EP2867520B1 - Kraftstoffhochdruck-kolbenpumpe - Google Patents

Kraftstoffhochdruck-kolbenpumpe Download PDF

Info

Publication number
EP2867520B1
EP2867520B1 EP13730210.5A EP13730210A EP2867520B1 EP 2867520 B1 EP2867520 B1 EP 2867520B1 EP 13730210 A EP13730210 A EP 13730210A EP 2867520 B1 EP2867520 B1 EP 2867520B1
Authority
EP
European Patent Office
Prior art keywords
valve seat
valve
piston pump
pressure fuel
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13730210.5A
Other languages
English (en)
French (fr)
Other versions
EP2867520A1 (de
Inventor
Bernd Kellner
Andreas Mair
Lorenz Drutu
Dominik Brunner
Wolfgang Bueser
Christoph Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2867520A1 publication Critical patent/EP2867520A1/de
Application granted granted Critical
Publication of EP2867520B1 publication Critical patent/EP2867520B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/464Inlet valves of the check valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0077Valve seat details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member

Definitions

  • the invention relates to a high-pressure fuel piston pump according to the preamble of claim 1.
  • High-pressure fuel piston pumps are used, for example, in internal combustion engines with a common rail fuel system.
  • the fuel from the high-pressure fuel piston pump is compressed to a very high pressure and conveyed into a fuel rail, from where the fuel is injected directly into combustion chambers of the internal combustion engine.
  • the high-pressure fuel piston pump has for this purpose upstream of a pumping chamber via an inlet valve, which is designed as a check valve. Downstream of the delivery chamber, an outlet valve, which is likewise designed as a check valve, is arranged.
  • the known high-pressure fuel piston pump has a quantity control valve. This is usually the inlet valve, which can be temporarily forced into its open position by an actuator, for example electromagnetically actuated. If this occurs during a delivery stroke of the high-pressure fuel piston pump, the fuel from the delivery chamber is not conveyed to the fuel rail but through the forcibly opened intake valve back into the region (low pressure region) of the fuel system arranged upstream of the high-pressure fuel piston pump.
  • an actuator for example electromagnetically actuated
  • the intake valve various embodiments are known.
  • this describes EP 2 236 809 A2 an intake valve having a disc-like valve seat body which cooperates with a diaphragm-like valve element.
  • the valve seat body may have a plurality of circular passages
  • the movable valve element may consist of a plurality of membrane-like circular individual elements, which are movably held by spring arms.
  • DE 40 23 044 discloses in another context a valve seat body having two arcuately shaped passages and a cooperating with this membrane-like valve element.
  • Piston pumps are also from the DE 10 2010 044 119 A1 , the US 2005/263622 A1 , the EP 1 895 218 A1 , the EP 1 965 069 A2 the DE34 04 520 A1 and the US 1,355,285 known.
  • Object of the present invention is to provide a high-pressure fuel piston pump having a high efficiency.
  • the fuel In the operation of the high-pressure fuel piston pump, there are essentially two cases to be distinguished: In the suction phase, the fuel has to pass from the region located upstream of the inlet valve (low-pressure region) into the downstream region, the delivery chamber of the high-pressure fuel piston pump. To avoid vapor formation, the pressure drop at the valve seat of the inlet valve should be as low as possible. If steam is formed, the delivery rate of the pump may decrease. The largest possible flow area in the valve seat area reduces the pressure drop. The area flowed through in turn is calculated from the valve seat length and the valve lift. The latter should be small for dynamic reasons.
  • the valve element In contrast, in the delivery phase, it should be possible, when no fuel is to be conveyed into the fuel rail, to keep the valve element open against the now acting in the closing direction flow force through the plunger of the quantity control valve.
  • the spring acting on the valve tappet should be as small as possible, and the stroke of the valve element required for the return flow should be as small as possible.
  • the valve seat of the intake valve is significantly longer than in the conventional high-pressure fuel piston pumps.
  • This increased length of the valve seat results in a smaller pressure drop across the inlet valve with the same stroke of the valve element. This has a favorable effect for the filling of the delivery chamber, and thereby increases the delivery rate of the high-pressure fuel piston pump according to the invention.
  • the pressurized area of the valve element is reduced, whereby the dynamics of the intake valve is improved.
  • the extended valve seat line reduces the velocity of the fuel as it flows through the inlet valve, reducing the pressure drop during suction, thereby avoiding vapor formation during the suction phase.
  • the flow forces are also significantly reduced during the return. The reason for this lies again in the smaller pressure drop and the additionally reduced area on which this pressure drop acts.
  • a first development of the high-pressure fuel piston pump according to the invention is characterized in that it comprises a plunger guided by the valve body, with which the valve element can be forcibly acted upon in an open position, and that the plunger with a closed inlet valve by a circumferential and cooperating with the valve element Valve seat line is sealed from a downstream high-pressure region. This ensures that the valve stem in forcibly kept open valve element in the pumping chamber prevailing pressure is applied as little as possible and thus is influenced as little as possible. When the inlet valve is closed, however, no force acts on the plunger from the downstream high-pressure region. This force is absorbed by the valve seat.
  • valve seat line is at least partially formed by a raised web.
  • this creates a defined sealing contour, by means of which the areas of the valve element in which the inlet valve is closed on the one side and on the other side on the high pressure prevail, are kept small. As a result, the dynamics of the intake valve is further improved.
  • valve seat body in the case of an at least partially wave-shaped, meandering, serrated or cloverleaf-shaped valve seat line which is formed on a valve seat body, the valve seat body has a flow channel in a downstream region immediately adjacent to the valve seat line.
  • the flow channel comprises a depression in the valve seat body.
  • This depression may, for example, comprise the entire area present between two adjacent waves or meanders or cloverleaves. This is easy to produce and leads to an optimal outflow of the fuel.
  • valve seat extends along a first radial inner valve seat line and a second radially outer valve seat line
  • valve element has at least one passage opening radially inwardly from the radially inner valve seat line. This also makes the outflow and, in forced open inlet valve, the backflow of the fuel is facilitated again.
  • the valve element has a circular shape. This is particularly easy and therefore inexpensive to produce, and a backup against rotation of the valve element is not required.
  • the valve element has a complementary to the valve seat line, so also wave-shaped meandering or cloverleaf-shaped outer contour and is secured against rotation. In this case, the forces acting on the valve element forces are minimal and the fuel can flow as best as possible or inflow.
  • a fuel system of an internal combustion engine contributes in FIG. 1 Overall, the reference numeral 10. It includes a fuel tank 12, from which a prefeed pump 14 promotes fuel in a low-pressure line 16. This leads to a fuel high-pressure piston pump 18, designated overall by 18.
  • the Combination of inlet valve 20 and electromagnetic actuator 22 is also referred to as a quantity control valve, as a result, the flow rate of the high-pressure fuel piston pump 18 can be adjusted.
  • the inlet valve 20 and its configuration are presently of particular interest. This will therefore be dealt with in more detail below.
  • a pump piston 24 which by a in FIG. 1 not shown eccentric can be placed in a reciprocating motion.
  • a delivery chamber 27 is present between this and a housing 26.
  • a high-pressure line 30 leads to a fuel rail 32, to which a plurality of fuel injectors 34 are connected via an exhaust valve 28 which is likewise designed as a check valve. These inject the fuel directly into each associated combustion chambers (not shown).
  • FIG. 2 A portion of the high-pressure fuel piston pump 18 is in FIG. 2 shown in more detail.
  • the inlet valve 20 comprises a plate-shaped valve element 36, which cooperates with a valve seat body 38.
  • the valve element 36 bears against the valve seat body 38.
  • the valve seat body 38 is a disk-shaped member which is press-fit into the housing 26 of the high-pressure fuel piston pump 18.
  • passage openings 40 are present, which are blocked by the valve element 36 when the inlet valve 20 is closed, but are released by the valve element 36 when the inlet valve 20 is open.
  • the shape and arrangement of the passage openings 40 and of the valve seat 36 cooperating with the valve element are of particular importance in the present case and will be explained further below.
  • a central opening 42 is provided, through which a plunger 44 of the electromagnetic actuator 22 extends therethrough.
  • the plunger 44 has a stop shoulder 46 which cooperates with housing-side stops 48 and 50.
  • At the inlet valve 20 remote end of the plunger 44 is attached to this an armature 52 which cooperates with an electromagnetic coil (not shown).
  • an armature spring 54 is clamped, which acts on the plunger 44 to the inlet valve 20 back. This has the consequence that when the electromagnetic actuator 22 is not energized, the valve element 36 is urged by the force of the armature spring 54 forcibly in the open position via the plunger. If the electromagnetic actuator 22 is energized, however, the plunger 44 is pulled away from the valve member 36 so that it can come into contact with the valve seat body 38 and close within the normal function of a check valve.
  • the inlet valve 20 and here in particular the configuration of the valve seat body 38 with reference to FIG. 3 explained in more detail.
  • the inlet valve 20 is shown in perspective from the direction of the delivery chamber 27. It can be seen that four circular arc segment-shaped recesses are present in the valve seat body 38, which form the passage openings 40. Between the passage openings 40 extend in the radial direction webs 56 which hold a central ring 58 in which the central opening 42 for the plunger 44 is present. In FIG. 3 is also the valve element 36 facing the end of the plunger 44 shown.
  • valve member 36 facing edge is formed as a flattened edge and the extent a valve seat forms for the valve element 36.
  • FIG. 3 Thus, without further ado that the valve seat 60 extends along a clover-shaped valve seat line.
  • recess 62 in the side of the valve seat body 38 facing the valve element 36, which recess extends further in the radial direction than the valve seat 60. This recess 62 forms, as will be explained below, a flow channel for the off and incoming fuel.
  • a mid-plane 64 which is in the area where neither a valve seat 60 nor a recess 62 are present.
  • a second plane which is offset from this median plane 64 away from the valve member 36 and in which the recesses 62 are located.
  • a third plane which is raised relative to the center plane 64 to the valve member 36 and in which the flattened edge of the valve seat 60 is located.
  • the inlet valve 20 operates as follows: If fuel is to flow from the low-pressure line 16 into the delivery space 27, the fuel passes through the passage openings 40. Subsequently, however, it does not only flow in the radial direction through the gap between the radially outer regions (in FIG. 3 one of which is exemplarily provided with the reference numeral 60a) of the valve seat 60 and the valve element 36, but also in the circumferential direction through the radially extending portions of the valve seat 60 (in FIG. 3 one of which is designated by reference numeral 60b). In comparison to previous inlet valves, therefore, the area through which flowed through in the region of the sealing seat 60 is significantly increased, as a result of which the pressure drop occurring there is markedly reduced. As a result, there is less or possibly even not at all steam formation, whereby the high-pressure fuel piston pump 18 has a relatively high degree of delivery.
  • the central opening 42 which guides the tappet 44 with a small clearance, moreover, to allow its axial movement, is located within the circumferential cloverleaf-shaped valve seat 60, whereby the guidance of the plunger 44 in the central opening 42nd always facing the low-pressure region, so that when the inlet valve 20 is closed and the plunger 44 is withdrawn behind the valve seat 60, no leakage occurs across the inlet valve 20.
  • a flow channel for the fluid flowing out over the radially extending sections 60b of the valve seat 60 is created by the recesses 62, so that even with a small stroke of the valve element 36, a sufficient cross section for the outflow of the fuel is available.
  • valve element 36 When forcibly opened inlet valve 20 and a return flow from the pumping chamber 27 into the low pressure line 16 also results from the comparatively long valve seat 60 a lower pressure drop and thus a lower force exerted by the valve element 36 on the plunger 44. How easy FIG. 3 it can be seen, a full-surface circular valve element 36 requires no rotation. However, it is also possible that the valve element 36 also has recesses in the region of the recesses 62, that is to say between the passage openings 40, as in FIG FIG. 3 indicated by dashed lines. In this case, however, the valve element 36 must be secured against rotation.
  • FIG. 4 An embodiment of the inlet valve 20 shows FIG. 4 ,
  • inlet valve 20 is a radially inner valve seat 60c and a radially outer annular valve seat 60d present.
  • the passage openings 40 are provided between these two annular valve seats 60c and 60d.
  • openings 66 are provided radially inwardly of the valve seat 60c in the valve element 36, which allow an axial flow of fuel.
  • the central opening 42 is sealed by a valve seat 60e.
  • the passage openings 40 are formed by a plurality of discrete circular through holes in the valve seat body 38. Also here are openings 66 in the valve element 36, of which in FIG. 5 is shown only by way of example, to allow outflow of fuel in the radially inward region of the intake valve 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft eine Kraftstoffhochdruck-Kolbenpumpe nach dem Oberbegriff des Anspruchs 1.
  • Kraftstoffhochdruck-Kolbenpumpen werden beispielsweise bei Brennkraftmaschinen mit einem Common-Rail-Kraftstoffsystem eingesetzt. Bei einem solchen Kraftstoffsystem wird der Kraftstoff von der Kraftstoffhochdruck-Kolbenpumpe auf einen sehr hohen Druck verdichtet und in ein Kraftstoffrail gefördert, von wo der Kraftstoff direkt in Brennräume der Brennkraftmaschine eingespritzt wird. Die Kraftstoffhochdruck-Kolbenpumpe verfügt hierzu stromaufwärts von einem Förderraum über ein Einlassventil, welches als Rückschlagventil ausgebildet ist. Stromabwärts vom Förderraum ist ein ebenfalls als Rückschlagventil ausgebildetes Auslassventil angeordnet.
  • Zur Steuerung der von der Kraftstoffhochdruck-Kolbenpumpe in das Kraftstoffrail geförderten Kraftstoffmenge verfügt die bekannte Kraftstoffhochdruck-Kolbenpumpe über ein Mengensteuerventil. Bei diesem handelt es sich üblicherweise um das Einlassventil, welches durch einen beispielsweise elektromagnetisch betätigten Aktor zeitweise in seine geöffnete Stellung gezwungen werden kann. Geschieht dies während eines Förderhubs der Kraftstoffhochdruck-Kolbenpumpe, wird der Kraftstoff aus dem Förderraum nicht zum Kraftstoffrail, sondern durch das zwangsweise geöffnete Einlassventil wieder zurück in den stromaufwärts von der Kraftstoffhochdruck-Kolbenpumpe angeordneten Bereich (Niederdruckbereich) des Kraftstoffsystems gefördert.
  • Für das Einlassventil sind verschiedene Ausgestaltungen bekannt. Beispielsweise beschreibt die EP 2 236 809 A2 ein Einlassventil mit einem scheibenartigen Ventilsitzkörper, der mit einem membranartigen Ventilelement zusammenwirkt. Gemäß EP 1 724 467 A1 kann der Ventilsitzkörper eine Mehrzahl kreisförmiger Durchlässe aufweisen, und das bewegliche Ventilelement kann aus einer Mehrzahl membranartiger kreisrunder Einzelelemente bestehen, die über Federarme beweglich gehalten sind. DE 40 23 044 offenbart in einem anderen Zusammenhang einen Ventilsitzkörper mit zwei bogenförmig ausgebildeten Durchlässen und einem mit diesem kooperierenden membranartigen Ventilelement.
  • Offenbarung der Erfindung
  • Aufgabe der vorliegenden Erfindung ist es, eine Kraftstoffhochdruck-Kolbenpumpe zu schaffen, die einen hohen Wirkungsgrad aufweist.
  • Diese Aufgabe wird durch eine Kraftstoffhochdruck-Kolbenpumpe mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in Unteransprüchen angegeben. Daneben finden sich für die Erfindung wichtige Merkmale auch in der nachfolgenden Beschreibung und der Zeichnung, wobei die Merkmale sowohl in Alleinstellung als auch in unterschiedlichen Kombinationen wesentlich sein können.
  • Im Betrieb der Kraftstoffhochdruck-Kolbenpumpe sind im Wesentlichen zwei Fälle zu unterscheiden: In der Saugphase muss der Kraftstoff vom stromaufwärts des Einlassventils gelegenen Bereich (Niederdruckbereich) in den stromabwärts gelegenen Bereich, den Förderraum der Kraftstoffhochdruck-Kolbenpumpe, gelangen. Um Dampfbildung zu vermeiden, soll der Druckabfall am Ventilsitz des Einlassventils möglichst gering sein. Bei Dampfbildung kann sich der Liefergrad der Pumpe verringern. Durch eine möglichst große durchströmte Fläche im Ventilsitzbereich verringert sich der Druckabfall. Die durchströmte Fläche wiederum errechnet sich aus der Ventilsitzlänge und dem Ventilhub. Letzterer soll aus Dynamikgründen klein sein. In der Förderphase dagegen sollte es möglich sein, das Ventilelement, wenn kein Kraftstoff in das Kraftstoffrail gefördert werden soll, entgegen der nun in schließender Richtung wirkenden Strömungskraft durch den Stößel des Mengensteuerventils offen zu halten. Um möglichst geringe Baumaße zu erreichen, sollte die den Ventilstößel beaufschlagende Feder möglichst klein sein, und der zum Rückströmen erforderliche Hub des Ventilelements sollte möglichst klein sein.
  • Bei der erfindungsgemäßen Kraftstoffhochdruck-Kolbenpumpe ist der Ventilsitz des Einlassventils deutlich länger als bei den herkömmlichen Kraftstoffhochdruck-Kolbenpumpen. Durch diese vergrößerte Länge des Ventilsitzes ergibt sich bei gleichem Hub des Ventilelements ein kleinerer Druckabfall über das Einlassventil hinweg. Dies wirkt sich günstig für die Befüllung des Förderraumes aus, und erhöht hierdurch den Liefergrad der erfindungsgemäßen Kraftstoffhochdruck-Kolbenpumpe. Gleichzeitig wird die druckbeaufschlagte Fläche des Ventilelements verringert, wodurch die Dynamik des Einlassventils verbessert wird. Durch die verlängerte Ventilsitzlinie wird die Geschwindigkeit des Kraftstoffs beim Durchströmen des Einlassventils reduziert, wodurch beim Saugen der Druckabfall reduziert wird und hierdurch eine Dampfbildung während der Saugphase vermieden wird. Bei zwangsweise geöffnetem Einlassventil werden ebenfalls die Strömungskräfte beim Zurückfördern deutlich reduziert. Der Grund hierfür liegt wieder im kleineren Druckabfall und der zusätzlich reduzierten Fläche, auf den dieser Druckabfall wirkt.
  • Für den Verlauf der Ventilsitzlinie sind dabei ganz unterschiedliche Formen denkbar.
  • Eine erste Weiterbildung der erfindungsgemäßen Kraftstoffhochdruck-Kolbenpumpe zeichnet sich dadurch aus, dass sie einen vom Ventilkörper geführten Stößel umfasst, mit dem das Ventilelement zwangsweise in eine geöffnete Stellung beaufschlagt werden kann, und dass der Stößel bei geschlossenem Einlassventil durch eine umlaufende und mit dem Ventilelement kooperierende Ventilsitzlinie gegenüber einem stromabwärtigen Hochdruckbereich abgedichtet ist. Hierdurch wird erreicht, dass der Ventilstößel bei zwangsweise offen gehaltenem Ventilelement vom im Förderraum herrschenden Druck möglichst wenig beaufschlagt und damit möglichst wenig beeinflusst ist. Bei geschlossenem Einlassventil wirkt auf den Stößel dagegen keine Kraft von dem stromabwärtigen Hochdruckbereich. Diese Kraft wird vom Ventilsitz aufgenommen. Vorzugsweise ist bei geschlossenem Einlassventil zwischen dem abragenden Ende des Stößels und dem Ventilelement sogar ein kleiner Spalt vorhanden.
    Vorteilhaft ist ferner, wenn die Ventilsitzlinie mindestens bereichsweise durch einen erhabenen Steg gebildet wird. In Abkehr von einem bisher üblichen Flachsitz wird hierdurch eine definierte Dichtkontur geschaffen, durch die die Bereiche des Ventilelements, in denen bei geschlossenem Einlassventil auf der einen Seite ein niedriger und auf der anderen Seite ein hoher Druck herrscht, klein gehalten werden. Hierdurch wird die Dynamik des Einlassventils nochmals verbessert.
  • Erfindungsgemäß ist es, dass bei einer mindestens bereichsweise wellenförmigen, mäanderförmigen, gezackten oder kleeblattförmigen Ventilsitzlinie, die an einem Ventilsitzkörper ausgebildet ist, der Ventilsitzkörper in einem an die Ventilsitzlinie unmittelbar angrenzenden stromabwärtigen Bereich einen Strömungskanal aufweist. Hierdurch wird sozusagen zusätzlicher Platz geschaffen für das abströmende Fluid, wodurch die Druckverluste nochmals reduziert werden und der Liefergrad der Kraftstoffhochdruck-Kolbenpumpe nochmals verbessert wird.
  • Erfindungsgemäß ist es, dass der Strömungskanal eine Vertiefung in dem Ventilsitzkörper umfasst. Diese Vertiefung kann beispielsweise den gesamten zwischen zwei benachbarten Wellen oder Mäandern oder Kleeblättern vorhandenen Bereich umfassen. Dies ist einfach herstellbar und führt zu einem optimalen Abströmen des Kraftstoffes.
  • Bei jener Variante, bei der sich der Ventilsitz entlang einer ersten radialen inneren Ventilsitzlinie und einer zweiten radial äußeren Ventilsitzlinie erstreckt, ist es vorteilhaft, wenn das Ventilelement radial einwärts von der radial inneren Ventilsitzlinie mindestens eine Durchgangsöffnung aufweist. Auch hierdurch wird das Abströmen und, bei zwangsweise geöffnetem Einlassventil, auch das Zurückströmen des Kraftstoffs nochmals erleichtert.
  • Erfindungsgemäß ist es möglich, dass das Ventilelement eine kreisrunde Form hat. Dies ist besonders leicht und daher preiswert herstellbar, und eine Sicherung gegen ein Verdrehen des Ventilelements ist nicht erforderlich. Alternativ hierzu ist es aber auch möglich, dass das Ventilelement eine zu der Ventilsitzlinie komplementäre, also ebenfalls wellenförmige mäanderförmige oder kleeblattförmige Außenkontur hat und gegen ein Verdrehen gesichert ist. In diesem Falle sind die auf das Ventilelement einwirkenden Kräfte minimal und der Kraftstoff kann bestmöglich ab- beziehungsweise zuströmen.
  • Nachfolgend werden Beispiele der erfindungsgemäßen Kraftstoffhochdruck-Kolbenpumpe unter Bezugnahme auf die-beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen:
    • Figur 1 eine schematische Darstellung eines Kraftstoffsystems einer Brennkraftmaschine mit einer Kraftstoffhochdruck-Kolbenpumpe;
    • Figur 2 eine schematische Detaildarstellung der Kraftstoffhochdruck-Kolbenpumpe mit einem Einlassventil;
    • Figur 3 eine perspektivische Darstellung einer erfindungsgemäßen Variante des Einlassventils der Kraftstoffhochdruck-Kolbenpumpe der Figuren 1 und 2;
    • Figur 4 eine perspektivische Darstellung eines Ausführungsbeispiels des Einlassventils der Kraftstoffhochdruck-Kolbenpumpe der Figuren 1 und 2; und
    • Figur 5 eine perspektivische Darstellung eines zweiten Ausführungsbeispiels des Einlassventils der Kraftstoffhochdruck-Kolbenpumpe der Figuren 1 und 2.
  • Ein Kraftstoffsystem einer Brennkraftmaschine trägt in Figur 1 insgesamt das Bezugszeichen 10. Es umfasst einen Kraftstoffbehälter 12, aus dem eine Vorförderpumpe 14 Kraftstoff in eine Niederdruckleitung 16 fördert. Diese führt zu einer insgesamt mit 18 bezeichneten Kraftstoffhochdruck-Kolbenpumpe 18. Diese umfasst zunächst ein Einlassventil 20, welches als Rückschlagventil ausgebildet ist und von einer elektromagnetischen Betätigungseinrichtung 22 zwangsweise in die geöffnete Richtung beaufschlagt werden kann. Die Kombination aus Einlassventil 20 und elektromagnetischer Betätigungseinrichtung 22 wird auch als Mengensteuerventil bezeichnet, da hierdurch die Fördermenge der Kraftstoffhochdruck-Kolbenpumpe 18 eingestellt werden kann. Das Einlassventil 20 beziehungsweise dessen Ausgestaltung sind vorliegend von besonderem Interesse. Hierauf wird daher weiter unten noch stärker im Detail eingegangen werden.
  • Zu der Kraftstoffhochdruck-Kolbenpumpe 18 gehört ferner ein Pumpenkolben 24, der durch einen in Figur 1 nicht dargestellten Exzenterantrieb in eine Hin- und Herbewegung versetzt werden kann. Oberhalb von dem Pumpenkolben 24 ist zwischen diesem und einem Gehäuse 26 ein Förderraum 27 vorhanden. Von diesem führt über ein ebenfalls als Rückschlagventil ausgebildetes Auslassventil 28 eine Hochdruckleitung 30 zu einem Kraftstoffrail 32, an welches mehrere Kraftstoffinjektoren 34 angeschlossen sind. Diese spritzen den Kraftstoff direkt in ihnen jeweils zugeordnete Brennräume (nicht dargestellt) ein.
  • Ein Bereich der Kraftstoffhochdruck-Kolbenpumpe 18 ist in Figur 2 stärker im Detail dargestellt. Man erkennt, dass das Einlassventil 20 ein plattenförmiges Ventilelement 36 umfasst, welches mit einem Ventilsitzkörper 38 zusammenwirkt. Bei geschlossenem Einlassventil 20 liegt das Ventilelement 36 am Ventilsitzkörper 38 an. Bei geöffnetem Einlassventil 20, wie es in Figur 2 dargestellt ist, ist das Ventilelement 36 vom Ventilsitzkörper 38 abgehoben. Beim Ventilsitzkörper 38 handelt es sich um ein scheibenförmiges Element, welches in das Gehäuse 26 der Kraftstoffhochdruck-Kolbenpumpe 18 im Presssitz eingepasst ist. In dem Ventilsitzkörper 38 sind Durchlassöffnungen 40 vorhanden, die bei geschlossenem Einlassventil 20 vom Ventilelement 36 gesperrt, bei geöffnetem Einlassventil 20 dagegen vom Ventilelement 36 frei gegeben werden. Die Form und Anordnung der Durchlassöffnungen 40 sowie des mit dem Ventilelement 36 zusammenwirkenden Ventilsitzes (in Figur 2 noch nicht dargestellt) sind vorliegend von besonderer Bedeutung und werden weiter unten noch stärker erläutert werden.
  • In dem Ventilsitzkörper 38 ist eine mittige Öffnung 42 vorhanden, durch die sich ein Stößel 44 der elektromagnetischen Betätigungseinrichtung 22 hindurch erstreckt. Der Stößel 44 verfügt über einen Anschlagabsatz 46, der mit gehäuseseitigen Anschlägen 48 und 50 zusammenarbeitet. Am vom Einlassventil 20 abgewandten Ende des Stößels 44 ist an diesem ein Anker 52 befestigt, der mit einer elektromagnetischen Spule (nicht dargestellt) zusammenwirkt. Zwischen dem Anker 52 und dem Gehäuse 26 ist eine Ankerfeder 54 verspannt, welche den Stößel 44 zum Einlassventil 20 hin beaufschlagt. Dies hat zur Folge, dass dann, wenn die elektromagnetische Betätigungseinrichtung 22 nicht bestromt ist, das Ventilelement 36 über den Stößel durch die Kraft der Ankerfeder 54 zwangsweise in die geöffnete Stellung beaufschlagt wird. Wird die elektromagnetische Betätigungseinrichtung 22 dagegen bestromt, wird der Stößel 44 vom Ventilelement 36 weg gezogen, so dass dieses in Anlage an den Ventilsitzkörper 38 gelangen und im Rahmen der normalen Funktion eines Rückschlagventils schließen kann.
  • Nun wird, wie bereits mehrfach angekündigt, das Einlassventil 20 und hier insbesondere die Ausgestaltung des Ventilsitzkörpers 38 unter Bezugnahme auf Figur 3 näher erläutert. In dieser ist das Einlassventil 20 perspektivisch aus Richtung des Förderraums 27 dargestellt. Man erkennt, dass in dem Ventilsitzkörper 38 vier kreisbogensegmentförmige Ausnehmungen vorhanden sind, welche die Durchlassöffnungen 40 bilden. Zwischen den Durchlassöffnungen 40 erstrecken sich in radialer Richtung Stege 56, die einen zentrischen Ring 58 halten, in dem die mittige Öffnung 42 für den Stößel 44 vorhanden ist. In Figur 3 ist auch das dem Ventilelement 36 zugewandte Ende des Stößels 44 gezeigt.
  • Auf der dem plattenförmigen Ventilelement 36 zugewandten Seite des Ventilsitzkörpers 38 ist am Rand der Durchlassöffnungen 40 und der mittigen Öffnung 42 ein zum Ventilelement 36 hin axial abragender umlaufender Steg 60 vorhanden, dessen dem Ventilelement 36 zugewandter Rand als abgeflachte Kante ausgebildet ist und der insoweit einen Ventilsitz für das Ventilelement 36 bildet. Man erkennt aus Figur 3 also ohne Weiteres, dass sich der Ventilsitz 60 vorliegend entlang einer kleeblattförmig verlaufenden Ventilsitzlinie erstreckt. Zwischen zwei benachbarten Durchlassöffnungen 40 ist in der dem Ventilelement 36 zugewandten Seite des Ventilsitzkörpers 38 eine Vertiefung 62 vorhanden, die sich in radialer Richtung weiter als der Ventilsitz 60 erstreckt. Diese Vertiefung 62 bildet, wie weiter unten noch erläutert werden wird, einen Strömungskanal für den ab- und zuströmenden Kraftstoff. Auf der dem Ventilelement 36 zugewandten Seite des Ventilsitzkörpers 38 sind somit drei diskrete Ebenen vorhanden: Eine Mittelebene 64, die in jenem Bereich vorliegt, wo weder ein Ventilsitz 60 noch eine Vertiefung 62 vorhanden sind. Eine zweite Ebene, die von dieser Mittelebene 64 vom Ventilelement 36 weg versetzt angeordnet ist und in der die Vertiefungen 62 liegen. Und eine dritte Ebene, die gegenüber der Mittelebene 64 zum Ventilelement 36 hin erhaben ist und in der die abgeflachte Kante des Ventilsitzes 60 liegt.
  • Das Einlassventil 20 arbeitet folgendermaßen: Soll Kraftstoff von der Niederdruckleitung 16 in den Förderraum 27 strömen, tritt der Kraftstoff durch die Durchlassöffnungen 40 hindurch. Anschließend strömt er jedoch nicht nur in radialer Richtung durch den Spalt zwischen den radial äußeren Bereichen (in Figur 3 ist hiervon einer exemplarisch mit dem Bezugszeichen 60a versehen) des Ventilsitzes 60 und dem Ventilelement 36 ab, sondern auch in Umfangsrichtung durch die sich radial erstreckenden Abschnitte des Ventilsitzes 60 (in Figur 3 ist hiervon einer mit dem Bezugzeichen 60b bezeichnet). Im Vergleich zu bisherigen Einlassventilen ist also die durchströmte Fläche im Bereich des Dichtsitzes 60 deutlich vergrößert, wodurch der dort eintretende Druckabfall deutlich verringert ist. Hierdurch kommt es weniger oder vielleicht sogar überhaupt nicht zu Dampfbildung, wodurch die Kraftstoffhochdruck-Kolbenpumpe 18 einen vergleichsweise hohen Liefergrad aufweist.
  • Dabei ist darauf hinzuweisen, dass die mittige Öffnung 42, welche im Übrigen den Stößel 44 mit einem kleinen Spiel führt, um dessen axiale Bewegung zu ermöglichen, sich innerhalb des umlaufenden kleeblattförmigen Ventilsitzes 60 befindet, wodurch die Führung des Stößels 44 in der mittigen Öffnung 42 immer dem Niederdruckbereich zugewandt ist, so dass bei geschlossenem Einlassventil 20 und hinter den Ventilsitz 60 zurückgezogenem Stößel 44 keine Leckage über das Einlassventil 20 hinweg auftritt. Durch die Vertiefungen 62 wird dabei ein Strömungskanal für das über die radial verlaufenden Abschnitte 60b des Ventilsitzes 60 abströmende Fluid geschaffen, so dass auch bei geringem Hub des Ventilelements 36 ein ausreichender Querschnitt für das Abströmen des Kraftstoffes zur Verfügung steht.
  • Bei zwangsweise geöffnetem Einlassventil 20 und einer Rückströmung vom Förderraum 27 in die Niederdruckleitung 16 ergibt sich ebenfalls durch den vergleichsweise langen Ventilsitz 60 ein geringerer Druckabfall und somit auch eine geringere Kraft, die das Ventilelement 36 auf den Stößel 44 ausübt.
    Wie ohne Weiteres aus Figur 3 ersichtlich ist, erfordert ein vollflächiges kreisförmiges Ventilelement 36 keinerlei Verdrehsicherung. Möglich ist aber auch, dass das Ventilelement 36 im Bereich der Vertiefungen 62, also zwischen den Durchlassöffnungen 40, ebenfalls Ausnehmungen aufweist, wie in Figur 3 durch gestrichelte Linien angedeutet ist. In diesem Falle muss das Ventilelement 36 aber gegen Verdrehen gesichert werden.
  • Ein Ausführungsbeispiel des Einlassventils 20 zeigt Figur 4. Dabei gilt hier wie nachfolgend, dass solche Elemente und Bereiche, welche äquivalente Funktionen zu bereits beschriebenen Elementen und Bereichen aufweisen, die gleichen Bezugszeichen tragen und nicht nochmals im Detail erläutert sind. Bei dem in Figur 4 gezeigten Einlassventil 20 ist ein radial innerer Ventilsitz 60c und ein radial äußerer ringförmiger Ventilsitz 60d vorhanden. Die Durchlassöffnungen 40 sind zwischen diesen beiden ringförmigen Ventilsitzen 60c und 60d vorhanden. Damit auch der radial innere Ventilsitz 60c zum Abströmen von Fluid genutzt werden kann, ist es bei dieser Ausführungsform jedoch erforderlich, das radial einwärts vom Ventilsitz 60c im Ventilelement 36 Öffnungen 66 vorhanden sind, welche ein axiales Ab- beziehungsweise Zuströmen von Kraftstoff ermöglichen. Die mittige Öffnung 42 ist durch einen Ventilsitz 60e abgedichtet.
  • Bei einem weiteren Ausführungsbeispiel, das in Figur 5 dargestellt ist, sind die Durchlassöffnungen 40 durch eine Vielzahl diskreter kreisförmiger Durchgangsbohrungen im Ventilsitzkörper 38 ausgebildet. Auch hier dienen Öffnungen 66 im Ventilelement 36, von denen in Figur 5 nur eine beispielhaft dargestellt ist, dazu, ein Abströmen von Kraftstoff im radial einwärtigen Bereich des Einlassventils 20 zu ermöglichen.

Claims (7)

  1. Kraftstoffhochdruck-Kolbenpumpe (18), insbesondere für ein Common-Rail-Kraftstoffsystem (10) einer Brennkraftmaschine, mit einem Einlassventil (20), welches ein plattenförmiges bewegliches Ventilelement (36) und mindestens einen mit diesem kooperierenden stationären Ventilsitz (60) umfasst, wobei sich der Ventilsitz (60) entlang einer mindestens bereichsweise wellenförmig, mäanderförmig, gezackt oder kleeblattförmig verlaufenden Ventilsitzlinie erstreckt, dadurch gekennzeichnet, dass die mindestens bereichsweise wellenförmige, mäanderförmige, gezackte oder kleeblattförmige Ventilsitzlinie (60), an einem Ventilsitzkörper (38) ausgebildet ist und der Ventilsitzkörper (38) in einem an die Ventilsitzlinie unmittelbar angrenzenden stromabwärtigen Bereich einen Strömungskanal (62) aufweist.
  2. Kraftstoffhochdruck-Kolbenpumpe (18) nach Anspruch 1, dadurch gekennzeichnet, dass sie einen Stößel (44) umfasst, mit dem das Ventilelement (36) zwangsweise in eine geöffnete Stellung beaufschlagt werden kann, und dass der Stößel (44) bei geschlossenem Einlassventil (20) durch einen umlaufenden und mit dem Ventilelement (36) kooperierenden Ventilsitz (60) gegenüber einem stromabwärtigen Hochdruckbereich (27) abgedichtet ist.
  3. Kraftstoffhochdruck-Kolbenpumpe (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ventilsitz mindestens bereichsweise durch einen erhabenen Steg (60) gebildet wird.
  4. Kraftstoffhochdruck-Kolbenpumpe (18) nach Anspruch 1, dadurch gekennzeichnet, dass der Strömungskanal eine Vertiefung (62) in dem Ventilsitzkörper (38) umfasst.
  5. Kraftstoffhochdruck-Kolbenpumpe (18) nach einem der vorhergehenden Ansprüche, bei der sich der Ventilsitz entlang einer ersten radial inneren Ventilsitzlinie (60c) und einer zweiten radial äußeren Ventilsitzlinie (60d) erstreckt, dadurch gekennzeichnet, dass das Ventilelement (36) radial einwärts von der radial inneren Ventilsitzlinie (60c) mindestens eine Durchgangsöffnung (66) aufweist.
  6. Kraftstoffhochdruck-Kolbenpumpe (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Ventilelement (36) eine kreisrunde Außenkontur hat.
  7. Kraftstoffhochdruck-Kolbenpumpe (18) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Ventilelement (36) eine zu der Ventilsitzlinie (60) komplementäre Außenkontur hat und gegen ein Verdrehen gesichert ist.
EP13730210.5A 2012-06-28 2013-06-17 Kraftstoffhochdruck-kolbenpumpe Not-in-force EP2867520B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012211106.9A DE102012211106A1 (de) 2012-06-28 2012-06-28 Kraftstoffhochdruck-Kolbenpumpe
PCT/EP2013/062514 WO2014001122A1 (de) 2012-06-28 2013-06-17 Kraftstoffhochdruck-kolbenpumpe

Publications (2)

Publication Number Publication Date
EP2867520A1 EP2867520A1 (de) 2015-05-06
EP2867520B1 true EP2867520B1 (de) 2019-04-03

Family

ID=48669936

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13730210.5A Not-in-force EP2867520B1 (de) 2012-06-28 2013-06-17 Kraftstoffhochdruck-kolbenpumpe

Country Status (4)

Country Link
EP (1) EP2867520B1 (de)
KR (1) KR20150027127A (de)
DE (1) DE102012211106A1 (de)
WO (1) WO2014001122A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014223198A1 (de) * 2014-11-13 2016-05-19 Robert Bosch Gmbh Kraftstoffpumpe mit verbessertem Förderverhalten
DE102018200612B4 (de) 2018-01-16 2019-11-28 Continental Automotive Gmbh Hochdruckanschluss für eine Kraftstoffhochdruckpumpe sowie Kraftstoffhochdruckpumpe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355285A (en) * 1919-02-20 1920-10-12 W N Matthews And Brother Inc Pump-valve
DE3404520A1 (de) * 1984-02-09 1985-08-14 Uraca Pumpenfabrik GmbH & Co KG, 7432 Bad Urach Kolben- bzw. plungerpumpe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4023044A1 (de) 1990-07-20 1992-01-23 Bosch Gmbh Robert Ventil zum dosierten zumischen von verfluechtigtem kraftstoff zum kraftstoffluftgemisch einer brennkraftmaschine
US7124966B2 (en) * 2004-06-01 2006-10-24 Haynes Corporation Fuel injector check valve
EP1724467B1 (de) 2005-05-20 2016-07-13 Magneti Marelli S.p.A. Kraftstoffpumpe für Brennkraftmaschinen
DE602006018141D1 (de) * 2006-09-04 2010-12-23 Magneti Marelli Spa Absperrventil zur Steuerung des Durchflusses einer Kraftstoffpumpe für eine Brennkraftmaschine
US20080203347A1 (en) * 2007-02-28 2008-08-28 Santos Burrola Control valve for a gas direct injection fuel system
IT1396473B1 (it) 2009-03-30 2012-12-14 Magneti Marelli Spa Pompa carburante con una valvola di massima pressione perfezionata per un sistema di iniezione diretta
DE102010044119A1 (de) * 2010-11-18 2012-05-24 Robert Bosch Gmbh Mengensteuerventil eines Kraftstoffsystems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355285A (en) * 1919-02-20 1920-10-12 W N Matthews And Brother Inc Pump-valve
DE3404520A1 (de) * 1984-02-09 1985-08-14 Uraca Pumpenfabrik GmbH & Co KG, 7432 Bad Urach Kolben- bzw. plungerpumpe

Also Published As

Publication number Publication date
EP2867520A1 (de) 2015-05-06
KR20150027127A (ko) 2015-03-11
WO2014001122A1 (de) 2014-01-03
DE102012211106A1 (de) 2014-01-02

Similar Documents

Publication Publication Date Title
EP2013469B1 (de) Kraftstoff-hochdruckpumpe
EP2578818B1 (de) Steuerventil mit integriertem Filter und Nockenwellen-Phasensteller mit dem Steuerventil
EP1831537B1 (de) Injektor eines kraftstoffeinspritzsystems einer brennkraftmaschine
EP1671031B1 (de) Fluidpumpe, insbesondere kraftstoffhochdruckpumpe, mit druckdämpfer
EP2394049B1 (de) Brennstoffeinspritzventil für verbrennungskraftmaschinen
WO2009013041A1 (de) Hochdruckpumpe für ein kraftstoffsystem einer brennkraftmaschine
WO2014001139A1 (de) Kolben-kraftstoffpumpe
WO2014139698A1 (de) Kraftstoff-hochdruckpumpe mit einem zwischen einem förderraum und einem auslass angeordneten auslassventil
EP2212167B1 (de) Hydraulische kolbenpumpe
EP1952011B1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine mit kraftstoff-direkteinspritzung
DE102009001433A1 (de) Saugventil für eine Kraftstoffhochdruckpumpe
DE102005022661A1 (de) Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
EP2867520B1 (de) Kraftstoffhochdruck-kolbenpumpe
EP1319831B1 (de) Kraftstoffhochdruckpumpe mit integrierter Sperrflügel-Vorförderpumpe
EP3014100B1 (de) Steuerventil
EP2603680A1 (de) Einspritzvorrichtung zum einbringen einer harnstofflösung in den abgasstrang einer brennkraftmaschine
EP2966293B1 (de) Schaltventil, insbesondere zur zumessung eines fluids für eine stromabwärts angeordnete förderpumpe
WO2014079625A1 (de) Ventileinrichtung zur verwendung in einem kraftstoffeinspritzsystem
WO2016091607A1 (de) Ventilanordnung und hochdruckpumpe für ein kraftstoffeinspritzsystem einer brennkraftmaschine
EP3387247B1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
WO2019233662A1 (de) Elektromagnetisch betätigbares saugventil und kraftstoff-hochdruckpumpe
DE102007030224A1 (de) Kraftstoffpumpe, insbesondere für ein Kraftstoffsystem einer Brennkraftmaschine
DE102016220360A1 (de) Pumpe, insbesondere Kraftstoffhochdruckpumpe
DE102017203572A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102009001267A1 (de) Kraftstoff-Injektor mit piezoelektrischem Aktor und hydraulischem Koppler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1116058

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012548

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190625

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190624

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012548

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

26N No opposition filed

Effective date: 20200106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1116058

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200617

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130617

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220822

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013012548

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103