EP2865282B2 - Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie - Google Patents

Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie Download PDF

Info

Publication number
EP2865282B2
EP2865282B2 EP14182569.5A EP14182569A EP2865282B2 EP 2865282 B2 EP2865282 B2 EP 2865282B2 EP 14182569 A EP14182569 A EP 14182569A EP 2865282 B2 EP2865282 B2 EP 2865282B2
Authority
EP
European Patent Office
Prior art keywords
measuring
capacitor
passage channel
rod
shaped articles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14182569.5A
Other languages
English (en)
French (fr)
Other versions
EP2865282A1 (de
EP2865282B1 (de
Inventor
Dierk SCHRÖDER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koerber Technologies GmbH
Original Assignee
Koerber Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51399567&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2865282(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Koerber Technologies GmbH filed Critical Koerber Technologies GmbH
Priority to PL14182569.5T priority Critical patent/PL2865282T5/pl
Publication of EP2865282A1 publication Critical patent/EP2865282A1/de
Publication of EP2865282B1 publication Critical patent/EP2865282B1/de
Application granted granted Critical
Publication of EP2865282B2 publication Critical patent/EP2865282B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/3412Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by means of light, radiation or electrostatic fields

Definitions

  • the invention relates to a method for checking cross-axially conveyed rod-shaped articles in the tobacco processing industry, in particular for checking liquid-filled capsules in filters of filter cigarettes.
  • the filter rods produced in this way are stored for a certain period of time, for example 24 hours, and then checked again along a pneumatic conveyor line for their fill level or whether they are broken. This is done, for example, in the applicant's facility known as "FDU" in order to rule out the possibility that capsules have been damaged on the filter rod production machine, which only leak after some time and are only detected as faulty by the microwave sensor when they are dry.
  • FDU the applicant's facility
  • a device for testing the ends of cigarettes which comprises a test conveyor in which the cigarettes are conveyed transversely axially.
  • the device also comprises a capacitive measuring arrangement for the tobacco density.
  • the capacitive measuring arrangement has at least two electrodes arranged stationary with respect to the test conveyor and connected to a high-frequency voltage source. Their position in relation to the cigarette ends is selected such that at the time of measurement a high-frequency field emanating from them penetrates the cigarette ends.
  • a capacitive HF strand measuring device for capacitively determining at least one property of an endless strand of material in the tobacco processing industry is known.
  • the measuring device comprises a housing with at least one measuring capacitor through which the strand of material can pass and to which an HF voltage signal can be applied.
  • the capacitive HF strand measuring device comprises one or more accuracy-determining electronic components in its housing.
  • the unpublished EP 2 848 133 A1 A system for checking rod-shaped articles conveyed cross-axially in the tobacco processing industry is known.
  • the system is used to check liquid-filled capsules in filters of filter cigarettes.
  • the system comprises a trough conveyor device with troughs for receiving and cross-axially conveying the rod-shaped articles.
  • the rod-shaped articles are checked using a microwave measuring device.
  • the present invention is based on the object of ensuring that the quality of the rod-shaped articles of the tobacco processing industry is ensured after complete processing.
  • the invention is based on the basic idea that the articles, in particular filter cigarettes, are inserted laterally into the measuring capacitor in a transverse axial direction and pass through the HF measuring field excited therein.
  • the protruding sections of the rod-shaped articles thus enter the HF measuring field completely.
  • the capacitive HF measuring device With the longitudinally extended, one-sided open lateral passage channel, the capacitive HF measuring device is also specially designed for this transverse axially promoted lateral passage. to enable the corresponding passage through the measuring capacitor.
  • This passage channel also cuts through or passes through the measuring capacitor.
  • the protruding sections of the articles, in particular the capsules pass through the RF measuring field in an area of the RF measuring field that is essentially homogeneous along the longitudinal axis of the articles.
  • the measure according to the invention has the advantage that changes in the density, for example of a cigarette filter, or in the liquid filling of a liquid-filled capsule in the cigarette filter can be detected very precisely and largely independent of position. This increases the measurement reliability for the quality of the filters or the capsules contained therein.
  • the solution according to the invention makes it possible to check the quality of the rod-shaped articles and in particular the filters and the capsules inserted therein after the articles have been completely manufactured. At this point, the articles have already undergone several processing steps, each of which could have resulted in the articles or the filters not meeting the requirements.
  • the at least one measuring capacitor has a conductive electrode surface on a first side of the passage channel that is insulated from a base body of the HF measuring device. On an opposite side of the passage channel, it has at least one capacitor electrode that is insulated from the base body and held on virtual ground, the surface of which is smaller than a surface of the conductive electrode surface on the first side of the passage channel.
  • the capacitor surfaces are thus designed as two surfaces or sides of the passage channel, one side being supplied with an HF signal of typically approximately 1 MHz to 100 MHz and the other being held on ground.
  • the base body is usually made of metal and is held on ground.
  • the capacitor electrode that is not supplied with an HF signal is held virtually on ground.
  • the difference between the virtual ground of the capacitor electrode and the ground potential of the base body is typically less than 1 mV to approximately 1 mV. This ensures a very homogeneous field geometry.
  • the measuring capacitor is equipped with two large capacitor surfaces that are larger than the objects to be measured, for example the filter sections of cigarettes.
  • the capacitor surface is the conductive electrode surface isolated from the base body, which is acted upon by an HF measuring signal, and the entire opposite surface, including the base body surface at ground potential and the capacitor electrode surface held on virtual ground, serves as the capacitor surface.
  • the capacitor electrodes themselves are significantly smaller, for example on the order of the size of cigarette filters or even smaller. If several such capacitor electrodes held on virtual ground are arranged on the second side of the passage channel, it is also possible to determine the position of capsules in filter rods, for example.
  • an electronic circuit is included, by means of which the electrode surface on the first side of the passage channel can be or is subjected to an RF measurement signal and the at least one capacitor electrode is held or maintained on a virtual ground, in particular by means of a zero detector control loop, wherein in particular each measuring capacitor is assigned its own zero detector control loop.
  • a circuit comprises, for example, a harmonic oscillator source for generating the RF measurement signal and a circuit part which generates a virtual ground on the capacitor electrode.
  • a second oscillator source is controlled in frequency, phase and amplitude so that the voltage on the electrode is kept at zero. This is preferably done by means of a zero detector control loop.
  • Such circuits are known, for example, from German patent application No. 10 2011 083 052.9 known to the applicant, the disclosure content of which is intended to be included in full in the present patent application.
  • a further improvement in the measurement is achieved if, advantageously, a circuit comprising a compensation capacitor and an amplifier, in particular an inverting one, is connected in parallel to the at least one measuring capacitor, the gain factor and capacitance value of which are set or selected such that an empty signal from the measuring capacitor is partially or completely compensated.
  • a circuit comprising a compensation capacitor and an amplifier, in particular an inverting one, is connected in parallel to the at least one measuring capacitor, the gain factor and capacitance value of which are set or selected such that an empty signal from the measuring capacitor is partially or completely compensated.
  • the controlled oscillator which is intended to set a virtual ground at the output of the measuring capacitor, can also advantageously be designed as a combination of DDS module and differential amplifier.
  • two capacitor electrodes are arranged on both sides of a trajectory of capsules at a desired capsule position, with the electronic circuit being designed to carry out total measurements and/or difference measurements of the signals of the two capacitor electrodes.
  • the total measurements provide information about, for example, the filling state of inserted capsules, while difference measurements provide the location of inserted capsules and in particular their deviation from a desired position. Arrangements of several capacitor electrodes are also possible.
  • the trough conveyor device is preferably designed as a trough drum, as a trough cone drum or as a trough conveyor belt.
  • the at least one measuring capacitor has on a first side of the passage channel a conductive electrode surface which is insulated from a base body of the HF measuring device and which is supplied with an HF measuring signal, and at least one capacitor electrode arranged on an opposite side of the passage channel and insulated from the base body, which is held at virtual ground, in particular by means of a zero detector control loop.
  • a circuit comprising a compensation capacitor and an amplifier, in particular an inverting one, is connected in parallel to at least one measuring capacitor, in particular the at least one measuring capacitor, the gain factor and capacitance value of which are set or selected such that an empty signal of the at least one measuring capacitor is compensated.
  • a circuit comprising a compensation capacitor and an amplifier, in particular an inverting one, is connected in parallel to at least one measuring capacitor, in particular the at least one measuring capacitor, the gain factor and capacitance value of which are set or selected such that an empty signal of the at least one measuring capacitor is compensated.
  • in-phase inverted signals with different amplification factors are generated with which on the one hand the at least one measuring capacitor and on the other hand the compensation capacitance are operated.
  • Articles whose capsules are not properly filled or positioned are preferably rejected. This means that they are excluded from further processing or do not reach a packaging machine.
  • Embodiments of the invention may fulfill individual features or a combination of several features.
  • Fig.1 is a schematic representation of how filter rods with flavor capsules have been manufactured and checked to date.
  • filter rods with flavor capsules are manufactured on a filter rod device, for example with a filter rod made of acetate, for example on a filter rod machine according to the KDF sold by the applicant.
  • microwave sensors for example the applicant's MIDAS-EF, to determine whether capsules are missing, whether a double number has been inserted in one place, whether a capsule is in the wrong position, whether a capsule is broken or has an irregular fill level.
  • the capsules are then optionally stored for 24 hours or more, depending on the customer, and in a process step 2 are fed into a pneumatic conveying device, for example according to the applicant's "FDU" (Filter Detection Unit), which is described, for example, in the German patent application EN 10 2009 017 962 A1
  • FDU Fan Detection Unit
  • This microwave device also corresponds, for example, to the MIDAS-EF, i.e. a cylindrical microwave resonator with a central passage for longitudinally axially conveyed filter rods, as is the case, for example, with DE 198 54 550 B4 is known.
  • multi-filter production takes place, in which capsule-filled filter plugs are combined with other filter plugs to form a multi-filter rod.
  • the capsules can be damaged and possibly dry out over a longer period of time.
  • testing in process step 2 is not possible due to a lack of appropriate facilities at the manufacturer.
  • process step 4 the respective filter is assembled and connected to a tobacco rod on a filter attachment machine, for example the machine sold by the applicant under the name "MAX".
  • a filter attachment machine for example the machine sold by the applicant under the name "MAX”.
  • a trough conveyor device in the form of a trough drum 10 is shown in detail, on the cylindrical surface of which a sequence of troughs 12 is arranged, which hold cigarettes 14 with suction air (not shown).
  • the trough drum 10 moves the cigarettes 14 in a conveying direction 11, which is shown with an arrow.
  • the cigarettes 14 consist of a tobacco rod 17, which is mostly held in a trough 12, to which a filter 16 with a capsule 18 inserted therein is attached.
  • the trough 12 and the trough drum 10 end approximately in the area of the transition from the tobacco rod 17 to the filter 16, so that a section 15 of the cigarette 14 protrudes over the trough 12 and is conveyed freely. These sections 15 of the cigarettes 14 then pass through a measuring device.
  • a trough conveying device in the form of a trough cone drum 20 with a substantially frustroconical circumference.
  • the trough cone drum 20 rotates in a conveying direction 21 and has troughs 22 on its outer circumferential surface in which cigarettes 14 are held by means of suction air (not shown).
  • suction air not shown
  • the protruding sections 15 of the cigarettes 14 dip into a measuring device (not shown).
  • Fig. 4a shows a cross-section that runs vertically through the conveying trajectory 19 of a cross-axially conveyed cigarette 14 with filter 16 and capsule 18 in the middle of the filter 16. At this point, the cigarette 14 is conveyed with its protruding section 15 through a passage channel 40 of the capacitive HF measuring device 30.
  • the Fig. 4a The wall surface shown above consists of an electrically conductive electrode surface 38, which is insulated from the likewise metallic base body 36 of the HF measuring device 30 by means of an insulation 37.
  • a supply line 39 runs through the insulation 37, via which the electrode surface 38 is exposed to a harmonic HF signal.
  • the part of the capacitive HF measuring device 34 shown below the cigarette 14 comprises, as the underside of the passage channel 40 or the opposite side, the electrically conductive base body 36, which is held at a ground potential, and two capacitor electrodes 42, 42', which are electrically insulated from the base body 36 by means of insulation 43, 43' and are connected to an electrical circuit via leads 44, 44'. These capacitor electrodes 42, 42' are held on a virtual ground. Since the potential between the virtual ground and the ground on which the base body 36 lies only differs by up to approx. 1 mV, a very homogeneous HF measuring field is formed in the entire passage channel 40 between the electrode 38 to which an HF measuring signal is applied and the opposite surface, which lies on ground or virtual ground.
  • Fig. 4b the same capacitive HF measuring device 30 is shown in a section, which includes the conveying trajectory 19 of the cigarette 14 or the filter 16 with the capsule 18. Since this is conveyed in a trough on a trough drum in the exemplary embodiment, the passage channel 40 in this area has a ring-section-shaped design or describes a curve whose radius of curvature corresponds to the radius of the trough drum.
  • Fig. 4c shows a top view of the lower surface of the passage channel 40, i.e. the side of the capacitive HF measuring device 30 that is held at ground potential.
  • a large part of the surface of this electrode consists of the surface of the base body 36 that is held at ground potential.
  • Two capacitor electrodes 42, 42' that are held at virtual ground are arranged centrally along the trajectory 19 of a capsule 18.
  • the capacitor electrodes 42, 42' are insulated from the base body 36 by a circumferential insulation 43. The actual potential difference, however, is only up to one or a few mV.
  • the capacitor electrodes 42, 42' are arranged to the left and right of the trajectory 19, so that incorrect positioning of a capsule can be recognized by an asymmetry in the measurement signals of the capacitor electrodes 42, 42'.
  • a first circuit of a capacitive HF measuring device 30 that can be used according to the invention is shown schematically.
  • the measuring capacitor 34 is fed by a harmonic signal source, i.e. an oscillator 50.
  • the oscillator 50 can be constructed, for example, with a DDS circuit with a downstream low-pass filter or with a quartz oscillator.
  • the second connection of the measuring capacitor 34 is connected to the input of a zero detector circuit 62, the input of which is virtually held at ground potential 60 by the causal relationship. Since the input of the zero detector circuit 62 is virtually held at ground potential 60, the existing stray capacitances 54, 56 of the connection lines of the measuring capacitor 34 are ineffective in terms of measurement technology.
  • a compensation capacitance or a compensation capacitor 68 is used to improve the resolution of the measurement, which is replaced by an inverting Amplifier 66 is fed from the same oscillator 50 as the measuring capacitor 34.
  • the gain factor -a of the inverting amplifier 66 and the capacitance value of the compensation capacitor 68 are selected so that in the measuring range of the measuring capacitor 34 at the input of the zero detector circuit 62, an approximate ground potential is already established when the signal of the oscillator circuit 51 is zero. This avoids having to compensate for a large empty signal of the measuring capacitor 34 with the signal of the oscillator 51. Only the change in the measuring capacitor 34 needs to be compensated. This can significantly improve the resolution of the measurement.
  • a further advantage of this compensation circuit is that a significant part of the noise of the oscillator 50 is compensated because the measuring capacitor 34 and the compensation capacitor 68 are fed from the same signal source.
  • the zero detector control circuit in the circuit according to Fig.5 the arrangement of zero detector circuit 62, control device 64 and oscillator 51 with impedance 52, which ensure that the virtual ground 60 is established.
  • Fig.6 shows a further embodiment of a circuit arrangement that can be used according to the invention.
  • two measuring capacitors 34, 34' are connected to a harmonic oscillator 50 as a signal source.
  • Both measuring capacitors 34, 34' are the same as in Fig.4 This also means that the two measuring capacitors 39, 39' share the electrode surface 38 which is exposed to an RF measuring signal.
  • Stray capacitances and compensation capacitances are shown in Fig.6 not shown, but are as in Fig.5 , present.
  • Each measuring capacitor 34, 34' is connected to its own zero detector circuit 62, 62'.
  • Each zero detector circuit input is virtually regulated to ground potential 60, 60' by a corresponding control device 64, 64' and oscillators 51, 51' via impedances 52, 52'.
  • the corresponding output signals 65a, 65a' of the two control devices 64, 64' are further processed in an evaluation circuit 70.
  • this evaluation circuit 70 on the one hand, sum signals are formed which make it possible to detect the presence and the correct content of the capsules.
  • a difference signal is formed which is zero when the capsule is correctly positioned in the filter. If the capsule is not in the center position, either a positive or a negative difference signal results depending on the deviation.
  • a Fig. 7a shown improved embodiment of an oscillator 50a, which replaces the oscillator 50 in Fig.5 and 6 can be set, the property of DDS components 80 is used to generate complementary output signals U' , -U' . These are connected in opposite directions to the inputs of two differential amplifiers 81, 82. This generates two mutually inverted signals U, - ⁇ U with different amplification factors, namely, for example, an amplification factor of 1 in the differential amplifier 81 and an amplification factor of - ⁇ in the differential amplifier 82.
  • the amplification factor ⁇ is usually significantly smaller than 1.
  • the measuring capacitor 34 (or 34') is then operated with the output signal U of the differential amplifier 81, and the compensation capacitor 68 is operated with the output signal - ⁇ U of the differential amplifier 82. In this way, a signal generated by the amplifier 66 in Fig.5 caused disturbing additional phase delay between the measuring capacitor 34 and the compensation compensator 68 can be avoided.
  • a DDS module 90 can also be used in a similar way in an oscillator 51a according to Fig. 7b ) which replaces the oscillator 51 according to Fig.5 , 6
  • the DDS module 90 receives the manipulated variables 65 as an input signal.
  • the output signals U', -U' are converted via a differential amplifier 91 into an output signal U, which is fed via an impedance 52, 52' according to Fig.5 , 6 used to set the virtual mass 60, 60'.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing Of Cigar And Cigarette Tobacco (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Überprüfung von queraxial geförderten stabförmigen Artikeln der Tabak verarbeitenden Industrie, insbesondere zur Überprüfung von flüssigkeitsgefüllten Kapseln in Filtern von Filterzigaretten.
  • Bislang werden in einigen Filterstrangmaschinen, wie beispielsweise in der so genannten KDF der Anmelderin, Filterstäbe hergestellt, in die Objekte, beispielsweise geschmacksflüssigkeitsgefüllte Kapseln, eingelegt werden. Direkt während der Produktion werden diese Kapseln vor weiterer Verarbeitung geprüft, wobei insbesondere auch Mikrowellen-Sensoren wie das MIDAS-EF der Anmelderin zur Anwendung kommen. Dabei wird geprüft, ob der Füllgehalt der Kapseln korrekt ist oder ob diese zerbrochen sind, ob Kapseln fehlen, ob doppelte Kapseln eingelegt sind und ob die Position in der Strangrichtung korrekt ist.
  • In einigen Fällen werden die so produzierten Filterstäbe für eine gewisse Zeit, beispielsweise 24 Stunden, gelagert und anschließend entlang einer pneumatischen Förderstrecke noch einmal auf ihren Füllgehalt bzw. darauf, ob sie zerbrochen sind, geprüft. Dies geschieht beispielsweise in der mit "FDU" bezeichneten Anlage der Anmelderin, um auszuschließen, dass an der Filterstrangherstellungsmaschine Kapseln beschädigt worden sind, die erst nach einiger Zeit auslaufen und nur im ausgetrockneten Zustand vom Mikrowellen-Sensor als fehlerhaft detektiert werden.
  • Aus DE 23 43 668 A1 geht eine Vorrichtung zum Prüfen von Enden von Zigaretten hervor, die einen Prüfförderer umfasst, in dem die Zigaretten queraxial gefördert werden. Ferner umfasst die Vorrichtung eine kapazitive Messanordnung für die Tabakdichte. Die kapazitive Messanordnung weist zumindest zwei stationär bezüglich des Prüfförderers angeordnete und mit einer Hochfrequenzspannungsquelle verbundene Elektroden auf. Deren Lage zu den Zigarettenenden ist so gewählt, dass im Messzeitpunkt ein von ihnen ausgehendes hochfrequentes Feld jeweils die Zigarettenenden durchsetzt.
  • Aus DE 10 2011 083 052 A1 ist eine kapazitive HF-Strangmessvorrichtung zur kapazitiven Bestimmung wenigstens einer Eigenschaft eines endlosen Materialstrangs der Tabak verarbeitenden Industrie bekannt. Die Messvorrichtung umfasst ein Gehäuse mit wenigstens einem Messkondensator, der von dem Materialstrang durchsetzbar und mit einem HF-Spannungssignal beaufschlagbar ist. Die kapazitive HF-Strangmessvorrichtung umfasst eine oder mehrere genauigkeitsbestimmende elektronische Komponenten in ihrem Gehäuse.
  • Der nicht vorveröffentlichten EP 2 848 133 A1 ist eine Anordnung zum Überprüfen von queraxial geförderten stabförmigen Artikeln der Tabak verarbeitenden Industrie bekannt. Die Anordnung dient zur Überprüfung von flüssigkeitsbefüllten Kapseln in Filtern von Filterzigaretten. Die Anordnung umfasst eine Muldenfördervorrichtung mit Mulden zur Aufnahme und zum queraxialen Fördern der stabförmigen Artikel. Die Überprüfung der stabförmigen Artikel erfolgt mithilfe einer Mikrowellenmessvorrichtung.
  • Demgegenüber liegt der vorliegenden Erfindung die Aufgabe zugrunde, sicherzustellen, dass die Qualität der stabförmigen Artikel der Tabak verarbeitenden Industrie nach der vollständigen Bearbeitung sichergestellt wird.
  • Diese der Erfindung zugrunde liegende Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst.
  • Die Erfindung beruht auf dem Grundgedanken, dass die Artikel, insbesondere Filterzigaretten, queraxial seitlich in den Messkondensator eintauchen und dort das darin angeregte HF-Messfeld durchlaufen. Damit treten die überstehenden Abschnitte der stabförmigen Artikel vollständig in das HF-Messfeld ein. Mit dem längserstreckten, einseitig offenen seitlichen Durchtrittskanal ist die kapazitive HF-Messvorrichtung außerdem für diesen queraxial geförderten seitlichen Durchtritt speziell ausgestaltet, um den entsprechenden Durchtritt durch den Messkondensator zu ermöglichen. Dieser Durchtrittskanal durchschneidet bzw. durchtritt auch den Messkondensator. Vorzugsweise durchqueren die überstehenden Abschnitte der Artikel, insbesondere die Kapseln, das HF-Messfeld in einem in der Längsachse der Artikel im Wesentlichen homogenen Bereich des HF-Messfelds.
  • Die erfindungsgemäße Maßnahme hat den Vorteil, dass Änderungen in der Dichte, beispielsweise eines Zigarettenfilters, oder in der Flüssigkeitsbefüllung einer flüssigkeitsbefüllten Kapsel im Zigarettenfilter sehr genau und weitgehend positionsunabhängig erfasst werden können. Dies erhöht die Messsicherheit für die Qualität der Filter bzw. der darin enthaltenen Kapseln.
  • Mit der erfindungsgemäßen Lösung ist es möglich, die Qualität der stabförmigen Artikel und besonders der Filter und der darin eingelegten Kapseln nach der vollständigen Herstellung der Artikel zu überprüfen. Zu diesem Zeitpunkt haben die Artikel bereits mehrere Verarbeitungsschritte erfahren, die jeweils dazu führen konnten, dass die Artikel oder die Filter nicht den gestellten Anforderungen genügen.
  • Der wenigstens eine Messkondensator weist auf einer ersten Seite des Durchtrittskanals eine von einem Grundkörper der HF-Messvorrichtung isolierte leitende Elektrodenfläche auf. Auf einer gegenüberliegenden Seite des Durchtrittskanals weist er wenigstens eine gegenüber dem Grundkörper isolierte, auf virtueller Masse gehaltene Kondensatorelektrode auf, deren Oberfläche kleiner ist als eine Oberfläche der leitenden Elektrodenfläche auf der ersten Seite des Durchtrittskanals. Somit sind die Kondensatorflächen als zwei Flächen bzw. Seiten des Durchtrittskanals ausgebildet, wobei eine Seite mit einem HF-Signal von typischerweise ca. 1 MHz bis 100 MHz beaufschlagt wird und die andere auf Masse gehalten wird. Der Grundkörper ist üblicherweise aus Metall und wird auf Masse gehalten. Die Kondensatorelektrode, die nicht mit einem HF-Signal beaufschlagt wird, wird virtuell auf Masse gehalten. Die Differenz zwischen der virtuellen Masse der Kondensatorelektrode und dem Massepotenzial des Grundkörpers beträgt typischerweise weniger als 1 mV bis etwa 1 mV. Damit ist eine sehr homogene Feldgeometrie sichergestellt.
  • Um die Feldgeometrie des HF-Messfeldes weiter zu homogenisieren, ist der Messkondensator mit zwei großen Kondensatorflächen ausgestattet, die größer sind als die zu messenden Objekte, also beispielsweise die Filterabschnitte von Zigaretten. Als Kondensatorfläche dient hierbei einerseits die vom Grundkörper isolierte leitende Elektrodenfläche, die durch ein HF-Messsignal beaufschlagt ist, und andererseits die gesamte gegenüberliegende Fläche einschließlich der auf Massepotenzial liegenden Grundkörperfläche und der auf virtueller Masse gehaltenen Kondensatorelektrodenfläche. Die Kondensatorelektroden selbst sind deutlich kleiner, beispielsweise in der Größenordnung der Zigarettenfilter oder noch kleiner. Bei einer Anordnung von mehreren solchen auf virtueller Masse gehaltenen Kondensatorelektroden auf der zweiten Seite des Durchtrittskanals lässt sich auch eine Positionsbestimmung beispielsweise von Kapseln in Filterstäben realisieren.
  • Vorzugsweise ist eine elektronische Schaltung umfasst, mittels der die Elektrodenfläche auf der ersten Seite des Durchtrittskanals mit einem HF-Messsignal beaufschlagbar oder beaufschlagt ist und die wenigstens eine Kondensatorelektrode auf einer virtuellen Masse haltbar oder gehalten ist, insbesondere mittels eines Nulldetektor-Regelkreises, wobei insbesondere jedem Messkondensator ein eigener Nulldetektor-Regelkreis zugeordnet ist. Eine solche Schaltung umfasst beispielsweise eine harmonische Oszillatorquelle zur Erzeugung des HF-Messsignals sowie einen Schaltungsteil, der eine virtuelle Masse an der Kondensatorelektrode erzeugt. Hierzu wird eine zweite Oszillatorquelle in Frequenz, Phasen und Amplitude so gesteuert, dass die Spannung an der Elektrode auf Null gehalten wird. Dies geschieht vorzugsweise mittels eines Nulldetektor-Regelkreises. Solche Schaltungen sind beispielsweise aus der deutschen Patentanmeldung Nr. 10 2011 083 052.9 der Anmelderin bekannt, deren Offenbarungsgehalt vollinhaltlich in die vorliegende Patentanmeldung aufgenommen sein soll.
  • Da der Eingang der Nulldetektorschaltung virtuell auf Massepotenzial gehalten wird, sind vorhandene Streukapazitäten der Anschlussseite und der Massekapazität messtechnisch unwirksam, so dass das Messergebnis verbessert wird.
  • Eine weitere Verbesserung der Messung ergibt sich, wenn vorteilhafterweise dem wenigstens einen Messkondensator eine Schaltung aus einer Kompensationskapazität und einem, insbesondere invertierenden, Verstärker parallel geschaltet ist, deren Verstärkungsfaktor und Kapazitätswert so eingestellt oder gewählt sind, dass ein Leersignal des Messkondensators teilweise oder vollständig kompensiert wird. Hierdurch wird die Auflösung der Messung verbessert, da sich im Messbereich der Messkapazität bzw. des Messkondensators, am Eingang der Nulldetektorschaltung, bereits näherungsweise Massepotenzial einstellt, wenn das Signal der Oszillatorschaltung Null ist. Hierdurch wird vermieden, dass ein großes Leersignal des Messkondensators mit dem Signal der Oszillatorschaltung, also des Teils der Schaltung, die die Kondensatorelektrode auf virtueller Masse hält, kompensiert werden muss. Es muss stattdessen nur die Veränderung des Messkondensators kompensiert werden. Hierdurch wird außerdem ein wesentlicher Teil des Rauschens der Schaltung, die aus dem harmonischen Oszillator, der das HF-Messsignal erzeugt, kompensiert, da sowohl der Messkondensator als auch der Kompensationskondensator aus derselben Signalquelle gespeist werden.
  • Um verstärkerverursachte Phasenverschiebungen zwischen den Eingangssignalen des Messkondensators und des Kompensationskompensators bzw. der Kompensationskapazität zu vermeiden, ist vorteilhafterweise eine Schaltung mit einem DDS-Baustein und zwei Differenzverstärkern als Oszillator umfasst, wobei zueinander invertierte Ausgänge des DDS-Bausteins gegensinnig mit den Eingängen der Differenzverstärker verbunden sind, wobei der Ausgang eines Differenzverstärkers mit einem ersten Verstärkungfaktor mit einer Elektrode des wenigstens einen Messkondensators verbunden ist und der Ausgang des anderen Differenzverstärkers mit einem zweiten Verstärkungsfaktor, der kleiner ist als der erste Verstärkungsfaktor, mit einer Elektrode der Kompensationskapazität verbunden ist. Hiermit wird die Eigenschaft von DDS-Bausteinen (DDS steht für "direkte digitale Synthese") genutzt, komplementäre Ausgangssignale zu erzeugen. Durch die gegensinnige Beaufschlagung der komplementären Ausgangssignale auf die Eingänge der Differenzverstärker werden zwei phasengleiche, aber gegensinnige Ausgangssignale erzeugt, deren Amplituden von den Verstärkungsfaktoren der beiden Differenzverstärker abhängen. Da die Kompensationskapazität deutlich größer ist als die sehr kleine Messkapazität, ist der Verstärkungsfaktor des die Kompensationskapazität treibenden Differenzverstärkers entsprechend klein zu wählen.
  • Auch der gesteuerte Oszillator, der zur Einstellung einer virtuellen Masse ausgangs des Messkondensators vorgesehen ist, kann vorteilhafterweise als eine Kombination aus DDS-Baustein und Differenzverstärker ausgebildet sein.
  • In einer bevorzugten Ausbildung der erfindungsgemäßen Anordnung ist vorgesehen, dass zwei Kondensatorelektroden zu beiden Seiten einer Trajektorie von Kapseln an einer Kapsel-Sollposition angeordnet sind, wobei die elektronische Schaltung ausgebildet ist, Summenmessungen und/oder Differenzmessungen der Signale der zwei Kondensatorelektroden auszuführen. Die Summenmessungen geben Aufschluss über beispielsweise den Befüllungszustand von eingelegten Kapseln, während Differenzmessungen den Ort von eingelegten Kapseln und insbesondere deren Abweichung von einer Sollposition ergeben. Auch an den Anordnungen mehrerer Kondensatorelektroden sind möglich.
  • Die Muldenfördervorrichtung ist vorzugsweise als Muldentrommel, als Muldenkegeltrommel oder als Muldenförderband ausgebildet.
  • In einer bevorzugten Ausbildung des erfindungsgemäßen Verfahrens weist der wenigstens eine Messkondensator auf einer ersten Seite des Durchtrittskanals eine von einem Grundkörper der HF-Messvorrichtung isolierte leitende Elektrodenfläche auf, die mit einem HF-Messsignal beaufschlagt wird, und wenigstens eine auf einer gegenüberliegenden Seite des Durchtrittskanals angeordnete und gegenüber dem Grundkörper isolierte Kondensatorelektrode, die auf virtueller Masse gehalten wird, insbesondere mittels eines Nulldetektor-Regelkreises.
  • Eine Verbesserung der Messung ergibt sich vorteilhafterweise, wenn wenigstens einem Messkondensator, insbesondere dem wenigstens einen Messkondensator, eine Schaltung aus einer Kompensationskapazität und einem, insbesondere invertierenden, Verstärker parallel geschaltet wird, deren Verstärkungsfaktor und Kapazitätswert so eingestellt oder gewählt sind, dass ein Leersignal des wenigstens einen Messkondensators kompensiert wird. Vorzugsweise wird zur Vermeidung von Phasendifferenzen zwischen Messung und Kompensation mittels einer Schaltung mit einem DDS-Baustein, dessen komplementäre Ausgangssignale gegensinnig an Eingänge von zwei Differenzverstärkern geleitet werden, phasengleiche invertierte Signale mit verschiedenen Verstärkungsfaktoren erzeugt, mit denen einerseits der wenigstens eine Messkondensator und andererseits der Kompensationskapazität betrieben werden.
  • Artikel, deren Kapseln eine nicht ordnungsgemäße Befüllung oder Positionierung aufweisen, werden vorzugsweise ausgeschleust. Das bedeutet, dass sie von der weiteren Bearbeitung ausgeschlossen werden bzw. nicht zu einer Packmaschine gelangen.
  • Weitere Merkmale der Erfindung werden aus der Beschreibung erfindungsgemäßer Ausführungsformen zusammen mit den Ansprüchen und den beigefügten Zeichnungen ersichtlich. Erfindungsgemäße Ausführungsformen können einzelne Merkmale oder eine Kombination mehrerer Merkmale erfüllen.
  • Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen beschrieben, wobei bezüglich aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten ausdrücklich auf die Zeichnungen verwiesen wird. Es zeigen:
  • Fig. 1
    einen schematischen, aus dem Stand der Technik bekannten Verlauf einer Filterherstellung und Überprüfung,
    Fig. 2
    schematisch einen Teil einer Muldentrommel,
    Fig. 3
    schematisch eine Muldenkegeltrommel,
    Fig. 4a) - c)
    Detailansichten und schematische Schnittdarstellungen durch einen Messkondensator,
    Fig. 5
    eine schematische Darstellung einer Schaltanordnung und
    Fig. 6
    eine schematische Darstellung einer weiteren Schaltanordnung.
  • In den Zeichnungen sind jeweils gleiche oder gleichartige Elemente und/oder Teile mit denselben Bezugsziffern versehen, so dass von einer erneuten Vorstellung jeweils abgesehen wird.
  • In Fig. 1 ist schematisch dargestellt, wie Filterstäbe mit Geschmackskapseln bislang hergestellt und Überprüft werden. Im Verfahrensschritt 1 werden Filterstäbe mit Geschmackskapseln auf einer Filterstrangvorrichtung, beispielsweise mit einem Filterstrang aus Azetat, hergestellt, beispielsweise auf einer Filterstrangmaschine gemäß der von der Anmelderin vertriebenen KDF. Direkt während der Produktion werden diese vor weiterer Verarbeitung mittels Mikrowellensensoren, beispielsweise das MIDAS-EF der Anmelderin, daraufhin geprüft, ob Kapseln fehlen, eine doppelte Anzahl an einer Stelle eingebracht ist, ob eine Kapsel an falscher Position ist, ob eine Kapsel gebrochen ist oder einen irregulären Füllgehalt aufweist.
  • Anschließend werden die Kapseln optional und kundenabhängig 24 Stunden oder mehr gelagert und in einem Verfahrensschritt 2 in einer pneumatischen Fördervorrichtung, beispielsweise gemäß der "FDU" (Filter Detection Unit) der Anmelderin, die beispielsweise in der deutschen Patentanmeldung DE 10 2009 017 962 A1 der Anmelderin beschrieben ist, noch einmal überprüft. Hierbei werden wiederum der Füllgehalt und der Zerbrochen-Status geprüft, da an der Filterstrangmaschine Kapseln leicht beschädigt werden können, die erst nach einiger Zeit auslaufen und somit erst später im ausgetrockneten Zustand vom Mikrowellensensor als fehlerhaft detektiert werden können. Auch diese Mikrowellenvorrichtung entspricht beispielsweise der MIDAS-EF, also einem zylindrischen Mikrowellenresonator mit zentralem Durchgang für längsaxial geförderte Filterstäbe, wie er beispielsweise aus DE 198 54 550 B4 bekannt ist.
  • Optional erfolgt in einem Verfahrensschritt 3 eine Multifilterherstellung, bei der kapselgefüllte Filterstopfen mit anderen Filterstopfen zusammen zu einem Multifilterstab zusammengestellt werden. Auch hier können die Kapseln beschädigt werden und gegebenenfalls über eine längere Zeit austrocknen.
  • In einigen Fällen ist aus Mangel an entsprechenden Einrichtungen beim Hersteller die Prüfung im Verfahrensschritt 2 nicht möglich.
  • Nach dem Verfahrensschritt 2 und optional dem Verfahrensschritt 3 wird in einem Verfahrensschritt 4 auf einer Filteransetzmaschine, beispielsweise der unter der Bezeichnung "MAX" der Anmelderin vertriebenen Maschine, der jeweilige Filter mit einem Tabakstab zusammengestellt und verbunden. An dieser Stelle und später erfolgt derzeit keine Prüfung der kapselbesetzten Filter. Es besteht allerdings eine gewisse Wahrscheinlichkeit, dass auch während der Zigarettenherstellung und in folgenden Verarbeitungsschritten Kapseln beschädigt werden, so dass diese auslaufen und beim Endkunden keinen Geschmackseffekt entfalten und es somit zu Reklamationen kommt. Dieses Risiko steigt mit Zunahme der Verarbeitungsschritte, wie zum Beispiel bei der Herstellung und Weiterverarbeitung von Multifiltern.
  • Eine Prüfung auf einer Zigarettenmaschine am letztmöglichen Prüfzeitpunkt vor dem Verpacken gibt es derzeit nicht. Die MIDAS-Messvorrichtungen mit zentral durchsetzten zylindrischen Resonatoren gemäß beispielsweise DE 198 54 550 B4 sind hierzu auch nicht eingerichtet.
  • In Fig. 2 ist eine Muldenfördervorrichtung in Form einer Muldentrommel 10 ausschnittsweise dargestellt, an deren zylindrischer Oberfläche eine Abfolge von Mulden 12 angeordnet ist, die mit Saugluft (nicht dargestellt) Zigaretten 14 halten. Die Muldentrommel 10 bewegt die Zigaretten 14 in einer Förderrichtung 11, die mit einem Pfeil dargestellt ist. Die Zigaretten 14 bestehen aus einem Tabakstock 17, der größtenteils in jeweils einer Mulde 12 gehalten ist, an dem ein Filter 16 mit einer darin eingelegten Kapsel 18 angesetzt ist. Ungefähr im Bereich des Übergangs vom Tabakstock 17 zum Filter 16 enden die Mulde 12 und die Muldentrommel 10, so dass ein Abschnitt 15 der Zigarette 14 über die Mulde 12 übersteht und frei gefördert wird. Diese Abschnitte 15 der Zigaretten 14 durchlaufen im Folgenden eine Messvorrichtung.
  • In Fig. 3 ist eine alternative Ausführungsform einer Muldenfördervorrichtung dargestellt in Form einer Muldenkegeltrommel 20 mit einem im Wesentlichen frustrokonischen Umfang. Die Muldenkegeltrommel 20 dreht sich in einer Förderrichtung 21 und weist an ihrer äußeren Umfangsfläche wiederum Mulden 22 auf, in denen Zigaretten 14 mittels Saugluft (nicht dargestellt) gehalten werden. Auch in diesem Fall tauchen die überstehenden Abschnitte 15 der Zigaretten 14 in eine nicht dargestellte Messvorrichtung ein.
  • In Fig. 4 sind in den Teilen a) bis c) verschiedene Details und Ansichten einer erfindungsgemäß einsetzbaren kapazitiven HF-Messvorrichtung 30 dargestellt. Fig. 4a) zeigt einen Querschnitt, der senkrecht durch die Fördertrajektorie 19 einer queraxial geförderten Zigarette 14 mit Filter 16 und Kapsel 18 mittig im Filter 16 verläuft. An dieser Stelle wird die Zigarette 14 mit ihrem überstehenden Abschnitt 15 durch einen Durchtrittskanal 40 der kapazitiven HF-Messvorrichtung 30 gefördert. Die in Fig. 4a) oben gezeigte Wandfläche besteht aus einer elektrisch leitenden Elektrodenfläche 38, die mittels einer Isolierung 37 vom ebenfalls metallischen Grundkörper 36 der HF-Messvorrichtung 30 isoliert ist. Durch die Isolierung 37 verläuft eine Zuleitung 39, über die die Elektrodenfläche 38 mit einem harmonischen HF-Signal beaufschlagt ist.
  • Der in Fig. 4a) unterhalb der Zigarette 14 dargestellte Teil der kapazitiven HF-Messvorrichtung 34 umfasst als Unterseite des Durchtrittskanals 40 bzw. gegenüberliegende Seite den elektrisch leitenden Grundkörper 36, der auf einem Massepotenzial gehalten wird, sowie zwei Kondensatorelektroden 42, 42', die mittels einer Isolierung 43, 43' gegenüber dem Grundkörper 36 elektrisch isoliert sind und über Zuleitungen 44, 44' mit einer elektrischen Schaltung verbunden sind. Diese Kondensatorelektroden 42, 42' werden auf einer virtuellen Masse gehalten. Da sich das Potenzial zwischen der virtuellen Masse und der Masse, auf der der Grundkörper 36 liegt, nur um bis zu ca. 1 mV unterscheiden, stellt sich im gesamten Durchtrittskanal 40 zwischen der mit einem HF-Messsignal beaufschlagten Elektrode 38 und der gegenüberliegenden Fläche, die auf Masse bzw. virtueller Masse liegt, ein sehr homogenes HF-Messfeld aus.
  • In Fig. 4b ist die gleiche kapazitive HF-Messvorrichtung 30 im Ausschnitt in einem Schnitt dargestellt, die die Fördertrajektorie 19 der Zigarette 14 bzw. des Filters 16 mit der Kapsel 18 beinhaltet. Da diese in einer Mulde auf einer Muldentrommel im Ausführungsbeispiel gefördert wird, hat der Durchtrittskanal 40 in diesem Bereich eine ringabschnittförmige Ausgestaltung bzw. beschreibt eine Kurve, deren Krümmungsradius dem Radius der Muldentrommel entspricht.
  • Fig. 4c) zeigt eine Draufsicht auf die untere Fläche des Durchtrittskanals 40, also die auf Masse gehaltene Seite der kapazitiven HF-Messvorrichtung 30. Ein Großteil der Fläche dieser Elektrode besteht aus der Oberfläche des auf Massepotenzial gehaltenen Grundkörpers 36. Zentral entlang der Trajektorie 19 einer Kapsel 18 sind zwei Kondensatorelektroden 42, 42' angeordnet, die auf virtueller Masse gehalten werden. Die Kondensatorelektroden 42, 42' werden durch eine umfängliche Isolierung 43 von dem Grundkörper 36 isoliert. Die tatsächliche Potenzialdifferenz beträgt jedoch nur bis zu einem oder wenigen mV. Die Kondensatorelektroden 42, 42' sind links und rechts der Trajektorie 19 angeordnet, so dass eine Fehlpositionierung einer Kapsel durch eine Asymmetrie in den Messsignalen der Kondensatorelektroden 42, 42' erkennbar wird.
  • In Fig. 5 ist eine erste Schaltung einer erfindungsgemäß einsetzbaren kapazitiven HF-Messvorrichtung 30 schematisch dargestellt. Dabei wird der Messkondensator 34 durch eine harmonische Signalquelle, also einen Oszillator 50, gespeist. Der Oszillator 50 kann beispielsweise mit einer DDS-Schaltung mit nachgeschaltetem Tiefpassfilter oder mit einem Quarzoszillator aufgebaut sein. Der zweite Anschluss des Messkondensators 34 wird an den Eingang einer Nulldetektorschaltung 62 angeschlossen, dessen Eingang durch den Wirkungszusammenhang virtuell auf Massepotenzial 60 gehalten wird. Da der Eingang der Nulldetektorschaltung 62 virtuell auf Massepotenzial 60 gehalten wird, sind die vorhandenen Streukapazitäten 54, 56 der Anschlussleitungen der Messkapazität 34 messtechnisch unwirksam.
  • An den Eingang der Nulldetektorschaltung 62 ist eine weitere Impedanz 52 angeschlossen, die beispielsweise als Kapazität oder als Widerstand ausgeführt sein kann, über die ein zweites harmonisches Signal eines zweiten Oszillators 51 eingespeist wird. Der Oszillator 51 wird dabei durch eine Regeleinrichtung 64 so in Amplitude und Phase gesteuert, dass das Eingangssignal der Nulldetektorschaltung 62 virtuell auf Massepotenzial 60 gehalten wird. Hierzu wird das an dem Eingang der Nulldetektorschaltung 62 anliegende Signal nach Amplitude und Phase gemessen und als Ausgangssignal 63 an die Regeleinrichtung 64 übertragen. Die erforderlichen Stellgrößen 65 in Amplitude und Phase sind ein Maß für den Betrag und den Verlustfaktor der Messkapazität 34. Diese beiden Größen werden zur Weiterverarbeitung an eine übergeordnete Automatisierungseinheit weitergeleitet (Bezugszeichen 65a) bzw. als Stellgrößen (Bezugszeichen 65) an den Oszillator 51 gegeben.
  • In einer vorteilhaften Weiterbildung dieser Schaltung wird zur Verbesserung der Auflösung der Messung eine Kompensationskapazität bzw. ein Kompensationskondensator 68 verwendet, der durch einen invertierenden Verstärker 66 aus demselben Oszillator 50 wie der Messkondensator 34 gespeist wird. Dabei werden der Verstärkungsfaktor -a des invertierenden Verstärkers 66 und der Kapazitätswert des Kompensationskondensators 68 so gewählt, dass sich im Messbereich des Messkondensators 34 am Eingang der Nulldetektorschaltung 62 bereits näherungsweise Massepotenzial einstellt, wenn das Signal der Oszillatorschaltung 51 Null ist. Hierdurch wird vermieden, dass ein großes Leersignal des Messkondensators 34 mit dem Signal des Oszillators 51 kompensiert werden muss. Es muss nur die Veränderung des Messkondensators 34 kompensiert werden. Dadurch kann die Auflösung der Messung deutlich verbessert werden. Ein weiterer Vorteil dieser Kompensationsschaltung ist, dass ein wesentlicher Teil des Rauschens des Oszillators 50 kompensiert wird, da Messkondensator 34 und Kompensationskondensator 68 aus derselben Signalquelle gespeist werden.
  • im Sinne der Erfindung wird als Nulldetektor-Regelkreis in der Schaltung gemäß Fig. 5 die Anordnung aus Nulldetektorschaltung 62, Regeleinrichtung 64 und Oszillator 51 mit Impedanz 52 angesehen, die dafür sorgen, dass sich die virtuelle Masse 60 einstellt.
  • Fig. 6 zeigt eine weitere erfindungsgemäß einsetzbare Ausgestaltung einer Schaltungsanordnung. In dieser Anordnung sind zwei Messkondensatoren 34, 34' an einen harmonischen Oszillator 50 als Signalquelle angeschlossen. Beide Messkondensatoren 34, 34' sind die gleichen wie in Fig. 4. Dies bedeutet auch, dass die beiden Messkondensatoren 39, 39' sich die mit einem HF-Messsignal beaufschlagte Elektrodenfläche 38 teilen. Streukapazitäten und Kompensationskapazitäten sind zur besseren Übersichtlichkeit in Fig. 6 nicht dargestellt, sind jedoch ebenso wie in Fig. 5, vorhanden. Jeder Messkondensator 34, 34' ist in jeweils einer eigenen Nulldetektorschaltung 62, 62' angeschlossen. Jeder Nulldetektorschaltungseingang wird durch eine entsprechende Regeleinrichtung 64, 64' und Oszillatoren 51, 51' über Impedanzen 52, 52' virtuell auf Massepotenzial 60, 60' geregelt. Die entsprechenden Ausgangssignale 65a, 65a' der beiden Regeleinrichtungen 64, 64' werden in einer Auswertungsschaltung 70 weiterverarbeitet. In dieser Auswertungsschaltung 70 werden einerseits Summensignale gebildet, die es erlauben, die Anwesenheit und den korrekten Inhalt der Kapseln zu erfassen. Weiterhin wird ein Differenzsignal gebildet, das bei korrekter Positionierung der Kapsel im Filter gleich Null ist. Befindet sich die Kapsel nicht in der Mittenposition, ergibt sich je nach Abweichung entweder ein positives oder ein negatives Differenzsignal.
  • In einer in Fig. 7a) gezeigten verbesserten Ausführung eines Oszillators 50a, der an die Stelle des Oszillators 50 in Fig. 5 und 6 gesetzt werden kann, wird die Eigenschaft von DDS-Bausteinen 80 genutzt, komplementäre Ausgangssignale U', -U' zu erzeugen. Diese werden gegensinnig mit den Eingängen von zwei Differenzverstärkern 81, 82 verbunden. Hierdurch werden zwei zueinander invertierte Signale U, -αU mit unterschiedlichem Verstärkungsfaktor erzeugt, nämlich beispielsweise einem Verstärkungsfaktor 1 im Differenzverstärker 81 und einem Verstärkungsfaktor -α im Differenzverstärker82. Der Verstärkungsfaktor α ist betragsmäßig üblicherweise deutlich kleiner als 1. Mit dem Ausgangssignal U des Differenzverstärkers 81 wird dann der Messkondensator 34 (bzw. 34') betrieben, mit dem Ausgangssignal -αU des Differenzverstärkers 82 der Kompensationskondensator 68. So kann eine durch den Verstärker 66 in Fig. 5 verursachte störende zusätzliche Phasenverzögerung zwischen dem Messkondensator 34 und dem Kompensationskompensator 68 vermieden werden.
  • Ein DDS-Baustein 90 kann in ähnlicher Weise auch in einem Oszillator 51a gemäß Fig. 7b) eingesetzt werden, der an die Stelle des Oszillators 51 gemäß Fig. 5, 6 treten kann. In diesem Fall empfängt der DDS-Baustein 90 die Stellgrößen 65 als Eingangssignal. Die Ausgangssignale U', -U' werden über einen Differenzverstärker 91 in ein Ausgangssignal U umgesetzt, das über eine Impedanz 52, 52' gemäß Fig. 5, 6 zur Einstellung der virtuellen Masse 60, 60' verwendet wird.
  • Bezugszeichenliste
  • 1
    Kapseleinsatz und erste Kapselprüfung
    2
    Kapselprüfung nach Lagerung
    3
    optionale Multifilterherstellung
    4
    Zigarettenherstellung
    10
    Muldentrommel
    11
    Förderrichtung
    12
    Mulde
    14
    Zigarette
    15
    überstehender Abschnitt der Zigarette
    16
    Filter
    17
    Tabakstock
    18
    Kapsel
    19
    Trajektorie einer Kapsel
    20
    Muldenkegeltrommel
    21
    Förderrichtung
    22
    Mulde
    30
    kapazitive HF-Messvorrichtung
    34
    Messkondensator
    36
    Grundkörper
    37
    Isolierung
    38
    Elektrodenfläche
    39
    Zuleitung
    40
    Durchtrittskanal
    42, 42'
    Kondensatorelektrode
    43, 43'
    Isolierung
    44, 44'
    Zuleitung
    50, 50a
    Oszillator
    51, 51a
    Oszillator
    52, 52'
    Impedanz
    54, 56
    Streukapazität
    60, 60'
    virtuelle Masse
    62, 62'
    Nulldetektorschaltung
    63, 63'
    Ausgangssignal
    64, 64'
    Regeleinrichtung
    65, 65'
    Stellgrößen
    65a, 65a'
    Stellgrößen zur Auswertungseinheit
    66
    invertierender Verstärker
    68
    Kompensationskondensator
    70
    Auswertungsschaltung
    80
    DDS-Baustein
    81, 82
    Differenzverstärker
    90
    DDS-Baustein
    91
    Differenzverstärker

Claims (4)

  1. Verfahren zur Überprüfung von queraxial geförderten stabförmigen Artikeln (14) der Tabak verarbeitenden Industrie, insbesondere zur Überprüfung von flüssigkeitsgefüllten Kapseln (18) in Filtern (16) von Filterzigaretten (14), wobei stabförmige Artikel (14), insbesondere Filterzigaretten (14), in Mulden (12, 22) wenigstens einer Muldenfördervorrichtung (10, 20) queraxial an wenigstens einer kapazitiven HF-Messvorrichtung (30) mit wenigstens einem Messkondensator (34, 34') vorbei gefördert werden, wobei die stabförmigen Artikel (14) einen über die jeweiligen Mulden (12, 22) überstehenden Abschnitt (15) aufweisen, wobei die überstehenden Abschnitte (15) der Artikel (14) auf ihrem Förderweg wenigstens einen längserstreckten, einseitig offenen seitlichen Durchtrittskanal (40) der wenigstens einen kapazitiven HF-Messvorrichtung (30) durchqueren und auf ihrem Förderweg durch den Durchtrittskanal (40) den wenigstens einen Messkondensator (34, 34') durchqueren, so dass die überstehenden Abschnitte (15) der stabförmigen Artikel (14) auf ihrem Förderweg durch den Durchtrittskanal (40) ein HF-Messfeld in dem wenigstens einen Messkondensator (34, 34') durchqueren, dadurch gekennzeichnet, dass ein Messsignal des wenigstens einen Messkondensators (34, 34') auf das Vorhandensein und/oder eine Befüllung einer Kapsel (18) in einem Filter (16) ausgewertet wird und Messsignale von zwei Messkondensatoren (34, 34') auf eine Positionierung einer Kapsel (18) ausgewertet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der wenigstens eine Messkondensator (34, 34') auf einer ersten Seite des Durchtrittskanals (40) eine von einem Grundkörper (36) der HF-Messvorrichtung (30) isolierte leitende Elektrodenfläche (38) aufweist, die mit einem HF-Messsignal beaufschlagt wird, und wenigstens eine auf einer gegenüberliegenden Seite des Durchtrittskanals (40) angeordnete und gegenüber dem Grundkörper (36) isolierte Kondensatorelektrode (42, 42'), die auf virtueller Masse (60, 60') gehalten wird, insbesondere mittels eines Nulldetektor-Regelkreises.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass wenigstens einem Messkondensator (34, 34'), insbesondere dem wenigstens einen Messkondensator (34, 34'), eine Schaltung aus einer Kompensationskapazität (68) und einem, insbesondere invertierenden, Verstärker (66, 82) parallel geschaltet wird, deren Verstärkungsfaktor und Kapazitätswert so eingestellt oder gewählt sind, dass ein Leersignal des wenigstens einen Messkondensators (34, 34') kompensiert wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Artikel (14), deren Kapseln (18) eine nicht ordnungsgemäße Befüllung oder Positionierung aufweisen, ausgeschleust werden.
EP14182569.5A 2013-09-03 2014-08-28 Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie Active EP2865282B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14182569.5T PL2865282T5 (pl) 2013-09-03 2014-08-28 Układ i sposób do kontroli sztabkowych wyrobów przemysłu tytoniowego

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013217485.3A DE102013217485B4 (de) 2013-09-03 2013-09-03 Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie

Publications (3)

Publication Number Publication Date
EP2865282A1 EP2865282A1 (de) 2015-04-29
EP2865282B1 EP2865282B1 (de) 2018-04-18
EP2865282B2 true EP2865282B2 (de) 2024-07-24

Family

ID=51399567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14182569.5A Active EP2865282B2 (de) 2013-09-03 2014-08-28 Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie

Country Status (5)

Country Link
EP (1) EP2865282B2 (de)
JP (1) JP6442195B2 (de)
CN (1) CN104413544A (de)
DE (1) DE102013217485B4 (de)
PL (1) PL2865282T5 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107467714B (zh) * 2016-06-07 2020-08-25 贵州中烟工业有限责任公司 一种烟卷的检测方法、控制装置及烟卷的检测系统
RU2736959C2 (ru) * 2019-12-25 2020-11-23 Хауни Машиненбау Гмбх Измерительное устройство для вакуумного ленточного транспортера и вакуумный ленточный транспортер с измерительным устройством

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2441832A1 (de) 1974-08-31 1976-03-11 Hauni Werke Koerber & Co Kg Verfahren und anordnung zum kapazitiven pruefen der tabakdichte in den enden von stabfoermigen artikeln der tabakverarbeitenden industrie
DE3626071A1 (de) 1986-08-01 1988-02-11 Hauni Werke Koerber & Co Kg Verfahren und anordnung zum pruefen von zigaretten oder anderen stabfoermigen gegenstaenden
US5767686A (en) 1995-03-30 1998-06-16 Fife Corporation Device for contactless detection of the position of a moving web
WO2000005593A1 (en) 1998-07-24 2000-02-03 Life Measurement Instruments, Inc. Variable dielectric position transducer and method
WO2002047497A1 (en) 2000-12-15 2002-06-20 Philip Morris Products, Inc. Inspection system
US20080084220A1 (en) 2004-12-22 2008-04-10 Dierk Schroder Measuring Apparatus and Method for Recognizing Foreign Bodies in a Product, Particularly Tobacco, Cotton or Another Fibrous Product
WO2009099793A2 (en) 2008-02-01 2009-08-13 R. J. Reynolds Tobacco Company System for analyzing a filter element associated with a smoking article, and associated method
EP2573553A1 (de) 2011-09-20 2013-03-27 HAUNI Maschinenbau AG Kapazitive HF-Strangmessvorrichtung und Messverfahren

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2343668C2 (de) * 1973-08-30 1985-07-11 Hauni-Werke Körber & Co KG, 2050 Hamburg Vorrichtung zum Prüfen der Enden von stabförmigen Tabakartikeln, insbesondere von Zigaretten
DE2428567A1 (de) 1974-06-14 1976-01-02 Hauni Werke Koerber & Co Kg Vorrichtung zum pruefen von stabfoermigen tabakartikeln, vorzugsweise von zigaretten
GB1474454A (en) * 1974-09-23 1977-05-25 Gallaher Ltd Cigarettes
DE19854550C5 (de) 1998-11-26 2011-03-17 Hauni Maschinenbau Ag Resonatorgehäuse für Mikrowellen
DE202005010375U1 (de) * 2005-07-01 2005-10-20 Tews Elektronik Dipl.-Ing. Manfred Tews Vorrichtung zum Detektieren und Aussondern von fehlerhaften Zigaretten
CH699752A1 (de) 2008-10-16 2010-04-30 Uster Technologies Ag Vorrichtung und verfahren zum ausmessen einer kapazität.
DE102009017962A1 (de) 2009-04-21 2010-11-04 Hauni Maschinenbau Ag Verfahren und Vorrichtung zur Überprüfung der Qualität von mit Kapseln versehenen Filterstäben
CN103502803B (zh) 2011-03-11 2016-06-29 乌斯特技术股份公司 用于电容性分析运动测试材料的设备和方法
DE102013213936A1 (de) * 2013-07-16 2015-01-22 Hauni Maschinenbau Ag Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2441832A1 (de) 1974-08-31 1976-03-11 Hauni Werke Koerber & Co Kg Verfahren und anordnung zum kapazitiven pruefen der tabakdichte in den enden von stabfoermigen artikeln der tabakverarbeitenden industrie
DE3626071A1 (de) 1986-08-01 1988-02-11 Hauni Werke Koerber & Co Kg Verfahren und anordnung zum pruefen von zigaretten oder anderen stabfoermigen gegenstaenden
US5767686A (en) 1995-03-30 1998-06-16 Fife Corporation Device for contactless detection of the position of a moving web
WO2000005593A1 (en) 1998-07-24 2000-02-03 Life Measurement Instruments, Inc. Variable dielectric position transducer and method
WO2002047497A1 (en) 2000-12-15 2002-06-20 Philip Morris Products, Inc. Inspection system
US20080084220A1 (en) 2004-12-22 2008-04-10 Dierk Schroder Measuring Apparatus and Method for Recognizing Foreign Bodies in a Product, Particularly Tobacco, Cotton or Another Fibrous Product
WO2009099793A2 (en) 2008-02-01 2009-08-13 R. J. Reynolds Tobacco Company System for analyzing a filter element associated with a smoking article, and associated method
EP2573553A1 (de) 2011-09-20 2013-03-27 HAUNI Maschinenbau AG Kapazitive HF-Strangmessvorrichtung und Messverfahren

Also Published As

Publication number Publication date
CN104413544A (zh) 2015-03-18
EP2865282A1 (de) 2015-04-29
PL2865282T3 (pl) 2018-10-31
JP6442195B2 (ja) 2018-12-19
DE102013217485B4 (de) 2024-09-26
EP2865282B1 (de) 2018-04-18
PL2865282T5 (pl) 2024-10-28
JP2015047164A (ja) 2015-03-16
DE102013217485A1 (de) 2015-03-05

Similar Documents

Publication Publication Date Title
EP2848133B1 (de) Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie
EP2207027B1 (de) Verfahren und Vorrichtung zur Messung der Feuchte von Kapseln in einem Zigarettenfilterstrang, indem dieser durch einen Mikrowellenresonator geführt wird
EP2674044B1 (de) Verfahren und Vorrichtung zur Erkennung von Stranginhomogenitäten eines Materialstrangs der Tabak verarbeitenden Industrie
DE102013201511B3 (de) Anordnung und Verfahren zur Überprüfung von stabförmigen Produkten der Tabak verarbeitenden Industrie
EP1739411B1 (de) Vorrichtung und Verfahren zum Detektieren und Aussondern von fehlerhaften Zigaretten
DE2755517A1 (de) Kapazitive vorrichtung zur messung eines fluessigkeitspegels
EP2965640A1 (de) Prüfung von stabförmigen artikeln, insbesondere filterzigaretten
DE102009017962A1 (de) Verfahren und Vorrichtung zur Überprüfung der Qualität von mit Kapseln versehenen Filterstäben
EP3158325B1 (de) Mikrowellenmessvorrichtung, anordnung und verfahren zur überprüfung von stabförmigen artikeln oder eines materialstrangs der tabak verarbeitenden industrie sowie maschine der tabak verarbeitenden industrie
EP3354143B1 (de) Verfahren und vorrichtung zum überwachen und herstellen eines filterstrangs der tabak verarbeitenden industrie
EP3281536B1 (de) Verfahren und vorrichtung zum erkennen und/oder prüfen eines in ein stab- oder strangförmiges produkt der tabak verarbeitenden industrie eingelegten objekts
EP2433510A2 (de) Vorrichtung und Verfahren zur Messung von Eigenschaften eines bewegten Materialstrangs, insbesondere Zigarettenstrangs, mittels eine Mikrowellenresonators, dessen Ausgangssignal herabgemischt wird
DE102011006414A1 (de) Verfahren und Vorrichtung zur Ermittlung von Gewichtsanteilen in einem Filtermaterial
EP3497438B1 (de) Messvorrichtung und verfahren zum erkennen von elektrisch leitenden elementen in produkten sowie eine maschine zum herstellen von produkten der tabak verarbeitenden industrie
EP2873334B2 (de) Verfahren und Vorrichtung zur Erkennung von Stranginhomogenitäten eines Materialstrangs der Tabak verarbeitenden Industrie
EP2657693A2 (de) Kapazitive HF-Strangmessvorrichtung und Messverfahren
EP2865282B2 (de) Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie
DE102004063229B4 (de) Meßvorrichtung und -verfahren zur Erkennung von Fremdkörpern in einem Produkt, insbesondere in Tabak, Baumwolle oder einem anderen Faserprodukt
EP3176567A1 (de) Anordnung, maschine, verfahren und verwendung zum überprüfen einer zigarettenkopfqualität
EP3246671B1 (de) Kapazitiver sensor und verfahren zur bestimmung der permittivitätsverteilung in einem objekt
DE4427605A1 (de) Verfahren und Vorrichtung zum Bestimmen des Gewichts stabförmiger Artikel der tabakverarbeitenden Industrie
DE102014107747A1 (de) Messmodul, Messanordnung und Strangmaschine in der Tabak verarbeitenden Industrie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150917

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAUNI MASCHINENBAU GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 989448

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014007989

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180719

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014007989

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: G.D S.P.A.

Effective date: 20190117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180818

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 989448

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190828

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014007989

Country of ref document: DE

Owner name: KOERBER TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: HAUNI MASCHINENBAU GMBH, 21033 HAMBURG, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: KOERBER TECHNOLOGIES GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: HAUNI MASCHINENBAU GMBH

Effective date: 20221025

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KOERBER TECHNOLOGIES GMBH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20230830

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230725

Year of fee payment: 10

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

27A Patent maintained in amended form

Effective date: 20240724

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014007989

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240823

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240820

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240901

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240828

Year of fee payment: 11