EP2802677A1 - Keramisches wärmedämmschichtsystem mit äusserer aluminiumreicher schicht und verfahren - Google Patents
Keramisches wärmedämmschichtsystem mit äusserer aluminiumreicher schicht und verfahrenInfo
- Publication number
- EP2802677A1 EP2802677A1 EP12808773.1A EP12808773A EP2802677A1 EP 2802677 A1 EP2802677 A1 EP 2802677A1 EP 12808773 A EP12808773 A EP 12808773A EP 2802677 A1 EP2802677 A1 EP 2802677A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- aluminum
- layer system
- ceramic
- thermally insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/16—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/005—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/04—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/073—Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/105—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2603/00—Vanes, blades, propellers, rotors with blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/231—Preventing heat transfer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/12—Light metals
- F05D2300/121—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/21—Oxide ceramics
- F05D2300/2112—Aluminium oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/21—Oxide ceramics
- F05D2300/2118—Zirconium oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to a layer system with ceramic
- thermal barrier coatings In gas turbine inspections, attacks on thermal barrier coatings are observed, especially in oil-fired turbines. Further investigations show that CMAS attacks were the trigger of layer damage, as has already been observed in aircraft turbines.
- a compound of calcium, magnesium, aluminum and silicon or iron leads to low-melting eutectics on thermal barrier coatings in the temperature range around 1200 ° C - 1250 ° C or higher. These compounds dissolve the yttria required for stabilization from the thermal barrier coating. This leads to strong monoclinic phase transitions with temperature changes in the ceramic, which lead to the destruction of the thermal barrier coating.
- the chemically very aggressi ⁇ ve CMAS compound reacts with the aluminum excess of anorthite. This is a high-fusing connection that eliminates or at least reduces CMAS attack.
- a particular advantage of this coating ⁇ which is the ability of the repeated application even after installation of the component.
- the building up anorthite layer protects to ⁇ additionally from the attack of CMAS connection.
- the application of the aluminum-containing protective layer on the rotor and guide vane of a gas turbine can also take place in the installed state, wherein in particular a housing half of the gas turbine is open.
- the coating is inexpensive (aluminum particles in egg ⁇ ner binder matrix) and easy to apply.
- the additional protective layer system also enables the operator of a gas turbine to operate a cost-effective partially stabilized zirconium oxide system under CMAS attack.
- FIG. 1 shows a layer system according to the invention
- FIG. 2 shows a turbine blade
- Figure 3 is a list of superalloys.
- FIG. 1 shows a layer system 1 according to the invention.
- the layer system 1 has a substrate 4.
- the substrate 4 comprises, in particular consists of a nickel- or ko ⁇ baltbas fortunate superalloy, in particular according to FIG. 3
- the layer system 1 furthermore has a ceramic layer 10.
- the ceramic layer 10 may comprise zirconium oxide, partially stabilized zirconium oxide or two-layered ceramic systems of zirconium oxide and / or pyrochlore phase such as gadolinium hafnate or zirconate.
- a metallic adhesion promoter layer and / or an aluminum oxide layer may be present. These may be aluminide layers or NiCoCrAlY layers that form the TGOs.
- Ceramic thermal barrier coating systems as they are known in high-temperature components, especially in turbine blades or components of gas turbines, may be the starting point.
- the layer of aluminum or Alumini ⁇ ump Preferably, the layer of aluminum or Alumini ⁇ ump
- the particle size is preferably from 0.1 ⁇ to 50 ⁇ .
- Aluminum always has an oxide layer.
- the proportion of aluminum (AI) represents the largest share.
- Layers 13 with compounds which have aluminum in the superstoichiometric ratio or have aluminum in excess can also be used, but preferably no aluminides (NiAl,%) Or MCrAlYs.
- Possible methods for applying the layer 13 of an emulsion of the Al particles and binders are spraying (application by brush, application with a roller or immersion of the components in the emulsion.
- FIG. 2 shows a perspective view of a rotor 120 or guide vane 130 of a turbomachine that extends along a longitudinal axis 121.
- the turbomachine may be a gas turbine of an aircraft or a power plant for electricity generation, a steam turbine or a compressor.
- the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
- the vane 130 As a guide vane 130, the vane 130 having at its blade tip 415 have a further platform (not Darge ⁇ asserted).
- a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
- the blade root 183 is, for example, as a hammerhead out staltet ⁇ . Other designs as fir tree or Schissebwschwanzfuß are possible.
- the blade 120, 130 has for a medium which flows past the scene ⁇ felblatt 406 on a leading edge 409 and a trailing edge 412th
- massive metallic materials in particular superalloys, are used.
- superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
- the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
- Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
- These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
- dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole workpiece be ⁇ is made of a single crystal.
- a columnar grain structure columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified
- a monocrystalline structure ie the whole workpiece be ⁇ is made of a single crystal.
- Structures are also called directionally solidified structures. Such methods are known from US Pat. No. 6,024,792 and EP 0 892 090 A1.
- the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX; M is at least one element of the group consisting of iron (Fe), cobalt (Co), Ni ⁇ ckel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element the rare earth, or hafnium (Hf)).
- M is at least one element of the group consisting of iron (Fe), cobalt (Co), Ni ⁇ ckel (Ni)
- X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element the rare earth, or hafnium (Hf)).
- Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
- the density is preferably 95% of the theoretical log ⁇ te.
- the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
- nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
- a thermal barrier coating which is preferably the outermost layer, and consists for example of Zr0 2 , Y2Ü3-Zr02, ie it is not, partially ⁇ or fully stabilized by yttria
- the thermal barrier coating covers the entire MCrAlX layer.
- Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
- the heat insulation layer may have ⁇ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
- the Thermal insulation layer is therefore preferably more porous than the
- Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
- the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Ceramic Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Durch die Aufbringung von Partikeln aus Aluminium auf eine äußerste Schicht wird die keramische Schicht (10) vor den sogenannten CMAS-Angriffen besser geschützt.
Description
Keramisches Wärmedämmschichtsystem mit äußerer aluminiumreicher Schicht und Verfahren
Die Erfindung betrifft ein Schichtsystem mit keramischer
Schicht, auf der eine aluminiumreiche äußere Schicht aufge¬ bracht ist und ein Verfahren.
Bei Inspektionen von Gasturbinen werden insbesondere bei mit in Öl befeuerten Turbinen Angriffe auf Wärmedämmschichten beobachtet. Nähere Untersuchungen zeigen, dass - wie auch schon in Flugturbinen beobachtet wurde - CMAS-Angriffe der Auslöser der Schichtschädigungen waren. Eine Verbindung von Kalzium, Magnesium, Aluminium und Silizium bzw. Eisen führt zu nieder- schmelzenden Eutektika auf Wärmedämmschichten im Temperaturbereich um 1200°C - 1250°C oder höher. Diese Verbindungen lösen das zur Stabilisierung benötigte Yttriumoxid aus der Wärmedämmschicht. Dies führt zu stark monoklinen Phasenübergängen bei Temperaturwechsel in der Keramik, die zur Zerstö- rung der Wärmedämmschicht führen.
Bisher trat dieser Effekt in stationären Turbinen nur bedingt auf, da die Oberflächentemperaturen der eingesetzten Wärmedämmschicht die notwendigen Schmelztemperaturen von CMAS und Eisen nicht erreichten. Es war daher kein Schutz notwendig. Mit steigender Gastemperatur nimmt dieser Angriff im Umfang jedoch zu.
Es ist daher Aufgabe der Erfindung oben genanntes Problem zu lösen.
Die Aufgabe wird gelöst durch ein Schichtsystem gemäß An¬ spruch 1 und ein Verfahren gemäß Anspruch 6. In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden kön¬ nen, um weitere Vorteile zu erzielen.
Im Rahmen von Untersuchungen mit Kleinstpartikeln aus Aluminium konnte gezeigt werden, dass solche Partikel in Verbin¬ dung mit CMAS hochschmelzende Verbindungen bilden, wie zum Beispiel Anorthit. Diese Partikel in der Größenordnung von lOOnm bis 50ym lassen sich in eine Bindermatrix einbringen und mit einer Luftpistole leicht verspritzen. Diese Matrix wird auf eine Wärmedämmschichtoberfläche aufgebracht. Durch diese Kleinstpartikel hat man einerseits eine große aktive Fläche zur Verfügung, aber andererseits ist das System durch den lockeren Verbund sehr duktil. Die chemisch sehr aggressi¬ ve CMAS-Verbindung reagiert mit dem Aluminium-Überschuß zu Anorthit. Dies ist eine hochschmelzende Verbindung, die den CMAS-Angriff unterbindet oder zumindest reduziert. Ein beson¬ derer Vorteil dieser Beschichtung ist die Möglichkeit des wiederholten Aufbringens auch im eingebauten Zustand des Bauteils. Die sich aufbauende Anorthit-Schicht schützt zu¬ sätzlich vor dem Angriff der CMAS-Verbindung.
Die Aufbringung der aluminiumhaltigen Schutzschicht auf Lauf- und Leitschaufel einer Gasturbine kann auch im eingebauten Zustand erfolgen, wobei insbesondere eine Gehäusehälfte der Gasturbine geöffnet ist.
Die Beschichtung ist kostengünstig (Aluminiumpartikel in ei¬ ner Bindermatrix) und leicht aufzubringen.
Das zusätzliche Schutzschichtsystem ermöglich dem Betreiber einer Gasturbine auch ein kostengünstiges teilstabilisiertes Zirkonoxid-System unter CMAS-Angriff zu betreiben.
Es zeigen
Figur 1 ein erfindungsgemäßes Schichtsystem,
Figur 2 eine Turbinenschaufel,
Figur 3 eine Liste von Superlegierungen .
Die Beschreibung und die Figuren stellen nur Ausführungsbeispiele der Erfindung dar.
Figur 1 zeigt ein erfindungsgemäßes Schichtsystem 1.
Das Schichtsystem 1 weist ein Substrat 4 auf. Das Substrat 4 weist auf, insbesondere besteht aus einer nickel- oder ko¬ baltbasierten Superlegierung, insbesondere gemäß Figur 3.
Das Schichtsystem 1 weist weiterhin eine keramische Schicht 10 auf. Die keramische Schicht 10 kann Zirkonoxid, teilstabi lisiertes Zirkonoxid oder zweischichtige keramische Systeme aus Zirkonoxid und/oder Pyrochlorphase wie Gadoliniumhafnat oder -zirkonat aufweisen.
Zwischen der keramischen Schicht 10 und dem Substrat 4 kann eine metallische Haftvermittlerschicht und/oder eine Alumini umoxidschicht (TGO) vorhanden sein. Dies können Aluminid- schichten oder NiCoCrAlY-Schichten sein, die die TGO ausbilden .
Weitere keramische Wärmedämmschichtsysteme, wie sie bei Hoch temperaturbauteilen insbesondere bei Turbinenschaufeln oder Bauteilen von Gasturbinen bekannt sind, können die Ausgangsbasis sein.
Als äußerste Schicht 13 auf der keramischen Schicht 10, die einem Heißgas in einer Gasturbine ausgesetzt ist im Falle ei ner Turbinenschaufel, ist eine Schicht aus Aluminiumpartikel vorhanden .
Vorzugsweise besteht die Schicht aus Aluminium oder Alumini¬ umpartikel .
Die Partikelgröße liegt dabei vorzugsweise bei 0,1μιη bis 50μιη.
Aluminium weist immer eine Oxidschicht auf.
Insbesondere stellt der Anteil an Aluminium (AI) den größten Anteil dar.
Auch Schichten 13 mit Verbindungen, die Aluminium im überstö chiometrischen Verhältnis aufweisen oder Aluminium im Über- schuss aufweisen, können verwendet werden, aber vorzugsweise keine Aluminide (NiAl , .. ) oder MCrAlY's.
Mögliche Verfahren zum Aufbringen der Schicht 13 aus einer Emulsion aus den Al-Partikeln und Binder sind Sprühen (Auftragen mit Pinsel, Auftragen mit einer Rolle oder Eintauchen der Bauteile in die Emulsion.
Weitere Aluminiumbeschichtungsarten sind möglich, wie Plattieren von Aluminium.
Die Figur 2 zeigt in perspektivischer Ansicht eine Laufschau- fei 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.
Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampf- turbine oder ein Kompressor sein.
Die Schaufel 120, 130 weist entlang der Längsachse 121 auf¬ einander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufel¬ spitze 415 eine weitere Plattform aufweisen (nicht darge¬ stellt) . Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt) .
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausge¬ staltet. Andere Ausgestaltungen als Tannenbaum- oder Schwal- benschwanzfuß sind möglich.
Die Schaufel 120, 130 weist für ein Medium, das an dem Schau¬ felblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Ab¬ strömkante 412 auf. Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise mas¬ sive metallische Werkstoffe, insbesondere Superlegierungen verwendet .
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 AI, WO 99/67435 oder WO 00/44949 bekannt.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
Werkstücke mit einkristalliner Struktur oder Strukturen wer- den als Bauteile für Maschinen eingesetzt, die im Betrieb ho¬ hen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück be¬ steht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbil¬ den, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korn- grenzen aufweisen. Bei diesen zweitgenannten kristallinen
Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures) .
Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 AI bekannt.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Ni¬ ckel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf) ) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI.
Die Dichte liegt vorzugsweise bei 95% der theoretischen Dich¬ te .
Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer) .
Vorzugsweise weist die SchichtZusammensetzung Co-30Ni-28Cr- 8A1-0, 6Y-0, 7Si oder Co-28Ni-24Cr-10Al-0, 6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al- 0,6Y-3Re oder Ni-12Co-21Cr-llAl-0, 4Y-2Re oder Ni-25Co-17Cr- 10A1-0, 4Y-1, 5Re . Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus Zr02, Y2Ü3-Zr02, d.h. sie ist nicht, teil¬ weise oder vollständig stabilisiert durch Yttriumoxid
und/oder Kalziumoxid und/oder Magnesiumoxid.
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphäri- sches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärme¬ dämmschicht kann poröse, mikro- oder makrorissbehaftete Kör¬ ner zur besseren Thermoschockbeständigkeit aufweisen. Die
Wärmedämmschicht ist also vorzugsweise poröser als die
MCrAlX-Schicht .
Wiederaufarbeitung (Refurbishment ) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen) . Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidations- schichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wie- derbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeu¬ tet) auf.
Claims
1. Schichtsystem (1),
das zumindest aufweist:
ein Substrat ( 4 ) ,
eine keramische Schicht (10) und
eine äußerste Schicht (13),
die (13) aluminiumreich ausgebildet ist,
insbesondere direkt auf der keramischen Schicht (10) und optional eine metallische Haftvermittlerschicht zwi¬ schen Substrat (4) und keramischer Schicht (10) .
2. Schichtsystem (1) nach Anspruch 1,
bei dem die äußerste Schicht (13) Aluminiumpartikel auf¬ weist,
insbesondere mit einer Partikelgröße von lOOnm bis 50ym aufweist .
3. Schichtsystem nach einem oder beiden der Ansprüche 1 oder 2,
bei dem die keramische Schicht Zirkonoxid aufweist, insbesondere mit Yttriumoxid stabilisiert ist.
4. Schichtsystem nach einem oder mehreren der Ansprüche 1, 2 oder 3,
bei dem die äußerste Schicht aus Aluminium (AI) besteht.
5. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
das als Turbinenbauteil ausgebildet ist,
insbesondere als Turbinenschaufel (120, 130).
6. Verfahren zur Herstellung eines Schichtsystems (1) gemäß Anspruch 1, 2, 3, 4 oder 5,
bei dem Aluminiumpartikel mittels Binder direkt auf eine keramische Schicht (10) aufgetragen werden.
7. Verfahren nach Anspruch 6,
bei dem der Auftrag der aluminiumhaltigen Schicht (13) im eingebauten Zustand eines Bauteils,
das das Schichtsystem (1) darstellt,
erfolgt .
Verfahren einem oder beiden der Ansprüche 6 oder 7, das eine Partikelgröße für die Aluminiumpartikel von lOOnm bis 50ym aufweist.
Verfahren nach einem oder beiden der Ansprüche,
bei eine Emulsion aus Aluminium-Partikel und Binder durch Sprayen, Pinseln, Aufrollieren oder Eintauchen aufgetragen wird .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12808773.1A EP2802677A1 (de) | 2012-02-22 | 2012-12-13 | Keramisches wärmedämmschichtsystem mit äusserer aluminiumreicher schicht und verfahren |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12156510.5A EP2631321A1 (de) | 2012-02-22 | 2012-02-22 | Keramisches Wärmedämmschichtsystem mit äußerer aluminiumreicher Schicht und Verfahren |
EP12808773.1A EP2802677A1 (de) | 2012-02-22 | 2012-12-13 | Keramisches wärmedämmschichtsystem mit äusserer aluminiumreicher schicht und verfahren |
PCT/EP2012/075343 WO2013124016A1 (de) | 2012-02-22 | 2012-12-13 | Keramisches wärmedämmschichtsystem mit äusserer aluminiumreicher schicht und verfahren |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2802677A1 true EP2802677A1 (de) | 2014-11-19 |
Family
ID=47469952
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12156510.5A Ceased EP2631321A1 (de) | 2012-02-22 | 2012-02-22 | Keramisches Wärmedämmschichtsystem mit äußerer aluminiumreicher Schicht und Verfahren |
EP12808773.1A Withdrawn EP2802677A1 (de) | 2012-02-22 | 2012-12-13 | Keramisches wärmedämmschichtsystem mit äusserer aluminiumreicher schicht und verfahren |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12156510.5A Ceased EP2631321A1 (de) | 2012-02-22 | 2012-02-22 | Keramisches Wärmedämmschichtsystem mit äußerer aluminiumreicher Schicht und Verfahren |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150086796A1 (de) |
EP (2) | EP2631321A1 (de) |
WO (1) | WO2013124016A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013213742A1 (de) | 2013-07-12 | 2015-01-15 | MTU Aero Engines AG | Cmas-inerte wärmedämmschicht und verfahren zu ihrer herstellung |
DE102015206332A1 (de) * | 2015-04-09 | 2016-10-13 | Siemens Aktiengesellschaft | Verfahren zur Herstellung einer Korrosionsschutzschicht für Wärmedämmschichten aus hohlen Aluminiumoxidkugeln und äußerster Glasschicht und Bauteil |
FR3038624B1 (fr) * | 2015-07-08 | 2019-10-25 | Safran Aircraft Engines | Revetement de protection formant une barriere thermique, substrat recouvert d'un tel revetement, et piece de turbine a gaz comprenant un tel substrat |
US9758895B2 (en) | 2015-09-03 | 2017-09-12 | King Fahd University Of Petroleum And Minerals | Alumina-coated co-deposit and an electrodeposition method for the manufacture thereof |
DE102015221751A1 (de) * | 2015-11-05 | 2017-05-11 | Siemens Aktiengesellschaft | Verfahren zur Herstellung einer Korrosionsschutzschicht für Wärmedämmschichten aus hohlen Aluminiumoxidkugeln und äußerster Glasschicht und Bauteil sowie Materialmischung |
DE102018220338A1 (de) * | 2018-11-27 | 2020-05-28 | MTU Aero Engines AG | Turbinenbauteil für eine Strömungsmaschine, Verfahren zum Herstellen, Warten und/oder Überholen eines Turbinenbauteils, Turbine einer Strömungsmaschine und Strömungsmaschine |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3926479A1 (de) | 1989-08-10 | 1991-02-14 | Siemens Ag | Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit |
JP2773050B2 (ja) | 1989-08-10 | 1998-07-09 | シーメンス アクチエンゲゼルシヤフト | 耐熱性耐食性の保護被覆層 |
WO1996012049A1 (de) | 1994-10-14 | 1996-04-25 | Siemens Aktiengesellschaft | Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung |
EP0861927A1 (de) | 1997-02-24 | 1998-09-02 | Sulzer Innotec Ag | Verfahren zum Herstellen von einkristallinen Strukturen |
EP0892090B1 (de) | 1997-02-24 | 2008-04-23 | Sulzer Innotec Ag | Verfahren zum Herstellen von einkristallinen Strukturen |
WO1999067435A1 (en) | 1998-06-23 | 1999-12-29 | Siemens Aktiengesellschaft | Directionally solidified casting with improved transverse stress rupture strength |
US6231692B1 (en) | 1999-01-28 | 2001-05-15 | Howmet Research Corporation | Nickel base superalloy with improved machinability and method of making thereof |
DE50006694D1 (de) | 1999-07-29 | 2004-07-08 | Siemens Ag | Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils |
DE50104022D1 (de) | 2001-10-24 | 2004-11-11 | Siemens Ag | Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen |
EP1319729B1 (de) | 2001-12-13 | 2007-04-11 | Siemens Aktiengesellschaft | Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung |
US7976940B2 (en) * | 2002-04-10 | 2011-07-12 | Siemens Aktiengesellschaft | Component, method for coating a component, and powder |
US7368164B2 (en) * | 2004-06-18 | 2008-05-06 | General Electric Company | Smooth outer coating for combustor components and coating method therefor |
US20050282032A1 (en) * | 2004-06-18 | 2005-12-22 | General Electric Company | Smooth outer coating for combustor components and coating method therefor |
EP2143819A1 (de) * | 2008-07-11 | 2010-01-13 | Siemens Aktiengesellschaft | Beschichtungsverfahren und Korrosionsschutzbeschichtung für Turbinen-Komponenten |
EP2436798B1 (de) * | 2009-12-04 | 2014-09-17 | Siemens Aktiengesellschaft | Maskierungsmaterial, Maskierungsschicht und Verfahren zum Maskieren eines Substrats |
CN102896824A (zh) * | 2011-07-27 | 2013-01-30 | 鸿富锦精密工业(深圳)有限公司 | 镀膜件及其制备方法 |
-
2012
- 2012-02-22 EP EP12156510.5A patent/EP2631321A1/de not_active Ceased
- 2012-12-13 US US14/378,676 patent/US20150086796A1/en not_active Abandoned
- 2012-12-13 EP EP12808773.1A patent/EP2802677A1/de not_active Withdrawn
- 2012-12-13 WO PCT/EP2012/075343 patent/WO2013124016A1/de active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP2631321A1 (de) | 2013-08-28 |
US20150086796A1 (en) | 2015-03-26 |
WO2013124016A1 (de) | 2013-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015058866A1 (de) | Zweilagige keramische schicht mit unterschiedlichen mikrostrukturen | |
WO2013124016A1 (de) | Keramisches wärmedämmschichtsystem mit äusserer aluminiumreicher schicht und verfahren | |
WO2012062546A1 (de) | Poröses schichtsystem mit poröserer innenschicht | |
EP2907888A1 (de) | Verdichterschaufel mit erosionsbeständiger Hartstoffbeschichtung | |
WO2009138299A1 (de) | Verfahren zur herstellung einer optimierten haftvermittlerschicht durch teilweise verdampfung der haftvermittlerschicht und ein schichtsystem | |
WO2013143631A1 (de) | Verfahren zur herstellung und wiederherstellung von keramischen wärmedämmschichten in gasturbinen sowie dazugehörige gasturbine | |
EP3060759A1 (de) | Wärmedämmbeschichtung einer turbinenschaufel | |
EP2682488A1 (de) | Schichtsystem mit NiCoCrAlY-Doppelschutzschicht mit unterschiedlichem Chromgehalt und Legierung | |
WO2014053185A1 (de) | Verfahren zur aufbereitung einer gasturbinenschaufel sowie gasturbine mit derartiger schaufel | |
EP3500395A1 (de) | Dreistufiger prozess zur kühlluftbohrerzeugung mittels nanosekunden- und millisekundenlaser und bauteil | |
EP2604377B1 (de) | Verfahren zur Laserbearbeitung eines Schichtsystems mit keramischer Schicht | |
EP2725235A1 (de) | Unterschiedlich raue Schaufel und zugehörige Herstellungsverfahren | |
EP2878697A1 (de) | Verfahren zur Erzeugung einer Fase, Bauteil mit Fase und Vorrichtung | |
EP2742171A1 (de) | Keramische doppelschicht auf zirkonoxidbasis | |
EP2614173A1 (de) | Feinporöse keramikbeschichtung mittels spps | |
EP2584067A1 (de) | Bauteil mit Graphen und Verfahren zur Herstellung von Bauteilen mit Graphen | |
EP2365106A1 (de) | Keramische Wärmedämmschichtsystem mit modifizierter Anbindungsschicht | |
EP2128285A1 (de) | Zweilagige MCrAIX-Schicht mit unterschiedlichen Kobalt- und Nickelgehalten | |
WO2013068160A1 (de) | Verfahren zum auftragsschweissen eines bauteiles aus einkristallinem oder gerichtet erstarrtem metall | |
EP2733236A1 (de) | Zweilagiges keramisches Schichtsystem mit äußerer poröser Schicht und Vertiefungen darin | |
WO2015078615A1 (de) | Vorrichtung zur maskierung auf wolframlegierungsbasis und eine wolframlegierung | |
EP2639336A1 (de) | Schichtsystem mit NiCoCrAlY-Doppelschutzschicht mit unterschiedlichem Chromgehalt und Legierung | |
WO2015055362A1 (de) | Turbinenschaufel mit lamellenstruktur und verfahren zur herstellung | |
EP2589681A1 (de) | Kombination von kolumnaren und globularen Strukturen | |
EP2904129A1 (de) | Verfahren zur herstellung von gasturbinen und verfahren zum betreiben von gasturbinenanlagen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140805 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160914 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170125 |