EP2839049B1 - Steel sheet comprising a sacrificial cathodic protection coating and process for manufacturing an article starting from said steel sheet - Google Patents
Steel sheet comprising a sacrificial cathodic protection coating and process for manufacturing an article starting from said steel sheet Download PDFInfo
- Publication number
- EP2839049B1 EP2839049B1 EP12722750.2A EP12722750A EP2839049B1 EP 2839049 B1 EP2839049 B1 EP 2839049B1 EP 12722750 A EP12722750 A EP 12722750A EP 2839049 B1 EP2839049 B1 EP 2839049B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- coating
- cathodic protection
- sacrificial cathodic
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims description 76
- 239000011248 coating agent Substances 0.000 title claims description 60
- 229910000831 Steel Inorganic materials 0.000 title claims description 57
- 239000010959 steel Substances 0.000 title claims description 57
- 238000004210 cathodic protection Methods 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 36
- 229910052725 zinc Inorganic materials 0.000 claims description 27
- 239000011701 zinc Substances 0.000 claims description 27
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 26
- 229910052742 iron Inorganic materials 0.000 claims description 18
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 15
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- 239000011777 magnesium Substances 0.000 claims description 13
- 230000001681 protective effect Effects 0.000 claims description 13
- 229910052718 tin Inorganic materials 0.000 claims description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 10
- 229910052738 indium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910001563 bainite Inorganic materials 0.000 claims description 4
- 229910000734 martensite Inorganic materials 0.000 claims description 4
- 238000007598 dipping method Methods 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 1
- 239000000470 constituent Substances 0.000 claims 1
- 230000001186 cumulative effect Effects 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 238000005260 corrosion Methods 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003618 dip coating Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 229910020900 Sn-Fe Inorganic materials 0.000 description 2
- 229910019314 Sn—Fe Inorganic materials 0.000 description 2
- 241001080024 Telles Species 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002848 electrochemical method Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910018619 Si-Fe Inorganic materials 0.000 description 1
- 229910008289 Si—Fe Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000005495 cold plasma Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/06—Constructional parts, or assemblies of cathodic-protection apparatus
- C23F13/08—Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
- C23F13/12—Electrodes characterised by the material
- C23F13/14—Material for sacrificial anodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/261—After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
Definitions
- the present invention relates to a steel sheet provided with a sacrificial cathodic protection coating, more particularly intended for the manufacture of automotive parts, without being limited thereby.
- EP1 225 246 discloses a steel sheet provided with a sacrificial cathodic protection coating having an iron content lower than that of the present invention.
- the present invention therefore aims to overcome the disadvantages of the coatings of the prior art by providing coated steel sheets having a reinforced protection against corrosion, before and after implementation by stamping, in particular.
- coated steel sheets having a reinforced protection against corrosion, before and after implementation by stamping, in particular.
- the sheets are intended to be hardened in press, in particular hot-stamped, it also seeks a resistance to the propagation of microcracks in the steel and, preferably, a window of the widest possible use in time and temperature during the heat treatment preceding the curing in press.
- the subject of the invention is a steel sheet provided with a sacrificial cathodic protection coating as described in claim 1.
- the thickness of the primer coating is greater than or equal to 27 microns, its tin content is greater than or equal to 1% by weight and its zinc content is greater than or equal to 20% by weight.
- Another subject of the invention consists of a part provided with a sacrificial cathodic protection coating obtainable by the method according to the invention or by cold stamping of a sheet according to the invention, and which is more particularly intended for the automotive industry.
- the invention relates to a steel sheet provided with a coating first of all necessarily comprising a protective element to be chosen from tin, indium, and combinations thereof.
- tin in a percentage of between 0.1% and 5%, preferably between 0.5% and 4% by weight, more particularly preferably between 1 and 3%. % by weight or between 1 and 2% by weight.
- indium which has a stronger protective power than tin. It may be used alone or in addition to tin, at contents of between 0.01 and 0.5%, preferably between 0.02 and 0.1% and more preferably between 0.05 and 0.1% by weight.
- the coatings of the sheets according to the invention also comprise from 5 to 50% by weight of zinc and optionally up to 10% of magnesium.
- the present inventors have found that these elements make it possible, in combination with the protection elements mentioned above, to reduce the electrochemical potential of the coating with respect to the steel, in media containing or not containing chloride ions.
- the coatings according to the invention thus have sacrificial cathodic protection.
- zinc whose protective effect is greater than that of magnesium and which is simpler to implement because less oxidizable.
- the coatings of the sheets according to the invention also comprise from 0.1 to 15%, preferably from 0.5 to 15% and more preferably from 1 to 15%, or even from 8 to 12% by weight of silicon, element which makes it possible in particular to give the sheets high resistance to oxidation at high temperature.
- silicon allows their use up to 650 ° C without risk of flaking coating.
- silicon can prevent the formation of a thick layer of iron-zinc intermetallic during a hot dip coating, intermetallic layer that reduces the adhesion and formability of the coating.
- the presence of a silicon content greater than 8% by weight makes them more particularly capable of being hardened in press and in particular to be shaped by hot stamping. It is preferred to use for this purpose a quantity of between 8 and 12% of silicon. A content greater than 15% by weight is undesirable since primary silicon is formed which could degrade the properties of the coating, in particular the properties of corrosion resistance.
- the coatings of the sheets according to the invention can also comprise, in aggregated contents, up to 0.3% by weight, preferably up to 0.1% by weight, or even less than 0.05% by weight of elements. additional such as Sb, Pb, Ti, Ca, Mn, La, Ce, Cr, Ni, Zr or Bi. These various elements may allow, among other things, to improve the corrosion resistance of the coating or its fragility or adhesion, for example. Those skilled in the art who know their effects on the characteristics of the coating will be able to use them according to the complementary aim sought, in the proportion adapted for this purpose which will generally be between 20 ppm and 50 ppm. It was further verified that these elements did not interfere with the main properties sought in the context of the invention.
- the coatings of the sheets according to the invention also comprise unavoidable residual elements and impurities resulting, in particular, from the pollution of hot-dip galvanizing baths by the passage of steel strips or impurities originating from ingots feeding the same baths. or ingots of vacuum deposition processes.
- the residual element may be iron which is present in amounts ranging from 2 to 5% by weight and in general from 2 to 4% by weight in the hot dip coating baths.
- the coatings of the sheets according to the invention comprise fi nally aluminum whose content may range from about 20% to about 90% by weight.
- This element makes it possible to provide protection against corrosion of the plates by a barrier effect. It increases the melting temperature and the evaporation temperature of the coating, thus making it possible to implement it more easily, in particular by hot stamping and in a wide range of time and temperature. This may be particularly interesting when the composition of the steel of the sheet and / or the final microstructure referred to for the part require to pass through austenitization at high temperature and / or for long periods.
- the coating may be predominantly composed of zinc or aluminum.
- the thickness of the coating will preferably be between 10 and 50 ⁇ m. Indeed, below 10 microns, protection against corrosion of the band might be insufficient. Above 50 ⁇ m corrosion protection exceeds the required level, especially in the automotive field. In addition, if a coating of such thickness is subjected to a significant rise in temperature and / or for long periods, it may melt in the upper part and come to flow on the oven rolls or in the stamping tools , which would deteriorate them.
- the nature of it is not critical as long as the coating can adhere sufficiently.
- the steel has a composition that allows the part to reach a tensile strength of 500 to 1600 MPa, depending on the conditions. of use.
- a steel composition comprising, in% by weight: 0.15% ⁇ C ⁇ 0.5%, 0.5% ⁇ Mn ⁇ 3%, 0.1% ⁇ If ⁇ 0.5%, Cr ⁇ 1%. Ni ⁇ 0.1%, Cu ⁇ 0.1%, Ti ⁇ 0.2%, Al ⁇ 0.1%, P ⁇ 0.1%, S ⁇ 0.05%, 0.0005% ⁇ B ⁇ 0 , 08%, the balance being iron and unavoidable impurities from the development of steel.
- An example of a commercially available steel is 22MnB5.
- a steel composition comprising: 0.040% ⁇ C ⁇ 0.100%, 0.80% ⁇ Mn ⁇ 2.00%, Si ⁇ 0.30 %, S ⁇ 0.005%, P ⁇ 0.030%, 0.010% ⁇ Al ⁇ 0.070%, 0.015% ⁇ Nb ⁇ 0.100%, 0.030% ⁇ Ti ⁇ 0.080%, N ⁇ 0.009%, Cu ⁇ 0.100%, Ni ⁇ 0.100% , Cr ⁇ 0.100%, Mo ⁇ 0.100%, Ca ⁇ 0.006%, the remainder being iron and unavoidable impurities resulting from the production of steel.
- the steel sheets can be made by hot rolling and can optionally be re-cold rolled, depending on the final thickness referred to, which can vary, for example, between 0.7 and 3 mm.
- They may be coated by any suitable means such as an electroplating process or by a deposition process under vacuum or under pressure close to atmospheric pressure, such as deposition by magnetron sputtering, by cold plasma or by evaporation under vacuum, for example, but it will be preferred to obtain them by a hot dipping method in a molten metal bath. It is observed that the superficial cathodic protection is more important for coatings obtained by hot quenching than for coatings obtained by other coating processes.
- the sheets according to the invention can then be shaped by any method adapted to the structure and shape of the parts to be manufactured, such as for example cold stamping.
- the sheets according to the invention are more particularly suitable for the manufacture of hardened parts in press, in particular by hot stamping.
- This method consists of supplying a steel sheet according to the previously coated invention, then cutting the sheet to obtain a blank.
- This blank is then heated in an oven under a non-protective atmosphere to an austenitization temperature Tm of between 840 and 950 ° C, preferably between 880 and 930 ° C, and then to keep the blank at this temperature Tm for a duration tm between 1 and 8 minutes, preferably between 4 and 6 minutes.
- the temperature Tm and the holding time tm depend on the nature of the steel but also on the thickness of the sheets to be stamped, which must be entirely in the austenitic field before they are shaped.
- the speed of rise in temperature also affects these parameters, a high speed (greater than 30 ° C / s for example) to also reduce the holding time tm.
- the blank is then transferred to a hot stamping tool and then stamped.
- the resulting part is then cooled either in the stamping tool itself or after transfer to a specific cooling tool.
- the cooling rate is in all cases controlled according to the composition of the steel, so that its final microstructure after the hot stamping comprises at least one component selected from martensite and bainite, in order to achieve the desired level of mechanical strength.
- An essential point to ensure that the hot-stamped and hot-stamped part will indeed have a sacrificial cathodic protection is to regulate the temperature Tm, the time tm, the thickness of the preliminary coating and its contents of element (s) of protection, zinc and optionally magnesium such that the final average iron content in the upper part of the coating of the part is less than 75% by weight, preferably less than 50% by weight or even less than 30% by weight.
- This upper part has a thickness of at least 5 microns.
- the temperature Tm and / or the holding time tm it is possible to limit the temperature Tm and / or the holding time tm. It is also possible to increase the thickness of the pre-coating to prevent the diffusion front of the iron from reaching the surface of the coating. In this respect, it is preferable to use a sheet having a pre-coating thickness greater than or equal to 27 ⁇ m, preferably greater than or equal to 30 ⁇ m or even 35 ⁇ m.
- Tests were carried out with cold-rolled 22MnB5 sheets of thickness 1.5 mm, provided with hot-dip coatings comprising in% by weight, 20% of zinc, 10% of silicon, 3% of iron, 0 , 1% indium, the rest being made of aluminum and unavoidable impurities, and whose thicknesses are about 15 microns.
- the electrochemical potential of the coated sheet is -0.95 V / ECS.
- the sheet according to the invention thus has a sacrificial cathodic protection. Under the same conditions of measurement, it has been verified that an identical plate but provided with a coating comprising neither zinc nor indium has an electrochemical potential of -0.70 V / SCE, which does not provide cathodic protection to steel.
- Tests were carried out with cold-rolled sheets of 22MnB5 of thickness 1.5 mm, provided with hot-dip coatings comprising in% by weight, 10% of silicon, 10% of zinc, 6% of magnesium, % iron and 0.1% tin, the rest being made of aluminum and unavoidable impurities, and whose thicknesses are on average 17 microns.
- the electrochemical potential of the coated sheet is -0.95 V / SCE, while the electrochemical potential of an identical sheet provided with a coating comprising 10% silicon, the rest being made of aluminum and aluminum. unavoidable impurities, is -0.70 V / ECS.
- the sheet according to the invention thus has a sacrificial cathodic protection.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Articles (AREA)
- Prevention Of Electric Corrosion (AREA)
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
La présente invention concerne une tôle d'acier munie d'un revêtement à protection cathodique sacrificielle, plus particulièrement destiné à la fabrication de pièces pour automobile, sans y être pour autant limitée.The present invention relates to a steel sheet provided with a sacrificial cathodic protection coating, more particularly intended for the manufacture of automotive parts, without being limited thereby.
En effet, à ce jour, seuls les revêtements de zinc ou d'alliages de zinc apportent une protection renforcée contre la corrosion en raison d'une double protection barrière et cathodique. L'effet barrière est obtenu par l'application du revêtement à la surface de l'acier, qui empêche ainsi tout contact entre l'acier et le milieu corrosif et est indépendant de la nature du revêtement et du substrat. Au contraire, la protection cathodique sacrificielle est basée sur le fait que le zinc est un métal moins noble que l'acier et, qu'en situation de corrosion, il se consomme préférentiellement à l'acier. Cette protection cathodique est en particulier essentielle dans les zones où l'acier est directement exposé à l'atmosphère corrosive, comme les bords découpés où les zones blessées où l'acier est à nu et où le zinc environnant va être consommé avant toute attaque de la zone non revêtue.Indeed, to date, only zinc coatings or zinc alloys provide enhanced protection against corrosion due to dual barrier and cathodic protection. The barrier effect is achieved by applying the coating to the surface of the steel, thereby preventing contact between the steel and the corrosive medium and is independent of the nature of the coating and the substrate. On the contrary, sacrificial cathodic protection is based on the fact that zinc is a less noble metal than steel and that, in a situation of corrosion, it is preferentially consumed with steel. This cathodic protection is particularly essential in areas where the steel is directly exposed to the corrosive atmosphere, such as the cut edges where the injured areas where the steel is exposed and where the surrounding zinc is going to be consumed before any attack of the uncoated area.
Cependant, du fait de son bas point de fusion, le zinc pose problème lorsqu'il faut souder les pièces, car on risque de le vaporiser. Pour pallier ce problème, une possibilité est de réduire l'épaisseur du revêtement, mais on limite alors la durée dans le temps de la protection contre la corrosion. En outre, lorsqu'on souhaite durcir la tôle sous presse, notamment par emboutissage à chaud, on observe la formation de microfissures dans l'acier qui se propagent depuis le revêtement. De même, la mise en peinture de certaines pièces revêtues préalablement de zinc et durcies sous presse nécessite une opération de sablage avant phosphatation en raison de la présence d'une couche d'oxyde fragile en surface de la pièce.However, because of its low melting point, zinc is a problem when welding parts, because it is likely to vaporize. To overcome this problem, one possibility is to reduce the thickness of the coating, but then the time duration of the protection against corrosion is limited. In addition, when it is desired to harden the sheet in press, particularly by hot stamping, the formation of microcracks in the steel which propagate from the coating is observed. Similarly, the painting of some parts previously coated with zinc and hardened in press requires an operation. blasting before phosphating due to the presence of a fragile oxide layer on the surface of the workpiece.
L'autre famille de revêtements métalliques communément utilisés pour la production de pièces pour l'automobile est la famille des revêtements à base d'aluminium et de silicium. Ces revêtements ne génèrent pas de microfissuration dans l'acier lorsqu'on les déforme en raison de la présence d'une couche d'intermétallique AI-Si-Fe et présentent une bonne aptitude à la mise en peinture. S'ils permettent d'obtenir une protection par effet barrière et sont soudables, ils ne permettent cependant pas d'obtenir de protection cathodique.
La présente invention a donc pour but de remédier aux inconvénients des revêtements de l'art antérieur en mettant à disposition des tôles d'acier revêtues présentant une protection renforcée contre la corrosion, avant et après mise oeuvre par emboutissage, notamment. Lorsque les tôles sont destinées à être durcies sous presse, en particulier embouties à chaud, on recherche en outre une résistance à la propagation de microfissures dans l'acier et, de préférence, une fenêtre d'utilisation la plus large possible en temps et température lors du traitement thermique précédant le durcissement sous presse.The present invention therefore aims to overcome the disadvantages of the coatings of the prior art by providing coated steel sheets having a reinforced protection against corrosion, before and after implementation by stamping, in particular. When the sheets are intended to be hardened in press, in particular hot-stamped, it also seeks a resistance to the propagation of microcracks in the steel and, preferably, a window of the widest possible use in time and temperature during the heat treatment preceding the curing in press.
En termes de protection cathodique sacrificielle, on cherche à atteindre un potentiel électrochimique au moins 50 mV plus négatif que celui de l'acier, soit une valeur minimale de -0,75 V par rapport à une électrode au calomel saturé (ECS). On ne souhaite cependant pas aller plus bas qu'une valeur de -1,4V, voire -1,25V qui entraînerait une consommation du revêtement trop rapide et diminuerait en final la durée de protection de l'acier.In terms of sacrificial cathodic protection, it is sought to achieve an electrochemical potential at least 50 mV more negative than that of steel, a minimum value of -0.75 V compared to a saturated calomel electrode (ECS). However, we do not want to go lower than a value of -1.4V or -1.25 V which would lead to a consumption of the coating too fast and ultimately reduce the protection time of the steel.
A cet effet, l'invention a pour objet une tôle d'acier munie d'un revêtement à protection cathodique sacrificielle telle que décrite dans la revendication 1.For this purpose, the subject of the invention is a steel sheet provided with a sacrificial cathodic protection coating as described in claim 1.
La tôle selon l'invention peut en outre incorporer les caractéristiques suivantes, prises isolément ou en combinaison :
- l'élément de protection du revêtement est l'étain en un pourcentage en poids compris entre 1% et 3%,
- l'élément de protection du revêtement est l'indium en un pourcentage en poids compris entre 0,02% et 0,1%,
- le revêtement comprend de 20 à 40% en poids de zinc, et éventuellement du magnésium en une teneur de 1 à 10% en poids,
- le revêtement comprend de 20 à 30 % en poids de zinc et éventuellement du magnésium en une teneur de 3 à 6% en poids,
- le revêtement comprend de 8% à 12% en poids de silicium,
- l'acier de la tôle comprend, en pourcents en poids, 0,15%<C<0,5%, 0,5%<Mn<3%, 0,1%<silicium<0,5%, Cr<1%, Ni<0,1%, Cu<0,1%, Ti<0,2%, AI<0,1%, P<0,1%, S<0,05%, 0,0005%<B<0,08%, le solde étant constitué de fer et d'impuretés inévitables dues à l'élaboration de l'acier,
- le revêtement présente une épaisseur comprise entre 10 et 50 µm,
- le revêtement est obtenu par trempé à chaud.
- the protective element of the coating is tin in a percentage by weight of between 1% and 3%,
- the protective element of the coating is indium in a percentage by weight of between 0.02% and 0.1%,
- the coating comprises 20 to 40% by weight of zinc, and optionally magnesium in a content of 1 to 10% by weight,
- the coating comprises 20 to 30% by weight of zinc and optionally magnesium in a content of 3 to 6% by weight,
- the coating comprises from 8% to 12% by weight of silicon,
- the steel of the sheet comprises, in percent by weight, 0.15% <C <0.5%, 0.5% <Mn <3%, 0.1% <silicon <0.5%, Cr <1 %, Ni <0.1%, Cu <0.1%, Ti <0.2%, AI <0.1%, P <0.1%, S <0.05%, 0.0005% <B <0.08%, the balance being iron and unavoidable impurities due to steel making,
- the coating has a thickness of between 10 and 50 μm,
- the coating is obtained by hot quenching.
Un autre objet de l'invention est constitué par un procédé de fabrication d'une pièce en acier munie d'un revêtement à protection cathodique sacrificielle comprenant les étapes suivantes, prises dans cet ordre et consistant à:
- approvisionner une tôle d'acier selon l'invention, revêtue préalablement, puis à
- découper la tôle pour obtenir un flan, puis à
- chauffer le flan sous une atmosphère non protectrice jusqu'à une température d'austénitisation Tm comprise entre 840 et 950°C, puis à
- maintenir le flan à cette température Tm pendant une durée tm comprise entre 1 et 8 minutes, puis à
- emboutir à chaud le flan pour obtenir une pièce en acier revêtu que l'on refroidit à une vitesse telle que la microstructure de l'acier comprend au moins un constituant choisi parmi la martensite et la bainite,
- la température Tm, le temps tm, l'épaisseur du revêtement préalable et ses teneurs en élément de protection, en zinc et éventuellement en magnésium étant choisis de telle sorte que la teneur moyenne finale en fer dans la partie supérieure du revêtement de ladite pièce soit inférieure à 75% en poids.
- supply a steel sheet according to the invention, previously coated, then to
- cut the sheet to obtain a blank, then to
- heating the blank under a non-protective atmosphere to an austenitization temperature Tm of between 840 and 950 ° C, then at
- keep the blank at this temperature Tm for a time tm of between 1 and 8 minutes, then at
- hot stamping the blank to obtain a coated steel part that is cooled at a speed such that the microstructure of the steel comprises at least one component selected from martensite and bainite,
- the temperature Tm, the time tm, the thickness of the preliminary coating and its contents of protective element, zinc and optionally magnesium being chosen so that the final average iron content in the upper part of the coating of said part is less than 75% by weight.
Dans un mode de réalisation préféré, l'épaisseur du revêtement préalable est supérieure ou égale à 27 µm, sa teneur en étain est supérieure ou égale à 1% en poids et sa teneur en zinc est supérieure ou égale à 20% en poids.In a preferred embodiment, the thickness of the primer coating is greater than or equal to 27 microns, its tin content is greater than or equal to 1% by weight and its zinc content is greater than or equal to 20% by weight.
Un autre objet de l'invention est constitué par une pièce munie d'un revêtement à protection cathodique sacrificielle pouvant être obtenue par le procédé selon l'invention ou par emboutissage à froid d'une tôle selon l'invention, et qui esr plus particulièrement destinée à l'industrie automobile.Another subject of the invention consists of a part provided with a sacrificial cathodic protection coating obtainable by the method according to the invention or by cold stamping of a sheet according to the invention, and which is more particularly intended for the automotive industry.
L'invention va à présent être décrite plus en détail en référence à des modes de réalisation particuliers donnés à titre d'exemples non limitatif.The invention will now be described in more detail with reference to particular embodiments given as non-limiting examples.
Comme on l'aura compris, l'invention porte sur une tôle d'acier munie d'un revêtement comprenant tout d'abord obligatoirement un élément de protection à choisir parmi l'étain, l'indium, et leurs combinaisons.As will be understood, the invention relates to a steel sheet provided with a coating first of all necessarily comprising a protective element to be chosen from tin, indium, and combinations thereof.
Au vu de leur disponibilité respective sur le marché, on préfère utiliser l'étain en un pourcentage compris entre 0,1% et 5%, de préférence entre 0,5 et 4% en poids, de façon plus particulièrement préférée entre 1 et 3% en poids voire entre 1 et 2% en poids. Mais on peut cependant envisager d'utiliser l'indium qui présente un plus fort pouvoir de protection que l'étain. On pourra l'utiliser seul ou en plus de l'étain, à des teneurs comprises entre 0,01 et 0,5%, de préférence entre 0,02 et 0,1% et de façon plus particulièrement préférée entre 0,05 et 0,1% en poids.In view of their respective availability on the market, it is preferred to use tin in a percentage of between 0.1% and 5%, preferably between 0.5% and 4% by weight, more particularly preferably between 1 and 3%. % by weight or between 1 and 2% by weight. But we can however consider using indium which has a stronger protective power than tin. It may be used alone or in addition to tin, at contents of between 0.01 and 0.5%, preferably between 0.02 and 0.1% and more preferably between 0.05 and 0.1% by weight.
Les revêtements des tôles selon l'invention comprennent également de 5 à 50% en poids de zinc et éventuellement jusqu'à 10% de magnésium. Les présents inventeurs ont constaté que ces éléments permettent, en association avec les éléments de protection mentionnés ci-dessus, de diminuer le potentiel électrochimique du revêtement par rapport à l'acier, dans des milieux contenant ou ne contenant pas d'ions chlorures. Les revêtements selon l'invention présentent ainsi une protection cathodique sacrificielle.The coatings of the sheets according to the invention also comprise from 5 to 50% by weight of zinc and optionally up to 10% of magnesium. The present inventors have found that these elements make it possible, in combination with the protection elements mentioned above, to reduce the electrochemical potential of the coating with respect to the steel, in media containing or not containing chloride ions. The coatings according to the invention thus have sacrificial cathodic protection.
On préfère utiliser le zinc dont l'effet de protection est plus important que celui du magnésium et qui est plus simple à mettre en oeuvre car moins oxydable. Ainsi, on préfère utiliser de 10 à 40%, de 20 à 40% voire de 20 à 30% en poids de zinc, associé ou non à 1 à 10%, voire 3 à 6% en poids de magnésium.It is preferred to use zinc whose protective effect is greater than that of magnesium and which is simpler to implement because less oxidizable. Thus, it is preferred to use 10 to 40%, 20 to 40% or even 20 to 30% by weight of zinc, with or without 1 to 10%, or even 3 to 6% by weight of magnesium.
Les revêtements des tôles selon l'invention comprennent également de 0,1 à 15%, de préférence de 0,5 à 15% et de façon plus particulièrement préférée de 1 à 15%, voire de 8 à 12% en poids de silicium, élément permettant notamment de conférer aux tôles une grande résistance à l'oxydation à haute température. La présence de silicium permet ainsi leur utilisation jusqu'à 650°C sans risque d'écaillage du revêtement. Par ailleurs, le silicium permet de prévenir la formation d'une épaisse couche d'intermétallique fer-zinc lors d'un revêtement au trempé à chaud, couche d'intermétallique qui réduirait l'adhérence et la formabilité du revêtement. La présence d'une teneur en silicium supérieure à 8% en poids les rend ainsi plus particulièrement aptes à être durcies sous presse et en particulier à être mises en forme par emboutissage à chaud. On préfère utiliser à cette fin une quantité comprise entre 8 et 12% de silicium. Une teneur supérieure à 15% en poids n'est pas souhaitable car il se forme alors du silicium primaire qui pourrait dégrader les propriétés du revêtement, en particulier les propriétés de résistance à la corrosion.The coatings of the sheets according to the invention also comprise from 0.1 to 15%, preferably from 0.5 to 15% and more preferably from 1 to 15%, or even from 8 to 12% by weight of silicon, element which makes it possible in particular to give the sheets high resistance to oxidation at high temperature. The presence of silicon allows their use up to 650 ° C without risk of flaking coating. In addition, silicon can prevent the formation of a thick layer of iron-zinc intermetallic during a hot dip coating, intermetallic layer that reduces the adhesion and formability of the coating. The presence of a silicon content greater than 8% by weight makes them more particularly capable of being hardened in press and in particular to be shaped by hot stamping. It is preferred to use for this purpose a quantity of between 8 and 12% of silicon. A content greater than 15% by weight is undesirable since primary silicon is formed which could degrade the properties of the coating, in particular the properties of corrosion resistance.
Les revêtements des tôles selon l'invention peuvent également comprendre, en teneurs cumulées, jusqu'à 0,3% en poids, de préférence jusqu'à 0,1% en poids, voire moins de 0,05% en poids d'éléments additionnels tels que Sb, Pb, Ti, Ca, Mn, La, Ce, Cr, Ni, Zr ou Bi. Ces différents éléments peuvent permettre, entre autres, d'améliorer la résistance à la corrosion du revêtement ou bien sa fragilité ou son adhésion, par exemple. L'homme du métier qui connaît leurs effets sur les caractéristiques du revêtement saura les employer en fonction du but complémentaire recherché, dans la proportion adaptée à cet effet qui sera généralement comprise entre 20 ppm et 50 ppm. On a en outre vérifié que ces éléments n'interféraient pas avec les propriétés principales recherchées dans le cadre de l'invention.The coatings of the sheets according to the invention can also comprise, in aggregated contents, up to 0.3% by weight, preferably up to 0.1% by weight, or even less than 0.05% by weight of elements. additional such as Sb, Pb, Ti, Ca, Mn, La, Ce, Cr, Ni, Zr or Bi. These various elements may allow, among other things, to improve the corrosion resistance of the coating or its fragility or adhesion, for example. Those skilled in the art who know their effects on the characteristics of the coating will be able to use them according to the complementary aim sought, in the proportion adapted for this purpose which will generally be between 20 ppm and 50 ppm. It was further verified that these elements did not interfere with the main properties sought in the context of the invention.
Les revêtements des tôles selon l'invention comprennent aussi des éléments résiduels et impuretés inévitables provenant, notamment, de la pollution des bains de galvanisation au trempé à chaud par passage des bandes d'acier ou des impuretés provenant des lingots d'alimentation des mêmes bains ou des lingots d'alimentation des procédés de dépôt sous vide. On pourra notamment citer, comme élément résiduel, le fer qui est présent en des quantités allant de 2 à 5% en poids et en général de 2 à 4% en poids dans les bains de revêtement au trempé à chaud.The coatings of the sheets according to the invention also comprise unavoidable residual elements and impurities resulting, in particular, from the pollution of hot-dip galvanizing baths by the passage of steel strips or impurities originating from ingots feeding the same baths. or ingots of vacuum deposition processes. In particular, the residual element may be iron which is present in amounts ranging from 2 to 5% by weight and in general from 2 to 4% by weight in the hot dip coating baths.
Les revêtements des tôles selon l'invention comprennent fiinalement de l'aluminium dont la teneur peut aller d'environ 20% à près de 90% en poids. Cet élément permet d'assurer une protection contre la corrosion des tôles par effet barrière. Il augmente la température de fusion et la température d'évaporation du revêtement, permettant ainsi de pouvoir le mettre en oeuvre plus facilement, en particulier par emboutissage à chaud et ce dans une gamme étendue de temps et de température. Ceci peut être particulièrement intéressant lorsque la composition de l'acier de la tôle et/ou la microstructure finale visée pour la pièce imposent de passer par une austénitisation à haute température et/ou pendant des temps longs.The coatings of the sheets according to the invention comprise fi nally aluminum whose content may range from about 20% to about 90% by weight. This element makes it possible to provide protection against corrosion of the plates by a barrier effect. It increases the melting temperature and the evaporation temperature of the coating, thus making it possible to implement it more easily, in particular by hot stamping and in a wide range of time and temperature. This may be particularly interesting when the composition of the steel of the sheet and / or the final microstructure referred to for the part require to pass through austenitization at high temperature and / or for long periods.
On comprendra donc qu'en fonction des propriétés requises pour les pièces selon l'invention, le revêtement pourra être majoritairement composé de zinc ou d'aluminium.It will therefore be understood that depending on the properties required for the parts according to the invention, the coating may be predominantly composed of zinc or aluminum.
L'épaisseur du revêtement sera de préférence comprise entre 10 et 50 µm. En effet, en dessous de 10 µm, la protection contre la corrosion de la bande risquerait d'être insuffisante. Au-delà de 50 µm, la protection contre la corrosion dépasse le niveau requis, en particulier dans le domaine de l'automobile. En outre, si un revêtement d'une telle épaisseur est soumis à une élévation de température importante et/ou pendant des durées longues, il risque de fondre en partie supérieure et de venir couler sur les rouleaux de four ou dans les outils d'emboutissage, ce qui les détériorerait.The thickness of the coating will preferably be between 10 and 50 μm. Indeed, below 10 microns, protection against corrosion of the band might be insufficient. Above 50 μm corrosion protection exceeds the required level, especially in the automotive field. In addition, if a coating of such thickness is subjected to a significant rise in temperature and / or for long periods, it may melt in the upper part and come to flow on the oven rolls or in the stamping tools , which would deteriorate them.
En ce qui concerne à présent l'acier employé pour la tôle selon l'invention, la nature de celui-ci n'est pas critique tant que le revêtement peut y adhérer de façon suffisante.With regard to now the steel used for the sheet according to the invention, the nature of it is not critical as long as the coating can adhere sufficiently.
Cependant, pour certaines applications nécessitant des résistances mécaniques élevées, comme pour les pièces de structure pour automobile, on préfère que l'acier présente une composition permettant à la pièce d'atteindre une résistance en traction de 500 à 1600 MPa, en fonction des conditions d'usage.However, for certain applications requiring high mechanical strengths, such as for automotive structural parts, it is preferred that the steel has a composition that allows the part to reach a tensile strength of 500 to 1600 MPa, depending on the conditions. of use.
Dans cette gamme de résistances, on préfèrera en particulier utiliser une composition d'acier comprenant, en % en poids : 0,15%<C<0,5%, 0,5%<Mn<3%, 0,1%<Si<0.5%, Cr<1%. Ni<0,1%, Cu<0,1%, Ti<0,2%, Al<0,1%, P<0,1%, S<0,05%, 0,0005%<B<0,08%, le solde étant du fer et des impuretés inévitables issues de l'élaboration de l'acier. Un exemple d'un acier disponible dans le commerce est le 22MnB5.In this range of resistances, it will be preferred in particular to use a steel composition comprising, in% by weight: 0.15% <C <0.5%, 0.5% <Mn <3%, 0.1% < If <0.5%, Cr <1%. Ni <0.1%, Cu <0.1%, Ti <0.2%, Al <0.1%, P <0.1%, S <0.05%, 0.0005% <B <0 , 08%, the balance being iron and unavoidable impurities from the development of steel. An example of a commercially available steel is 22MnB5.
Lorsque le niveau de résistance recherché est de l'ordre de 500 MPa, on préfère utiliser une composition d'acier comprenant : 0,040% ≤ C ≤ 0,100%, 0,80% ≤ Mn ≤ 2,00%, Si ≤ 0,30%, S ≤ 0,005%, P ≤ 0,030%, 0,010% ≤ Al ≤ 0,070%, 0,015% ≤ Nb ≤ 0,100%, 0,030% ≤ Ti ≤ 0,080%, N ≤ 0,009%, Cu ≤ 0,100%, Ni ≤ 0,100%, Cr ≤ 0,100%, Mo ≤ 0,100%, Ca ≤ 0,006%, le solde étant du fer et des impuretés inévitables issues de l'élaboration de l'acier.When the desired level of resistance is of the order of 500 MPa, it is preferred to use a steel composition comprising: 0.040% ≤ C ≤ 0.100%, 0.80% ≤ Mn ≤ 2.00%, Si ≤ 0.30 %, S ≤ 0.005%, P ≤ 0.030%, 0.010% ≤ Al ≤ 0.070%, 0.015% ≤ Nb ≤ 0.100%, 0.030% ≤ Ti ≤ 0.080%, N ≤ 0.009%, Cu ≤ 0.100%, Ni ≤ 0.100% , Cr ≤ 0.100%, Mo ≤ 0.100%, Ca ≤ 0.006%, the remainder being iron and unavoidable impurities resulting from the production of steel.
Les tôles d'acier peuvent être fabriquées par laminage à chaud et peuvent éventuellement être re-laminées à froid, en fonction de l'épaisseur finale visée, qui peut varier, par exemple, entre 0,7 et 3 mm.The steel sheets can be made by hot rolling and can optionally be re-cold rolled, depending on the final thickness referred to, which can vary, for example, between 0.7 and 3 mm.
Elles peuvent être revêtues par tout moyen adapté tel qu'un procédé d'électrodéposition ou par un procédé de dépôt sous vide ou sous pression proche de la pression atmosphérique, tel que le dépôt par sputtering magnétron, par plasma froid ou par évaporation sous vide, par exemple, mais on préfèrera les obtenir par un procédé de revêtement au trempé à chaud dans un bain métallique fondu. On observe en effet que la protection cathodique superficielle est plus importante pour les revêtements obtenus par trempé à chaud que pour les revêtements obtenus par d'autres procédés de revêtement.They may be coated by any suitable means such as an electroplating process or by a deposition process under vacuum or under pressure close to atmospheric pressure, such as deposition by magnetron sputtering, by cold plasma or by evaporation under vacuum, for example, but it will be preferred to obtain them by a hot dipping method in a molten metal bath. It is observed that the superficial cathodic protection is more important for coatings obtained by hot quenching than for coatings obtained by other coating processes.
Les tôles selon l'invention peuvent ensuite être mises en forme par tout procédé adapté à la structure et à la forme des pièces à fabriquer, tel que par exemple l'emboutissage à froid.The sheets according to the invention can then be shaped by any method adapted to the structure and shape of the parts to be manufactured, such as for example cold stamping.
Cependant, les tôles selon l'invention sont plus particulièrement adaptées à la fabrication de pièces durcies sous presse, notamment par emboutissage à chaud.However, the sheets according to the invention are more particularly suitable for the manufacture of hardened parts in press, in particular by hot stamping.
Ce procédé consiste à approvisionner une tôle d'acier selon l'invention préalablement revêtue, puis à découper la tôle pour obtenir un flan. Ce flan est ensuite chauffé dans un four sous une atmosphère non protectrice jusqu'à une température d'austénitisation Tm comprise entre 840 et 950°C, de préférence comprise entre 880 et 930°C, puis à maintenir le flan à cette température Tm pendant une durée tm comprise entre 1 et 8 minutes, de préférence comprise entre 4 et 6 minutes.This method consists of supplying a steel sheet according to the previously coated invention, then cutting the sheet to obtain a blank. This blank is then heated in an oven under a non-protective atmosphere to an austenitization temperature Tm of between 840 and 950 ° C, preferably between 880 and 930 ° C, and then to keep the blank at this temperature Tm for a duration tm between 1 and 8 minutes, preferably between 4 and 6 minutes.
La température Tm et le temps de maintien tm dépendent de la nature de l'acier mais aussi de l'épaisseur des tôles à emboutir qui doivent être entièrement dans le domaine austénitique avant leur mise en forme. Plus la température Tm est élevée, plus le temps de maintien tm sera court et vice-versa. En outre, la vitesse de montée en température influe également sur ces paramètres, une vitesse élevée (supérieure à 30°C/s par exemple) permettant de réduire également le temps de maintien tm.The temperature Tm and the holding time tm depend on the nature of the steel but also on the thickness of the sheets to be stamped, which must be entirely in the austenitic field before they are shaped. The higher the temperature Tm, the shorter the holding time tm and vice versa. In addition, the speed of rise in temperature also affects these parameters, a high speed (greater than 30 ° C / s for example) to also reduce the holding time tm.
Le flan est ensuite transféré vers un outil d'emboutissage à chaud puis embouti. La pièce obtenue est ensuite refroidie soit dans l'outil d'emboutissage lui-même, soit après transfert dans un outil de refroidissement spécifique.The blank is then transferred to a hot stamping tool and then stamped. The resulting part is then cooled either in the stamping tool itself or after transfer to a specific cooling tool.
La vitesse de refroidissement est dans tous les cas contrôlée en fonction de la composition de l'acier, afin que sa microstructure finale à l'issue de l'emboutissage à chaud comprenne au moins un constituant choisi parmi la martensite et la bainite, afin d'atteindre le niveau de résistance mécanique recherché.The cooling rate is in all cases controlled according to the composition of the steel, so that its final microstructure after the hot stamping comprises at least one component selected from martensite and bainite, in order to achieve the desired level of mechanical strength.
Un point essentiel pour garantir que la pièce revêtue et emboutie à chaud présentera bien une protection cathodique sacrificielle est de régler la température Tm, le temps tm, l'épaisseur du revêtement préalable et ses teneurs en élément(s) de protection, en zinc et éventuellement en magnésium de telle sorte que la teneur moyenne finale en fer dans la partie supérieure du revêtement de la pièce soit inférieure à 75% en poids, de préférence inférieure à 50% en poids voire inférieure à 30% en poids. Cette partie supérieure présente une épaisseur au moins égale à 5 µm.An essential point to ensure that the hot-stamped and hot-stamped part will indeed have a sacrificial cathodic protection is to regulate the temperature Tm, the time tm, the thickness of the preliminary coating and its contents of element (s) of protection, zinc and optionally magnesium such that the final average iron content in the upper part of the coating of the part is less than 75% by weight, preferably less than 50% by weight or even less than 30% by weight. This upper part has a thickness of at least 5 microns.
En effet, sous l'effet du chauffage jusqu'à la température d'austénitisation Tm, du fer issu du substrat diffuse dans le revêtement préalable et augmente son potentiel électrochimique. Pour maintenir une protection cathodique satisfaisante, il est donc nécessaire de limiter la teneur moyenne en fer dans la partie supérieure du revêtement final de la pièce.Indeed, under the effect of heating up to the austenitization temperature Tm, iron from the substrate diffuses into the primer coating and increases its electrochemical potential. To maintain a satisfactory cathodic protection, it is therefore necessary to limit the average iron content in the upper part of the final coating of the room.
Pour cela, il est possible de limiter la température Tm et/ou le temps de maintien tm. Il est également possible d'augmenter l'épaisseur du revêtement préalable pour empêcher le front de diffusion du fer d'aller jusqu'en surface du revêtement. On préférera à cet égard utiliser une tôle présentant une épaisseur de revêtement préalable supérieure ou égale à 27 µm, de préférence supérieure ou égale à 30 µm voire à 35 µm.For this, it is possible to limit the temperature Tm and / or the holding time tm. It is also possible to increase the thickness of the pre-coating to prevent the diffusion front of the iron from reaching the surface of the coating. In this respect, it is preferable to use a sheet having a pre-coating thickness greater than or equal to 27 μm, preferably greater than or equal to 30 μm or even 35 μm.
Pour limiter la perte de pouvoir cathodique du revêtement final, on pourra également augmenter les teneurs en élément(s) de protection, en zinc et éventuellement en magnésium du revêtement préalable.To limit the loss of cathodic power of the final coating, it may also increase the contents of element (s) of protection, zinc and possibly magnesium coating prior.
L'homme du métier est en tout cas à même de jouer sur ces différents paramètres, en tenant également compte de la nature de l'acier, pour obtenir une pièce d'acier revêtu durcie sous presse, et en particulier, emboutie à chaud présentant les qualités requises par l'invention.The skilled person is in any case able to play on these different parameters, also taking into account the nature of the steel, to obtain a press-hardened coated steel part, and in particular, hot stamped with the qualities required by the invention.
Des essais de mise en oeuvre ont été réalisés pour illustrer certains modes de réalisation de l'invention.Implementation tests have been carried out to illustrate certain embodiments of the invention.
Des essais ont été réalisés avec des tôles de 22MnB5 laminé à froid d'épaisseur 1,5 mm, munies de revêtements au trempé à chaud comprenant en % en poids, 20% de zinc, 10% de silicium, 3% de fer, 0,1% d'indium, le reste étant constitué d'aluminium et d'impuretés inévitables, et dont les épaisseurs sont d'environ 15 µm.Tests were carried out with cold-rolled 22MnB5 sheets of thickness 1.5 mm, provided with hot-dip coatings comprising in% by weight, 20% of zinc, 10% of silicon, 3% of iron, 0 , 1% indium, the rest being made of aluminum and unavoidable impurities, and whose thicknesses are about 15 microns.
Ces tôles ont fait l'objet de mesures électrochimiques classiques en milieu NaCl 5%, en référence à une électrode au calomel saturé.These sheets were the subject of conventional electrochemical measurements in 5% NaCl medium, with reference to a saturated calomel electrode.
On observe que le potentiel électrochimique de la tôle revêtue est de -0,95 V/ECS. La tôle selon l'invention présente donc bien une protection cathodique sacrificielle. Dans les mêmes conditions de mesure, on a vérifié qu'une tôle identique mais munie d'un revêtement ne comprenant ni zinc ni indium présente un potentiel électrochimique de -0,70 V/ECS, ce qui n'apporte pas de protection cathodique à l'acier.It is observed that the electrochemical potential of the coated sheet is -0.95 V / ECS. The sheet according to the invention thus has a sacrificial cathodic protection. Under the same conditions of measurement, it has been verified that an identical plate but provided with a coating comprising neither zinc nor indium has an electrochemical potential of -0.70 V / SCE, which does not provide cathodic protection to steel.
Pour évaluer la protection résiduelle après emboutissage à chaud, des essais complémentaires ont consisté à chauffer des tôles selon l'invention, identiques à celles précédemment utilisées, à une température de 900°C pendant des durées variables. On observe que le potentiel électrochimique de la tôle traitée pendant 3 minutes est encore de -0,95 V/ECS, démontrant ainsi la préservation de la protection cathodique sacrificielle. Au-delà de ce temps de traitement, la teneur moyenne en fer de la partie supérieure du revêtement sur une épaisseur de 5 µm est supérieure à 75% en poids et le potentiel électrochimique retombe à -0,70 V/ECS.To evaluate the residual protection after hot stamping, additional tests consisted in heating the sheets according to the invention, identical to those previously used, at a temperature of 900 ° C. for varying periods of time. It is observed that the electrochemical potential of the treated sheet for 3 minutes is still -0.95 V / ECS, thus demonstrating the preservation of sacrificial cathodic protection. Beyond this treatment time, the average iron content of the upper part of the coating over a thickness of 5 microns is greater than 75% by weight and the electrochemical potential drops to -0.70 V / ECS.
En ce qui concerne la propagation de microfissures du revêtement vers la tôle, on observe la formation d'une couche épaisse d'intermétallique à l'interface acier-revêtement, couche d'intermétallique toujours présente à l'issue de l'austénitisation.As regards the propagation of microcracks from the coating to the sheet, the formation of a thick layer of intermetallic at the steel-coating interface, an intermetallic layer always present after the austenitization, is observed.
Des essais ont été réalisés avec des tôles de 22MnB5 laminé à froid d'épaisseur 1,5 mm, munies de revêtements au trempé à chaud comprenant en % en poids, 10% de silicium, 10% de zinc, 6% de magnésium, 3% de fer et 0,1% d'étain, le reste étant constitué d'aluminium et d'impuretés inévitables, et dont les épaisseurs sont en moyenne de 17 µm.Tests were carried out with cold-rolled sheets of 22MnB5 of thickness 1.5 mm, provided with hot-dip coatings comprising in% by weight, 10% of silicon, 10% of zinc, 6% of magnesium, % iron and 0.1% tin, the rest being made of aluminum and unavoidable impurities, and whose thicknesses are on average 17 microns.
Ces tôles ont fait l'objet de mesures électrochimiques classiques en milieu NaCl 5%, en référence à une électrode au calomel saturé.These sheets were the subject of conventional electrochemical measurements in 5% NaCl medium, with reference to a saturated calomel electrode.
On observe que le potentiel électrochimique de la tôle revêtue est de -0,95 V/ECS, tandis que le potentiel électrochimique d'une tôle identique munie d'un revêtement comprenant 10% de silicium, le reste étant constitué d'aluminium et d'impuretés inévitables, est de -0,70 V/ECS. La tôle selon l'invention présente donc bien une protection cathodique sacrificielle.It is observed that the electrochemical potential of the coated sheet is -0.95 V / SCE, while the electrochemical potential of an identical sheet provided with a coating comprising 10% silicon, the rest being made of aluminum and aluminum. unavoidable impurities, is -0.70 V / ECS. The sheet according to the invention thus has a sacrificial cathodic protection.
Pour évaluer la protection résiduelle après emboutissage à chaud, des essais complémentaires ont consisté à chauffer des tôles selon l'invention, identiques à celles précédemment utilisées, à une température de 900°C pendant des durées variables. On observe que le potentiel électrochimique de la tôle traitée pendant 2 minutes est encore de -0,95 V/ECS, démontrant ainsi la préservation de la protection cathodique sacrificielle. Au-delà de ce temps de traitement, la teneur moyenne en fer de la partie supérieure du revêtement sur une épaisseur de 5 µm est supérieure à 75% en poids et le potentiel électrochimique retombe à -0,70 V/ECS.To evaluate the residual protection after hot stamping, additional tests consisted in heating the sheets according to the invention, identical to those previously used, at a temperature of 900 ° C. for varying periods of time. It is observed that the electrochemical potential of the treated sheet for 2 minutes is still -0.95 V / SCE, thus demonstrating the preservation of sacrificial cathodic protection. Beyond this treatment time, the average iron content of the upper part of the coating over a thickness of 5 microns is greater than 75% by weight and the electrochemical potential drops to -0.70 V / ECS.
On vérifiera ensuite que l'emploi d'un revêtement d'épaisseur moyenne de 27 µm permet de pousser la durée d'austénitisation Tm à 5 minutes à 900°C avec conservation de cette protection cathodique.It will then be verified that the use of a 27 μm average thickness coating makes it possible to increase the austenitization time Tm to 5 minutes at 900 ° C. with preservation of this cathodic protection.
En ce qui concerne la propagation de microfissures du revêtement vers la tôle, on observe la formation d'une couche épaisse d'intermétallique à l'interface acier-revêtement, couche d'intermétallique toujours présente à l'issue de l'austénitisation.As regards the propagation of microcracks from the coating to the sheet, the formation of a thick layer of intermetallic at the steel-coating interface, an intermetallic layer always present after the austenitization, is observed.
Des essais complémentaires similaires ont été effectués avec des tôles de 22MnB5 laminé à froid d'épaisseur 1,5 mm, munies de revêtements au trempé à chaud dont les caractéristiques sont reprises dans le tableau ci-dessous et dont les épaisseurs sont d'environ 32 µm.
Les résultats de ces essais viendront confirmer que l'on atteint bien les propriétés recherchées par l'invention.The results of these tests will confirm that the properties desired by the invention are achieved.
Claims (13)
- Sheet steel provided with a sacrificial cathodic protection coating comprising 5 to 50% by weight of zinc, from 0.1 to 15% by weight of silicon and possibly up to 10% by weight of magnesium and up to 0.3% by weight, cumulative content, of additional elements, and further comprising a protective element to be selected from among tin and a percentage by weight of between 0.1 % and 5% indium and a percent by weight of between 0.01 and 0.5% and combinations thereof, the balance being composed of aluminium and residual elements, whereof 2 to 5% by weight is of iron or inevitable impurities.
- Sheet steel provided with a sacrificial cathodic protection according to claim 1, for which the protective element is tin in a percentage by weight of between 1% and 3%.
- Sheet steel provided with a sacrificial cathodic protection according to claim 1, for which the protective element is indium in a percentage by weight of between 0.02% and 0.1%
- Sheet steel provided with a sacrificial cathodic protection according to any one of claims 1 to 3, whereof the coating comprises 20 to 40% by weight of zinc, and possibly magnesium in a content of 1 to 10% by weight.
- Sheet steel provided with a sacrificial cathodic protection according to claim 4, whereof the coating comprises 20 to 30% by weight of zinc, and possibly magnesium in a content of 3 to 6% by weight.
- Sheet steel provided with a sacrificial cathodic protection according to any one of claims 1 to 5, whereof the coating comprises 8 to 12% by weight of silicon.
- Sheet steel provided with a sacrificial cathodic protection according to any one of claims 1 to 6, whereof the steel comprises, in percent by weight, 0.15%<C<0.5%, 0.5%<Mn<3%, 0.1%<silicon<0.5%, Cr<1%, Ni<0.1%, Cu<0.1%, Ti<0.2%, Al<0.1%, P<0.1%, S<0.05%, 0.0005%<B<0.08%, the balance being composed of iron and inevitable impurities due to the preparation of the steel.
- Sheet steel provided with a sacrificial cathodic protection according to any one of claims 1 to 7, whereof the coating has a thickness of between 10 and 50 µm.
- Sheet steel provided with a sacrificial cathodic protection according to any one of claims 1 to 8, whereof the coating is obtained by hot dipping.
- Method of manufacturing a part from steel provided with a sacrificial cathodic protection comprising the following steps, taken in this order and consisting of:- supplying sheet steel previously coated according to any one of claims 1 to 9, then of- cutting said sheet to obtain a blank, then of- heating said blank under a non-protective atmosphere up to an austenitisation temperature Tm of between 840 and 950°C, then of- maintaining said blank at said temperature Tm for a duration tm of between 1 and 8 minutes, then of- hot stamping said blank to obtain a coated steel part that is cooled at a rate such that the microstructure of said steel comprises at least one constituent chosen between martensite and bainite,- the temperature Tm, the time tm, the thickness of the prior coating and its protective element content of zinc and possibly magnesium are chosen such that the final average content of iron in the upper part of the coating of said part is less than 75% by weight.
- Method according to claim 10, for which the thickness of the prior coating is equal to or greater than to 27 µm, the tin content whereof is equal to or greater than 1% by weight and the zinc content whereof is equal to or greater than 20% by weight.
- Steel part provided with a sacrificial cathodic protection that can be obtained by the method according to claims 10 or 11.
- Steel part provided with a sacrificial cathodic protection that can be obtained by cold stamping a sheet according to any one of claims 1 to 9.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PT127227502T PT2839049T (en) | 2012-04-17 | 2012-04-17 | Steel sheet comprising a sacrificial cathodic protection coating and process for manufacturing an article starting from said steel sheet |
SI201231186T SI2839049T1 (en) | 2012-04-17 | 2012-04-17 | Steel sheet comprising a sacrificial cathodic protection coating and process for manufacturing an article starting from said steel sheet |
PL12722750T PL2839049T3 (en) | 2012-04-17 | 2012-04-17 | Steel sheet comprising a sacrificial cathodic protection coating and process for manufacturing an article starting from said steel sheet |
HUE12722750A HUE037303T2 (en) | 2012-04-17 | 2012-04-17 | Steel sheet comprising a sacrificial cathodic protection coating and process for manufacturing an article starting from said steel sheet |
RS20171316A RS56715B1 (en) | 2012-04-17 | 2012-04-17 | Steel sheet comprising a sacrificial cathodic protection coating and process for manufacturing an article starting from said steel sheet |
HRP20171855TT HRP20171855T1 (en) | 2012-04-17 | 2017-11-28 | Steel sheet comprising a sacrificial cathodic protection coating and process for manufacturing an article starting from said steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2012/000149 WO2013156688A1 (en) | 2012-04-17 | 2012-04-17 | Steel sheet provided with a coating offering sacrificial cathodic protection, method for the production of a part using such a sheet, and resulting part |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2839049A1 EP2839049A1 (en) | 2015-02-25 |
EP2839049B1 true EP2839049B1 (en) | 2017-10-18 |
Family
ID=46147470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12722750.2A Active EP2839049B1 (en) | 2012-04-17 | 2012-04-17 | Steel sheet comprising a sacrificial cathodic protection coating and process for manufacturing an article starting from said steel sheet |
Country Status (22)
Country | Link |
---|---|
US (1) | US10253418B2 (en) |
EP (1) | EP2839049B1 (en) |
JP (1) | JP6348105B2 (en) |
KR (3) | KR101886611B1 (en) |
CN (1) | CN104302802B (en) |
AU (1) | AU2012377741B2 (en) |
BR (1) | BR112014025697B1 (en) |
CA (1) | CA2870532C (en) |
DK (1) | DK2839049T3 (en) |
EA (1) | EA030016B1 (en) |
ES (1) | ES2652028T3 (en) |
HR (1) | HRP20171855T1 (en) |
HU (1) | HUE037303T2 (en) |
MX (1) | MX358552B (en) |
NO (1) | NO2839049T3 (en) |
PL (1) | PL2839049T3 (en) |
PT (1) | PT2839049T (en) |
RS (1) | RS56715B1 (en) |
SI (1) | SI2839049T1 (en) |
UA (1) | UA112688C2 (en) |
WO (1) | WO2013156688A1 (en) |
ZA (1) | ZA201407327B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11162153B2 (en) | 2015-07-30 | 2021-11-02 | Arcelormittal | Method for the manufacture of a hardened part which does not have LME issues |
US11414737B2 (en) | 2015-07-30 | 2022-08-16 | Arcelormittal | Method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminum |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6065042B2 (en) * | 2014-04-23 | 2017-01-25 | Jfeスチール株式会社 | Molten Al-Zn-based plated steel sheet and method for producing the same |
JP6112131B2 (en) * | 2014-04-23 | 2017-04-12 | Jfeスチール株式会社 | Molten Al-Zn-based plated steel sheet and method for producing the same |
WO2015181581A1 (en) * | 2014-05-28 | 2015-12-03 | ArcelorMittal Investigación y Desarrollo, S.L. | Steel sheet provided with a sacrificial cathodically protected coating comprising lanthane |
JP6337711B2 (en) * | 2014-09-18 | 2018-06-06 | Jfeスチール株式会社 | Fused Al-based plated steel sheet |
JP2016060946A (en) * | 2014-09-18 | 2016-04-25 | Jfeスチール株式会社 | MOLTEN Al-BASED PLATED SHEET STEEL |
WO2017017483A1 (en) * | 2015-07-30 | 2017-02-02 | Arcelormittal | Steel sheet coated with a metallic coating based on aluminum |
WO2017060745A1 (en) * | 2015-10-05 | 2017-04-13 | Arcelormittal | Steel sheet coated with a metallic coating based on aluminium and comprising titanium |
WO2017187215A1 (en) * | 2016-04-29 | 2017-11-02 | Arcelormittal | Carbon steel sheet coated with a barrier coating |
EP3497258B1 (en) * | 2016-08-08 | 2024-02-21 | Colorado School of Mines | Modified hot-dip galvanize coatings with low liquidus temperature, methods of making and using the same |
KR102031466B1 (en) | 2017-12-26 | 2019-10-11 | 주식회사 포스코 | Zinc alloy coated steel having excellent surface property and corrosion resistance, and method for manufacturing the same |
US11939651B2 (en) | 2018-05-31 | 2024-03-26 | Posco Co., Ltd | Al—Fe-alloy plated steel sheet for hot forming, having excellent TWB welding characteristics, hot forming member, and manufacturing methods therefor |
DE102019130381A1 (en) * | 2019-11-11 | 2021-05-12 | Benteler Automobiltechnik Gmbh | Motor vehicle component with increased strength |
CN116265609A (en) * | 2021-12-16 | 2023-06-20 | 中国石油天然气股份有限公司 | Zinc alloy sacrificial anode material and preparation method, application and method for preparing anticorrosive coating thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1225246A (en) * | 1917-05-08 | Hess Ives Corp | Color photography. | |
JPS6152337A (en) * | 1984-08-20 | 1986-03-15 | Nippon Mining Co Ltd | Zinc alloy for hot dip galvanizing |
JP4136286B2 (en) * | 1999-08-09 | 2008-08-20 | 新日本製鐵株式会社 | Zn-Al-Mg-Si alloy plated steel with excellent corrosion resistance and method for producing the same |
JP4537599B2 (en) | 2000-03-10 | 2010-09-01 | 新日本製鐵株式会社 | High corrosion resistance Al-based plated steel sheet with excellent appearance |
KR20040006479A (en) * | 2002-07-12 | 2004-01-24 | 주식회사 하이닉스반도체 | Method for etching metal line |
JP2006016674A (en) * | 2004-07-02 | 2006-01-19 | Nippon Steel Corp | Al-BASED PLATED STEEL SHEET FOR AUTOMOBILE EXHAUST SYSTEM AND Al-BASED STEEL TUBE OBTAINED BY USING THE SAME |
KR100667174B1 (en) | 2005-09-02 | 2007-01-12 | 주식회사 한국번디 | Apparatus for manufacturing steel tube and method for manufacturing the same |
PL2086755T3 (en) | 2006-10-30 | 2018-05-30 | Arcelormittal | Coated steel strips, methods of making the same, methods of using the same, stamping blanks prepared from the same, stamped products prepared from the same, and articles of manufacture which contain such a stamped product |
KR101010971B1 (en) * | 2008-03-24 | 2011-01-26 | 주식회사 포스코 | Steel sheet for forming having low temperature heat treatment property, method for manufacturing the same, method for manufacturing parts using the same and parts manufactured by the method |
JP5600868B2 (en) * | 2008-09-17 | 2014-10-08 | Jfeスチール株式会社 | Method for producing molten Al-Zn plated steel sheet |
DE102010017354A1 (en) * | 2010-06-14 | 2011-12-15 | Thyssenkrupp Steel Europe Ag | Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product |
-
2012
- 2012-04-17 CA CA2870532A patent/CA2870532C/en active Active
- 2012-04-17 KR KR1020187003561A patent/KR101886611B1/en active IP Right Grant
- 2012-04-17 KR KR1020147032019A patent/KR101667131B1/en active IP Right Grant
- 2012-04-17 NO NO12722750A patent/NO2839049T3/no unknown
- 2012-04-17 DK DK12722750.2T patent/DK2839049T3/en active
- 2012-04-17 AU AU2012377741A patent/AU2012377741B2/en active Active
- 2012-04-17 KR KR1020167026204A patent/KR20160114735A/en active Application Filing
- 2012-04-17 WO PCT/FR2012/000149 patent/WO2013156688A1/en active Application Filing
- 2012-04-17 JP JP2015506274A patent/JP6348105B2/en active Active
- 2012-04-17 RS RS20171316A patent/RS56715B1/en unknown
- 2012-04-17 SI SI201231186T patent/SI2839049T1/en unknown
- 2012-04-17 UA UAA201412154A patent/UA112688C2/en unknown
- 2012-04-17 PT PT127227502T patent/PT2839049T/en unknown
- 2012-04-17 US US14/394,885 patent/US10253418B2/en active Active
- 2012-04-17 EP EP12722750.2A patent/EP2839049B1/en active Active
- 2012-04-17 MX MX2014012626A patent/MX358552B/en active IP Right Grant
- 2012-04-17 HU HUE12722750A patent/HUE037303T2/en unknown
- 2012-04-17 ES ES12722750.2T patent/ES2652028T3/en active Active
- 2012-04-17 BR BR112014025697-7A patent/BR112014025697B1/en active IP Right Grant
- 2012-04-17 PL PL12722750T patent/PL2839049T3/en unknown
- 2012-04-17 EA EA201401136A patent/EA030016B1/en not_active IP Right Cessation
- 2012-04-17 CN CN201280073231.4A patent/CN104302802B/en active Active
-
2014
- 2014-10-09 ZA ZA2014/07327A patent/ZA201407327B/en unknown
-
2017
- 2017-11-28 HR HRP20171855TT patent/HRP20171855T1/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11162153B2 (en) | 2015-07-30 | 2021-11-02 | Arcelormittal | Method for the manufacture of a hardened part which does not have LME issues |
US11414737B2 (en) | 2015-07-30 | 2022-08-16 | Arcelormittal | Method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminum |
US12104255B2 (en) | 2015-07-30 | 2024-10-01 | Arcelormittal | Phosphatable part starting from a steel sheet coated with a metallic coating based on aluminum |
Also Published As
Publication number | Publication date |
---|---|
RS56715B1 (en) | 2018-03-30 |
KR101667131B1 (en) | 2016-10-17 |
UA112688C2 (en) | 2016-10-10 |
AU2012377741B2 (en) | 2016-03-17 |
ZA201407327B (en) | 2017-08-30 |
NO2839049T3 (en) | 2018-03-17 |
SI2839049T1 (en) | 2018-02-28 |
BR112014025697B1 (en) | 2020-10-20 |
ES2652028T3 (en) | 2018-01-31 |
MX358552B (en) | 2018-08-23 |
KR20150008114A (en) | 2015-01-21 |
PT2839049T (en) | 2018-01-08 |
US10253418B2 (en) | 2019-04-09 |
CN104302802B (en) | 2017-04-12 |
CN104302802A (en) | 2015-01-21 |
KR20160114735A (en) | 2016-10-05 |
WO2013156688A1 (en) | 2013-10-24 |
DK2839049T3 (en) | 2017-11-20 |
CA2870532A1 (en) | 2013-10-24 |
JP2015520797A (en) | 2015-07-23 |
AU2012377741A1 (en) | 2014-12-04 |
CA2870532C (en) | 2016-12-13 |
KR20180017229A (en) | 2018-02-20 |
EA201401136A1 (en) | 2015-03-31 |
HRP20171855T1 (en) | 2018-01-12 |
US20150284861A1 (en) | 2015-10-08 |
JP6348105B2 (en) | 2018-06-27 |
HUE037303T2 (en) | 2018-08-28 |
MX2014012626A (en) | 2015-05-11 |
EP2839049A1 (en) | 2015-02-25 |
EA030016B1 (en) | 2018-06-29 |
PL2839049T3 (en) | 2018-03-30 |
KR101886611B1 (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2839049B1 (en) | Steel sheet comprising a sacrificial cathodic protection coating and process for manufacturing an article starting from said steel sheet | |
EP3149217B1 (en) | Steel sheet provided with a sacrificial cathodically protected coating comprising lanthane | |
EP2224034B1 (en) | Method for manufacturing a body featuring very high mechanical properties, formed by drawing from a rolled steel sheet, in particular hot rolled and coated sheet | |
CA2627394C (en) | Method of producing a part with very high mechanical properties from a rolled coated sheet | |
EP3259380B1 (en) | Method of producing a phosphatable part from a sheet coated with an aluminium-based coating and a zinc coating | |
EP3783118A1 (en) | Method for manufacturing press-hardened parts | |
EP3102348B1 (en) | Method of producing parts with slight undulation from an electrogalvanized sheet, corresponding part and vehicle | |
EP2954086B1 (en) | Metal sheet with a znalmg coating having a particular microstructure, and corresponding production method | |
CN108138298B (en) | Steel sheet coated with a metallic coating based on aluminium and comprising titanium | |
EP1534869B1 (en) | Very high mechanical strength steel and method for making a sheet thereof coated with zinc or zinc alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141117 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CORLU, BERIL Inventor name: CHASSAGNE, JULIE Inventor name: ALLELY, CHRISTIAN |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARCELORMITTAL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170529 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 938035 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20171113 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20171855 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012038647 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 2839049 Country of ref document: PT Date of ref document: 20180108 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20171229 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20171855 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2652028 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180131 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E014946 Country of ref document: EE Effective date: 20180108 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20170403308 Country of ref document: GR Effective date: 20180420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180218 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012038647 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E037303 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
26N | No opposition filed |
Effective date: 20180719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20171855 Country of ref document: HR Payment date: 20190320 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20171855 Country of ref document: HR Payment date: 20200318 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20171855 Country of ref document: HR Payment date: 20210412 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 938035 Country of ref document: AT Kind code of ref document: T Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20171855 Country of ref document: HR Payment date: 20220414 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20171855 Country of ref document: HR Payment date: 20230406 Year of fee payment: 12 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MK Payment date: 20230324 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20240322 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240320 Year of fee payment: 13 Ref country code: NL Payment date: 20240320 Year of fee payment: 13 Ref country code: IE Payment date: 20240322 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20171855 Country of ref document: HR Payment date: 20240403 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240320 Year of fee payment: 13 Ref country code: EE Payment date: 20240321 Year of fee payment: 13 Ref country code: CZ Payment date: 20240326 Year of fee payment: 13 Ref country code: BG Payment date: 20240326 Year of fee payment: 13 Ref country code: PT Payment date: 20240322 Year of fee payment: 13 Ref country code: GB Payment date: 20240320 Year of fee payment: 13 Ref country code: SK Payment date: 20240326 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240322 Year of fee payment: 13 Ref country code: SE Payment date: 20240320 Year of fee payment: 13 Ref country code: PL Payment date: 20240320 Year of fee payment: 13 Ref country code: NO Payment date: 20240322 Year of fee payment: 13 Ref country code: IT Payment date: 20240320 Year of fee payment: 13 Ref country code: FR Payment date: 20240320 Year of fee payment: 13 Ref country code: DK Payment date: 20240320 Year of fee payment: 13 Ref country code: BE Payment date: 20240320 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HR Payment date: 20240403 Year of fee payment: 13 Ref country code: RS Payment date: 20240408 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240502 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240322 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240401 Year of fee payment: 13 Ref country code: SI Payment date: 20240328 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240327 Year of fee payment: 13 |