EP2846001B1 - Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool - Google Patents

Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool Download PDF

Info

Publication number
EP2846001B1
EP2846001B1 EP13183274.3A EP13183274A EP2846001B1 EP 2846001 B1 EP2846001 B1 EP 2846001B1 EP 13183274 A EP13183274 A EP 13183274A EP 2846001 B1 EP2846001 B1 EP 2846001B1
Authority
EP
European Patent Office
Prior art keywords
rotor
sealing ring
outer sealing
housing
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13183274.3A
Other languages
German (de)
French (fr)
Other versions
EP2846001A1 (en
Inventor
Walter Gieg
Petra Kufner
Rudolf Stanka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to ES13183274T priority Critical patent/ES2935815T3/en
Priority to EP13183274.3A priority patent/EP2846001B1/en
Priority to ES14150517T priority patent/ES2762511T3/en
Priority to EP14150517.2A priority patent/EP2846002B1/en
Priority to ES14150518T priority patent/ES2752555T3/en
Priority to EP14150518.0A priority patent/EP2846003B1/en
Priority to US14/477,492 priority patent/US10125627B2/en
Priority to US14/584,811 priority patent/US9416676B2/en
Priority to US14/584,867 priority patent/US9822657B2/en
Publication of EP2846001A1 publication Critical patent/EP2846001A1/en
Priority to US16/058,535 priority patent/US11268398B2/en
Priority to US16/191,706 priority patent/USRE48320E1/en
Application granted granted Critical
Publication of EP2846001B1 publication Critical patent/EP2846001B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • F01D25/285Temporary support structures, e.g. for testing, assembling, installing, repairing; Assembly methods using such structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2200/00Mathematical features
    • F05D2200/10Basic functions
    • F05D2200/11Sum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • F05D2220/3212Application in turbines in gas turbines for a special turbine stage the first stage of a turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/68Assembly methods using auxiliary equipment for lifting or holding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/70Disassembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/36Retaining components in desired mutual position by a form fit connection, e.g. by interlocking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/37Retaining components in desired mutual position by a press fit connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49231I.C. [internal combustion] engine making
    • Y10T29/49233Repairing, converting, servicing or salvaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53983Work-supported apparatus

Definitions

  • the present invention relates to a method for dismantling a rotor, in particular the foremost rotor, of a gas turbine, a method for assembling such a rotor and a tool for fixing at least one further rotor during such assembly or disassembly.
  • a low-pressure gas turbine with a housing and a duct is known, in which a plurality of rotors are arranged one behind the other in order to extract energy from a gas.
  • the outer diameter of the channel and the rotors arranged one behind the other increase in the flow direction.
  • a foremost rotor with the smallest outer diameter is first inserted into the conical channel from the rear against the direction of flow, then another rotor with a larger outer diameter etc. up to the rearmost rotor with the largest outer diameter.
  • all rear rotors must first be dismantled in the reverse order, before the foremost rotor can finally be pulled backwards out of the conical channel.
  • the foremost rotor is usually subjected to the highest mechanical and/or thermal stresses, so it is most often dismantled for inspection and/or maintenance purposes.
  • An object of an embodiment of the present invention is to improve the inspection and/or maintenance of a gas turbine.
  • Claim 11 protects a tool for use in a method according to the invention.
  • Advantageous embodiments of the invention are the subject matter of the dependent claims.
  • One aspect of the present invention relates to a method for dismantling a rotor of a gas turbine.
  • the gas turbine can in particular be a low-pressure gas turbine or turbine stage, preferably of an aircraft engine, and have a housing and a channel in which the rotor is arranged and which diverges in a flow direction.
  • a housing part of a multi-part overall housing is also referred to as housing for short.
  • a contour, in particular a diameter, of the channel can widen in the direction of flow, in particular at least essentially monotonously and/or in steps.
  • a guide vane can be arranged in the direction of flow before and/or after one or more rotors, in particular between adjacent rotors.
  • the rotor to be dismantled is a first or frontmost or most upstream rotor in the direction of flow, and the further rotor or rotors are correspondingly rearward or more downstream rotors.
  • an axial position upstream in the direction of flow is referred to as a front position or front, and an axial position downstream in the direction of flow is referred to as a rear position or rear.
  • the rotor to be dismantled has one or more rotor blades distributed in the circumferential direction and a rotor disk.
  • the rotor blades can be detachably, in particular form-fittingly, preferably by means of profiled blade roots, or permanently, in particular materially, fastened to the rotor disk, preferably integrally or as so-called BLISK together with the rotor disk.
  • the rotor blades have outer shrouds radially on the outside, which together form an outer ring; in another embodiment, the rotor blades have no outer shroud.
  • an outer contour, in particular an outer diameter, of the moving blades of the rotor, in particular of an outer ring of the rotor, widens in the flow direction.
  • the outer ring can have one or more axially spaced radial flanges or sealing tips, which extend radially outwards.
  • an outside diameter of a front radial flange is smaller than an outside diameter of a rear radial flange.
  • a maximum outside diameter of the rotor to be dismantled is in its rear half in the flow direction.
  • An outer sealing ring is arranged between the rotor and the housing.
  • the outer sealing ring of a gas turbine is a first or frontmost or most upstream outer sealing ring in the direction of flow.
  • the outer sealing ring can be detachably attached to the channel or housing.
  • an axial flange of the outer sealing ring that is at the rear in the direction of flow can be hooked into a corresponding groove in the housing, which in a further development can be formed by a guide grid attached to the housing.
  • the outer sealing ring has a run-in coating and/or a honeycomb seal radially on the inside or facing the rotor.
  • an inner contour, in particular an inner diameter, of the outer sealing ring expands in the flow direction, in particular monotonically, preferably in one or more paragraphs.
  • a shoulder of the inner surface of the mounted outer sealing ring is opposite a radial flange of an outer ring of the rotor to be dismantled, and another shoulder is opposite a further radial flange of the outer ring.
  • a minimum, in particular frontmost, inner diameter of the outer sealing ring is smaller than a maximum outer diameter of the rotor, in particular than a rearmost outer diameter of an outer ring, preferably than an outer diameter of a (rearmost) radial flange of the outer ring.
  • the rotor to be dismantled is dismantled or axially displaced counter to the direction of flow, in particular forwards out of the housing.
  • the outer sealing ring whose - smaller - minimum inner diameter would come into conflict with its - larger - maximum outer diameter when the rotor is moved, is first moved axially counter to the direction of flow, in particular forwards out of the housing.
  • the rotor itself can then also be displaced axially counter to the direction of flow, in particular forward out of the housing.
  • a rotor in particular the foremost rotor, can be dismantled directly, in particular without dismantling rear rotors. In this way, inspection and/or maintenance, in particular replacement, of the rotor can be simplified.
  • the outer sealing ring can easily be displaced axially out of the channel counter to the direction of flow. If, on the other hand, the minimum (internal) diameter of the section of the channel in front of it in the displacement direction is smaller, this is not possible. Therefore, according to one aspect of the present Invention for dismantling first the outer sealing ring, the maximum outer diameter of which is greater than a minimum (inner) diameter of the channel, divided in the circumferential direction into two or more, preferably at least 16, in particular at least 32 parts. The outer sealing ring parts can then be shifted radially inwards or towards an axis of rotation of the gas turbine and in this way can also be guided past the smaller inner diameter of the channel.
  • outer sealing ring parts can also be displaced purely radially and/or purely axially, at least in sections or in part. For example, the entire outer sealing ring or parts of the outer sealing ring can first be displaced by an axial distance counter to the direction of flow, for example until the channel blocks it. The outer sealing ring parts can then be displaced radially inwards only, or with a further axial displacement superimposed, so that they can pass through the channel.
  • the outer sealing ring parts are also tilted in addition to being shifted axially and/or radially, in particular in order to release them from a circumferential groove of the housing before they are shifted axially.
  • the outer sealing ring parts can, at least essentially, be shifted axially and optionally radially without tilting or do not have to be tilted beforehand for the axial displacement.
  • it can be provided that the outer sealing ring or the outer sealing ring parts are initially displaced axially without tilting.
  • the outer sealing ring is fastened to the housing in a frictionally engaged, detachable manner and without a positive fit counter to the direction of flow.
  • this is understood in particular to mean that the outer sealing ring is fastened to the housing in a detachable and friction-locked manner is that it can be displaced axially, in particular macroscopically or by at least 5 mm, against the direction of flow after the frictional connection has been released, without this being opposed by a radial shoulder of a frictional contact surface of the housing for the frictional connection with the outer sealing ring, in particular a wall of a circumferential groove.
  • the outer sealing ring can be releasably and frictionally fastened to the housing by a one-part or multi-part braced so-called C-ring ("C-clip").
  • the outer sealing ring can be positively secured or fixed to the housing in a further development, in particular by a shoulder on one side, with a circumferential groove being referred to as a shoulder on two or both sides in contrast to such a shoulder on one side.
  • the outer sealing ring is secured or fixed in a form-fitting manner on the housing in the circumferential direction.
  • the outer sealing ring can have one or more radial projections, which extend radially outwards from an outer peripheral surface of the outer sealing ring for frictional engagement with a radially opposite inner peripheral surface of the housing and engage in corresponding axial grooves of the housing, which in particular on an in Flow direction front face of the housing can be arranged.
  • the housing can have one or more radial projections, which extend radially inward from an inner peripheral surface of the housing for frictional engagement with a radially opposite outer peripheral surface of the outer sealing ring and engage in corresponding axial grooves of the outer sealing ring, which in particular on a rear end face in the direction of flow of the outer sealing ring can be arranged.
  • An extent of a radial projection in the circumferential direction can be less than, equal to or greater than a distance in the circumferential direction between two circumferentially adjacent walls of two circumferentially adjacent grooves.
  • the outer sealing ring and the housing are fastened to one another with a friction fit, and not in a form-fitting manner, or only in the circumferential direction and/or in the direction of flow, but not against the Flow direction secured or fixed, in particular not by means of a circumferential groove.
  • an initial tilting of the outer sealing ring or parts of the outer sealing ring can be avoided by initially displacing them axially counter to the direction of flow.
  • the rotor to be dismantled in its assembly position can prevent a radial displacement of the outer sealing ring parts.
  • the rotor is initially or before the radial displacement of the outer sealing ring parts axially displaced in the direction of flow. In this way (additional) space can be made available for the radial displacement of the outer sealing ring parts radially inwards, possibly with superimposition of an axial displacement counter to the flow direction.
  • the housing can be connected to a connecting flange on its front face.
  • this connection flange can be part of a high-pressure turbine, which is upstream of a low-pressure turbine, part of an upstream combustion chamber or the like, or a connecting piece thereto.
  • the connection flange can also be part of a transport cover for closing the channel or the like.
  • a connecting flange connected to the housing and whose inner diameter facing the rotor is smaller than the maximum outer diameter of the outer sealing ring is detached from the housing.
  • a connection flange without a through opening is also referred to as a connection flange whose inner diameter facing the rotor is equal to zero and is therefore smaller than the maximum outer diameter of the outer sealing ring.
  • one or more further rotors of the gas turbine can be supported or mounted radially and/or axially via the rotor to be dismantled. If the rotor is dismantled without first dismantling the other rotors, this support or bearing is omitted. Accordingly, in one embodiment, one or more further rotors of the gas turbine are fixed in another way before the axial displacement of the rotor to be dismantled counter to the direction of flow. For this purpose, they can be fixed in particular by means of a detachable tool that is detachably attached to at least one of the other rotors, in particular frictionally and/or positively, and which in turn is supported. In particular, the tool can be supported on the housing of the gas turbine, preferably in a frictionally and/or form-fitting manner.
  • one aspect of the present invention relates to a tool for fixing one or more additional rotors during assembly or disassembly of a rotor of a gas turbine according to a method described here, in particular its use for fixing one or more additional rotors when assembling or disassembling a rotor of a gas turbine using a method described here.
  • the tool has a fastening means for positive and/or frictional fastening to the housing and/or one or more other rotors of the gas turbine.
  • the fastening means can in particular have one or more recesses and/or projections for positive fastening and/or one or more clamping means, in particular screws, for frictional fastening.
  • the tool has a radial flange for attachment to the housing and an axial web for reaching through one or more further rotors radially on the inside and being attached to them.
  • One aspect of the present invention relates to the initial assembly or reassembly of the rotor, in particular a foremost rotor in the flow direction from the front into the housing.
  • the assembly can be carried out essentially in reverse to the disassembly explained above, so that additional reference is made to this.
  • the rotor to be assembled is first displaced axially in the direction of flow, in particular into the housing, and then the outer sealing ring is displaced axially in the direction of flow, particularly into the housing.
  • parts of the outer sealing ring are shifted radially towards the housing of the gas turbine and then joined together to form the outer sealing ring, in particular braced in the circumferential direction and/or connected in a form-fitting manner.
  • This radial displacement can also be superimposed, at least in sections or phases, with an axial displacement of the entire outer sealing ring or the parts of the outer sealing ring.
  • the rotor After the radial displacement of the outer sealing ring parts, the rotor is displaced axially counter to the direction of flow. As a result, room for movement for the radial displacement can be created at times.
  • a connecting flange whose inner diameter facing the rotor is smaller than the maximum outer diameter of the outer sealing ring is connected to the housing, preferably detachably.
  • the outer sealing ring can be fastened, preferably detachably, to the housing or a connection of the outer sealing ring to the housing can be closed.
  • a C-ring can be fitted, which frictionally clamps the outer sealing ring and housing.
  • one or more further rotors can be fixed during assembly, in particular by means of a detachable tool and/or on the housing.
  • a corresponding fixation or the tool can be released.
  • FIG. 1 shows a low-pressure gas turbine 1 with a housing 3 and a duct 5, which runs in a flow direction (from left to right in 1 ) diverges in that its diameter increases essentially monotonically in the flow direction.
  • a rotor 19 which is at the front in the direction of flow and a plurality of further, rear rotors 21, 23 and 25 are arranged one behind the other in the direction of flow in the channel.
  • Guide vanes 11, 13, 15 and 17 are arranged between or in front of the rotors and are attached to the housing.
  • the housing On its front face (left in 1 ) the housing is detachably connected to a connecting flange 9 of a high-pressure turbine upstream of the low-pressure turbine 1, on its rear end face (on the right in 1 ) with an outlet housing 7.
  • An outer sealing ring 27, 29, 31 and 33 is arranged between each rotor and the housing.
  • the rotor 19 to be dismantled has a plurality of rotor blades distributed in the circumferential direction, of which 1 one shown partially, and a rotor disk (not shown) to which the blades are attached.
  • Figures 2A-C 1 shows steps of a method for dismantling a rotor of a gas turbine of an aircraft engine according to an embodiment of the present invention, essentially those explained above, on the basis of an enlarged partial illustration 1 corresponds, so that corresponding elements are denoted by identical reference symbols and reference is made alternately to the rest of the description and only differences are discussed.
  • the rotor blades have outer shrouds radially on the outside, which together form an outer ring.
  • the outer diameter of this outer ring increases in the flow direction.
  • the outer ring has two axially spaced radial flanges or sealing tips 19a (cf. Figure 2A ) extending radially outward with an outer diameter of a front radial flange (left in Figure 2A ) is smaller than an outer diameter of a rear radial flange (right in Figure 2A ).
  • a rear axial flange (right in Figure 2A ) of the outer sealing ring is hung between the housing and a subsequent guide vane 13, a front axial flange (on the left in Figure 2A ) of the outer seal ring is secured to the housing by means of a C-ring 45.
  • the outer sealing ring is fastened to the housing counter to the direction of flow, without a form fit, frictionally and detachably: this can be seen, in particular, from the sequence of figures described below Figure 2A ⁇ Figure 2B that the outer sealing ring after loosening the C-ring axially against the direction of flow (to the left in Figure 2A ) can be displaced without being prevented by a stop on the frictional contact surface between the outer sealing ring and the housing.
  • the inner peripheral surface of the housing 3 for frictional engagement with the radially opposite outer peripheral surface of the outer sealing ring 27 has a plurality of radial projections 3.1 (cf. Figure 2B ) which extend radially inwards and are inserted into axial grooves in a rear (right in 2 ) Engage the end face of the outer sealing ring in order to secure or define it in a form-fitting manner on the housing in the circumferential direction and in the direction of flow.
  • the outer sealing ring has a running-in coating 59 designed as a honeycomb seal radially on the inside or facing the rotor.
  • the inner diameter of the outer sealing ring increases monotonically in several steps in the direction of flow, with one step of the mounted outer sealing ring being attached to a radial flange (on the left in Figure 2A ) of the outer ring of the rotor to be dismantled, another shoulder of the assembled outer sealing ring is opposite another radial flange (on the right in Figure 2A ) of the outer ring.
  • a minimum front inner diameter d 27 of the outer sealing ring 27 is smaller than a maximum outer diameter D 19 of the rotor 19, in particular than the outer diameter of its rearmost radial flange 19a.
  • connection flange 9 connected to the housing 3 (cf. 1 ), whose inner diameter facing the rotor (right in 1 ) is smaller than the maximum outer diameter D 27 of the outer sealing ring (cf. Figure 2A ), detached from the housing 3.
  • the outer sealing ring 27 is first shifted axially against the direction of flow and then divided into two or more parts, which are then shifted radially inwards or towards an axis of rotation of the gas turbine and in this way are also guided past the smaller inner diameter of the channel. as in Figure 2C indicated by arrows. As indicated by these arrows, this radial inward displacement is superimposed by a further axial displacement of the outer sealing ring or its parts counter to the direction of flow.
  • the rotor 19 itself is then also pushed axially forwards out of the housing 3 counter to the direction of flow and is thus dismantled directly without dismantling the rear rotors 21 , 23 and 25 . In this way, inspection and/or maintenance, in particular replacement, of the rotor can be simplified.
  • the tool has a radial flange 101 for attachment to the housing 3 and an axial web 102 as well as attachment means 103, 104-106 for positive and/or frictional attachment to the housing 3 and the other rotors 21, 23 and 25.
  • the fastening means can in particular have one or more recesses and/or projections for positive fastening and/or one or more clamping means, in particular screws, for frictional fastening (not shown).
  • a first assembly or reassembly of the foremost rotor 19 in the direction of flow from the front into the housing 3 takes place essentially in reverse to the disassembly explained above, so that additional reference is made to this.
  • the outer sealing ring 27 is detachably fastened to the housing 3 by putting on the C-ring 45, the outer sealing ring and housing are frictionally clamped and the rotor 19 is shifted axially counter to the direction of flow (cf. Figure 2B with reverse arrow direction).
  • the tool 101-106 is then released and the connecting flange 9 is detachably connected to the housing 3.
  • FIG. 3 shows in 2 corresponding representation a part of a gas turbine, 4 an enlargement of a detail of a frictional contact surface between the outer ring and the housing, and figure 5 a section along the line VV in 4 .
  • Elements that correspond to one another are denoted by identical reference symbols, so that reference is made to the above description and only differences are discussed below.
  • the outer sealing ring 27 is fastened to the housing 3 counter to the direction of flow, without a form fit, frictionally and releasably by the C-ring 45: after loosening the C-ring, the outer sealing ring can be moved axially counter to the direction of flow (to the left in 3 ) can be moved without being prevented by a stop on the frictional contact surface between the outer sealing ring and the housing.
  • the outer peripheral surface of the outer sealing ring 27 has a plurality of radial projections 27.1 for frictional engagement with the radially opposite inner peripheral surface of the housing 3, which extend radially outwards and are inserted in axial grooves 3.2 in a front (left in Figures 3-5 ) Engage the end face of the housing in order to secure or set the outer sealing ring in a form-fitting manner on the housing in the circumferential direction and in the direction of flow.
  • the extent of the radial projections 27.1 in the circumferential direction is greater than a distance in the circumferential direction between two walls that are adjacent in the circumferential direction of two axial grooves 3.2 that are adjacent in the circumferential direction.
  • the designation groove and projection does not imply any restriction of generality, since in the case of a plurality of grooves and projections distributed in the circumferential direction, one or the other can be regarded as a groove or projection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Gasket Seals (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Demontage eines, insbesondere vordersten, Rotors einer Gasturbine, ein Verfahren zur Montage eines solchen Rotors sowie ein Werkzeug zum Fixieren wenigstens eines weiteren Rotors bei einer solchen Montage oder Demontage.The present invention relates to a method for dismantling a rotor, in particular the foremost rotor, of a gas turbine, a method for assembling such a rotor and a tool for fixing at least one further rotor during such assembly or disassembly.

Beispielsweise aus der US 7,186,078 B2 ist eine Niederdruck-Gasturbine mit einem Gehäuse und einem Kanal bekannt, in dem hintereinander mehrere Rotoren angeordnet sind, um einem Gas Energie zu entziehen.For example from the U.S. 7,186,078 B2 a low-pressure gas turbine with a housing and a duct is known, in which a plurality of rotors are arranged one behind the other in order to extract energy from a gas.

Die Außendurchmesser des Kanals und der hintereinander angeordneten Rotoren nehmen in Durchströmungsrichtung zu.The outer diameter of the channel and the rotors arranged one behind the other increase in the flow direction.

Dementsprechend wird nach betriebsinterner Praxis zur Montage zunächst ein vorderster Rotor mit dem kleinstem Außendurchmesser entgegen der Durchströmungsrichtung von hinten in den konischen Kanal eingeführt, anschließend ein weiterer Rotor mit größerem Außendurchmesser etc. bis zum hintersten Rotor mit dem größten Außendurchmesser. Zur Demontage des vordersten Rotors müssen entsprechend in umgekehrter Reihenfolge zunächst aufwändig alle hinteren Rotoren demontiert werden, bevor schließlich der vorderste Rotor nach hinten aus dem konischen Kanal gezogen werden kann.Accordingly, according to in-house practice, a foremost rotor with the smallest outer diameter is first inserted into the conical channel from the rear against the direction of flow, then another rotor with a larger outer diameter etc. up to the rearmost rotor with the largest outer diameter. In order to dismantle the foremost rotor, all rear rotors must first be dismantled in the reverse order, before the foremost rotor can finally be pulled backwards out of the conical channel.

Auf der anderen Seite ist der vorderste Rotor in der Regel den höchsten mechanischen und/oder thermischen Belastungen ausgesetzt, so dass er am häufigsten zu Inspektions- und/oder Wartungszwecken zu demontieren ist.On the other hand, the foremost rotor is usually subjected to the highest mechanical and/or thermal stresses, so it is most often dismantled for inspection and/or maintenance purposes.

Aus der FR 2 891 583 A1 und aus der US 2007/0231132 A1 ist jeweils eine Gasturbine mit einem Rotor, einem Gehäuse und einem Kanal, der in einer Durchströmungsrichtung divergiert und in dem der Rotor angeordnet ist, bekannt. Der Vollständigkeit halber sei zudem auch noch auf die DE 601 22 083 T2 und die US 2011/0243725 A1 hingewiesen.From the FR 2 891 583 A1 and from the U.S. 2007/0231132 A1 a gas turbine with a rotor, a housing and a duct, which diverges in a flow direction and in which the rotor is arranged, is known in each case. For the sake of completeness, please also refer to the DE 601 22 083 T2 and the US 2011/0243725 A1 pointed out.

Eine Aufgabe einer Ausführung der vorliegenden Erfindung ist es, die Inspektion und/oder Wartung einer Gasturbine zu verbessern.An object of an embodiment of the present invention is to improve the inspection and/or maintenance of a gas turbine.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. 6 gelöst. Anspruch 11 stellt ein Werkzeug zur Verwendung bei einem erfindungsgemäßen Verfahren unter Schutz. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.This object is achieved by a method having the features of claims 1 and 6, respectively. Claim 11 protects a tool for use in a method according to the invention. Advantageous embodiments of the invention are the subject matter of the dependent claims.

Ein Aspekt der vorliegenden Erfindung betrifft ein Verfahren zur Demontage eines Rotors einer Gasturbine.One aspect of the present invention relates to a method for dismantling a rotor of a gas turbine.

Die Gasturbine kann insbesondere eine Niederdruck-Gasturbine bzw. Turbinenstufe, vorzugsweise eines Flugtriebwerks, sein und ein Gehäuse und einen Kanal aufweisen, in dem der Rotor angeordnet ist und der in einer Durchströmungsrichtung divergiert. Zur kompakteren Darstellung wird vorliegend auch ein Gehäuseteil eines mehrteiligen Gesamtgehäuses kurz als Gehäuse bezeichnet.The gas turbine can in particular be a low-pressure gas turbine or turbine stage, preferably of an aircraft engine, and have a housing and a channel in which the rotor is arranged and which diverges in a flow direction. For a more compact presentation, a housing part of a multi-part overall housing is also referred to as housing for short.

Eine Kontur, insbesondere ein Durchmesser, des Kanals kann sich in Durchströmungsrichtung, insbesondere wenigstens im Wesentlichen monoton und/oder in Absätzen, erweitern.A contour, in particular a diameter, of the channel can widen in the direction of flow, in particular at least essentially monotonously and/or in steps.

In dem Kanal sind der zu demontierende Rotor und in einer Ausführung noch ein oder mehrere weitere Rotoren angeordnet. In Durchströmungsrichtung vor und/oder nach einem oder mehreren Rotoren, insbesondere zwischen benachbarten Rotoren, kann jeweils ein Leitgitter angeordnet sein.The rotor to be dismantled and, in one embodiment, one or more further rotors are arranged in the channel. A guide vane can be arranged in the direction of flow before and/or after one or more rotors, in particular between adjacent rotors.

In einer Weiterbildung ist der zu demontierende Rotor ein in Durchströmungsrichtung erster bzw. vorderster bzw. stromaufwärtigster Rotor, der oder die weiteren Rotoren entsprechend hintere bzw. stromabwärtigere Rotoren. Entsprechend wird vorliegend eine in Durchströmungsrichtung stromaufwärtige axiale Position als vordere Position bzw. vorne bezeichnet, eine in Durchströmungsrichtung stromabwärtige axiale Position entsprechend als hintere Position bzw. hinten.In a further development, the rotor to be dismantled is a first or frontmost or most upstream rotor in the direction of flow, and the further rotor or rotors are correspondingly rearward or more downstream rotors. Correspondingly, an axial position upstream in the direction of flow is referred to as a front position or front, and an axial position downstream in the direction of flow is referred to as a rear position or rear.

Der zu demontierende Rotor weist in einer Ausführung ein oder mehrere in Umfangsrichtung verteilte Laufschaufel und eine Rotorscheibe auf. Die Laufschaufeln können lösbar, insbesondere formschlüssig, vorzugsweise mittels profilierter Schaufelfüße, oder dauerhaft, insbesondere stoffschlüssig, an der Rotorscheibe befestigt, vorzugsweise integral bzw. als sogenannte BLISK zusammen mit der Rotorscheibe ausgebildet sein. In einer Ausführung weisen die Laufschaufeln radial außen Außendeckbänder auf, die zusammen einen Außenring bilden, in einer anderen Ausführung sind die Laufschaufeln außendeckbandlos.In one embodiment, the rotor to be dismantled has one or more rotor blades distributed in the circumferential direction and a rotor disk. The rotor blades can be detachably, in particular form-fittingly, preferably by means of profiled blade roots, or permanently, in particular materially, fastened to the rotor disk, preferably integrally or as so-called BLISK together with the rotor disk. In one embodiment, the rotor blades have outer shrouds radially on the outside, which together form an outer ring; in another embodiment, the rotor blades have no outer shroud.

In einer Ausführung erweitert sich eine Außenkontur, insbesondere ein Außendurchmesser, der Laufschaufeln des Rotors, insbesondere eines Außenrings des Rotors, in Durchströmungsrichtung.In one embodiment, an outer contour, in particular an outer diameter, of the moving blades of the rotor, in particular of an outer ring of the rotor, widens in the flow direction.

In einer Ausführung kann der Außenring einen oder mehrere axial beabstandete Radialflansche bzw. Dichtspitzen aufweisen, die sich nach radial außen erstrecken. In einer Weiterbildung ist ein Außendurchmesser eines vorderen Radialflansches kleiner als ein Außendurchmesser eines hinteren Radialflansches. In einer Ausführung liegt ein maximaler Außendurchmesser des zu demontierenden Rotors in dessen in Durchströmungsrichtung hinterer Hälfte.In one embodiment, the outer ring can have one or more axially spaced radial flanges or sealing tips, which extend radially outwards. In one development, an outside diameter of a front radial flange is smaller than an outside diameter of a rear radial flange. In one embodiment, a maximum outside diameter of the rotor to be dismantled is in its rear half in the flow direction.

Zwischen dem Rotor und dem Gehäuse ist ein Außendichtring angeordnet. Entsprechend ist in einer Ausführung der Außendichtring einer Gasturbine ein in Durchströmungsrichtung erster bzw. vorderster bzw. stromaufwärtigster Außendichtring.An outer sealing ring is arranged between the rotor and the housing. Correspondingly, in one embodiment, the outer sealing ring of a gas turbine is a first or frontmost or most upstream outer sealing ring in the direction of flow.

Der Außendichtring kann lösbar an dem Kanal bzw. Gehäuse befestigt sein. Insbesondere kann ein in Durchströmungsrichtung hinterer Axialflansch des Außendichtrings in eine entsprechende Nut des Gehäuses eingehängt sein, die in einer Weiterbildung durch ein an dem Gehäuse befestigtes Leitgitter ausgebildet sein kann. In einer Ausführung weist der Außendichtring radial innen bzw. dem Rotor zugewandt einen Einlaufbelag und/oder eine Wabendichtung auf.The outer sealing ring can be detachably attached to the channel or housing. In particular, an axial flange of the outer sealing ring that is at the rear in the direction of flow can be hooked into a corresponding groove in the housing, which in a further development can be formed by a guide grid attached to the housing. In one embodiment, the outer sealing ring has a run-in coating and/or a honeycomb seal radially on the inside or facing the rotor.

In einer Ausführung erweitert sich eine Innenkontur, insbesondere ein Innendurchmesser, des Außendichtrings in Durchströmungsrichtung, insbesondere monoton, vorzugsweise in einem oder mehreren Absätzen. In einer Weiterbildung liegt ein Absatz der Innenfläche des montierten Außendichtrings einem Radialflansch eines Au-ßenrings des zu demontierenden Rotors gegenüber, ein weiterer Absatz einem weiteren Radialflansch des Außenrings.In one embodiment, an inner contour, in particular an inner diameter, of the outer sealing ring expands in the flow direction, in particular monotonically, preferably in one or more paragraphs. In a development, a shoulder of the inner surface of the mounted outer sealing ring is opposite a radial flange of an outer ring of the rotor to be dismantled, and another shoulder is opposite a further radial flange of the outer ring.

In einer Ausführung ist ein minimaler, insbesondere vorderster, Innendurchmesser des Außendichtrings kleiner als ein maximaler Außendurchmesser des Rotors, insbesondere als ein hinterster Außendurchmesser eines Außenrings, vorzugsweise als ein Außendurchmesser eines (hintersten) Radialflansches des Außenrings.In one embodiment, a minimum, in particular frontmost, inner diameter of the outer sealing ring is smaller than a maximum outer diameter of the rotor, in particular than a rearmost outer diameter of an outer ring, preferably than an outer diameter of a (rearmost) radial flange of the outer ring.

Nach einem Aspekt der vorliegenden Erfindung wird der zu demontierende Rotor entgegen der Durchströmungsrichtung demontiert bzw. axial verschoben, insbesondere nach vorne aus dem Gehäuse heraus.According to one aspect of the present invention, the rotor to be dismantled is dismantled or axially displaced counter to the direction of flow, in particular forwards out of the housing.

Hierzu wird in einer Ausführung zunächst der Außendichtring, dessen - kleinerer - minimaler Innendurchmesser bei einem Verschieben des Rotors mit dessen - größeren - maximalen Außendurchmesser in Konflikt kommen würde, axial entgegen der Durchströmungsrichtung verschoben, insbesondere nach vorne aus dem Gehäuse heraus. Anschließend kann dann auch der Rotor selber axial entgegen der Durchströmungsrichtung verschoben werden, insbesondere nach vorne aus dem Gehäuse heraus.In one embodiment, the outer sealing ring, whose - smaller - minimum inner diameter would come into conflict with its - larger - maximum outer diameter when the rotor is moved, is first moved axially counter to the direction of flow, in particular forwards out of the housing. The rotor itself can then also be displaced axially counter to the direction of flow, in particular forward out of the housing.

Hierdurch kann nach einem Aspekt der vorliegenden Erfindung ein, insbesondere vorderster, Rotor direkt, insbesondere ohne Demontage hinterer Rotoren, demontiert werden. Auf diese Weise kann die Inspektion und/oder Wartung, insbesondere ein Austausch, des Rotors vereinfacht werden.As a result, according to one aspect of the present invention, a rotor, in particular the foremost rotor, can be dismantled directly, in particular without dismantling rear rotors. In this way, inspection and/or maintenance, in particular replacement, of the rotor can be simplified.

Sofern der maximale Außendurchmesser des Außendichtrings kleiner als der minimale (Innen)Durchmesser des in Verschieberichtung vor ihm liegenden Abschnitts des Kanals ist, kann der Außendichtring ohne weiteres axial entgegen der Durchströmungsrichtung aus dem Kanal verschoben werden. Sofern hingegen der minimale (Innen)Durchmesser des in Verschieberichtung vor ihm liegenden Abschnitts des Kanals kleiner ist, geht dies nicht. Daher wird nach einem Aspekt der vorliegenden Erfindung zur Demontage zunächst der Außendichtring, dessen maximaler Außendurchmesser größer als ein minimaler (Innen)Durchmesser des Kanals ist, in Umfangsrichtung in zwei oder mehr, vorzugsweise wenigstens 16, insbesondere wenigstens 32 Teile geteilt. Anschließend können die Außendichtringteile radial nach innen bzw. zu einer Drehachse der Gasturbine hin verschoben und auf diese Weise auch an dem kleineren Innendurchmesser des Kanals vorbeigeführt werden.If the maximum outer diameter of the outer sealing ring is smaller than the minimum (inner) diameter of the section of the channel in front of it in the direction of displacement, the outer sealing ring can easily be displaced axially out of the channel counter to the direction of flow. If, on the other hand, the minimum (internal) diameter of the section of the channel in front of it in the displacement direction is smaller, this is not possible. Therefore, according to one aspect of the present Invention for dismantling first the outer sealing ring, the maximum outer diameter of which is greater than a minimum (inner) diameter of the channel, divided in the circumferential direction into two or more, preferably at least 16, in particular at least 32 parts. The outer sealing ring parts can then be shifted radially inwards or towards an axis of rotation of the gas turbine and in this way can also be guided past the smaller inner diameter of the channel.

Diese radiale Verschiebung nach innen und die axiale Verschiebung entgegen der Durchströmungsrichtung können, wenigstens abschnitts- bzw. teilweise, überlagert sein bzw. werden. Dies kann in einer Ausführung den zum Ausführen entgegen der Durchströmungsrichtung erforderlichen Aufwand und/oder Bewegungsraum minimieren. Zusätzlich oder alternativ können Außendichtringteile auch, wenigstens abschnitts- bzw. teilweise, rein radial und/oder rein axial verschoben werden. Beispielsweise können der gesamte Außendichtring oder Außendichtringteile zunächst um eine axiale Weglänge entgegen der Durchströmungsrichtung verschoben werden, beispielsweise bis zu einem Blockieren durch den Kanal. Anschließend können die Außendichtringteile rein radial oder unter Überlagerung einer weiteren axialen Verschiebung nach radial innen verschoben werden, so dass sie den Kanal passieren können.This radial inward displacement and the axial displacement counter to the direction of flow can be superimposed, at least in sections or in part. In one embodiment, this can minimize the outlay and/or movement space required for execution counter to the flow direction. Additionally or alternatively, outer sealing ring parts can also be displaced purely radially and/or purely axially, at least in sections or in part. For example, the entire outer sealing ring or parts of the outer sealing ring can first be displaced by an axial distance counter to the direction of flow, for example until the channel blocks it. The outer sealing ring parts can then be displaced radially inwards only, or with a further axial displacement superimposed, so that they can pass through the channel.

In einer Ausführung werden die Außendichtringteile zusätzlich zu einem axialen und/oder radialen Verschieben auch gekippt, insbesondere, um sie vor einem axialen Verschieben aus einer Umfangsnut des Gehäuses zu lösen. In einer bevorzugten Ausführung können die Außendichtringteile hingegen, wenigstens im Wesentlichen, kippfrei axial und gegebenenfalls radial verschoben werden bzw. müssen zur axialen Verschiebung nicht vorab gekippt werden. Insbesondere kann vorgesehen sein, dass der Außendichtring bzw. die Außendichtringteile anfänglich zunächst kippfrei axial verschoben werden.In one embodiment, the outer sealing ring parts are also tilted in addition to being shifted axially and/or radially, in particular in order to release them from a circumferential groove of the housing before they are shifted axially. In a preferred embodiment, however, the outer sealing ring parts can, at least essentially, be shifted axially and optionally radially without tilting or do not have to be tilted beforehand for the axial displacement. In particular, it can be provided that the outer sealing ring or the outer sealing ring parts are initially displaced axially without tilting.

Insbesondere hierzu ist nach einem Aspekt der vorliegenden Erfindung der Außendichtring an dem Gehäuse reibschlüssig, lösbar und entgegen der Durchströmungsrichtung formschlussfrei befestigt. Hierunter wird vorliegend insbesondere verstanden, dass der Außendichtring an dem Gehäuse derart lösbar und reibschlüssig befestigt ist, dass er nach Lösen des Reibschlusses entgegen der Durchströmungsrichtung axial, insbesondere makroskopisch bzw. um wenigstens 5 mm, verschoben werden kann, ohne dass dem ein radialer Absatz einer Reibkontaktfläche des Gehäuses zur reibschlüssigen Verbindung mit dem Außendichtring entgegensteht, insbesondere eine Wand einer Umfangsnut. Der Außendichtring kann an dem Gehäuse in einer Ausführung durch einen ein- oder mehrteiligen verspannten sogenannten C-Ring ("C-Clip") lösbar und reibschlüssig befestigt sein bzw. werden.For this purpose in particular, according to one aspect of the present invention, the outer sealing ring is fastened to the housing in a frictionally engaged, detachable manner and without a positive fit counter to the direction of flow. In the present case, this is understood in particular to mean that the outer sealing ring is fastened to the housing in a detachable and friction-locked manner is that it can be displaced axially, in particular macroscopically or by at least 5 mm, against the direction of flow after the frictional connection has been released, without this being opposed by a radial shoulder of a frictional contact surface of the housing for the frictional connection with the outer sealing ring, in particular a wall of a circumferential groove. In one embodiment, the outer sealing ring can be releasably and frictionally fastened to the housing by a one-part or multi-part braced so-called C-ring ("C-clip").

In Durchströmungsrichtung kann in einer Weiterbildung der Außendichtring an dem Gehäuse hingegen formschlüssig gesichert bzw. festgelegt sein, insbesondere durch einen einseitigen Absatz, wobei vorliegend eine Umfangsnut im Gegensatz zu einem solchen einseitigen Absatz als zwei- bzw. beidseitiger Absatz bezeichnet wird.In the flow direction, however, the outer sealing ring can be positively secured or fixed to the housing in a further development, in particular by a shoulder on one side, with a circumferential groove being referred to as a shoulder on two or both sides in contrast to such a shoulder on one side.

In Umfangsrichtung ist der Außendichtring in einer Ausführung formschlüssig an dem Gehäuse gesichert bzw. festgelegt. Hierzu kann in einer Weiterbildung der Au-ßendichtring einen oder mehrere radiale Vorsprünge aufweisen, die sich von einer Außenumfangsfläche des Außendichtrings zum Reibschluss mit einer radial gegenüberliegenden Innenumfangsfläche des Gehäuses radial nach außen erstrecken und in entsprechende axiale Nuten des Gehäuses eingreifen, die insbesondere an einer in Durchströmungsrichtung vorderen Stirnfläche des Gehäuses angeordnet sein können. Zusätzlich oder alternativ kann das Gehäuse einen oder mehrere radiale Vorsprünge aufweisen, die sich von einer Innenumfangsfläche des Gehäuses zum Reibschluss mit einer radial gegenüberliegenden Außenumfangsfläche des Außendichtrings radial nach innen erstrecken und in entsprechende axiale Nuten des Außendichtrings eingreifen, die insbesondere an einer in Durchströmungsrichtung hinteren Stirnfläche des Außendichtrings angeordnet sein können. Eine Erstreckung eines radialen Vorsprungs in Umfangsrichtung kann kleiner, gleich oder größer sein als ein Abstand in Umfangsrichtung zwischen zwei in Umfangsrichtung benachbarten Wänden zweier in Umfangsrichtung benachbarter Nuten.In one embodiment, the outer sealing ring is secured or fixed in a form-fitting manner on the housing in the circumferential direction. For this purpose, in a further development, the outer sealing ring can have one or more radial projections, which extend radially outwards from an outer peripheral surface of the outer sealing ring for frictional engagement with a radially opposite inner peripheral surface of the housing and engage in corresponding axial grooves of the housing, which in particular on an in Flow direction front face of the housing can be arranged. Additionally or alternatively, the housing can have one or more radial projections, which extend radially inward from an inner peripheral surface of the housing for frictional engagement with a radially opposite outer peripheral surface of the outer sealing ring and engage in corresponding axial grooves of the outer sealing ring, which in particular on a rear end face in the direction of flow of the outer sealing ring can be arranged. An extent of a radial projection in the circumferential direction can be less than, equal to or greater than a distance in the circumferential direction between two circumferentially adjacent walls of two circumferentially adjacent grooves.

Entsprechend sind in einer Ausführung Außendichtring und Gehäuse in einer Ausführung reibschlüssig aneinander befestigt und dabei formschlüssig nicht oder nur in Umfangsrichtung und/oder in Durchströmungsrichtung, nicht jedoch entgegen der Durchströmungsrichtung gesichert bzw. festgelegt, insbesondere nicht mittels einer Umfangsnut.Correspondingly, in one embodiment, the outer sealing ring and the housing are fastened to one another with a friction fit, and not in a form-fitting manner, or only in the circumferential direction and/or in the direction of flow, but not against the Flow direction secured or fixed, in particular not by means of a circumferential groove.

Hierdurch kann in einer Ausführung ein anfängliches Kippen des Außendichtrings bzw. von Außendichtringteilen vermieden werden, indem diese anfänglich axial entgegen der Durchströmungsrichtung verschoben werden. Hierdurch wird es vorteilhaft möglich, einen Dichtungsspalt zwischen Außendichtring und Rotor zu reduzieren, der andernfalls vergrößert werden muss, um ein Kippen zu ermöglichen, was jedoch die Dichtwirkung verschlechtert.In this way, in one embodiment, an initial tilting of the outer sealing ring or parts of the outer sealing ring can be avoided by initially displacing them axially counter to the direction of flow. As a result, it is advantageously possible to reduce a sealing gap between the outer sealing ring and the rotor, which would otherwise have to be enlarged in order to allow tilting, which, however, impairs the sealing effect.

Je nach konstruktiver Gestaltung kann der zu demontierende Rotor in seiner Montagelage einem radialen Verschieben der Außendichtringteile entgegenstehen. Insbesondere daher wird der Rotor zunächst bzw. vor dem radialen Verschieben der Au-ßendichtringteile axial in Durchströmungsrichtung verschoben. Auf diese Weise kann (weiterer) Raum zur radialen Verschiebung der Außendichtringteile nach radial innen, ggfs. unter Überlagerung einer axialen Verschiebung entgegen der Durchströmungsrichtung, zur Verfügung gestellt werden.Depending on the structural design, the rotor to be dismantled in its assembly position can prevent a radial displacement of the outer sealing ring parts. In particular, therefore, the rotor is initially or before the radial displacement of the outer sealing ring parts axially displaced in the direction of flow. In this way (additional) space can be made available for the radial displacement of the outer sealing ring parts radially inwards, possibly with superimposition of an axial displacement counter to the flow direction.

Das Gehäuse kann an seiner vorderen Stirnseite mit einem Anschlussflansch verbunden sein. Dieser Anschlussflansch kann insbesondere Teil einer Hochdruckturbine, die einer Niederdruckturbine vorgelagert ist, Teil einer vorgelagerten Brennkammer oder dergleichen oder eines Verbindungsstückes hierzu sein. Gleichermaßen kann der Anschlussflansch auch Teil eines Transportdeckels zum Verschließen des Kanals oder dergleichen sein.The housing can be connected to a connecting flange on its front face. In particular, this connection flange can be part of a high-pressure turbine, which is upstream of a low-pressure turbine, part of an upstream combustion chamber or the like, or a connecting piece thereto. Equally, the connection flange can also be part of a transport cover for closing the channel or the like.

Entsprechend wird in einer Ausführung der vorliegenden Erfindung vor dem axialen Verschieben des Außendichtrings entgegen der Durchströmungsrichtung ein mit dem Gehäuse verbundener Anschlussflansch, dessen dem Rotor zugewandter Innendurchmesser kleiner ist als der maximale Außendurchmesser des Außendichtrings, von dem Gehäuse gelöst. Auch ein Anschlussflansch ohne Durchgangsöffnung wird insoweit als Anschlussflansch bezeichnet, dessen dem Rotor zugewandter Innendurchmesser gleich Null und damit kleiner ist als der maximale Außendurchmesser des Außendichtrings.Accordingly, in one embodiment of the present invention, before the outer sealing ring is axially displaced against the direction of flow, a connecting flange connected to the housing and whose inner diameter facing the rotor is smaller than the maximum outer diameter of the outer sealing ring is detached from the housing. A connection flange without a through opening is also referred to as a connection flange whose inner diameter facing the rotor is equal to zero and is therefore smaller than the maximum outer diameter of the outer sealing ring.

In einer Ausführung der vorliegenden Erfindung wird vor dem axialen Verschieben des Außendichtrings entgegen der Durchströmungsrichtung eine, insbesondere reibschlüssige, Verbindung des Außendichtrings mit dem Gehäuse, insbesondere ein C-Ring, gelöst.In one embodiment of the present invention, before the axial displacement of the outer sealing ring against the direction of flow, a connection, in particular a frictional connection, of the outer sealing ring to the housing, in particular a C-ring, is released.

Ein oder mehrere weiterer Rotoren der Gasturbine können in einer Ausführung über den zu demontierende Rotor radial und/oder axial abgestützt bzw. gelagert sein. Bei einer Demontage des Rotors ohne vorhergehende Demontage der weiteren Rotoren entfällt diese Abstützung bzw. Lagerung. Dementsprechend werden in einer Ausführung ein oder mehrere weiterer Rotoren der Gasturbine vor dem axialen Verschieben des zu demontierenden Rotors entgegen der Durchströmungsrichtung anderweitig fixiert. Hierzu können sie insbesondere mittels eines lösbaren Werkzeugs fixiert werden, dass an wenigstens einem der weiteren Rotoren lösbar, insbesondere reib- und/oder formschlüssig befestigt wird und sich seinerseits abstützt. Das Werkzeug kann sich insbesondere, vorzugsweise reib- und/oder formschlüssig, an dem Gehäuse der Gasturbine abstützen.In one embodiment, one or more further rotors of the gas turbine can be supported or mounted radially and/or axially via the rotor to be dismantled. If the rotor is dismantled without first dismantling the other rotors, this support or bearing is omitted. Accordingly, in one embodiment, one or more further rotors of the gas turbine are fixed in another way before the axial displacement of the rotor to be dismantled counter to the direction of flow. For this purpose, they can be fixed in particular by means of a detachable tool that is detachably attached to at least one of the other rotors, in particular frictionally and/or positively, and which in turn is supported. In particular, the tool can be supported on the housing of the gas turbine, preferably in a frictionally and/or form-fitting manner.

Entsprechend betrifft ein Aspekt der vorliegenden Erfindung ein Werkzeug zum Fixieren eines oder mehrerer weiterer Rotoren bei der Montage oder Demontage eines Rotors einer Gasturbine nach einem hier beschriebenen Verfahren, insbesondere dessen Verwendung zum Fixieren eines oder mehrerer weiterer Rotoren bei der Montage oder Demontage eines Rotors einer Gasturbine nach einem hier beschriebenen Verfahren. Das Werkzeug weist ein Befestigungsmittel zum form- und/oder reibschlüssigen Befestigen an dem Gehäuse und/oder einem oder mehreren weiteren Rotoren der Gasturbine auf. Das Befestigungsmittel kann insbesondere eine oder mehrere Aussparungen und/oder Vorsprünge zum formschlüssigen Befestigen und/oder ein oder mehrere Spannmittel, insbesondere Schrauben, zum reibschlüssigen Befestigen aufweisen. Das Werkzeug weist einen Radialflansch zum Befestigen an dem Gehäuse und einen axialen Steg auf, um einen oder mehrere weitere Rotoren radial innen zu durchgreifen und an ihnen befestigt zu werden.Accordingly, one aspect of the present invention relates to a tool for fixing one or more additional rotors during assembly or disassembly of a rotor of a gas turbine according to a method described here, in particular its use for fixing one or more additional rotors when assembling or disassembling a rotor of a gas turbine using a method described here. The tool has a fastening means for positive and/or frictional fastening to the housing and/or one or more other rotors of the gas turbine. The fastening means can in particular have one or more recesses and/or projections for positive fastening and/or one or more clamping means, in particular screws, for frictional fastening. The tool has a radial flange for attachment to the housing and an axial web for reaching through one or more further rotors radially on the inside and being attached to them.

Ein Aspekt der vorliegenden Erfindung betrifft die Erst- oder Wieder-Montage des Rotors, insbesondere eines vordersten Rotors in Durchströmungsrichtung von vorne in das Gehäuse hinein. Die Montage kann im Wesentlichen umgekehrt zu der vorstehend erläuterten Demontage erfolgen, so dass hierauf ergänzend Bezug genommen wird.One aspect of the present invention relates to the initial assembly or reassembly of the rotor, in particular a foremost rotor in the flow direction from the front into the housing. The assembly can be carried out essentially in reverse to the disassembly explained above, so that additional reference is made to this.

Entsprechend wird in einer Ausführung zunächst der zu montierende Rotor axial in der Durchströmungsrichtung verschoben, insbesondere in das Gehäuse hinein, und anschließend der Außendichtring axial in der Durchströmungsrichtung verschoben, insbesondere in das Gehäuse hinein.Accordingly, in one embodiment, the rotor to be assembled is first displaced axially in the direction of flow, in particular into the housing, and then the outer sealing ring is displaced axially in the direction of flow, particularly into the housing.

In einer Ausführung werden Teile des Außendichtrings radial zu dem Gehäuse der Gasturbine hin verschoben und anschließend zu dem Außendichtring zusammengefügt, insbesondere in Umfangsrichtung verspannt und/oder formschlüssig verbunden. Auch diese radiale Verschiebung kann mit einer axialen Verschiebung des gesamten Außendichtrings oder der Außendichtringteile, wenigstens abschnitts- bzw. phasenweise, überlagert sein bzw. werden.In one embodiment, parts of the outer sealing ring are shifted radially towards the housing of the gas turbine and then joined together to form the outer sealing ring, in particular braced in the circumferential direction and/or connected in a form-fitting manner. This radial displacement can also be superimposed, at least in sections or phases, with an axial displacement of the entire outer sealing ring or the parts of the outer sealing ring.

Der Rotor wird nach dem radialen Verschieben der Außendichtringteile axial entgegen der Durchströmungsrichtung verschoben. Hierdurch kann zeitweise Bewegungsraum für das radiale Verschieben geschaffen werden.After the radial displacement of the outer sealing ring parts, the rotor is displaced axially counter to the direction of flow. As a result, room for movement for the radial displacement can be created at times.

In einer Ausführung wird nach dem axialen Verschieben des Außendichtrings in der Durchströmungsrichtung ein Anschlussflansch, dessen dem Rotor zugewandter Innendurchmesser kleiner ist als der maximale Außendurchmesser des Außendichtrings, mit dem Gehäuse, vorzugsweise lösbar verbunden. Zusätzlich oder alternativ kann nach dem axialen Verschieben des Außendichtrings in der Durchströmungsrichtung der Außendichtring, vorzugsweise lösbar, an dem Gehäuse befestigt bzw. eine Verbindung des Außendichtrings mit dem Gehäuse geschlossen werden. Insbesondere kann ein C-Ring aufgesetzt werden, der Außendichtring und Gehäuse reibschlüssig verspannt.In one embodiment, after the outer sealing ring has been axially displaced in the direction of flow, a connecting flange whose inner diameter facing the rotor is smaller than the maximum outer diameter of the outer sealing ring is connected to the housing, preferably detachably. Additionally or alternatively, after the axial displacement of the outer sealing ring in the direction of flow, the outer sealing ring can be fastened, preferably detachably, to the housing or a connection of the outer sealing ring to the housing can be closed. In particular, a C-ring can be fitted, which frictionally clamps the outer sealing ring and housing.

Wie vorstehend ausgeführt, können ein oder mehrere weitere Rotoren während der Montage, insbesondere mittels eines lösbaren Werkzeugs und/oder an dem Gehäuse, fixiert sein bzw. werden. Insbesondere, nachdem der zu montierende Rotor montiert, insbesondere an dem Gehäuse abgestützt bzw. gelagert ist, kann eine entsprechende Fixierung bzw. das Werkzeug gelöst werden.As explained above, one or more further rotors can be fixed during assembly, in particular by means of a detachable tool and/or on the housing. In particular, after the rotor to be assembled assembled, is in particular supported or mounted on the housing, a corresponding fixation or the tool can be released.

Weitere vorteilhafte Weiterbildungen der vorliegenden Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung bevorzugter Ausführungen. Hierzu zeigt, teilweise schematisiert:

Fig. 1
einen Teil einer Gasturbine mit einem Werkzeug nach einer Ausführung der vorliegenden Erfindung;
Fig. 2A - 2C
Schritte eines Verfahrens zur Demontage eines Rotors einer Gasturbine nach einer Ausführung der vorliegenden Erfindung;
Fig. 3
einen Teil einer Gasturbine;
Fig. 4
ein vergrößertes Detail der Gasturbine der Fig. 3; und
Fig. 5
einen Schnitt längs der Linie V-V in Fig. 4.
Further advantageous developments of the present invention result from the dependent claims and the following description of preferred embodiments. This shows, partially schematized:
1
a part of a gas turbine with a tool according to an embodiment of the present invention;
Figures 2A - 2C
steps of a method for disassembling a rotor of a gas turbine according to an embodiment of the present invention;
3
part of a gas turbine;
4
an enlarged detail of the gas turbine 3 ; and
figure 5
a section along the line VV in 4 .

Fig. 1 zeigt eine Niederdruck-Gasturbine 1 mit einem Gehäuse 3 und einem Kanal 5, der in einer Durchströmungsrichtung (von links nach rechts in Fig. 1) divergiert, indem sein Durchmesser sich in Durchströmungsrichtung im Wesentlichen monoton erweitert. 1 shows a low-pressure gas turbine 1 with a housing 3 and a duct 5, which runs in a flow direction (from left to right in 1 ) diverges in that its diameter increases essentially monotonically in the flow direction.

In dem Kanal sind ein in Durchströmungsrichtung vorderster Rotor 19 sowie mehrere weitere, hintere Rotoren 21, 23 und 25 in Durchströmungsrichtung hintereinander angeordnet.A rotor 19 which is at the front in the direction of flow and a plurality of further, rear rotors 21, 23 and 25 are arranged one behind the other in the direction of flow in the channel.

Zwischen bzw. vor den Rotoren sind Leitgitter 11, 13, 15 und 17 angeordnet und an dem Gehäuse befestigt.Guide vanes 11, 13, 15 and 17 are arranged between or in front of the rotors and are attached to the housing.

An seiner vorderen Stirnseite (links in Fig. 1) ist das Gehäuse mit einem Anschlussflansch 9 einer der Niederdruckturbine 1 vorgelagerten Hochdruckturbine lösbar verbunden, an seiner hinteren Stirnseite (rechts in Fig. 1) mit einem Austrittsgehäuse 7.On its front face (left in 1 ) the housing is detachably connected to a connecting flange 9 of a high-pressure turbine upstream of the low-pressure turbine 1, on its rear end face (on the right in 1 ) with an outlet housing 7.

Zwischen jedem Rotor und dem Gehäuse ist ein Außendichtring 27, 29, 31 bzw. 33 angeordnet.An outer sealing ring 27, 29, 31 and 33 is arranged between each rotor and the housing.

Der zu demontierende Rotor 19 weist mehrere, in Umfangsrichtung verteilte Laufschaufeln, von denen in Fig. 1 eine teilweise dargestellt ist, und eine Rotorscheibe (nicht dargestellt) auf, an der die Laufschaufeln befestigt sind.The rotor 19 to be dismantled has a plurality of rotor blades distributed in the circumferential direction, of which 1 one shown partially, and a rotor disk (not shown) to which the blades are attached.

Fig. 2A-C zeigt anhand einer vergrößerten Teildarstellung Schritte eines Verfahrens zur Demontage eines Rotors einer Gasturbine eines Flugtriebwerks nach einer Ausführung der vorliegenden Erfindung, die im Wesentlichen der vorstehend erläuterten Fig. 1 entspricht, so dass einander entsprechende Elemente mit identischen Bezugszeichen bezeichnet sind und wechselweise auf die übrige Beschreibung Bezug genommen und nur auf Unterschiede eingegangen wird. Figures 2A-C 1 shows steps of a method for dismantling a rotor of a gas turbine of an aircraft engine according to an embodiment of the present invention, essentially those explained above, on the basis of an enlarged partial illustration 1 corresponds, so that corresponding elements are denoted by identical reference symbols and reference is made alternately to the rest of the description and only differences are discussed.

Die Laufschaufeln weisen radial außen Außendeckbänder auf, die zusammen einen Außenring bilden. Der Außendurchmesser dieses Außenrings erweitert sich in Durchströmungsrichtung. Der Außenring weist zwei axial beabstandete Radialflansche bzw. Dichtspitzen 19a auf (vgl. Fig. 2A), die sich nach radial außen erstrecken, wobei ein Außendurchmesser eines vorderen Radialflansches (links in Fig. 2A) kleiner ist als ein Außendurchmesser eines hinteren Radialflansches (rechts in Fig. 2A).The rotor blades have outer shrouds radially on the outside, which together form an outer ring. The outer diameter of this outer ring increases in the flow direction. The outer ring has two axially spaced radial flanges or sealing tips 19a (cf. Figure 2A ) extending radially outward with an outer diameter of a front radial flange (left in Figure 2A ) is smaller than an outer diameter of a rear radial flange (right in Figure 2A ).

Der Außendichtring 27, der zwischen dem Rotor 19 und dem Gehäuse 3 angeordnet ist, ist lösbar an dem Kanal bzw. Gehäuse befestigt. Hierzu ist ein hinterer Axialflansch (rechts in Fig. 2A) des Außendichtrings zwischen dem Gehäuse und einem nachfolgenden Leitgitter 13 eingehängt, ein vorderer Axialflansch (links in Fig. 2A) des Außendichtrings ist an dem Gehäuse mittels eines C-Rings 45 befestigt.The outer sealing ring 27, which is arranged between the rotor 19 and the housing 3, is detachably attached to the channel or housing. A rear axial flange (right in Figure 2A ) of the outer sealing ring is hung between the housing and a subsequent guide vane 13, a front axial flange (on the left in Figure 2A ) of the outer seal ring is secured to the housing by means of a C-ring 45.

Der Außendichtring ist an dem Gehäuse entgegen der Durchströmungsrichtung formschlussfrei reibschlüssig und lösbar befestigt: man erkennt, insbesondere anhand der nachfolgend beschriebenen Figurenfolge Fig. 2AFig. 2B, dass der Außendichtring nach Lösen des C-Rings axial entgegen der Durchströmungsrichtung (nach links in Fig. 2A) verschiebbar ist, ohne hierbei durch einen Anschlag der Reibkontaktfläche zwischen Außendichtring und Gehäuse gehindert zu werden.The outer sealing ring is fastened to the housing counter to the direction of flow, without a form fit, frictionally and detachably: this can be seen, in particular, from the sequence of figures described below Figure 2A Figure 2B that the outer sealing ring after loosening the C-ring axially against the direction of flow (to the left in Figure 2A ) can be displaced without being prevented by a stop on the frictional contact surface between the outer sealing ring and the housing.

Die Innenumfangsfläche des Gehäuses 3 zum Reibschluss mit der radial gegenüberliegenden Außenumfangsfläche des Außendichtrings 27 weist mehrere radiale Vorsprünge 3.1 (vgl. Fig. 2B) auf, die sich radial nach innen erstrecken und in axiale Nuten in einer in Durchströmungsrichtung hinteren (rechts in Fig. 2) Stirnfläche des Außendichtrings eingreifen, um diesen in Umfangsrichtung sowie in Durchströmungsrichtung formschlüssig an dem Gehäuse zu sichern bzw. festzulegen.The inner peripheral surface of the housing 3 for frictional engagement with the radially opposite outer peripheral surface of the outer sealing ring 27 has a plurality of radial projections 3.1 (cf. Figure 2B ) which extend radially inwards and are inserted into axial grooves in a rear (right in 2 ) Engage the end face of the outer sealing ring in order to secure or define it in a form-fitting manner on the housing in the circumferential direction and in the direction of flow.

Der Außendichtring weist radial innen bzw. dem Rotor zugewandt einen als Wabendichtung ausgebildeten Einlaufbelag 59 auf.The outer sealing ring has a running-in coating 59 designed as a honeycomb seal radially on the inside or facing the rotor.

Der Innendurchmesser des Außendichtrings erweitert sich in Durchströmungsrichtung monoton in mehreren Absätzen, wobei ein Absatz des montierten Außendichtrings einem Radialflansch (links in Fig. 2A) des Außenrings des zu demontierenden Rotors gegenüberliegt, ein weiterer Absatz des montierten Außendichtrings einem weiteren Radialflansch (rechts in Fig. 2A) des Außenrings.The inner diameter of the outer sealing ring increases monotonically in several steps in the direction of flow, with one step of the mounted outer sealing ring being attached to a radial flange (on the left in Figure 2A ) of the outer ring of the rotor to be dismantled, another shoulder of the assembled outer sealing ring is opposite another radial flange (on the right in Figure 2A ) of the outer ring.

Ein minimaler, vorderster Innendurchmesser d27 des Außendichtrings 27 ist kleiner als ein maximaler Außendurchmesser D19 des Rotors 19, insbesondere als der Au-ßendurchmesser seines hintersten Radialflansches 19a.A minimum front inner diameter d 27 of the outer sealing ring 27 is smaller than a maximum outer diameter D 19 of the rotor 19, in particular than the outer diameter of its rearmost radial flange 19a.

Zur Demontage des vordersten Rotors 19 entgegen der Durchströmungsrichtung nach vorne aus dem Gehäuse 3 heraus wird zunächst der mit dem Gehäuse 3 verbundene Anschlussflansch 9 (vgl. Fig. 1), dessen dem Rotor zugewandter Innendurchmesser (rechts in Fig. 1) kleiner ist als der maximale Außendurchmesser D27 des Au-ßendichtrings (vgl. Fig. 2A), von dem Gehäuse 3 gelöst.To dismantle the foremost rotor 19, counter to the direction of flow forwards out of the housing 3, the connection flange 9 connected to the housing 3 (cf. 1 ), whose inner diameter facing the rotor (right in 1 ) is smaller than the maximum outer diameter D 27 of the outer sealing ring (cf. Figure 2A ), detached from the housing 3.

Dann wird die Verbindung des Außendichtrings 27 mit dem Gehäuse 3 in Form des C-Rings 45 gelöst, wie in Fig. 2B durch einen Pfeil angedeutet.Then the connection of the outer sealing ring 27 to the housing 3 in the form of the C-ring 45 is released, as in FIG Figure 2B indicated by an arrow.

Vorab, gleichzeitig oder anschließend wird, wie ebenfalls in Fig. 2B durch einen Pfeil angedeutet, der Rotor 19 axial in Durchströmungsrichtung verschoben, um Raum für eine radiale Verschiebung von Außendichtringteilen nach radial innen zur Verfügung zu stellen. In einer nicht dargestellten Abwandlung kann dieser Schritt auch entfallen.In advance, at the same time or subsequently, as also in Figure 2B indicated by an arrow, the rotor 19 is displaced axially in the direction of flow to make room for a radial displacement of the outer sealing ring parts radially inwards To make available. In a modification that is not shown, this step can also be omitted.

Da der maximale Außendurchmesser D27 des Außendichtrings größer als der minimale (Innen)Durchmesser ds des in Verschieberichtung (von rechts nach links) vor ihm liegenden Abschnitts des Kanals ist, kann der Außendichtring axial entgegen der Durchströmungsrichtung nicht komplett aus dem Kanal verschoben werden. Daher wird zur Demontage der Außendichtring 27 zunächst axial entgegen der Durchströmungsrichtung verschoben und dann in zwei oder mehr Teile geteilt, die anschließend radial nach innen bzw. zu einer Drehachse der Gasturbine hin verschoben und auf diese Weise auch an dem kleineren Innendurchmesser des Kanals vorbeigeführt werden, wie in Fig. 2C durch Pfeile angedeutet. Dieser radialen Verschiebung nach innen ist, wie durch diese Pfeile angedeutet, eine weitere axiale Verschiebung des Außendichtrings bzw. seiner Teile entgegen der Durchströmungsrichtung überlagert.Since the maximum outer diameter D 27 of the outer sealing ring is larger than the minimum (inner) diameter ds of the section of the channel in front of it in the direction of displacement (from right to left), the outer sealing ring cannot be completely displaced axially out of the channel against the direction of flow. Therefore, for dismantling, the outer sealing ring 27 is first shifted axially against the direction of flow and then divided into two or more parts, which are then shifted radially inwards or towards an axis of rotation of the gas turbine and in this way are also guided past the smaller inner diameter of the channel. as in Figure 2C indicated by arrows. As indicated by these arrows, this radial inward displacement is superimposed by a further axial displacement of the outer sealing ring or its parts counter to the direction of flow.

Anschließend wird dann auch der Rotor 19 selber axial entgegen der Durchströmungsrichtung nach vorne aus dem Gehäuse 3 heraus verschoben und so direkt ohne Demontage der hinteren Rotoren 21, 23 und 25 demontiert. Auf diese Weise kann die Inspektion und/oder Wartung, insbesondere ein Austausch, des Rotors vereinfacht werden.The rotor 19 itself is then also pushed axially forwards out of the housing 3 counter to the direction of flow and is thus dismantled directly without dismantling the rear rotors 21 , 23 and 25 . In this way, inspection and/or maintenance, in particular replacement, of the rotor can be simplified.

Diese weiteren Rotoren 21, 23 und 25 der Gasturbine 1 werden vor dem axialen Verschieben des zu demontierenden Rotors 19 entgegen der Durchströmungsrichtung mittels eines lösbaren Werkzeugs fixiert, das sich seinerseits an dem Gehäuse 3 der Gasturbine abstützt, wie in Fig. 1 strichliert angedeutet.These further rotors 21, 23 and 25 of the gas turbine 1 are fixed before the axial displacement of the rotor 19 to be dismantled against the direction of flow by means of a detachable tool, which in turn is supported on the housing 3 of the gas turbine, as in 1 indicated by dashed lines.

Das Werkzeug weist einen Radialflansch 101 zum Befestigen an dem Gehäuse 3 und einen axialen Steg 102 sowie ein Befestigungsmittel 103, 104 - 106 zum form- und/oder reibschlüssigen Befestigen an dem Gehäuse 3 und den weiteren Rotoren 21, 23 und 25 auf. Das Befestigungsmittel kann insbesondere eine oder mehrere Aussparungen und/oder Vorsprünge zum formschlüssigen Befestigen und/oder ein oder mehrere Spannmittel, insbesondere Schrauben, zum reibschlüssigen Befestigen aufweisen (nicht dargestellt).The tool has a radial flange 101 for attachment to the housing 3 and an axial web 102 as well as attachment means 103, 104-106 for positive and/or frictional attachment to the housing 3 and the other rotors 21, 23 and 25. The fastening means can in particular have one or more recesses and/or projections for positive fastening and/or one or more clamping means, in particular screws, for frictional fastening (not shown).

Eine Erst- oder Wieder-Montage des vordersten Rotors 19 in Durchströmungsrichtung von vorne in das Gehäuse 3 hinein erfolgt im Wesentlichen umgekehrt zu der vorstehend erläuterten Demontage, so dass hierauf ergänzend Bezug genommen wird.A first assembly or reassembly of the foremost rotor 19 in the direction of flow from the front into the housing 3 takes place essentially in reverse to the disassembly explained above, so that additional reference is made to this.

Entsprechend wird zunächst der zu montierende Rotor 19 und anschließend der Au-ßendichtring 27 axial in der Durchströmungsrichtung in das Gehäuse 3 hinein verschoben. Dabei werden die Teile des Außendichtrings radial zu dem Gehäuse der Gasturbine hin verschoben und anschließend zu dem Außendichtring zusammengefügt, insbesondere in Umfangsrichtung verspannt und/oder formschlüssig verbunden (vgl. Fig. 2C mit umgekehrter Pfeilrichtung). Diese radiale Verschiebung ist bzw. wird mit der axialen Verschiebung des gesamten Außendichtrings oder der Außendichtringteile überlagert. Insbesondere wird in einem letzten Schritt (vgl. Fig. 2BFig. 2A) der komplette Außendichtring axial in Durchströmungsrichtung verschoben, so dass die radialen Vorsprünge 3.1 des Gehäuses in die axialen Nuten des Außendichtrings eingreifen und diesen zusätzlich zum Reibschluss durch den C-Ring in Umfangsrichtung und in Durchströmungsrichtung sichern bzw. festlegen.Correspondingly, first the rotor 19 to be assembled and then the outer sealing ring 27 are displaced axially in the flow direction into the housing 3 . The parts of the outer sealing ring are shifted radially towards the housing of the gas turbine and then joined together to form the outer sealing ring, in particular braced in the circumferential direction and/or connected in a form-fitting manner (cf. Figure 2C with reverse arrow direction). This radial displacement is superimposed on the axial displacement of the entire outer sealing ring or parts of the outer sealing ring. In particular, in a final step (cf. Figure 2B Figure 2A ) the complete outer sealing ring is shifted axially in the direction of flow, so that the radial projections 3.1 of the housing engage in the axial grooves of the outer sealing ring and secure or fix it in addition to the frictional connection through the C-ring in the circumferential direction and in the direction of flow.

Nach dem radialen und axialen Verschieben und Zusammenfügen der Außendichtringteile werden der Außendichtring 27 lösbar an dem Gehäuse 3 befestigt, indem der C-Ring 45 aufgesetzt wird, der Außendichtring und Gehäuse reibschlüssig verspannt, und der Rotor 19 axial entgegen der Durchströmungsrichtung verschoben (vgl. Fig. 2B mit umgekehrter Pfeilrichtung).After the radial and axial displacement and assembly of the outer sealing ring parts, the outer sealing ring 27 is detachably fastened to the housing 3 by putting on the C-ring 45, the outer sealing ring and housing are frictionally clamped and the rotor 19 is shifted axially counter to the direction of flow (cf. Figure 2B with reverse arrow direction).

Anschließend wird das Werkzeug 101-106 gelöst und der Anschlussflansch 9 mit dem Gehäuse 3 lösbar verbunden.The tool 101-106 is then released and the connecting flange 9 is detachably connected to the housing 3.

Fig. 3 zeigt in Fig. 2 entsprechender Darstellung einen Teil einer Gasturbine, Fig. 4 eine Detailvergrößerung einer Reibkontaktfläche zwischen Außenring und Gehäuse, und Fig. 5 einen Schnitt längs der Linie V-V in Fig. 4. Einander entsprechende Elemente sind durch identische Bezugszeichen bezeichnet, so dass auf die vorstehende Beschreibung Bezug genommen und nachfolgend nur auf Unterschiede eingegangen wird. 3 shows in 2 corresponding representation a part of a gas turbine, 4 an enlargement of a detail of a frictional contact surface between the outer ring and the housing, and figure 5 a section along the line VV in 4 . Elements that correspond to one another are denoted by identical reference symbols, so that reference is made to the above description and only differences are discussed below.

Auch in der Ausführung der Fig. 3-5 ist der Außendichtring 27 an dem Gehäuse 3 entgegen der Durchströmungsrichtung formschlussfrei reibschlüssig und lösbar durch den C-Ring 45 befestigt: nach Lösen des C-Rings kann der Außendichtring axial entgegen der Durchströmungsrichtung (nach links in Fig. 3) verschoben werden, ohne hierbei durch einen Anschlag der Reibkontaktfläche zwischen Außendichtring und Gehäuse gehindert zu werden.Also in the execution of Figures 3-5 the outer sealing ring 27 is fastened to the housing 3 counter to the direction of flow, without a form fit, frictionally and releasably by the C-ring 45: after loosening the C-ring, the outer sealing ring can be moved axially counter to the direction of flow (to the left in 3 ) can be moved without being prevented by a stop on the frictional contact surface between the outer sealing ring and the housing.

Im Gegensatz zur Ausführung der Fig. 2 weist in der Ausführung der Fig. 3-5, wie insbesondere im Schnitt der Fig. 5 erkennbar, die Außenumfangsfläche des Außendichtrings 27 zum Reibschluss mit der radial gegenüberliegenden Innenumfangsfläche des Gehäuses 3 mehrere radiale Vorsprünge 27.1 auf, die sich radial nach außen erstrecken und in axiale Nuten 3.2 in einer in Durchströmungsrichtung vorderen (links in Fig. 3-5) Stirnfläche des Gehäuses eingreifen, um den Außendichtring in Umfangsrichtung sowie in Durchströmungsrichtung formschlüssig an dem Gehäuse zu sichern bzw. festzulegen.In contrast to the execution of 2 points in the execution of the Figures 3-5 , as in particular in the section of figure 5 As can be seen, the outer peripheral surface of the outer sealing ring 27 has a plurality of radial projections 27.1 for frictional engagement with the radially opposite inner peripheral surface of the housing 3, which extend radially outwards and are inserted in axial grooves 3.2 in a front (left in Figures 3-5 ) Engage the end face of the housing in order to secure or set the outer sealing ring in a form-fitting manner on the housing in the circumferential direction and in the direction of flow.

Wie ebenfalls insbesondere im Schnitt der Fig. 5 erkennbar, ist die Erstreckung der radialen Vorsprünge 27.1 in Umfangsrichtung größer als ein Abstand in Umfangsrichtung zwischen zwei in Umfangsrichtung benachbarten Wänden zweier in Umfangsrichtung benachbarter axialen Nuten 3.2. Insofern beinhaltet die Bezeichnung Nut und Vorsprung keine Beschränkung der Allgemeinheit, da bei mehreren in Umfangsrichtung verteilten Nuten und Vorsprüngen jeweils die einen oder die anderen als Nut bzw. Vorsprung angesehen werden können.As also in particular in the section of figure 5 recognizable, the extent of the radial projections 27.1 in the circumferential direction is greater than a distance in the circumferential direction between two walls that are adjacent in the circumferential direction of two axial grooves 3.2 that are adjacent in the circumferential direction. In this respect, the designation groove and projection does not imply any restriction of generality, since in the case of a plurality of grooves and projections distributed in the circumferential direction, one or the other can be regarded as a groove or projection.

Bezugszeichenlistreference list

11
Niederdruck-Gasturbinelow pressure gas turbine
33
GehäuseHousing
3.13.1
radialer Vorsprungradial protrusion
3.23.2
axiale Nutaxial groove
55
Kanalchannel
77
Austrittsgehäuseoutlet housing
99
Anschlussflanschconnection flange
11, 13, 15, 1711, 13, 15, 17
Leitgitterguide grid
1919
vorderster Rotorforemost rotor
19a19a
Radialflanschradial flange
21, 23, 2521, 23, 25
weiterer, hinterer Rotorfurther, rear rotor
27, 29, 31, 3327, 29, 31, 33
Außendichtringouter sealing ring
27.127.1
radialer Vorsprungradial protrusion
4545
C-Ring (Verbindung)C ring (connection)
5959
Wabendichtungs-EinlaufbelagHoneycomb seal run-in coating
101101
Radialflansch des WerkzeugsRadial flange of the tool
102102
axialer Steg des Werkzeugsaxial web of the tool
103-106103-106
Befestigungsmittel des Werkzeugsfasteners of the tool
dsds
minimaler Innendurchmesser des Kanals 5 des Gehäuses 3minimum inner diameter of the channel 5 of the housing 3
D19D19
maximaler Außendurchmesser des vordersten Rotors 19maximum outer diameter of the foremost rotor 19
d27d27
minimaler Innendurchmesser des Außendichtrings 27minimum inner diameter of the outer sealing ring 27
D27D27
maximaler Außendurchmesser des Außendichtrings 27maximum outer diameter of the outer sealing ring 27

Claims (11)

  1. Method for disassembling a rotor (19), in particular the front-most rotor, of a gas turbine (1) that comprises a housing (3) and a channel (5), which channel diverges in a through-flow direction and in which the rotor (19) is arranged, the method comprising the step of:
    axially displacing an outer sealing ring (27) located radially opposite the rotor (19), the minimum internal diameter (d27) of which outer sealing ring is smaller than a maximum outer diameter (D19) of the Rotor (19), counter to the direction of flow; and comprising the subsequent step of:
    axially displacing the rotor (19) counter to the through-flow direction, in particular out of the housing (3); characterized in that the rotor (19) is displaced axially in the through-flow direction prior to the radial displacement of the outer sealing ring parts.
  2. Method according to the preceding claim, comprising the steps of:
    dividing the outer sealing ring (27), the maximum outer diameter (D27) of which is greater than a minimum diameter (ds) of the channel (5); and subsequently radially displacing the outer sealing ring parts toward an axis of rotation of the gas turbine (1).
  3. Method according to either of the preceding claims, characterized in that, prior to the axial displacement of the outer sealing ring (27) counter to the through-flow direction, a connection flange (9) connected to the housing (3) is detached from the housing (3), the inner diameter, facing the rotor (19), of which connection flange is smaller than the maximum outer diameter (D27) of the outer sealing ring (27).
  4. Method according to any of the preceding claims, characterized in that, prior to the axial displacement of the outer sealing ring (27) counter to the through-flow direction, a connection of the outer sealing ring (27) to the housing (3), in particular a C-ring (45), is detached.
  5. Method according to any of the preceding claims, characterized in that at least one further rotor (21, 23, 25) of the gas turbine (1) is fixed, in particular by means of a detachable tool (101-106) and/or on the housing (3).
  6. Method for assembling a rotor (19), in particular the front-most rotor, of a gas turbine (1) that comprises a housing (3) and a channel (5), which channel diverges in a flow direction, comprising the step of:
    axially displacing the rotor (19) in the through-flow direction, in particular into the housing (3);
    and comprising the subsequent step of:
    axially displacing an outer sealing ring (27) located radially opposite the rotor (3), the minimum internal diameter (d27) of which outer sealing ring is smaller than a maximum outer diameter (D19) of the rotor (3) in the through-flow direction, characterized in that, after the radial displacement of the outer sealing ring parts, the rotor (19) is displaced axially counter to the through-flow direction.
  7. Method according to the preceding claim, comprising the steps of:
    radially displacing parts of the outer sealing ring (27) toward the housing (3) of the gas turbine (1); and subsequently
    joining the parts to form the outer sealing ring (27), the maximum outer diameter (D27) of which is greater than a minimum diameter (ds) the channel (5).
  8. Method according to any of claims 6-7, characterized in that, after the axial displacement of the outer sealing ring (27) in the through-flow direction, a connection flange (9) is connected to the housing (3), the inner diameter, facing the rotor (19), of which connection flange is smaller than the maximum outer diameter (D27) of the outer sealing ring (17).
  9. Method according to claim 8, characterized in that, after the axial displacement of the outer sealing ring in the through-flow direction, a connection of the outer sealing ring to the housing, in particular a C-ring (45), is closed.
  10. Method according to any of the preceding claims 6-8,
    characterized in that a fixation, in particular by means of a detachable tool (101-106) and/or on the housing (3), of at least one further rotor (21, 23, 25) of the gas turbine (1) is detached.
  11. Tool (101 -106) for fixing at least one further rotor (21, 23, 25) during assembly or disassembly of a rotor (19) of a gas turbine (1) in accordance with a method according to any of the preceding claims, having a fastening means (103-106) for interlocking and/or frictional fastening to the housing (3) and/or at least one further rotor (21, 23, 25) of the gas turbine (1), wherein the tool has a radial flange for fastening to the housing and an axial projection in order to radially inwardly reach through one or more further rotors and to be fastened thereto.
EP13183274.3A 2013-09-06 2013-09-06 Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool Active EP2846001B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES13183274T ES2935815T3 (en) 2013-09-06 2013-09-06 (Dis)assembly of a gas turbine rotor, in particular front
EP13183274.3A EP2846001B1 (en) 2013-09-06 2013-09-06 Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool
EP14150517.2A EP2846002B1 (en) 2013-09-06 2014-01-09 Gas turbine
ES14150518T ES2752555T3 (en) 2013-09-06 2014-01-09 Gas turbine, corresponding assembly and disassembly procedure of an impeller grid of a gas turbine
EP14150518.0A EP2846003B1 (en) 2013-09-06 2014-01-09 Gas turbine, corresponding assembly and disassembly methods of a rotor of a gas turbine
ES14150517T ES2762511T3 (en) 2013-09-06 2014-01-09 Gas turbine
US14/477,492 US10125627B2 (en) 2013-09-06 2014-09-04 Method for disassembly and assembly of a rotor of a gas turbine
US14/584,811 US9416676B2 (en) 2013-09-06 2014-12-29 Gas turbine
US14/584,867 US9822657B2 (en) 2013-09-06 2014-12-29 Gas turbine
US16/058,535 US11268398B2 (en) 2013-09-06 2018-08-08 Gas turbine with axially moveable outer sealing ring with respect to housing against a direction of flow in an assembled state
US16/191,706 USRE48320E1 (en) 2013-09-06 2018-11-15 Gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13183274.3A EP2846001B1 (en) 2013-09-06 2013-09-06 Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool

Publications (2)

Publication Number Publication Date
EP2846001A1 EP2846001A1 (en) 2015-03-11
EP2846001B1 true EP2846001B1 (en) 2023-01-11

Family

ID=49123719

Family Applications (3)

Application Number Title Priority Date Filing Date
EP13183274.3A Active EP2846001B1 (en) 2013-09-06 2013-09-06 Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool
EP14150517.2A Active EP2846002B1 (en) 2013-09-06 2014-01-09 Gas turbine
EP14150518.0A Active EP2846003B1 (en) 2013-09-06 2014-01-09 Gas turbine, corresponding assembly and disassembly methods of a rotor of a gas turbine

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP14150517.2A Active EP2846002B1 (en) 2013-09-06 2014-01-09 Gas turbine
EP14150518.0A Active EP2846003B1 (en) 2013-09-06 2014-01-09 Gas turbine, corresponding assembly and disassembly methods of a rotor of a gas turbine

Country Status (3)

Country Link
US (5) US10125627B2 (en)
EP (3) EP2846001B1 (en)
ES (3) ES2935815T3 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846001B1 (en) * 2013-09-06 2023-01-11 MTU Aero Engines AG Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool
DE102013224199A1 (en) * 2013-11-27 2015-05-28 MTU Aero Engines AG Gas turbine blade
US20170089213A1 (en) 2015-09-28 2017-03-30 United Technologies Corporation Duct with additive manufactured seal
US10370996B2 (en) 2016-08-23 2019-08-06 United Technologies Corporation Floating, non-contact seal with offset build clearance for load imbalance
US10385715B2 (en) 2016-08-29 2019-08-20 United Technologies Corporation Floating, non-contact seal with angled beams
US10550708B2 (en) 2016-08-31 2020-02-04 United Technologies Corporation Floating, non-contact seal with at least three beams
DE102016222608A1 (en) 2016-11-17 2018-05-17 MTU Aero Engines AG Sealing arrangement for a guide vane arrangement of a gas turbine
JP6684698B2 (en) * 2016-12-12 2020-04-22 三菱重工エンジン&ターボチャージャ株式会社 Turbocharger
US20190218928A1 (en) * 2018-01-17 2019-07-18 United Technologies Corporation Blade outer air seal for gas turbine engine
CN108533333B (en) * 2018-05-05 2023-10-13 宁波天生密封件有限公司 Steam turbine cannula sealing device and use method thereof
DE102018210600A1 (en) * 2018-06-28 2020-01-02 MTU Aero Engines AG COAT RING ARRANGEMENT FOR A FLOWING MACHINE
DE102018210601A1 (en) * 2018-06-28 2020-01-02 MTU Aero Engines AG SEGMENT RING FOR ASSEMBLY IN A FLOWING MACHINE
FR3083563B1 (en) * 2018-07-03 2020-07-24 Safran Aircraft Engines AIRCRAFT TURBOMACHINE SEALING MODULE
FR3092861B1 (en) * 2019-02-18 2023-02-10 Safran Aircraft Engines TURBOMACHINE ASSEMBLY INCLUDING A CLEAT ON A SEALING RING
IT201900014736A1 (en) * 2019-08-13 2021-02-13 Ge Avio Srl Integral sealing elements for blades held in a rotatable annular outer drum rotor in a turbomachinery.
CN113814915B (en) * 2020-06-18 2022-11-04 中国航发商用航空发动机有限责任公司 Fixing clamp, assembly component and assembly method

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2916874A (en) * 1957-01-31 1959-12-15 United Aircraft Corp Engine construction
US4053254A (en) 1976-03-26 1977-10-11 United Technologies Corporation Turbine case cooling system
US4650394A (en) 1984-11-13 1987-03-17 United Technologies Corporation Coolable seal assembly for a gas turbine engine
US5267397A (en) * 1991-06-27 1993-12-07 Allied-Signal Inc. Gas turbine engine module assembly
US5593277A (en) * 1995-06-06 1997-01-14 General Electric Company Smart turbine shroud
US5639211A (en) * 1995-11-30 1997-06-17 United Technology Corporation Brush seal for stator of a gas turbine engine case
EP0844369B1 (en) * 1996-11-23 2002-01-30 ROLLS-ROYCE plc A bladed rotor and surround assembly
FR2780443B1 (en) * 1998-06-25 2000-08-04 Snecma HIGH PRESSURE TURBINE STATOR RING OF A TURBOMACHINE
US6435820B1 (en) * 1999-08-25 2002-08-20 General Electric Company Shroud assembly having C-clip retainer
FR2800797B1 (en) * 1999-11-10 2001-12-07 Snecma ASSEMBLY OF A RING BORDING A TURBINE TO THE TURBINE STRUCTURE
FR2815668B1 (en) * 2000-10-19 2003-01-10 Snecma Moteurs ARRANGEMENT FOR CONNECTING A TURBINE STATOR RING TO A SUPPORT SPACER
US7186078B2 (en) 2003-07-04 2007-03-06 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbine shroud segment
US6942445B2 (en) * 2003-12-04 2005-09-13 Honeywell International Inc. Gas turbine cooled shroud assembly with hot gas ingestion suppression
US7147436B2 (en) * 2004-04-15 2006-12-12 United Technologies Corporation Turbine engine rotor retainer
FR2869944B1 (en) * 2004-05-04 2006-08-11 Snecma Moteurs Sa COOLING DEVICE FOR FIXED RING OF GAS TURBINE
FR2885168A1 (en) * 2005-04-27 2006-11-03 Snecma Moteurs Sa SEALING DEVICE FOR A TURBOMACHINE ENCLOSURE, AND AIRCRAFT ENGINE EQUIPPED WITH SAME
DE102006027237A1 (en) * 2005-06-14 2006-12-28 Alstom Technology Ltd. Steam turbine for a power plant has guide blade rows that are arranged on a single blade ring which is in turn arranged in the inner casing
US7438520B2 (en) * 2005-08-06 2008-10-21 General Electric Company Thermally compliant turbine shroud mounting assembly
FR2891583B1 (en) * 2005-09-30 2010-06-18 Snecma TURBINE HAVING DISMANTLING SECTORS BY UPSTREAM
FR2899275A1 (en) * 2006-03-30 2007-10-05 Snecma Sa Ring sector fixing device for e.g. turboprop of aircraft, has cylindrical rims engaged on casing rail, where each cylindrical rim comprises annular collar axially clamped on casing rail using annular locking unit
FR2899274B1 (en) 2006-03-30 2012-08-17 Snecma DEVICE FOR FASTENING RING SECTIONS AROUND A TURBINE WHEEL OF A TURBOMACHINE
FR2899281B1 (en) 2006-03-30 2012-08-10 Snecma DEVICE FOR COOLING A TURBINE HOUSING OF A TURBOMACHINE
US7819622B2 (en) * 2006-12-19 2010-10-26 United Technologies Corporation Method for securing a stator assembly
FR2921410B1 (en) * 2007-09-24 2010-03-12 Snecma RING SECTOR INTERLOCKING DEVICE ON A TURBOMACHINE HOUSING, COMPRISING MEANS FOR ITS PRETENSION
FR2922589B1 (en) * 2007-10-22 2009-12-04 Snecma CONTROL OF THE AUBES SET IN A HIGH-PRESSURE TURBINE TURBINE
FR2923527B1 (en) * 2007-11-13 2013-12-27 Snecma STAGE OF TURBINE OR COMPRESSOR, IN PARTICULAR TURBOMACHINE
FR2923525B1 (en) * 2007-11-13 2009-12-18 Snecma SEALING A ROTOR RING IN A TURBINE FLOOR
FR2923526B1 (en) * 2007-11-13 2013-12-13 Snecma TURBINE OR TURBOMACHINE COMPRESSOR STAGE
FR2923528B1 (en) * 2007-11-13 2009-12-11 Snecma TURBINE OR COMPRESSOR STAGE OF A TURBOREACTOR
FR2931195B1 (en) * 2008-05-16 2014-05-30 Snecma DISSYMMETRICAL MEMBER FOR LOCKING RING SECTIONS ON A TURBOMACHINE HOUSING
FR2931196B1 (en) * 2008-05-16 2010-06-18 Snecma RING SECTOR INTERLOCKING DEVICE ON A TURBOMACHINE CASE, COMPRISING RADIAL PASSAGES FOR ITS PRETENSION
EP2406466B1 (en) * 2009-03-09 2012-11-07 Snecma Turbine ring assembly
FR2954400B1 (en) * 2009-12-18 2012-03-09 Snecma TURBINE STAGE IN A TURBOMACHINE
US20110243725A1 (en) * 2010-03-31 2011-10-06 General Electric Company Turbine shroud mounting apparatus with anti-rotation feature
US8926270B2 (en) * 2010-12-17 2015-01-06 General Electric Company Low-ductility turbine shroud flowpath and mounting arrangement therefor
FR2978197B1 (en) * 2011-07-22 2015-12-25 Snecma TURBINE AND TURBINE TURBINE TURBINE DISPENSER HAVING SUCH A DISPENSER
EP2846001B1 (en) * 2013-09-06 2023-01-11 MTU Aero Engines AG Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool

Also Published As

Publication number Publication date
US20180347388A1 (en) 2018-12-06
EP2846003A1 (en) 2015-03-11
ES2762511T3 (en) 2020-05-25
US9822657B2 (en) 2017-11-21
US10125627B2 (en) 2018-11-13
US20150071769A1 (en) 2015-03-12
US20150192028A1 (en) 2015-07-09
ES2935815T3 (en) 2023-03-10
USRE48320E1 (en) 2020-11-24
US11268398B2 (en) 2022-03-08
US20150192026A1 (en) 2015-07-09
EP2846002A1 (en) 2015-03-11
EP2846001A1 (en) 2015-03-11
US9416676B2 (en) 2016-08-16
EP2846003B1 (en) 2019-10-16
ES2752555T3 (en) 2020-04-06
EP2846002B1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
EP2846001B1 (en) Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool
EP1656493B1 (en) Stationary gas turbine
DE102012201050B4 (en) Sealing arrangement, method and turbomachine
DE10210866C1 (en) Guide blade segment fixing device for flow channel of aircraft gas turbine uses slot and hook fixing and pin fitting through latter
EP2881552B1 (en) Aircraft gas turbine having a core engine housing with cooling air tubes
EP2799776A1 (en) Burner seal for gas turbine combustion chamber head and heat shield
DE102009007468A1 (en) Integrally bladed rotor disk for a turbine
EP2503242B1 (en) Combustion chamber head with holder for burner seals in gas turbines
EP2665910B1 (en) Aviation gas turbine thrust reversing device
DE102016002723A1 (en) Turbocharger with bearing-guided compressor wheel
EP2728122B1 (en) Blade Outer Air Seal fixing for a turbomachine
DE102012215412A1 (en) Assembly of an axial turbomachine and method for producing such an assembly
DE60217049T2 (en) Ölluftseparatorplug
DE102013109553A1 (en) Compressor fairing segment
EP3287611A1 (en) Gas turbine and method of attaching a turbine nozzle guide vane segment of a gas turbine
EP2730744B1 (en) Exhaust gas turbo charger
DE102012215413A1 (en) Assembly for axial flow turbomachine in two-phase jet engine, has guide vanes and diffuser connected with each other through connecting portions, where guide vanes are provided with radially inner stator hub and radially outer housing ring
EP2831379B1 (en) Holder ring
EP2404037B1 (en) Integrally bladed rotor for a turbomachine
EP3425172A1 (en) Turbomachine sealing ring, turbomaching with such a seal ring and method of manufacturing such a seal ring
EP3056684B1 (en) Axially split inner ring for a flow machine, guide blade assembly and aircraft engine
DE112017001487B4 (en) Turbine support structure
DE102015007559A1 (en) Rear clamping ring with recess
EP3551850B1 (en) Method for modifying a turbine
EP2781695A1 (en) Nozzle for an exhaust gas turbine

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150820

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220420

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220902

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013016328

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1543542

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2935815

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230310

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013016328

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

26N No opposition filed

Effective date: 20231012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231019

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230906

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230906

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230906

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240919

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240923

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240930

Year of fee payment: 12