EP3006682A1 - Device and method for operating a heating distribution station - Google Patents
Device and method for operating a heating distribution station Download PDFInfo
- Publication number
- EP3006682A1 EP3006682A1 EP14187849.6A EP14187849A EP3006682A1 EP 3006682 A1 EP3006682 A1 EP 3006682A1 EP 14187849 A EP14187849 A EP 14187849A EP 3006682 A1 EP3006682 A1 EP 3006682A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- fluid
- heat exchanger
- working medium
- expansion machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000010438 heat treatment Methods 0.000 title description 78
- 239000012530 fluid Substances 0.000 claims abstract description 114
- 238000012546 transfer Methods 0.000 claims abstract description 50
- 239000003990 capacitor Substances 0.000 claims abstract description 6
- 238000013021 overheating Methods 0.000 claims abstract description 6
- 230000002040 relaxant effect Effects 0.000 claims abstract description 6
- 238000001704 evaporation Methods 0.000 claims description 7
- 230000008020 evaporation Effects 0.000 claims description 6
- 230000000903 blocking effect Effects 0.000 claims description 4
- 238000005338 heat storage Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 230000008016 vaporization Effects 0.000 abstract 1
- 238000011161 development Methods 0.000 description 20
- 230000018109 developmental process Effects 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 230000008569 process Effects 0.000 description 12
- 230000008901 benefit Effects 0.000 description 11
- 238000009833 condensation Methods 0.000 description 9
- 230000005494 condensation Effects 0.000 description 9
- 239000008236 heating water Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 4
- 206010011968 Decreased immune responsiveness Diseases 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K9/00—Plants characterised by condensers arranged or modified to co-operate with the engines
- F01K9/003—Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K17/00—Using steam or condensate extracted or exhausted from steam engine plant
- F01K17/02—Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
Definitions
- the invention relates to a heat transfer station for transferring heat from a supplier heat network with a first heat-conducting fluid to a customer heat network with a second heat-conducting fluid. Furthermore, the invention relates to a method for transferring heat from a supplier heat network with a first heat-conducting fluid to a customer heat network with a second heat-conducting fluid.
- District heating refers to the supply of buildings with heating and hot water.
- water is well suited as a medium for heat transport, where it is used liquid or in vapor form.
- the medium is conveyed in heat-insulated pipelines in a continuous circulation.
- Local heat is a corresponding heat transfer for heating purposes over relatively short distances, but the transition to district heating is fluid.
- Heat transfer stations connect such local and district heating networks with heat consumers.
- the operating temperatures of the district heating networks are based on the consumers with the highest required temperature level. In the city center of Munich, for example, the temperature of the district heating supply is 130 ° C in winter and 80 ° C in summer. The temperature of the return must not exceed 45 ° C. These temperatures are among the parameters that are usually specified in the technical connection conditions of the respective utility company and must be maintained by the operating mode and design of the system. However, the vast majority of consumers require lower flow temperatures for their heating systems. In the case of residential buildings, the required flow temperature of the hot water supply is Usually at about 60-65 ° C, and therefore must be lowered in the prior art, first by mixing colder water, the temperature.
- the object of the invention is to overcome this disadvantage and to better exploit the potential of district heating.
- a thermodynamic cycle device with a working medium, in particular an ORC device with an organic working medium
- the thermodynamic cycle device comprising: an evaporator formed first heat exchanger for prehe
- a desuperheating of the working medium take place.
- an undercooling of the working medium under the condensation temperature may be the same fluid. Heat is transferred from a network at a first temperature level to a network at a second, lower temperature level at the heat transfer station.
- the advantage of the heat transfer station according to the invention is that said exergy difference between the district heating side and the heat customer side can be used for the generation of electrical energy by interposing a cyclic process, for example an Organic Rankine process (ORC process) with an organic working medium, a Stirling cycle, a steam power process, etc.
- a cyclic process for example an Organic Rankine process (ORC process) with an organic working medium, a Stirling cycle, a steam power process, etc.
- Part of the high-temperature heat withdrawn from the district heating network is converted into electrical energy in the thermodynamic cycle.
- the condensation heat of the working medium feeds the heating network with low-temperature heat.
- the heat supply can be fully or partially realized via the thermodynamic cycle.
- the main benefit of the invention is the additional provision of electrical energy to the heat customer.
- the heat transfer station according to the invention can be further developed such that a third heat exchanger can be provided for the direct transfer of heat from the first fluid to the second fluid.
- a further development of the aforementioned development consists in that means for dividing the mass flow of the second fluid into a first part and a second part; Means for passing the first portion of the second fluid through the condenser and directing a second portion of the second fluid through the third heat exchanger; and means for merging the first part of the mass flow of the second fluid after passing through the condenser and the second part of the mass flow of the second fluid may be provided after passing through the third heat exchanger.
- the return temperature of the supplier heat network can by appropriate control of the cycle device on a constant level. The flow temperature in the customer heat network can be adjusted as required. If there is a higher heat requirement, the mass flow is reduced to the cycle.
- the means for dividing the mass flow of the second fluid may be provided in a flow or in a return of the customer heat network, and they preferably comprise a three-way valve or a pump in a flow to the third heat exchanger. This corresponds in each case to advantageous examples for the arrangement and for the specific embodiment of these means.
- Another development consists in that a fourth heat exchanger is provided for the direct transfer of heat from the first fluid to the working medium.
- a heat pump operating mode of the cycle processing device is made possible by the development. Heat pump operation offers the advantage for heat customers that the installed connection power can be lower.
- a development of the aforementioned development consists in that means for diverting the working medium from a flow of the evaporator to the fourth heat exchanger, in particular in the form of a three-way valve or a solenoid valve; and means for operating the expansion machine are provided as the compressor. In this way, instead of the first heat exchanger, the working medium can be conducted to the fourth heat exchanger in order to absorb heat from the first fluid as the compressor during operation of the expansion machine.
- the means for operating the expansion machine as a compressor include means for directing the working medium from the fourth heat exchanger to a low pressure side of the expansion machine operated as a compressor, in particular a first valve for blocking the connection between the evaporator and the High pressure side of the expansion machine and a bypass line with a second valve for establishing a connection between the fourth heat exchanger and the low pressure side of the expansion machine, and further means for directing the compressed working fluid from a high-pressure side of the expansion machine operated as a compressor to the condenser, in particular a fourth valve for blocking a connection between the low-pressure side of the expansion machine and the condenser and a bypass line with a third valve for establishing a connection between the high-pressure side of the expansion machine and the Capacitor.
- This provides preferred embodiments of said means.
- the heat transfer station can be designed such that the second heat-conducting fluid is passed completely through both the condenser and the third heat exchanger.
- the condenser flows through a large mass flow. This is advantageous for the electrical efficiency of the system.
- the heat transfer station with a third heat exchanger further comprises means for dividing the mass flow of the first fluid into a first part and a second part, in particular a three-way valve, and means for directing the first part of the first fluid to the third heat exchanger.
- the aforementioned development can also be further developed in that a heat accumulator is provided in thermal contact with the second fluid. This allows a flattening of the temperature gradients of the second fluid entering the condenser. If the temperature of the second fluid is greater than the temperature of the heat accumulator, the second fluid is cooled, if it is smaller, it is heated.
- the object according to the invention is furthermore achieved by a method according to claim 11.
- thermodynamic cycle device in particular an ORC device
- the thermal cycle device comprises a first designed as an evaporator heat exchanger, an expansion machine, a generator coupled to the expander, a second heat exchanger configured as a condenser and a feed pump
- the method comprising the following steps: preheating, evaporation and optionally additional overheating of the working medium while supplying heat from the first fluid to the first heat exchanger; Generating mechanical energy by relaxing the vaporized working medium with the expansion machine and at least partially converting the mechanical energy into electrical energy with the generator; Condensing the relaxed working medium and transferring heat energy from the relaxed working fluid to the second fluid with the second heat transfer fluid; and conveying the condensed working fluid under pressure increase to the evaporator with the feed pump. Before condensation can optionally take place a decompression of the relaxed working medium
- the further step of the direct transfer of heat from the first fluid to the second fluid with a third heat exchanger is provided.
- a development of the aforementioned development consists in that the following further steps are provided: splitting the mass flow of the second fluid into a first part and a second part; Passing the first portion of the second fluid through the condenser and passing a second portion of the second fluid through the third heat exchanger; and merging the first portion of the mass flow of the second fluid after passing through the condenser and the second portion of the mass flow of the second fluid after passing through the third heat exchanger.
- the method comprises the step of directly transferring heat from the first fluid to the working medium with a fourth heat exchanger.
- Another development is that the second heat-conducting fluid is passed completely through both the condenser and the third heat exchanger.
- the exergy refers to the part of the energy that can be completely transformed into any other form of energy, such as electrical energy. It is therefore the workable part of the energy. In contrast, anergy is not the workable part of an energy, a conversion into other forms of energy is not possible here. Even in an idealized process, heat energy can only partially be converted into mechanical energy.
- T is the temperature of the heat source
- T U is the temperature of the environment.
- the exergy contained in the heat flow is destroyed by lowering the temperature, such as Fig. 1 clarified.
- the lowering of the temperature can have different reasons. So can one Lowering the temperature may be necessary, for example to comply with temperature limits in the heating system, this ensures, for example, the heat transfer station.
- a further reduction of the temperature takes place with any heat transfer, be it in the heat transfer station or in the heater, which, for example, heats a room. When the heat has reduced to ambient temperature, it no longer has working capacity and is pure anergy.
- thermodynamic cycle into the heating system (see Fig. 2 ) the reuse of part of the exergy contained in the heat flow in the form of electrical energy.
- the energy flow which is converted into electrical energy, is no longer available for heating, it can be compensated for by a slight increase in the heat input into the ORC process. Due to low prices of the energy sources and thus the generated thermal energy compared to the reference prices for electrical energy, this is economically interesting, especially in the field of housing / small consumers.
- Fig. 3 shows in a first embodiment of the invention, the simplest realization of the power-generating heat transfer station.
- the reference numbers used herein are also retained in the other figures for the other embodiments, if they are the same elements.
- a simplified representation of the district heating network 10, the ORC process 30 and the heating network 20 is selected.
- liquid working medium is evaporated with heat input, expanded in the expansion machine 32 (e.g., screw expander, turbine), and liquefied at a lower pressure level.
- the expansion machine 32 e.g., screw expander, turbine
- heat is released from the working fluid to the heating water network and thereby reaches the required flow temperature.
- the expansion machine 32 is coupled to the generator 33, which converts the mechanical energy into electrical energy. This can both be fed into a network, as well as used to cover the domestic needs of the heating system.
- thermodynamic cycle 30 in a heat transfer station 1 thus offers the possibility of a decentralized cogeneration in heat consumers.
- a modular design enables the parallel operation of multiple plants in one stack. In this way, a better partial load behavior and increased flexibility can be achieved.
- the heating power in the first embodiment is after Fig. 3 depending on the operation of the ORC 30.
- the heat supply of the heating network 20 is no longer possible because no heat is decoupled via the capacitor 34.
- thermodynamic machine and method for its operation describes a device and a method for avoiding cavitation in a thermodynamic cycle, which is particularly advantageous when using air condensers.
- an additional pressure is impressed on the working medium by adding a non-condensing gas in the condenser. Since this is equivalent to a larger flow height of the pump, increases in the pump inlet, the distance of the actual pressure to the boiling pressure. In return, this reduces the pressure difference across the expander and thus the electrical output Power. Since in condensation against water, the pressure difference across the expansion machine is relatively low, this solution is disadvantageous for the present application.
- the heating operation is in the second embodiment 2 after Fig. 5 regardless of the operation of the cycle.
- a variable part of the heat is absorbed by the cycle, while the rest is transmitted via a third heat exchanger 40 directly into the heating network 20.
- a further pump in the heating network flow to the third heat exchanger 40 can be used to divide the mass flow.
- the pumps can continue to be arranged both in the forward and in the return of the heating network 20.
- the entire amount of heat can be supplied via the third heat exchanger 40.
- An emergency operation is thus given sufficient dimensioning of the third heat exchanger 40.
- the return temperature of the district heating network can be maintained by appropriate control of the cycle at a constant level or below a required maximum temperature.
- the temperature is slightly higher than when the ORC is off.
- the flow temperature in the heating network 20 is arbitrarily adjustable. If there is a higher heat requirement, the mass flow is reduced in the cycle. At constant inlet and outlet temperatures of the working medium, this results in a lower heat input to the ORC. This in turn means due to the constant mass flow in the district heating network 10, that the output temperature increases on the side of the district heating network 10. As a result, a greater temperature difference is present across the third heat exchanger 40, as a result of which the amount of heat transferred directly to the heating network 20 is increased.
- the system can be integrated into heating water networks, where the district heating network and the heating water network are separated from each other, as well as in networks in which there is only one common network. For integration into a mixed network, the third heat exchanger 40 is no longer needed because you can direct a partial flow of district heating water directly into the heating network.
- This second embodiment also has improved functionality for avoiding cavitation damage.
- the mass flow of the heating water through the condenser 34 via the 3-way valve 22 can be reduced.
- Fig. 6 shows, thereby increases the temperature spread of the mass flow of water.
- the condensation temperature of the working fluid is impressed by the inlet temperature of the water, the temperature difference in the pinch point, and the mass flow and thus the temperature spread of the water. If the water-side inlet temperature rises, the condensation pressure of the working medium also increases. If the mass flow of the water decreases, the outlet temperature of the water increases. Since the heat exchanger surface remains constant, but the temperature difference between the working fluid and water increases, the working fluid is more supercooled. A larger subcooling effect in the feed pump flow as a larger flow height, since the distance of the actual pressure increases to the evaporation pressure at the pump inlet.
- this second embodiment allows 2 different modes of operation.
- a first mode of operation is for heating and power production. With average heat demand, the cycle runs parallel to the heat supply and part of the heat demand is covered by the heat of condensation. A small portion of the heat from the heating network 20 is converted via the expansion machine 32 and the generator 33 into electrical energy.
- a second operating mode serves as a pure heating operation. For this purpose, the cycle 30 is switched off and the entire heat required via the third heat exchanger 40 is supplied to the heating network 20 at very high heat demand. This mode of operation is similar to that of a conventional transfer station.
- the return temperature is an important parameter in order to get as much heat as possible from the source and to increase the efficiency of the system.
- the third embodiment 3 according to Fig. 7 represents a further development of the second embodiment 2, by the correspondingly low temperatures in the district heating return can be achieved.
- a heat pump operating mode of the ORC allows.
- the expander 32 is operated as a compressor 32 by the valve 54 is closed and the valve 53 is opened, so that the fluid flows on the low-pressure side in the expansion machine 32.
- the valve 55 is closed.
- the open valve 52 the compressed working fluid flows into the condenser 34, where it gives off heat to the heating network 20.
- the throttle 56 a pressure reduction takes place, which is associated with a reduction in the boiling temperature.
- the third heat exchanger 40 a part of the heat energy is transmitted to the heating network 20 and so lowered the return temperature to a suitable area for the heat pump.
- the working medium can be passed via the 3-way valve 51 to the fourth heat exchanger 50, where it can be evaporated. This will continue to cool the district heating return.
- Heat pump operation offers the advantage for heat customers that the installed connection power can be lower. This is due to the fact that the rated connection power is defined by a fixed spread between district heating flow and return and the area of the heat exchanger. Due to the additional cooling of the return line with a constant heat exchanger surface and constant mass flow, the actual heat input in heat pump operation is greater than the rated connection power. For operators of, for example, geothermal heating plants has the advantage that the regenerative heat source so more energy can be withdrawn. In addition, the higher thermal energy yield at low return temperatures can replace part of the peak load energy supply.
- This third embodiment 3 behaves analogously to the second embodiment 2.
- the valves 54 and 55 are open, the 3-way valve 51 obstructs access to the fourth heat exchanger 50 and allows access to the first heat exchanger 31.
- the third heat exchanger 40 allow the bypass.
- low district heating return temperatures can be achieved.
- a limitation of the heating network flow temperature consists of the maximum condensation temperature plus the heat transfer coefficient. The use is possible with minor modifications in both separate and mixed heating circuits.
- the Kavitationsvermeidung is given here as for the second embodiment.
- the temperature spread of the evaporator is the same as in the second embodiment. With the large temperature spread between district heating supply and return, the heat transfer in the evaporator quickly reaches its limits. Due to the pinch point between working medium and fluid in the district heating pipe, the cooling of the district heating return and thus the heat supply to the ORC is limited.
- Fig. 9 shows a fourth embodiment 4 of the heat transfer station according to the invention.
- this fourth embodiment 4 means for dividing the mass flow of the first fluid into a first part and a second part in the form of a three-way valve, and means for directing the first part of the first fluid to the third heat exchanger 40 are provided. Furthermore, there is a heat accumulator 60 in thermal contact with the second fluid. In case of failure of the cycle, the entire amount of heat can be supplied via the third heat exchanger 40. An emergency operation functionality is thus given with sufficient dimensioning of the third heat exchanger 40.
- ORC mode the district heating return temperature is slightly higher than in the second embodiment 2. The flow temperature in the heating network can be adjusted as required.
- the heating network flow temperature is the same as in the second embodiment 2.
- the insert is with minor modifications both in separate and in mixed heating circuits possible.
- a thermal storage 60 laminate heat storage or a sensitive heat storage
- the heat transfer in the evaporator quickly reaches its limits. Due to the pinch point between working medium and fluid in the district heating pipe, the cooling of the district heating return and thus the heat supply is limited.
- the district heating return flow through the third heat exchanger 40 can not be cooled as far as in the second embodiment. This results in ORC operation, depending on the mode of operation, an increase in the district heating return temperature, for example, about 10 to 15 K.
- the flow temperature in the heating network 20 is arbitrarily adjustable. If there is heat demand, the mass flow is reduced in the cycle, thereby more heat is transferred at a higher temperature level via the third heat exchanger 40 directly to the heating network. The use is possible with minor modifications in both separate and mixed heating circuits.
- a latent heat accumulator or a sensitive heat accumulator upstream of the condenser 34 can be connected in the return flow of the heating network as a thermal buffer. This allows a flattening of the temperature gradient of the in the condenser entering heating water. Temperature spread in the evaporator of the fifth embodiment 5 corresponds to that of the second embodiment 2.
- the heat transfer station has the following advantages and disadvantages. Advantages are a better utilization of the exergy used (with little additional heat output great additional benefits, see Fig. 2 ); less destruction of exergy when heat is transferred to heat consumers; Decentralized combined heat and power generation at the end user (electricity generating heating system); Use of different temperature variants and network types (mixed and separate circles); great flexibility in performance and operation, adaptable to growing heat network (can be run as a stack); and to increase the efficiency and the power factor of the overall system.
- a disadvantage is a slightly lower maximum heat supply for the heat customer to call and in the embodiments 1, 2, 4, 5, a slight to moderate increase in the temperature of the district heating return. In the embodiments with emergency function can be provided by a bypass of the ORC, so its shutdown, and a sufficient dimensioning of the third heat exchanger 40, the total connected load nevertheless.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Die Erfindung betrifft eine Wärmeübergabestation zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid, wobei die Wärmeübergabestation eine thermodynamische Kreisprozessvorrichtung mit einem Arbeitsmedium, insbesondere eine ORC-Vorrichtung mit einem organischen Arbeitsmedium umfasst, und wobei die thermodynamische Kreisprozessvorrichtung umfasst: einen als Verdampfer ausgebildeten ersten Wärmeübertrager zum Verdampfen und optional zusätzlichen Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid, eine Expansionsmaschine zum Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums, einen mit der Expansionsmaschine gekoppelten Generator zum zumindest teilweisen Wandeln der mechanischen Energie in elektrische Energie, einen als Kondensator ausgebildeten zweiten Wärmeübertrager zum Kondensieren des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid, und eine Speisepumpe zum Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer. Weiterhin betrifft die Erfindung ein entsprechendes Verfahren zum Übergeben von Wärme.The invention relates to a heat transfer station for transferring heat from a supplier heat network with a first heat-conducting fluid to a customer heat network with a second heat-conducting fluid, wherein the heat transfer station comprises a thermodynamic cycle device with a working medium, in particular an ORC device with an organic working medium, and wherein the Thermodynamic cycle apparatus comprises: a first heat exchanger configured as an evaporator for vaporizing and optionally additional overheating of the working medium while supplying heat from the first fluid, an expansion machine for generating mechanical energy by relaxing the vaporized working medium, a generator coupled to the expansion machine for at least partial conversion the mechanical energy into electrical energy, designed as a capacitor second heat exchanger for condensing the relaxed Arbeitsmedi ums and transferring heat energy from the expanded working fluid to the second fluid, and a feed pump for conveying the condensed working fluid under pressure increase to the evaporator. Furthermore, the invention relates to a corresponding method for transferring heat.
Description
Die Erfindung betrifft eine Wärmeübergabestation zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid. Weiterhin betrifft die Erfindung ein Verfahren zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid.The invention relates to a heat transfer station for transferring heat from a supplier heat network with a first heat-conducting fluid to a customer heat network with a second heat-conducting fluid. Furthermore, the invention relates to a method for transferring heat from a supplier heat network with a first heat-conducting fluid to a customer heat network with a second heat-conducting fluid.
Fernwärme bezeichnet die Versorgung von Gebäuden mit Heizwärme und Warmwasser. Dafür ist beispielsweise Wasser als Medium für den Wärmetransport gut geeignet, wobei es flüssig oder in Dampfform Verwendung findet. Das Medium wird in wärmegedämmten Rohrleitungen in einem ständigen Umlauf gefördert. Als Nahwärme wird eine entsprechende Wärmeübertragung zu Heizzwecken über vergleichsweise kurze Distanzen bezeichnet, wobei der Übergang zur Fernwärme jedoch fließend ist.District heating refers to the supply of buildings with heating and hot water. For example, water is well suited as a medium for heat transport, where it is used liquid or in vapor form. The medium is conveyed in heat-insulated pipelines in a continuous circulation. Local heat is a corresponding heat transfer for heating purposes over relatively short distances, but the transition to district heating is fluid.
Wärmeübergabestationen verbinden solche Nah- und Fernwärmenetze mit Wärmeverbrauchern. Die Betriebstemperaturen der Fernwärmenetze richten sich dabei nach den Verbrauchern mit dem höchsten benötigten Temperaturniveau. In der Innenstadt Münchens beispielsweise beträgt die Temperatur des Fernwärme-Vorlaufes im Winter 130 °C und im Sommer 80 °C. Die Temperatur des Rücklaufes darf einen Wert von 45 °C nicht überschreiten. Diese Temperaturen gehören zu den Parametern, die üblicherweise in den technischen Anschlussbedingungen des jeweiligen Versorgungsunternehmens festgelegt sind und müssen durch die Betriebsart und Bauweise der Anlage eingehalten werden. Allerdings benötigt die überwiegende Zahl der Verbraucher niedrigere Vorlauftemperaturen für ihre Heizsysteme. Im Fall von Wohngebäuden liegt die benötigte Vorlauftemperatur der Warmwasserversorgung üblicherweise bei etwa 60 - 65 °C, und daher muss nach dem Stand der Technik zunächst durch Beimischung von kälterem Wasser die Temperatur gesenkt werden. Auf diese Weise wird jedoch ein großer Teil des theoretisch nutzbaren Potenzials (Exergie) des Heißwassers verschwendet, was nachteilig ist. Es wird also nach dem Stand der Technik Wärme auf hohem Temperaturniveau über weite Strecken transportiert und anschließend unter Exergievernichtung auf ein niedriges Temperaturniveau abgesenkt.Heat transfer stations connect such local and district heating networks with heat consumers. The operating temperatures of the district heating networks are based on the consumers with the highest required temperature level. In the city center of Munich, for example, the temperature of the district heating supply is 130 ° C in winter and 80 ° C in summer. The temperature of the return must not exceed 45 ° C. These temperatures are among the parameters that are usually specified in the technical connection conditions of the respective utility company and must be maintained by the operating mode and design of the system. However, the vast majority of consumers require lower flow temperatures for their heating systems. In the case of residential buildings, the required flow temperature of the hot water supply is Usually at about 60-65 ° C, and therefore must be lowered in the prior art, first by mixing colder water, the temperature. In this way, however, a large part of the theoretically usable potential (exergy) of the hot water is wasted, which is disadvantageous. It is therefore transported according to the prior art heat at high temperature levels over long distances and then lowered under Exergievernichtung to a low temperature level.
Aufgabe der Erfindung ist es, diesen Nachteil zu überwinden und das Potential der Fernwärme besser auszunutzen.The object of the invention is to overcome this disadvantage and to better exploit the potential of district heating.
Diese Aufgabe wird gelöst durch eine Wärmeübergabestation nach Anspruch 1.This object is achieved by a heat transfer station according to claim 1.
Die erfindungsgemäße Wärmeübergabestation zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid umfasst eine thermodynamische Kreisprozessvorrichtung mit einem Arbeitsmedium, insbesondere eine ORC-Vorrichtung mit einem organischen Arbeitsmedium, wobei die thermodynamische Kreisprozessvorrichtung umfasst: einen als Verdampfer ausgebildeten ersten Wärmeübertrager zum Vorwärmen, Verdampfen und optional zusätzlichen Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid, eine Expansionsmaschine zum Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums, einen mit der Expansionsmaschine gekoppelten Generator zum zumindest teilweisen Wandeln der mechanischen Energie in elektrische Energie, einen als Kondensator ausgebildeten zweiten Wärmeübertrager zum Kondensieren des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid, und eine Speisepumpe zum Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer. Optional kann in dem Kondensator vor dem Kondensieren ein Enthitzen des Arbeitsmediums erfolgen. Weiterhin kann optional in dem Kondensator nach dem Kondensieren ein Unterkühlen des Arbeitsmediums unter die Kondensationstemperatur erfolgen. Das erste wärmeführende Fluid und das zweite wärmeführende Fluid können dasselbe Fluid sein. In der Wärmeübergabestation wird Wärme wird aus einem Netz mit einem ersten Temperaturniveau in ein Netz mit einem zweiten, niedrigeren Temperaturniveau übergeben.The heat transfer station according to the invention for transferring heat from a supplier heat network with a first heat-conducting fluid to a customer heat network with a second heat-conducting fluid comprises a thermodynamic cycle device with a working medium, in particular an ORC device with an organic working medium, the thermodynamic cycle device comprising: an evaporator formed first heat exchanger for preheating, evaporation and optionally additional overheating of the working fluid under heat from the first fluid, an expansion machine for generating mechanical energy by relaxing the vaporized working medium, coupled to the expansion machine generator for at least partially converting the mechanical energy into electrical Energy, designed as a capacitor second heat exchanger for condensing the relaxed working fluid and transfer of heat nergie from the relaxed working fluid to the second fluid, and a feed pump for conveying the condensed working fluid under pressure increase to the evaporator. Optionally, in the condenser prior to condensation, a desuperheating of the working medium take place. Furthermore, optionally in the condenser after condensing, an undercooling of the working medium under the condensation temperature. The first heat-conducting fluid and the second heat-carrying fluid may be the same fluid. Heat is transferred from a network at a first temperature level to a network at a second, lower temperature level at the heat transfer station.
Der Vorteil der erfindungsgemäßen Wärmeübergabestation besteht darin, dass der genannte Exergieunterschied zwischen der Fernwärmeseite und der Wärmekundenseite für die Erzeugung elektrischer Energie genutzt werden kann, indem ein Kreisprozess zwischengeschaltet wird, beispielsweise ein Organic-Rankine-Prozess (ORC-Prozess) mit einem organischen Arbeitsmedium, ein Stirling-Kreisprozess, ein Dampfkraftprozess, etc. Ein Teil der dem Fernwärmenetz entzogenen Hochtemperaturwärme wird im thermodynamischen Kreisprozess in elektrische Energie gewandelt. Die Kondensationswärme des Arbeitsmediums speist das Heiznetz mit Niedertemperaturwärme. So kann die Wärmeversorgung ganz oder teilweise über den thermodynamischen Kreisprozess realisiert werden. Der Hauptnutzen der Erfindung besteht in der zusätzlichen Bereitstellung elektrischer Energie an den Wärmekunden.The advantage of the heat transfer station according to the invention is that said exergy difference between the district heating side and the heat customer side can be used for the generation of electrical energy by interposing a cyclic process, for example an Organic Rankine process (ORC process) with an organic working medium, a Stirling cycle, a steam power process, etc. Part of the high-temperature heat withdrawn from the district heating network is converted into electrical energy in the thermodynamic cycle. The condensation heat of the working medium feeds the heating network with low-temperature heat. Thus, the heat supply can be fully or partially realized via the thermodynamic cycle. The main benefit of the invention is the additional provision of electrical energy to the heat customer.
Die erfindungsgemäße Wärmeübergabestation kann dahingehend weitergebildet werden, dass einen dritter Wärmeübertrager zum unmittelbaren Übertragen von Wärme aus dem ersten Fluid auf das zweite Fluid vorgesehen sein kann. Dies hat den Vorteil, dass ein Teil der Wärmeenergie direkt auf das Kundenwärmenetz übertragen wird und somit eine Absicherung der Wärmeversorgung gegen einem Ausfall der thermodynamischen Kreisprozessvorrichtung erzielt wird.The heat transfer station according to the invention can be further developed such that a third heat exchanger can be provided for the direct transfer of heat from the first fluid to the second fluid. This has the advantage that part of the heat energy is transferred directly to the customer heat network and thus a protection of the heat supply against a failure of the thermodynamic cycle device is achieved.
Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass Mittel zum Aufteilen des Massenstroms des zweiten Fluids in einen ersten Teil und einen zweiten Teil; Mittel zum Leiten des ersten Teils des zweiten Fluids durch den Kondensator und zum Leiten eines zweiten Teils des zweiten Fluids durch den dritten Wärmeübertrager; und Mittel zum Zusammenführen des ersten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den Kondensator und des zweiten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den dritten Wärmeübertrager vorgesehen sein können. Die Rücklauftemperatur des Lieferantenwärmenetzes kann dabei durch entsprechende Regelung der Kreisprozessvorrichtung auf einem konstanten Niveau gehalten werden. Die Vorlauftemperatur im Kundenwärmenetz ist beliebig regelbar. Wenn höherer Wärmebedarf besteht, wird der Massenstrom zum Kreisprozess gesenkt.A further development of the aforementioned development consists in that means for dividing the mass flow of the second fluid into a first part and a second part; Means for passing the first portion of the second fluid through the condenser and directing a second portion of the second fluid through the third heat exchanger; and means for merging the first part of the mass flow of the second fluid after passing through the condenser and the second part of the mass flow of the second fluid may be provided after passing through the third heat exchanger. The return temperature of the supplier heat network can by appropriate control of the cycle device on a constant level. The flow temperature in the customer heat network can be adjusted as required. If there is a higher heat requirement, the mass flow is reduced to the cycle.
Gemäß einer anderen Weiterbildung können die Mittel zum Aufteilen des Massenstroms des zweiten Fluids in einem Vorlauf oder in einem Rücklauf des Kundenwärmenetzes vorgesehen sein, und sie umfassen vorzugsweise ein Dreiwegeventil oder eine Pumpe in einem Vorlauf zum dritten Wärmeübertrager. Dieses entspricht jeweils vorteilhaften Beispielen für die Anordnung und für die konkrete Ausgestaltung dieser Mittel.According to another embodiment, the means for dividing the mass flow of the second fluid may be provided in a flow or in a return of the customer heat network, and they preferably comprise a three-way valve or a pump in a flow to the third heat exchanger. This corresponds in each case to advantageous examples for the arrangement and for the specific embodiment of these means.
Eine andere Weiterbildung besteht darin, dass ein vierter Wärmeübertrager zum unmittelbaren Übertragen von Wärme aus dem ersten Fluid auf das Arbeitmedium vorgesehen ist. Alternativ zur Stromerzeugung wird durch die Weiterbildung ein Wärmepumpen-Betriebsmodus der Kreisprozessvorrichtung ermöglicht. Der Wärmepumpenbetrieb bietet für Wärmekunden den Vorteil, dass die installierte Anschlussleistung geringer ausfallen kann.Another development consists in that a fourth heat exchanger is provided for the direct transfer of heat from the first fluid to the working medium. As an alternative to power generation, a heat pump operating mode of the cycle processing device is made possible by the development. Heat pump operation offers the advantage for heat customers that the installed connection power can be lower.
Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass Mittel zum Umleiten des Arbeitsmediums aus einem Vorlauf des Verdampfers zum vierten Wärmeübertrager, insbesondere in Form eines Dreiwegeventils oder eines Magnetventils; und Mittel zum Betreiben der Expansionsmaschine als Kompressor vorgesehen sind. Auf diese Weise kann das Arbeitsmedium statt zum ersten Wärmeübertrager zum vierten Wärmeübertrager geleitet werden, um dort beim Betrieb der Expansionsmaschine als Kompressor Wärme aus dem ersten Fluid aufzunehmen.A development of the aforementioned development consists in that means for diverting the working medium from a flow of the evaporator to the fourth heat exchanger, in particular in the form of a three-way valve or a solenoid valve; and means for operating the expansion machine are provided as the compressor. In this way, instead of the first heat exchanger, the working medium can be conducted to the fourth heat exchanger in order to absorb heat from the first fluid as the compressor during operation of the expansion machine.
Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass die Mittel zum Betreiben der Expansionsmaschine als Kompressor umfassen: Mittel zum unmittelbaren Leiten des Arbeitsmediums vom vierten Wärmeübertrager zu einer Niederdruckseite der als Kompressor betriebenen Expansionsmaschine, insbesondere ein erstes Ventil zum Sperren der Verbindung zwischen Verdampfer und der Hochdruckseite der Expansionsmaschine und eine Bypassleitung mit einem zweiten Ventil zum Herstellen einer Verbindung zwischen dem vierten Wärmeübertrager und der Niederdruckseite der Expansionsmaschine, und desweiteren Mittel zum unmittelbaren Leiten des komprimierten Arbeitsmediums von einer Hochdruckseite der als Kompressor betriebenen Expansionsmaschine zum Kondensator, insbesondere ein viertes Ventil zum Sperren einer Verbindung zwischen der Niederdruckseite der Expansionsmaschine und dem Kondensator und eine Bypassleitung mit einem dritten Ventil zum Herstellen einer Verbindung zwischen der Hochdruckseite der Expansionsmaschine und dem Kondensator. Dies stellt bevorzugte Ausgestaltungen der genannten Mittel zur Verfügung.A development of the aforementioned development is that the means for operating the expansion machine as a compressor include means for directing the working medium from the fourth heat exchanger to a low pressure side of the expansion machine operated as a compressor, in particular a first valve for blocking the connection between the evaporator and the High pressure side of the expansion machine and a bypass line with a second valve for establishing a connection between the fourth heat exchanger and the low pressure side of the expansion machine, and further means for directing the compressed working fluid from a high-pressure side of the expansion machine operated as a compressor to the condenser, in particular a fourth valve for blocking a connection between the low-pressure side of the expansion machine and the condenser and a bypass line with a third valve for establishing a connection between the high-pressure side of the expansion machine and the Capacitor. This provides preferred embodiments of said means.
Gemäß einer anderen Weiterbildung kann die Wärmeübergabestation derart ausgebildet sein, dass das zweite wärmeführende Fluid vollständig sowohl durch den Kondensator als auch durch den dritten Wärmeübertrager geleitet wird. Dabei wird der Kondensator mit einem großen Massenstrom durchströmt. Dies ist für den elektrischen Wirkungsgrad der Anlage vorteilhaft.According to another development, the heat transfer station can be designed such that the second heat-conducting fluid is passed completely through both the condenser and the third heat exchanger. In this case, the condenser flows through a large mass flow. This is advantageous for the electrical efficiency of the system.
Eine andere Weiterbildung besteht darin, dass die Wärmeübergabestation mit einem dritten Wärmeübertrager weiterhin Mittel zum Aufteilen des Massenstroms des ersten Fluids in einen ersten Teil und einen zweiten Teil, insbesondere ein Dreiwegeventil, und Mittel zum Leiten des ersten Teils des ersten Fluids zum dritten Wärmeübertrager umfasst.Another development consists in that the heat transfer station with a third heat exchanger further comprises means for dividing the mass flow of the first fluid into a first part and a second part, in particular a three-way valve, and means for directing the first part of the first fluid to the third heat exchanger.
Die zuvor genannte Weiterbildung kann zudem dahingehend weitergebildet werden, dass ein Wärmespeicher in thermischem Kontakt mit dem zweiten Fluid vorgesehen ist. Dieses ermöglicht eine Abflachung der Temperaturgradienten des in den Kondensator eintretenden zweiten Fluids. Ist die Temperatur des zweiten Fluids größer als die Temperatur des Wärmespeichers wird das zweite Fluid gekühlt, falls sie kleiner ist, wird es erwärmt.The aforementioned development can also be further developed in that a heat accumulator is provided in thermal contact with the second fluid. This allows a flattening of the temperature gradients of the second fluid entering the condenser. If the temperature of the second fluid is greater than the temperature of the heat accumulator, the second fluid is cooled, if it is smaller, it is heated.
Die erfindungsgemäße Aufgabe wird weiterhin gelöst durch ein Verfahren nach Anspruch 11.The object according to the invention is furthermore achieved by a method according to claim 11.
Das erfindungsgemäße Verfahren übergibt Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid mittels einer thermodynamischen Kreisprozessvorrichtung, insbesondere einer ORC-Vorrichtung, wobei die thermische Kreisprozessvorrichtung einen als Verdampfer ausgebildeten ersten Wärmeübertrager, eine Expansionsmaschine, einen mit der Expansionsmaschine gekoppelten Generator, einen als Kondensator ausgebildeten zweiten Wärmeübertrager und eine Speisepumpe umfasst, wobei das Verfahren die folgenden Schritte umfasst: Vorwärmen, Verdampfen und optional zusätzliches Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid mit dem ersten Wärmeübertrager; Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums mit der Expansionsmaschine und zumindest teilweises Wandeln der mechanischen Energie in elektrische Energie mit dem Generator; Kondensieren des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid mit dem zweiten Wärmeübertrager; und Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer mit der Speisepumpe. Vor dem Kondensieren kann optional ein Enthitzen des entspannten Arbeitsmediums erfolgen. Nach dem Kondensieren kann optional ein Unterkühlen des kondensierten Arbeitsmediums erfolgen.The method according to the invention transfers heat from a supplier heat network with a first heat-conducting fluid to a customer heat network with a second heat-conducting fluid by means of a thermodynamic cycle device, in particular an ORC device, wherein the thermal cycle device comprises a first designed as an evaporator heat exchanger, an expansion machine, a generator coupled to the expander, a second heat exchanger configured as a condenser and a feed pump, the method comprising the following steps: preheating, evaporation and optionally additional overheating of the working medium while supplying heat from the first fluid to the first heat exchanger; Generating mechanical energy by relaxing the vaporized working medium with the expansion machine and at least partially converting the mechanical energy into electrical energy with the generator; Condensing the relaxed working medium and transferring heat energy from the relaxed working fluid to the second fluid with the second heat transfer fluid; and conveying the condensed working fluid under pressure increase to the evaporator with the feed pump. Before condensation can optionally take place a decompression of the relaxed working medium. After condensing, an optional subcooling of the condensed working medium can take place.
Die Vorteile des erfindungsgemäßen Verfahrens und dessen Weiterbildungen entsprechen jenen der erfindungsgemäßen Vorrichtung und dessen Weiterbildungen und werden deshalb hier nicht nochmals aufgeführt.The advantages of the method and its developments correspond to those of the device according to the invention and its developments and are therefore not listed again here.
Gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens ist der weitere Schritt des unmittelbaren Übertragens von Wärme aus dem ersten Fluid auf das zweite Fluid mit einem dritten Wärmeübertrager vorgesehen.According to a development of the method according to the invention, the further step of the direct transfer of heat from the first fluid to the second fluid with a third heat exchanger is provided.
Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass die folgenden weiteren Schritte vorgesehen sind: Aufteilen des Massenstroms des zweiten Fluids in einen ersten Teil und einen zweiten Teil; Leiten des ersten Teils des zweiten Fluids durch den Kondensator und Leiten eines zweiten Teils des zweiten Fluids durch den dritten Wärmeübertrager; und Zusammenführen des ersten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den Kondensator und des zweiten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den dritten Wärmeübertrager.A development of the aforementioned development consists in that the following further steps are provided: splitting the mass flow of the second fluid into a first part and a second part; Passing the first portion of the second fluid through the condenser and passing a second portion of the second fluid through the third heat exchanger; and merging the first portion of the mass flow of the second fluid after passing through the condenser and the second portion of the mass flow of the second fluid after passing through the third heat exchanger.
Gemäß einer anderen Weiterbildung umfasst das Verfahren den Schritt des unmittelbaren Übertragens von Wärme aus dem ersten Fluid auf das Arbeitsmedium mit einem vierten Wärmeübertrager.According to another development, the method comprises the step of directly transferring heat from the first fluid to the working medium with a fourth heat exchanger.
Eine andere Weiterbildung besteht darin, dass das zweite wärmeführende Fluid vollständig sowohl durch den Kondensator als auch durch den dritten Wärmeübertrager geleitet wird.Another development is that the second heat-conducting fluid is passed completely through both the condenser and the third heat exchanger.
Gemäß einer anderen Weiterbildung ist ein zumindest teilweises Einspeisen der elektrischen Energie in ein Netz; und/oder ein zumindest teilweises Verwenden der elektrischen Energie zum Betreiben des Kundenwärmenetzes, insbesondere einer kundenseitigen Heizungsanlage vorgesehen.According to another embodiment, at least partial feeding of the electrical energy into a network; and / or at least partially using the electrical energy for operating the customer heat network, in particular a customer-side heating system.
Die genannten Weiterbildungen können einzeln eingesetzt oder wie beansprucht geeignet miteinander kombiniert werden.The cited developments can be used individually or combined as claimed suitable.
Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.Further features and exemplary embodiments and advantages of the present invention will be explained in more detail with reference to the drawings. It is understood that the embodiments do not exhaust the scope of the present invention. It is further understood that some or all of the features described below may be combined with each other in other ways.
- Fig. 1Fig. 1
- stellt die Exergienutzung und den Temperaturverlauf bei reinem Heizbetrieb schematisch dar.represents the Exergienutzung and the temperature profile in pure heating operation schematically.
- Fig. 2Fig. 2
- zeigt die entsprechende Exergienutzung mit einem integrierten ORC-Prozess.shows the corresponding exergy use with an integrated ORC process.
- Fig. 3Fig. 3
- zeigt eine erste Ausführungsform der erfindungsgemäßen Wärmeübergabestation.shows a first embodiment of the heat transfer station according to the invention.
- Fig. 4Fig. 4
- zeigt ein T-Q-Diagramm des ORC-Prozesses.shows a TQ diagram of the ORC process.
- Fig. 5Fig. 5
- zeigt eine zweite Ausführungsform der erfindungsgemäßen Wärmeübergabestation.shows a second embodiment of the heat transfer station according to the invention.
- Fig. 6Fig. 6
- illustriert Kavitationsvermeidung durch Verringerung des Massenstroms.illustrates cavitation avoidance by reducing the mass flow.
- Fig. 7Fig. 7
- zeigt eine dritte Ausführungsform der erfindungsgemäßen Wärmeübergabestation in einem ersten Betriebsmodus.shows a third embodiment of the heat transfer station according to the invention in a first operating mode.
- Fig. 8Fig. 8
- zeigt die dritte Ausführungsform der erfindungsgemäßen Wärmeübergabestation in einem zweiten Betriebsmodus.shows the third embodiment of the heat transfer station according to the invention in a second operating mode.
- Fig. 9Fig. 9
- zeigt eine vierte Ausführungsform der erfindungsgemäßen Wärmeübergabestation.shows a fourth embodiment of the heat transfer station according to the invention.
- Fig. 10Fig. 10
- zeigt eine fünfte Ausführungsform der erfindungsgemäßen Wärmeübergabestation.shows a fifth embodiment of the heat transfer station according to the invention.
Zunächst wird im Folgenden die grundlegende Motivation der Erfindung im Bezug auf die Exergie dargestellt. Die Exergie bezeichnet den Teil der Energie, der vollständig in eine beliebige andere Energieform gewandelt werden kann, wie beispielsweise in elektrische Energie. Es handelt sich also um den arbeitsfähigen Teil der Energie. Im Gegensatz dazu ist die Anergie der nicht arbeitsfähige Teil einer Energie, eine Wandlung in andere Energieformen ist hier nicht möglich. So kann Wärmeenergie selbst in einem idealisierten Prozess nur zu einem Teil in mechanische Energie gewandelt werden.First, the basic motivation of the invention with respect to the exergy will be presented below. The exergy refers to the part of the energy that can be completely transformed into any other form of energy, such as electrical energy. It is therefore the workable part of the energy. In contrast, anergy is not the workable part of an energy, a conversion into other forms of energy is not possible here. Even in an idealized process, heat energy can only partially be converted into mechanical energy.
Ein Wärmestrom Q̇ besteht aus einem Exergie-Anteil Ė und einem Anergie-Anteil Ȧ, wobei sich der Exergie-Anteil mit Hilfe der Gleichung
Im Gegensatz dazu ermöglicht die Integration eines thermodynamischen Kreisprozesses in das Heizsystem (siehe
Die erste Ausführungsform der erfindungsgemäßen Wärmeübergabestation 1 zum Übergeben von Wärme von einem Lieferantenwärmenetz 10 mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz 20 mit einem zweiten wärmeführenden Fluid umfasst eine thermodynamische Kreisprozessvorrichtung 30 mit einem Arbeitsmedium (beispielsweise Wasser oder Wasserdampf), insbesondere eine ORC-Vorrichtung mit einem organischen Arbeitsmedium, wobei die thermodynamische Kreisprozessvorrichtung 30 umfasst: einen als Verdampfer 31 ausgebildeten ersten Wärmeübertrager zum Verdampfen und optional zusätzlichen Vorwärmen und/oder Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid, eine Expansionsmaschine 32 zum Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums, einen mit der Expansionsmaschine gekoppelten Generator 33 zum zumindest teilweisen Wandeln der mechanischen Energie in elektrische Energie, einen als Kondensator 34 ausgebildeten zweiten Wärmeübertrager zum Kondensieren und optional vorherigen Enthitzen und/oder zusätzlichen Unterkühlen des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid, und eine Speisepumpe 35 zum Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer. Die Speisepumpe wird durch einen Motor 36 betrieben. Zudem ist im Heizkreislauf des Kundenwärmenetzes eine Pumpe 21 vorgesehen, mit der das zweite Fluid (beispielsweise Wasser) gefördert wird.The first embodiment of the heat transfer station 1 according to the invention for transferring heat from a
Zum Zweck der Übersichtlichkeit wird eine vereinfachte Darstellung des Fernwärmenetzes 10, des ORC-Prozesses 30 sowie des Heiznetzes 20 gewählt. Im Verdampfer 31 wird flüssiges Arbeitsmedium unter Wärmezufuhr verdampft, in der Expansionsmaschine 32 (z.B. Schraubenexpander, Turbine) entspannt und auf einem niedrigeren Druckniveau verflüssigt. Bei der Verflüssigung im Kondensator 34 wird Wärme vom Arbeitsfluid an das Heizwassernetz abgegeben und dadurch die geforderte Vorlauftemperatur erreicht. Über eine Welle ist die Expansionsmaschine 32 mit dem Generator 33 gekoppelt, welcher die mechanische Energie in elektrische wandelt. Diese kann sowohl in ein Netz eingespeist werden, als auch zur Deckung des Eigenbedarfs der Heizungsanlage verwendet werden. Der Kreislauf wird geschlossen, indem die Speisepumpe 35 den Druck des Arbeitsmediums auf den Verdampfungsdruck erhöht und es erneut in den Verdampfer 31 fördert. Die Integration eines thermodynamischen Kreisprozesses 30 in eine Wärmeübergabestation 1 bietet somit die Möglichkeit einer dezentralen Kraft-Wärme-Kopplung bei Wärmeverbrauchern. Im Fall von größeren Wärmeübergabestationen wird durch einen modularen Aufbau der Parallelbetrieb mehrerer Anlagen in einem Stack ermöglicht. Auf diese Weise werden ein besseres Teillastverhalten sowie eine erhöhte Flexibilität erreicht.For the sake of clarity, a simplified representation of the
Die Kombination einer Wärmeübergabestation mit einem thermodynamischen Kreisprozess beinhaltet allerdings die Problematik, dass der ORC nur einen Teil des Temperaturgefälles zwischen Fernwärme Vorlauf und -Rücklauf nutzen kann. Dies liegt in der Tatsache begründet, dass der Pinch Point zwischen der Temperatur der Wärmequelle und der Temperatur des Arbeitsmediums die Wärmeaufnahme begrenzt, wie das T-Q-Diagramm des ORC-Prozesses in
Darüber hinaus ist die Heizleistung bei der ersten Ausführungsform nach
Die Patentschrift
Diese Nachteile können jedoch durch die nachfolgend dargestellten weiteren Ausführungsformen sowie bevorzugte Kombinationen daraus vermieden werden.However, these disadvantages can be avoided by the further embodiments shown below as well as preferred combinations thereof.
Der Heizbetrieb ist bei der zweiten Ausführungsform 2 nach
Diese zweite Ausführungsform verfügt weiterhin über eine verbesserte Funktionalität zur Vermeidung von Kavitationsschäden. Hierbei kann der Massenstrom des Heizwassers durch den Kondensator 34 über das 3-Wege-Ventil 22 reduziert werden. Wie
Bei der großen Temperaturspreizung zwischen Fernwärme Vorlauf (z.B. 120 °C) und Rücklauf (z.B. 45 °C) stößt die Wärmeübertragung im Verdampfer 34 schnell an ihre Grenzen. Aufgrund des Pinch Points zwischen Arbeitsmedium und Fluid am Eintritt in den ersten Wärmeübertrager (Verdampfer) ist die Auskühlung des Fernwärmerücklaufes und somit die Wärmezufuhr nur begrenzt möglich.With the large temperature spread between district heat flow (e.g., 120 ° C) and reflux (e.g., 45 ° C), heat transfer in
Weiterhin ermöglicht diese zweite Ausführungsform 2 verschiedene Betriebsmodi. Ein erster Betriebsmodus dient zum Heizen und zur Stromproduktion. Bei durchschnittlichem Wärmebedarf läuft der Kreisprozess parallel zur Wärmeversorgung und ein Teil des Wärmebedarfes wird durch die Kondensationswärme gedeckt. Ein kleiner Teil der Wärme aus dem Heiznetz 20 wird über die Expansionsmaschine 32 und den Generator 33 in elektrische Energie gewandelt. Ein zweiter Betriebsmodus dient als reiner Heizbetrieb. Dazu wird bei sehr großem Wärmebedarf der Kreisprozess 30 ausgeschaltet und die gesamte benötigte Wärme über den dritten Wärmeübertrager 40 dem Heiznetz 20 zugeführt. Dieser Betriebsmodus gleicht hierbei dem einer herkömmlichen Übergabestation.Furthermore, this second embodiment allows 2 different modes of operation. A first mode of operation is for heating and power production. With average heat demand, the cycle runs parallel to the heat supply and part of the heat demand is covered by the heat of condensation. A small portion of the heat from the
Im Fall von sensiblen Wärmequellen (z.B. Geothermie-Heizwerk) ist die Rücklauftemperatur ein wichtiger Parameter, um möglichst viel Wärme aus der Quelle zu entnehmen und den Wirkungsgrad der Anlage zu steigern. Die dritte Ausführungsform 3 gemäß
Alternativ zur Stromerzeugung wird durch die dritte Ausführungsform 3 nach
Der Wärmepumpenbetrieb bietet für Wärmekunden den Vorteil, dass die installierte Anschlussleistung geringer ausfallen kann. Dies liegt darin begründet, dass die Nennanschlussleistung sich durch eine festgelegte Spreizung zwischen Fernwärme Vor- und Rücklauf sowie der Fläche der Wärmeübertrager definiert. Durch die zusätzliche Auskühlung des Rücklaufes bei konstanter Wärmeübertragerfläche und konstantem Massenstrom, ist die tatsächliche Wärmezufuhr im Wärmepumpenbetrieb größer als die Nennanschlussleistung. Für Betreiber von beispielsweise Geothermie-Heizwerken ergibt sich der Vorteil, dass der regenerativen Wärmequelle so mehr Energie entzogen werden kann. Durch die höhere Ausbeute thermischer Energie bei niedrigen Rücklauftemperaturen kann darüber hinaus ein Teil der Bereitstellung von Spitzenlastenergie ersetzt werden.Heat pump operation offers the advantage for heat customers that the installed connection power can be lower. This is due to the fact that the rated connection power is defined by a fixed spread between district heating flow and return and the area of the heat exchanger. Due to the additional cooling of the return line with a constant heat exchanger surface and constant mass flow, the actual heat input in heat pump operation is greater than the rated connection power. For operators of, for example, geothermal heating plants has the advantage that the regenerative heat source so more energy can be withdrawn. In addition, the higher thermal energy yield at low return temperatures can replace part of the peak load energy supply.
Im ORC-Betrieb gemäß
Durch die Ventile 52, 53, 54, 55 ist ein Bypass der Expansionsmaschine 32 möglich, somit sinken die Druckverluste und die Wärmebereitstellung an das Heiznetz 20 kann über einen Naturumlauf realisiert werden. Alternativ kann der dritte Wärmeübertrager 40 den Bypass ermöglichen. Im Wärmepumpen-Betriebsfall sind niedrige FernwärmeRücklauftemperaturen erreichbar. Eine Begrenzung der Heiznetz-Vorlauftemperatur besteht durch die maximale Kondensationstemperatur plus der Grädigkeit des Wärmeübertragers. Der Einsatz ist mit geringfügigen Modifikationen sowohl bei getrennten als auch bei gemischten Heizkreisen möglich. Die Kavitationsvermeidung ist hier wie für die zweite Ausführungsform gegeben. Die Temperaturspreizung des Verdampfers ist wie in der zweiten Ausführungsform. Bei der großen Temperaturspreizung zwischen Fernwärme Vor- und Rücklauf stößt die Wärmeübertragung im Verdampfer schnell an ihre Grenzen. Aufgrund des Pinch Points zwischen Arbeitsmedium und Fluid in der Fernwärmeleitung ist die Auskühlung des Fernwärme Rücklaufes und somit die Wärmezufuhr an den ORC nur begrenzt möglich.Through the
Bei der fünften Ausführungsform 5 nach
Zusammenfassend weist die erfindungsgemäße Wärmeübergabestation die folgenden Vor- und Nachteile auf. Als Vorteile sind eine bessere Ausnutzung der eingesetzten Exergie (bei wenig zusätzlicher Wärmeleistung großer zusätzlicher Nutzen, siehe
Die dargestellten Ausführungsformen sind lediglich beispielhaft und der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.The illustrated embodiments are merely exemplary and the full scope of the present invention is defined by the claims.
Claims (15)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL14187849.6T PL3006682T3 (en) | 2014-10-07 | 2014-10-07 | Device and method for operating a heating distribution station |
DK14187849.6T DK3006682T3 (en) | 2014-10-07 | 2014-10-07 | Arrangement and procedure for operating a heat transfer station |
EP14187849.6A EP3006682B1 (en) | 2014-10-07 | 2014-10-07 | Device and method for operating a heating distribution station |
PCT/EP2015/071760 WO2016055263A1 (en) | 2014-10-07 | 2015-09-22 | Device and method for the operation of a heat transfer station |
CN201580065182.3A CN107002512A (en) | 2014-10-07 | 2015-09-22 | Apparatus and method for running heat exchange station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14187849.6A EP3006682B1 (en) | 2014-10-07 | 2014-10-07 | Device and method for operating a heating distribution station |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3006682A1 true EP3006682A1 (en) | 2016-04-13 |
EP3006682B1 EP3006682B1 (en) | 2022-08-03 |
Family
ID=51690848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14187849.6A Active EP3006682B1 (en) | 2014-10-07 | 2014-10-07 | Device and method for operating a heating distribution station |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3006682B1 (en) |
CN (1) | CN107002512A (en) |
DK (1) | DK3006682T3 (en) |
PL (1) | PL3006682T3 (en) |
WO (1) | WO2016055263A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019238905A1 (en) * | 2018-06-15 | 2019-12-19 | Schweizer Steimen Ag | Operating method and control unit for a combined heat and power system, and combined heat and power system |
WO2022219107A1 (en) * | 2021-04-15 | 2022-10-20 | Climeon Ab | Energy recovery system and method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3404244B1 (en) | 2017-05-15 | 2021-02-24 | Orcan Energy AG | Device and method for standardizing and constructing an orc container |
DE102017011851A1 (en) * | 2017-12-21 | 2019-06-27 | Daimler Ag | Arrangement for converting thermal energy from heat loss of an internal combustion engine |
EP3647553B1 (en) * | 2018-11-05 | 2022-12-28 | Orcan Energy AG | Supply of an electromechanical power converter with electrical energy from a thermodynamic cyclical process |
DE102020204682A1 (en) * | 2020-04-14 | 2021-10-14 | Siemens Aktiengesellschaft | Control of a heating network |
DE102020209046A1 (en) | 2020-07-20 | 2022-01-20 | Siemens Aktiengesellschaft | Method for controlling heat exchanges between multiple energy systems and control platform |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009053390B3 (en) | 2009-11-14 | 2011-06-01 | Orcan Energy Gmbh | Thermodynamic machine and method for its operation |
EP2538040A1 (en) * | 2011-06-22 | 2012-12-26 | Technische Universität München | Combined heat and power device and associated method |
DE102012217929A1 (en) * | 2012-10-01 | 2014-04-03 | Siemens Aktiengesellschaft | Combined heat and power plant and method of operation of a combined heat and power plant |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100451460C (en) * | 2006-11-21 | 2009-01-14 | 清华大学 | Fuel coal and fuel gas united heat supply method |
-
2014
- 2014-10-07 PL PL14187849.6T patent/PL3006682T3/en unknown
- 2014-10-07 EP EP14187849.6A patent/EP3006682B1/en active Active
- 2014-10-07 DK DK14187849.6T patent/DK3006682T3/en active
-
2015
- 2015-09-22 CN CN201580065182.3A patent/CN107002512A/en active Pending
- 2015-09-22 WO PCT/EP2015/071760 patent/WO2016055263A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009053390B3 (en) | 2009-11-14 | 2011-06-01 | Orcan Energy Gmbh | Thermodynamic machine and method for its operation |
EP2538040A1 (en) * | 2011-06-22 | 2012-12-26 | Technische Universität München | Combined heat and power device and associated method |
DE102012217929A1 (en) * | 2012-10-01 | 2014-04-03 | Siemens Aktiengesellschaft | Combined heat and power plant and method of operation of a combined heat and power plant |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019238905A1 (en) * | 2018-06-15 | 2019-12-19 | Schweizer Steimen Ag | Operating method and control unit for a combined heat and power system, and combined heat and power system |
WO2022219107A1 (en) * | 2021-04-15 | 2022-10-20 | Climeon Ab | Energy recovery system and method |
Also Published As
Publication number | Publication date |
---|---|
CN107002512A (en) | 2017-08-01 |
EP3006682B1 (en) | 2022-08-03 |
PL3006682T3 (en) | 2023-01-30 |
DK3006682T3 (en) | 2022-09-12 |
WO2016055263A1 (en) | 2016-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3006682B1 (en) | Device and method for operating a heating distribution station | |
DE69927925T2 (en) | Recovery of waste heat in an organic energy converter by means of an intermediate liquid circuit | |
EP2900943B1 (en) | Cogeneration power plant and method for operating a cogeneration power plant | |
EP2538040B1 (en) | Combined heat and power device and associated method | |
EP2823156B1 (en) | System for storing and outputting thermal energy | |
WO2015131940A1 (en) | High-temperature energy storage system and operating method therefor | |
DE102013005035B4 (en) | Method and device for coupling heat from a district heating network | |
EP2354677B1 (en) | Use of heat from the district heating return | |
WO2018172107A1 (en) | Power plant for generating electrical energy and method for operating a power plant | |
DE102009004501B4 (en) | Heat pump and method for controlling the source input temperature at the heat pump | |
DE102010062623A1 (en) | Method for retrofitting a fossil-fired power plant with Heizdampfentnahme | |
EP1882888A1 (en) | Heat pump system, in particular for air conditioning a building | |
DE10155508C5 (en) | Method and device for generating electrical energy | |
DE102016112601A1 (en) | Device for power generation according to the ORC principle, geothermal system with such a device and operating method | |
DE102014226837A1 (en) | Variable heat exchanger system and method of operating a heat exchanger system | |
WO2011045047A2 (en) | (o) rc-method for utilizing waste heat from biomass combustion for generating electricity and corresponding system | |
DE2916530A1 (en) | METHOD AND DEVICE FOR GENERATING AND DISTRIBUTING THERMAL ENERGY WITH COMPENSATION TRANSFER IN GEOTHERMAL LAYERS | |
DE102020131706A1 (en) | System and method for storing and delivering electrical energy with its storage as thermal energy | |
WO2018029371A1 (en) | Heat exchanger for use in a heating part of a liquid-air energy storage power plant, heating part, and method for operating such a heat exchanger in such a heating part | |
EP4224092A1 (en) | Heat pump system using co2 as first heat pump medium and water as second heat pump medium | |
EP2951407A2 (en) | Method for operating a low-temperature power plant, and low-temperature power plant itself | |
AT511823A4 (en) | METHOD AND DEVICE FOR GENERATING COLD AND / OR USE HEAT AND MECHANICAL OR BZW. ELECTRICAL ENERGY BY MEANS OF AN ABSORPTION CIRCUIT | |
DE102013016461A1 (en) | Method for operating a low-temperature power plant, and low-temperature power plant itself | |
EP2546521A1 (en) | Low pressure increased output pre-heater for frequency/secondary and/or primary regulation of a solar thermal power plant | |
DE102007062342B4 (en) | Method and arrangement for increasing the temperature level in the circuit of solar thermal systems or combined heat and power plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161013 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210726 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220517 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SPRINGER, JENS-PATRICK Inventor name: SCHUSTER, ANDREAS Inventor name: LINTL, MARKUS Inventor name: LANGER, ROY Inventor name: WALTER, DANIELA Inventor name: AUMANN, RICHARD |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1508907 Country of ref document: AT Kind code of ref document: T Effective date: 20220815 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014016333 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20220909 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221205 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221103 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221203 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014016333 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221007 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
26N | No opposition filed |
Effective date: 20230504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230919 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1508907 Country of ref document: AT Kind code of ref document: T Effective date: 20221007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231023 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231023 Year of fee payment: 10 Ref country code: FR Payment date: 20231024 Year of fee payment: 10 Ref country code: DK Payment date: 20231023 Year of fee payment: 10 Ref country code: DE Payment date: 20231026 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |