modified magnesium hydroxide, 0.1-100 parts by weight of high molecular weight ammonium polyphosphate and/or 0.1-50 parts by weight of a phosphate ester flame retardant and/or 0.1-50 parts by weight of melamine cyanurate. The material reaches American UL224VW-1 standard flame retardant grade when applied in heat-shrinkable sleeve, and reaches American UL1581VW-1 standard when applied in electric wires and cables, and does not contain halogen or red phosphorus, and thus is environmentally friendly. - Aiming at the problems in the prior art, one of the objects of the present invention lies in providing a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics. The halogen-free insulated cable material has excellent insulating property and flame retardancy, and releases a very low amount of smoke when burning, and the light transmittance in the smoke is high. Meanwhile, the material has excellent mechanical properties and electrical properties.
- In order to achieve the above purpose, the present invention utilizes the following technical solutions:
- A low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, being prepared from the following raw materials based on weight parts:
- 5-20 parts of ethylene propylene diene rubber;
- 0-25 parts of polyethylene;
- 0-10 parts of ethylene-vinyl acetate copolymer;
- 1-5 parts of compatibilizer;
- 50-75 parts of aluminum hydroxide;
- 1-5 parts of stabilizer;
- 1-5 parts of silicone masterbatch,
- The weight parts of the ethylene propylene diene rubber is for example 6 parts, 7 parts, 8 parts, 9 parts, 10 parts, 11 parts, 12 parts, 13 parts, 14 parts, 15 parts, 16 parts, 17 parts, 18 parts or 19 parts.
- The weight parts of the polyethylene is for example 3 parts, 5 parts, 7 parts, 9 parts, 11 parts, 13 parts, 15 parts, 17 parts, 19 parts, 21 parts or 23 parts.
- The weight parts of the ethylene-vinyl acetate copolymer is for example 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, 8 parts or 9 parts.
- The weight parts of the compatibilizer is for example 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts or 4.5 parts.
- The weight parts of the aluminum hydroxide is for example 52 parts, 54 parts, 57 parts, 60 parts, 63 parts, 66 parts, 69 parts, 72 parts or 74 parts.
- The weight parts of the stabilizer is for example 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts or 4.5 parts.
- The weight parts of the silicone masterbatch is for example 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts or 4.5 parts.
- Preferably, a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, being prepared from the following raw materials based on weight parts:
- 8-18 parts of ethylene propylene diene rubber;
- 2-23 parts of polyethylene;
- 2-10 parts of ethylene-vinyl acetate copolymer;
- 1-5 parts of compatibilizer;
- 52-72 parts of aluminum hydroxide;
- 1-5 parts of stabilizer;
- 1-5 parts of silicone masterbatch.
- Preferably, a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, being prepared from the following raw materials based on weight parts:
- 10-18 parts of ethylene propylene diene rubber;
- 5-20 parts of polyethylene;
- 3-10 parts of ethylene-vinyl acetate copolymer;
- 1-5 parts of compatibilizer;
- 55-70 parts of aluminum hydroxide;
- 1-5 parts of stabilizer;
- 1-5 parts of silicone masterbatch.
- The above low-smoke halogen-free insulated cable materials used for 125°C irradiation cross-linked EPCV photovoltaics can be prepared by blending and granulating using a conventional internal mixer and extruding and granulating using a extruder from formula amounts of raw materials.
- Preferably, the ethylene propylene diene rubber (EPDM) has an ethylene to propylene segment molar ratio of 60:40-70:30, with the third monomer being ethylidene norbornene which represents 1-3 wt% of the total weight of the three monomers, and has a number average molecular weight of 50-150 thousand, a mooney viscosity at 100°C of 30-70 Pa·s and a shore A hardness of 20-50.
- Preferably, the polyethylene is a low density polyethylene and has a number average molecular weight of 80-160 thousand and a melt index at 190°C and 2.16 kg of 1-5 g/10min.
- Preferably, the ethylene-vinyl acetate copolymer has a content of vinyl acetate of 40-60 wt% and a melt index at 190°C and 2.16 kg of 3-5 g/10min.
- Preferably, the compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 1-2% and has a melt index at 190°C and 2.16 kg of 1-3 g/10min.
- Preferably, the aluminum hydroxide is prepared by Bayer-sintering combination process. Preferably, the aluminum hydroxide is modified by aminosilane, and the particle size D50 thereof is 1-3 microns.
- The stabilizer is composed of the following components based on weight parts: 30-50 parts of calcium stearate, 5-40 parts of zinc stearate, and 30-60 parts of pentaerythrite tetra[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- The silicone masterbatch is composed of the following components based on weight parts: 10-20 parts of low density polyethylene, 40-70 parts of siloxane, and 10-50 parts of silicon dioxide.
- Preferably, the low density polyethylene has a number average molecular weight of 10-50 thousand and a melt index at 190°C and 2.16 kg of 5-10 g/10min.
- Preferably, the siloxane is methylvinylsiloxane and has a number average molecular weight of 500-800 thousand.
- Preferably, the silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 5000-6000.
- The second purpose of the present invention is to provide a method for preparing the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics. By blending and granulating using a conventional internal mixer and extruding and granulating using an extruder, the low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics of the present invention can be obtained.
- A method for preparing the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, comprising the following steps:
- (1) melt-blending all the components based on formula amounts using an internal mixer, and then granulating using a single screw extruder;
- (2) extruding the particles obtained by the step (1) into wires using an extruder;
- (3) crosslinking the wires by radiation using an electron accelerator, and thus obtaining a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics.
- Preferably, in step (1), the banburying temperature is 160-180°C, and the banburying time is 15-25 min.
- The banburying temperature is for example 162°C, 164°C, 166°C, 168°C, 170°C, 172°C, 174°C, 176°C or 178°C.
- The banburying time is for example 16 min, 17 min, 18 min, 19 min, 20 min, 21 min, 22 min, 23 min or 24 min.
- Preferably, in step (1), the single screw extruder can be divided into five zones, and the operating temperature in each zone is 110-120°C for the first zone, 120-130°C for the second zone, 130-140°C for the third zone, 140-150°C for the fourth zone, and 150-160°C for the fifth zone.
- The temperature in the first zone is for example 111°C, 112°C, 113°C, 114°C, 115°C, 116°C, 117°C, 118°C or 119°C.
- The temperature in the second zone is for example 121°C, 122°C, 123°C, 124°C, 125°C, 126°C, 127°C, 128°C or 129°C.
- The temperature in the third zone is for example 131°C, 132°C, 133°C, 134°C, 135°C, 136°C, 137°C, 138°C or 139°C.
- The temperature in the fourth zone is for example 141°C, 142°C, 143°C, 144°C, 145°C, 146°C, 147°C, 148°C or 149°C.
- The temperature in the fifth zone is for example 151°C, 152°C, 153°C, 154°C, 155°C, 156°C, 157°C, 158°C or 159°C.
- Preferably, in step (2), the extruder can be divided into four zones, and the operating temperature in each zone is 130-140°C for the first zone, 140-150°C for the second zone, 150-160°C for the third zone, and 160-180°C for the fourth zone.
- The temperature in the first zone is for example 131°C, 132°C, 133°C, 134°C, 135°C, 136°C, 137°C, 138°C or 139°C.
- The temperature in the second zone is for example 141°C, 142°C, 143°C, 144°C, 145°C, 146°C, 147°C, 148°C or 149°C.
- The temperature in the third zone is for example 151°C, 152°C, 153°C, 154°C, 155°C, 156°C, 157°C, 158°C or 159°C.
- The temperature in the fourth zone is for example 161°C, 163°C, 165°C, 167°C, 169°C, 171°C, 173°C, 175°C, 177°C or 179°C.
- Compared with the prior art, the present invention has the following beneficial effects: the product of the present invention has excellent insulating property and flame retardancy, and can achieve the halogen-free flame retardant VW-1, and releases a very low amount of smoke when burning, making a light transmittance of greater than 90% in the smoke, and also has excellent mechanical properties and electrical properties, and can suffer capacitance change rate test at 90°C for 14 days in water according to UL44, fully meeting the property requirements of UL4703-2010 standard.
- Hereinafter, the technical solutions of the present application are further described by the specific embodiments.
- A low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, being prepared from the following raw materials based on weight parts: 13 parts of ethylene propylene diene rubber (EPDM), 10 parts of polyethylene, 5 parts of ethylene-vinyl acetate copolymer, 2 parts of compatibilizer, 65 parts of aluminum hydroxide, 3 parts of stabilizer, and 2 parts of silicone masterbatch.
- The ethylene propylene diene rubber (EPDM) has an ethylene to propylene segment molar ratio of 65:35, with the third monomer being ethylidene norbornene which represents 2 wt% of the total weight of the three monomers, and has a number average molecular weight of 100 thousand, a mooney viscosity at 100°C of 50 Pa·s and a shore A hardness of 45.
- The polyethylene is a low density polyethylene and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 5 g/10min.
- The ethylene-vinyl acetate copolymer has a content of vinyl acetate of 50 wt% and a melt index at 190°C and 2.16 kg of 5 g/10min.
- The compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 2% and has a melt index at 190°C and 2.16 kg of 2 g/10min.
- The aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 2 microns.
- The stabilizer is composed of the following components based on weight parts: 30 parts of calcium stearate, 10 parts of zinc stearate, and 60 parts of pentaerythrite tetra[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- The silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 50 parts of siloxane, and 40 parts of silicon dioxide. The low density polyethylene has a number average molecular weight of 40 thousand and a melt index at 190°C and 2.16 kg of 8 g/10min. The siloxane is methylvinylsiloxane and has a number average molecular weight of 800 thousand. The silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000.
- The preparation method of the above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics comprises the following steps:
- (1) weighing accurately each component according to the formula;
- (2) melt-blending all the weighed raw materials using an internal mixer, and then granulating using a single screw extruder successively;
- (3) extruding the obtained particles into wires using an extruder;
- (4) crosslinking the wires by radiation using an electron accelerator.
- The specific parameters for melt-blending each component using an internal mixer are that: the banburying temperature is 160-180°C, and the banburying time is 15-25 min.
- In step (2), the single screw extruder can be divided into five zones, and the operating temperature in each zone is 110-120°C for the first zone, 120-130°C for the second zone, 130-140°C for the third zone, 140-150°C for the fourth zone, and 150-160°C for the fifth zone.
- In step (3), the extruder can be divided into four zones, and the operating temperature in each zone is 130-140°C for the first zone, 140-150°C for the second zone, 150-160°C for the third zone, and 160-180°C for the fourth zone.
- A low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, being prepared from the following raw materials based on weight parts: 14 parts of ethylene propylene diene rubber (EPDM), 5 parts of polyethylene, 5 parts of ethylene-vinyl acetate copolymer, 3 parts of compatibilizer, 68 parts of aluminum hydroxide, 2 parts of stabilizer, and 3 parts of silicone masterbatch.
- The ethylene propylene diene rubber (EPDM) has an ethylene to propylene segment molar ratio of 65:35, with the third monomer being ethylidene norbornene which represents 2 wt% of the total weight of the three monomers, and has a number average molecular weight of 100 thousand, a mooney viscosity at 100°C of 50 Pa·s and a shore A hardness of 45.
- The polyethylene is a low density polyethylene and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 5 g/10min.
- The ethylene-vinyl acetate copolymer has a content of vinyl acetate of 50 wt% and a melt index at 190°C and 2.16 kg of 5 g/10min.
- The compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 2% and has a melt index at 190°C and 2.16 kg of 2 g/10min.
- The aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 2 microns.
- The stabilizer is composed of the following components based on weight parts: 30 parts of calcium stearate, 10 parts of zinc stearate, and 60 parts of pentaerythrite tetra[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- The silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 50 parts of siloxane, and 40 parts of silicon dioxide. The low density polyethylene has a number average molecular weight of 40 thousand and a melt index at 190°C and 2.16 kg of 8 g/10min. The siloxane is methylvinylsiloxane and has a number average molecular weight of 800 thousand. The silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000 mesh.
- The above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- A low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, being prepared from the following raw materials based on weight parts: 13 parts of ethylene propylene diene rubber (EPDM), 5 parts of polyethylene, 5 parts of ethylene-vinyl acetate copolymer, 2 parts of compatibilizer, 70 parts of aluminum hydroxide, 2 parts of stabilizer, and 3 parts of silicone masterbatch.
- The ethylene propylene diene rubber (EPDM) has an ethylene to propylene segment molar ratio of 65:35, with the third monomer being ethylidene norbornene which represents 2 wt% of the total weight of the three monomers, and has a number average molecular weight of 100 thousand, a mooney viscosity at 100°C of 50 Pa·s and a shore A hardness of 45.
- The polyethylene is a low density polyethylene and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 1-5 g/10min.
- The ethylene-vinyl acetate copolymer has a content of vinyl acetate of 50 wt% and a melt index at 190°C and 2.16 kg of 5 g/10min.
- The compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 2% and has a melt index at 190°C and 2.16 kg of 2 g/10min.
- The aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 2 microns.
- The stabilizer is composed of the following components based on weight parts: 30 parts of calcium stearate, 10 parts of zinc stearate, and 60 parts of pentaerythrite tetra[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- The silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 50 parts of siloxane, and 40 parts of silicon dioxide. The low density polyethylene has a number average molecular weight of 40 thousand and a melt index at 190°C and 2.16 kg of 4 g/10min. The siloxane is methylvinylsiloxane and has a number average molecular weight of 800 thousand. The silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000.
- The above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- A low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, being prepared from the following raw materials based on weight parts: 15 parts of ethylene propylene diene rubber (EPDM), 5 parts of polyethylene, 5 parts of ethylene-vinyl acetate copolymer, 2 parts of compatibilizer, 69 parts of aluminum hydroxide, 2 parts of stabilizer, and 2 parts of silicone masterbatch.
- The ethylene propylene diene rubber (EPDM) has an ethylene to propylene segment molar ratio of 65:35, with the third monomer being ethylidene norbornene which represents 2 wt% of the total weight of the three monomers, and has a number average molecular weight of 100 thousand, a mooney viscosity at 100°C of 50 Pa·s and a shore A hardness of 45.
- The polyethylene is a low density polyethylene and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 4 g/10min.
- The ethylene-vinyl acetate copolymer has a content of vinyl acetate of 50 wt% and a melt index at 190°C and 2.16 kg of 5 g/10min.
- The compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 2% and has a melt index at 190°C and 2.16 kg of 2 g/10min.
- The aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 2 microns.
- The stabilizer is composed of the following components based on weight parts: 30 parts of calcium stearate, 10 parts of zinc stearate, and 60 parts of pentaerythrite tetra[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- The silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 50 parts of siloxane, and 40 parts of silicon dioxide. The low density polyethylene has a number average molecular weight of 40 thousand and a melt index at 190°C and 2.16 kg of 8 g/10min. The siloxane is methylvinylsiloxane and has a number average molecular weight of 800 thousand. The silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000.
- The above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- A low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, being prepared from the following raw materials based on weight parts: 10 parts of ethylene propylene diene rubber (EPDM), 5 parts of polyethylene, 10 parts of ethylene-vinyl acetate copolymer, 1 parts of compatibilizer, 60 parts of aluminum hydroxide, 2 parts of stabilizer, and 1 parts of silicone masterbatch.
- The ethylene propylene diene rubber (EPDM) has an ethylene to propylene segment molar ratio of 60:40, with the third monomer being ethylidene norbornene which represents 1 wt% of the total weight of the three monomers, and has a number average molecular weight of 50 thousand, a mooney viscosity at 100°C of 30 Pa·s and a shore A hardness of 20.
- The polyethylene is a low density polyethylene (LDPE) and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 4 g/10min. The ethylene-vinyl acetate copolymer has a content of vinyl acetate of 40 % and a melt index at 190°C and 2.16 kg of 3 g/10min.
- The compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 1% and has a melt index at 190°C and 2.16 kg of 1 g/10min.
- The aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 1 microns.
- The stabilizer is composed of the following components based on weight parts: 50 parts of calcium stearate, 5 parts of zinc stearate, and 30 parts of pentaerythrite tetra[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- The silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 40 parts of siloxane, and 10 parts of silicon dioxide. The low density polyethylene has a number average molecular weight of 10 thousand and a melt index at 190°C and 2.16 kg of 5 g/10min. The siloxane is methylvinylsiloxane and has a number average molecular weight of 500 thousand. The silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 5000.
- The above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- A low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, being prepared from the following raw materials based on weight parts: 18 parts of ethylene propylene diene rubber (EPDM), 12 parts of polyethylene, 8 parts of ethylene-vinyl acetate copolymer, 1.5 parts of compatibilizer, 66 parts of aluminum hydroxide, 3 parts of stabilizer, and 1.5 parts of silicone masterbatch.
- The ethylene propylene diene rubber (EPDM) has an ethylene to propylene segment molar ratio of 70:30, with the third monomer being ethylidene norbornene which represents 3 wt% of the total weight of the three monomers, and has a number average molecular weight of 150 thousand, a mooney viscosity at 100°C of 70 Pa·s and a shore A hardness of 50.
- The polyethylene is a low density polyethylene (LDPE) and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 4 g/10min.
- The ethylene-vinyl acetate copolymer has a content of vinyl acetate of 60 % and a melt index at 190°C and 2.16 kg of 5 g/10min.
- The compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 1.5% and has a melt index at 190°C and 2.16 kg of 3 g/10min.
- The aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 3 microns.
- The stabilizer is composed of the following components based on weight parts: 40 parts of calcium stearate, 40 parts of zinc stearate, and 45 parts of pentaerythrite tetra[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate].
- The silicone masterbatch is composed of the following components based on weight parts: 20 parts of low density polyethylene, 70 parts of siloxane, and 50 parts of silicon dioxide. The low density polyethylene has a number average molecular weight of 50 thousand and a melt index at 190°C and 2.16 kg of 10 g/10min. The siloxane is methylvinylsiloxane and has a number average molecular weight of 800 thousand. The silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000.
- The above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- A low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, being prepared from the following raw materials based on weight parts: 18 parts of ethylene propylene diene rubber (EPDM), 20 parts of polyethylene, 2 parts of compatibilizer, 56 parts of aluminum hydroxide, 2 parts of stabilizer, and 2 parts of silicone masterbatch.
- The ethylene propylene diene rubber (EPDM) has an ethylene to propylene segment molar ratio of 65:35, with the third monomer being ethylidene norbornene which represents 2 wt% of the total weight of the three monomers, and has a number average molecular weight of 100 thousand, a mooney viscosity at 100°C of 50 Pa·s and a shore A hardness of 45.
- The polyethylene is a low density polyethylene and has a number average molecular weight of 120 thousand and a melt index at 190°C and 2.16 kg of 5 g/10min.
- The compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 2% and has a melt index at 190°C and 2.16 kg of 2 g/10min.
- The aluminum hydroxide is prepared by Bayer-sintering combination process and modified by aminosilane, and the particle size D50 thereof is 2 microns.
- The stabilizer is composed of the following components based on weight parts:
30 parts of calcium stearate, 10 parts of zinc stearate, and 60 parts of pentaerythrite tetra[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate]. - The silicone masterbatch is composed of the following components based on weight parts: 10 parts of low density polyethylene, 50 parts of siloxane, and 40 parts of silicon dioxide. The low density polyethylene has a number average molecular weight of 4 thousand and a melt index at 190°C and 2.16 kg of 8 g/10min. The siloxane is methylvinylsiloxane and has a number average molecular weight of 80 thousand. The silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 6000.
- The above low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics is prepared using the same method as Example 1.
- The properties of the low-smoke halogen-free insulated cable materials used for 125°C irradiation cross-linked EPCV photovoltaics of Examples 1-7 are tested, and the specific data are shown in the following table.
Test Item Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Tensile strength 10.8 MPa 10.5 MPa 10.9 MPa 11.2 MPa 11.5 MPa 12.1 MPa 10.7 MPa Breaking Elongation 188% 169% 174% 183% 182% 185% 186% light transmittance in the smoke 93% 95% 96% 95% 96% 96% 94% VW-1 vertical combustion test pass pass pass pass pass pass pass capacitance change rate at 90°C for 14 days in water The first day and the fourteenth day 1.5% 1.8% 1.4% 1.9% 1.3% 1.5% 1.6% The seventh day and the fourteenth day 0.5% 0.6% 0.6% 0.7% 0.5% 0.6% 0.4% - The applicant states that: the present application illustrates the detailed composition and method of the present invention by the above examples, but the present invention is not limited to the detailed composition and method, that is, it does not mean that the invention must be conducted relying on the above detailed composition and method. Those skilled in the art should understand that any modification to the present invention, any equivalent replacement of each raw material of the present invention and the addition of auxiliary ingredient, the selection of specific embodiment and the like all fall into the protection scope and the disclosure scope of the present invention.
Claims (9)
- A halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics, characterized in that, it is prepared from the following raw materials based on weight parts:5-20 parts of ethylene propylene diene rubber;1-25 parts of polyethylene;0.5-10 parts of ethylene-vinyl acetate copolymer;1-5 parts of compatibilizer;50-75 parts of aluminum hydroxide;1-5 parts of stabilizer;1-5 parts of silicone masterbatch;the stabilizer is composed of the following components based on weight parts: 30-50 parts of calcium stearate, 5-40 parts of zinc stearate, and 30-60 parts of pentaerythrite tetra[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate];
the silicone masterbatch is composed of the following components based on weight parts: 10-20 parts of low density polyethylene, 40-70 parts of siloxane, and 10-50 parts of silicon dioxide. - The halogen-free insulated cable material of claim 1, characterized in that, it is prepared from the following raw materials based on weight parts:8-18 parts of ethylene propylene diene rubber;2-23 parts of polyethylene;2-10 parts of ethylene-vinyl acetate copolymer;1-5 parts of compatibilizer;52-72 parts of aluminum hydroxide;1-5 parts of stabilizer;1-5 parts of silicone masterbatch.
- The halogen-free insulated cable material of claim 1 or 2, characterized in that, it is prepared from the following raw materials based on weight parts: 10-18 parts of ethylene propylene diene rubber;5-20 parts of polyethylene;3-10 parts of ethylene-vinyl acetate copolymer;1-5 parts of compatibilizer;55-70 parts of aluminum hydroxide;1-5 parts of stabilizer;1-5 parts of silicone masterbatch.
- The halogen-free insulated cable material of any one of claims 1-3, characterized in that, the ethylene propylene diene rubber has an ethylene to propylene segment molar ratio of 60:40-70:30, with the third monomer being ethylidene norbornene which represents 1-3 wt% of the total weight of the three monomers, and has a number average molecular weight of 50-150 thousand, a mooney viscosity at 100°C of 30-70 Pa·s and a shore A hardness of 20-50.
- The halogen-free insulated cable material of any one of claims 1-4, characterized in that, the polyethylene is a low density polyethylene and has a number average molecular weight of 80-160 thousand and a melt index at 190°C and 2.16 kg of 1-5 g/10min;
preferably, the ethylene-vinyl acetate copolymer has a content of vinyl acetate of 40-60 wt% and a melt index at 190°C and 2.16 kg of 3-5 g/10min. - The halogen-free insulated cable material of any one of claims 1-5, characterized in that, the compatibilizer is maleic anhydride grafted polyethylene with a grafting ratio of 1-2% and has a melt index at 190°C and 2.16 kg of 1-3 g/10min;
preferably, the aluminum hydroxide is prepared by Bayer-sintering combination process;
preferably, the aluminum hydroxide is modified by aminosilane, and the particle size D50 thereof is 1-3 microns. - The halogen-free insulated cable material of any one of claims 1-6, characterized in that, the low density polyethylene has a number average molecular weight of 10-50 thousand and a melt index at 190°C and 2.16 kg of 5-10 g/10min;
preferably, the siloxane is methylvinylsiloxane and has a number average molecular weight of 500-800 thousand;
preferably, the silicon dioxide is a silicon dioxide prepared by precipitation methods and has a mesh number of 5000-6000. - A method for preparing the halogen-free insulated cable material of any one of claims 1-7, characterized in that, the method comprises the following steps:(1) melt-blending all the components based on formula amounts using an internal mixer, and then granulating using a single screw extruder;(2) extruding the particles obtained by the step (1) into wires using an extruder;(3) crosslinking the wires by radiation using an electron accelerator, and thus obtaining a low-smoke halogen-free insulated cable material used for 125°C irradiation cross-linked EPCV photovoltaics.
- The method of claim 8, characterized in that, in step (1), the banburying temperature is 160-180°C, and the banburying time is 15-25 min;
preferably, the single screw extruder in step (1) can be divided into five zones, and the operating temperature in each zone is 110-120°C for the first zone, 120-130°C for the second zone, 130-140°C for the third zone, 140-150°C for the fourth zone, and 150-160°C for the fifth zone;
preferably, in step (2), the extruder can be divided into four zones, and the operating temperature in each zone is 130-140°C for the first zone, 140-150°C for the second zone, 150-160°C for the third zone, and 160-180°C for the fourth zone.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310462496.XA CN103524896B (en) | 2013-09-30 | 2013-09-30 | Halogen insulated cable material and preparation method thereof for a kind of 125 DEG C of cross-linking radiation EPCV photovoltaics |
PCT/CN2014/070590 WO2015043121A1 (en) | 2013-09-30 | 2014-01-14 | Zero-halogen cable insulation material for 125°c irradiation cross-linked epcv photovoltaics, and method for preparation thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3053956A1 EP3053956A1 (en) | 2016-08-10 |
EP3053956A4 EP3053956A4 (en) | 2017-08-02 |
EP3053956B1 true EP3053956B1 (en) | 2018-10-24 |
Family
ID=49927269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14847072.7A Active EP3053956B1 (en) | 2013-09-30 | 2014-01-14 | Zero-halogen cable insulation material for 125°c irradiation cross-linked epcv photovoltaics, and method for preparation thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US9536638B2 (en) |
EP (1) | EP3053956B1 (en) |
JP (1) | JP6074548B2 (en) |
CN (1) | CN103524896B (en) |
WO (1) | WO2015043121A1 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103524893B (en) * | 2013-09-30 | 2015-12-23 | 江苏达胜高聚物有限公司 | A kind of 125 DEG C of cross-linking radiation EPCV photovoltaic halogen-free flame-retardant sheath material and preparation method thereof |
CN103524896B (en) | 2013-09-30 | 2016-05-25 | 江苏达胜高聚物有限公司 | Halogen insulated cable material and preparation method thereof for a kind of 125 DEG C of cross-linking radiation EPCV photovoltaics |
FR3032554B1 (en) * | 2015-02-10 | 2019-05-31 | Nexans | ELECTRICAL DEVICE COMPRISING A RETICULATED LAYER |
CN105017627A (en) * | 2015-06-24 | 2015-11-04 | 江苏达胜高聚物股份有限公司 | Super-soft elastomer insulating material for charging cable and preparation method thereof |
CN106854312A (en) * | 2015-12-08 | 2017-06-16 | 江苏达胜高聚物股份有限公司 | A kind of insulating materials for nuclear grade cable and preparation method thereof |
CN106854313A (en) * | 2015-12-08 | 2017-06-16 | 江苏达胜高聚物股份有限公司 | A kind of nuclear grade cable of single-layer insulation material |
CN105860247A (en) * | 2016-06-20 | 2016-08-17 | 江苏达胜高聚物股份有限公司 | Low-smoke halogen-free building cable insulation material and preparation method thereof |
WO2018021149A1 (en) | 2016-07-27 | 2018-02-01 | 日本合成化学工業株式会社 | Multilayer structure, resin composition for adhesive resin layers, and method for producing multilayer structure |
CN107793628A (en) * | 2016-08-29 | 2018-03-13 | 住友化学株式会社 | Method for the masterbatch of solar cell sealing plate and for manufacturing solar cell sealing plate |
CN107254081A (en) * | 2017-05-16 | 2017-10-17 | 安徽瑞鑫自动化仪表有限公司 | A kind of universal cordage rubber sheath |
CN107163332A (en) * | 2017-05-16 | 2017-09-15 | 安徽瑞鑫自动化仪表有限公司 | A kind of electrical engineering cable oversheath |
CN107337906A (en) * | 2017-08-31 | 2017-11-10 | 安徽美腾特种电缆材料有限公司 | A kind of 125 DEG C of cross-linking radiation EPCV photovoltaics Halogen insulated cable material |
CN107722469A (en) * | 2017-09-07 | 2018-02-23 | 新宇电缆集团股份有限公司 | Extraordinary adiabatic cable insulation of a kind of new energy and preparation method thereof |
KR101918755B1 (en) * | 2017-09-07 | 2018-11-14 | 주식회사 경신전선 | Irradiation crosslinking EPDM composite and cable making by of that |
FR3073225B1 (en) * | 2017-11-03 | 2020-11-20 | Silec Cable | COMPOSITION FOR THE MANUFACTURING OF A LAYER OF A CABLE END, METHOD FOR MANUFACTURING SUCH A LAYER AND A CABLE END INCLUDING SUCH A LAYER |
CN109401081B (en) * | 2018-10-31 | 2021-07-23 | 江苏达胜高聚物股份有限公司 | Heat-resistant cable material and preparation method and application thereof |
JP6908580B2 (en) * | 2018-12-27 | 2021-07-28 | 矢崎総業株式会社 | Resin composition, coated wire and wire harness |
CN112117050B (en) * | 2019-06-20 | 2021-10-29 | 广西纵览线缆集团有限公司 | Optical fiber composite low-voltage cable |
CN110746682A (en) * | 2019-11-14 | 2020-02-04 | 苏州铂玛新材料有限公司 | Oil-resistant irradiation crosslinked wire and cable material for rail transit vehicles and preparation method thereof |
CN111234358A (en) * | 2020-01-16 | 2020-06-05 | 江苏上上电缆集团新材料有限公司 | 125 ℃ irradiation crosslinking type halogen-free flame-retardant polyolefin cable material for photovoltaic cable and preparation method thereof |
WO2021150070A1 (en) * | 2020-01-22 | 2021-07-29 | 엘에스전선 주식회사 | Insulating composition for vehicle cable and vehicle cable manufactured by using same |
CN111961274A (en) * | 2020-08-03 | 2020-11-20 | 新远东电缆有限公司 | Insulating material for photovoltaic cable and preparation method thereof |
CN112442227B (en) * | 2020-11-26 | 2023-01-10 | 江苏达胜高聚物股份有限公司 | Low-smoke halogen-free cable material and preparation method and application thereof |
CN112538200A (en) * | 2020-12-03 | 2021-03-23 | 江苏达胜高聚物股份有限公司 | Oil-resistant high-flame-retardant cable material and preparation method and application thereof |
CN112574496B (en) * | 2020-12-08 | 2023-01-10 | 江苏达胜高聚物股份有限公司 | Low-smoke halogen-free flame-retardant cable material and preparation method and application thereof |
CN112574518B (en) * | 2020-12-14 | 2022-08-05 | 上海凯波电缆特材股份有限公司 | Ultraviolet irradiation crosslinked chlorinated polyethylene cable material and preparation method thereof |
CN116003899A (en) * | 2023-02-16 | 2023-04-25 | 广东安拓普聚合物科技有限公司 | Composite material based on bio-based polyethylene and preparation method thereof |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4615075B2 (en) * | 1998-12-28 | 2011-01-19 | 株式会社フジクラ | Non-halogen flame retardant resin composition and flame retardant wire / cable |
JP2003147130A (en) * | 2001-11-08 | 2003-05-21 | Fujikura Ltd | Flame retardant polyolefin resin composition and flame retardant electric wire and cable |
CN100351952C (en) * | 2005-09-28 | 2007-11-28 | 江苏宝源电缆料有限公司 | Cross-linked fire-resistant cable material with 125 degree radiation |
JP5269476B2 (en) * | 2008-05-19 | 2013-08-21 | 昭和電線ケーブルシステム株式会社 | Electric wire / cable |
JP2011046786A (en) * | 2009-08-25 | 2011-03-10 | Fujikura Ltd | Flame-retardant resin composition, insulation wire and cable using the same |
JP2012082277A (en) * | 2010-10-08 | 2012-04-26 | Furukawa Electric Co Ltd:The | Wear-resistant flame-retardant resin composition, molded article, and wear-resistant insulated wire |
CN102070821B (en) * | 2010-12-14 | 2013-02-13 | 江苏德威新材料股份有限公司 | Irradiation cross-linking oil resistance type soft low smoke zero halogen flame-retardant cable material |
CN102153812B (en) * | 2010-12-25 | 2012-07-25 | 金发科技股份有限公司 | Polyolefine sheathing compound for coaxial cable and preparation method thereof |
CN102260387B (en) * | 2011-07-12 | 2013-09-11 | 安徽润佳电缆集团股份有限公司 | 125 DEG C weather-resistant cross-linking low-smoke and halogen-free polyolefin cable material |
CN102898716B (en) * | 2011-07-27 | 2015-04-08 | 上海凯波特种电缆料厂有限公司 | 150DEG C irradiation crosslinking low-smoke halogen-free flame retardant polyolefin material for locomotive wires and its preparation |
CN102898715B (en) * | 2011-07-27 | 2014-05-07 | 上海凯波特种电缆料厂有限公司 | Extremely temperature sensitive halogen-free and low smoke flame retardant plastic alloy for cables and preparation method thereof |
CN102898718B (en) * | 2011-07-27 | 2014-08-27 | 上海凯波特种电缆料厂有限公司 | Non-EVA-substrate cross-linked semi-conductive outer shield material used in 35KV cables, and preparation method thereof |
CN102766293B (en) * | 2011-08-16 | 2013-11-20 | 深圳市沃尔核材股份有限公司 | Radiation cross-linked low-smoke halogen-free red phosphorus-free flame retardant material and application thereof |
CN102585343A (en) * | 2012-02-20 | 2012-07-18 | 扬州市好年华橡塑有限公司 | Black 105-DEG C radiation crosslinked low-smoke, halogen-free and flame-retardant polyolefin cable sheathing compound and preparation method thereof |
CN102617925B (en) * | 2012-04-17 | 2013-07-10 | 中国工程物理研究院核物理与化学研究所 | Composite for irradiation cross-linking of low smoke zero halogen flame-retardant polyolefin cable material and preparation process of composite |
CN102731919B (en) * | 2012-07-16 | 2014-03-12 | 江苏达胜高聚物有限公司 | High-speed-extruding oil-proof wear-resisting irradiation crosslinking rubber material and preparation method thereof |
CN102746555A (en) * | 2012-07-17 | 2012-10-24 | 江苏达胜高聚物有限公司 | Low-smoke halogen-free oil-proof high-performance power cable material for ships and method for producing same |
CN103059404A (en) * | 2013-01-25 | 2013-04-24 | 杭州双马高分子材料科技有限公司 | Radiation cross-linking low-smoke halogen-free flame-retardant polyolefin insulating material and preparation method thereof |
CN103524896B (en) * | 2013-09-30 | 2016-05-25 | 江苏达胜高聚物有限公司 | Halogen insulated cable material and preparation method thereof for a kind of 125 DEG C of cross-linking radiation EPCV photovoltaics |
-
2013
- 2013-09-30 CN CN201310462496.XA patent/CN103524896B/en active Active
-
2014
- 2014-01-14 JP JP2016526280A patent/JP6074548B2/en not_active Expired - Fee Related
- 2014-01-14 EP EP14847072.7A patent/EP3053956B1/en active Active
- 2014-01-14 US US15/025,951 patent/US9536638B2/en active Active
- 2014-01-14 WO PCT/CN2014/070590 patent/WO2015043121A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US9536638B2 (en) | 2017-01-03 |
JP6074548B2 (en) | 2017-02-01 |
US20160217883A1 (en) | 2016-07-28 |
CN103524896B (en) | 2016-05-25 |
CN103524896A (en) | 2014-01-22 |
EP3053956A1 (en) | 2016-08-10 |
JP2016533623A (en) | 2016-10-27 |
WO2015043121A1 (en) | 2015-04-02 |
EP3053956A4 (en) | 2017-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3053956B1 (en) | Zero-halogen cable insulation material for 125°c irradiation cross-linked epcv photovoltaics, and method for preparation thereof | |
CN108102207B (en) | Halogen-free flame-retardant thin-wall oil-resistant cable insulation and sheath manufactured through multiple crosslinking process and manufacturing method and application thereof | |
CN103524893B (en) | A kind of 125 DEG C of cross-linking radiation EPCV photovoltaic halogen-free flame-retardant sheath material and preparation method thereof | |
CN103172918B (en) | A kind of fireproofing cable material without halide and preparation method thereof | |
CN102321295B (en) | Low smoke zero halogen flame-retardant mould shrinkage sleeve and preparation method as well as application thereof | |
CN103435887B (en) | A kind of high workability halide-free fireproof composite polyolefine material and preparation method thereof | |
CN111004433A (en) | Irradiation crosslinking low-smoke halogen-free sheath material for photovoltaic cable and preparation method thereof | |
CN106916362B (en) | Halogen-free flame-retardant polyolefin resin and preparation method thereof | |
CN104403190A (en) | Ultraviolet cross-linking oil-resistant low-smoke halogen-free flame retardant polyolefin cable material and preparation method thereof | |
CN104629175A (en) | Low-smoke halogen-free flame-retardant polypropylene cable material and preparation method thereof | |
CN110903535A (en) | Low-smoke halogen-free flame-retardant sheath material with good cold resistance for cable and preparation method thereof | |
CN105367883B (en) | A kind of micro- cross-linking low smoke halogen-free fire retardant polyolefin cable material and preparation method thereof | |
CN109651691B (en) | Low-temperature-resistant oil-resistant torsion-resistant low-smoke halogen-free flame-retardant wind energy cable sheath material and preparation method and application thereof | |
CN114213850B (en) | High-heat-conductivity silicone rubber cable material and preparation method and application thereof | |
CN105860247A (en) | Low-smoke halogen-free building cable insulation material and preparation method thereof | |
CN111961274A (en) | Insulating material for photovoltaic cable and preparation method thereof | |
CN113980381A (en) | Long-life high-temperature-resistant polyolefin insulation material and preparation method and application thereof | |
CN110240742B (en) | Heat-resistant anti-UV flame-retardant sheath material and preparation method thereof | |
CN114133657A (en) | Preparation method of high-performance flame-retardant low-smoke halogen-free polyolefin cable material | |
CN112625331B (en) | Flame-retardant PE cable material and preparation method and application thereof | |
CN112521675B (en) | Insulating cold-resistant cable material and preparation method and application thereof | |
CN112795077B (en) | Low-smoke halogen-free cable material containing rare earth synergistic flame retardant and preparation thereof | |
CN109517256A (en) | The manufacturing process of the B1 grades of environmentally protective wirings of high fire-retardance | |
CN107501710B (en) | 150 ℃ heat-resistant cross-linked low-smoke halogen-free electronic wire material and manufacturing method thereof | |
CN114058110A (en) | Halogen-free flame-retardant modified cable material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160415 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170703 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08J 3/22 20060101ALI20170627BHEP Ipc: H01B 3/46 20060101ALI20170627BHEP Ipc: C08L 23/04 20060101ALI20170627BHEP Ipc: C08J 3/12 20060101ALI20170627BHEP Ipc: C08J 3/20 20060101ALI20170627BHEP Ipc: C08J 3/24 20060101ALI20170627BHEP Ipc: H01B 3/44 20060101ALI20170627BHEP Ipc: C08L 23/06 20060101ALI20170627BHEP Ipc: C08K 3/22 20060101ALI20170627BHEP Ipc: C08J 3/00 20060101ALI20170627BHEP Ipc: H01B 3/28 20060101ALI20170627BHEP Ipc: C08L 23/08 20060101ALI20170627BHEP Ipc: C08L 23/16 20060101AFI20170627BHEP Ipc: C08K 5/00 20060101ALI20170627BHEP Ipc: C08J 3/28 20060101ALI20170627BHEP Ipc: H01B 7/295 20060101ALI20170627BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08J 3/24 20060101ALI20180405BHEP Ipc: C08L 23/04 20060101ALI20180405BHEP Ipc: H01B 7/295 20060101ALI20180405BHEP Ipc: H01B 3/28 20060101ALI20180405BHEP Ipc: C08L 23/08 20060101ALI20180405BHEP Ipc: H01B 3/46 20060101ALI20180405BHEP Ipc: C08K 5/00 20060101ALI20180405BHEP Ipc: C08J 3/28 20060101ALI20180405BHEP Ipc: H01B 3/44 20060101ALI20180405BHEP Ipc: C08L 23/16 20060101AFI20180405BHEP Ipc: C08J 3/12 20060101ALI20180405BHEP Ipc: C08J 3/00 20060101ALI20180405BHEP Ipc: C08J 3/20 20060101ALI20180405BHEP Ipc: C08L 31/04 20060101ALI20180405BHEP Ipc: C08K 3/22 20060101ALI20180405BHEP Ipc: C08J 3/22 20060101ALI20180405BHEP Ipc: C08L 23/06 20060101ALI20180405BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180514 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1056617 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014034832 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1056617 Country of ref document: AT Kind code of ref document: T Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014034832 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190114 |
|
26N | No opposition filed |
Effective date: 20190725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20230119 Year of fee payment: 10 Ref country code: FR Payment date: 20230124 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230120 Year of fee payment: 10 Ref country code: GB Payment date: 20230119 Year of fee payment: 10 Ref country code: DE Payment date: 20230123 Year of fee payment: 10 Ref country code: BE Payment date: 20230119 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20230119 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602014034832 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20240201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20240114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240114 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240801 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 |