EP2706613B1 - Multi-band antenna with variable electrical tilt - Google Patents

Multi-band antenna with variable electrical tilt Download PDF

Info

Publication number
EP2706613B1
EP2706613B1 EP12306096.4A EP12306096A EP2706613B1 EP 2706613 B1 EP2706613 B1 EP 2706613B1 EP 12306096 A EP12306096 A EP 12306096A EP 2706613 B1 EP2706613 B1 EP 2706613B1
Authority
EP
European Patent Office
Prior art keywords
group
signal
radiating elements
frequency band
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12306096.4A
Other languages
German (de)
French (fr)
Other versions
EP2706613A1 (en
Inventor
Jean-Pierre Harel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Priority to EP12306096.4A priority Critical patent/EP2706613B1/en
Priority to US14/427,085 priority patent/US10103432B2/en
Priority to CN201380055496.6A priority patent/CN104756318B/en
Priority to PCT/EP2013/068631 priority patent/WO2014040957A1/en
Priority to JP2015531528A priority patent/JP6012873B2/en
Publication of EP2706613A1 publication Critical patent/EP2706613A1/en
Application granted granted Critical
Publication of EP2706613B1 publication Critical patent/EP2706613B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the present invention relates to the field of telecommunications antennas transmitting radio waves in the microwave domain by means of radiating elements. These are antenna systems adapted for use in many telecommunications systems, and particularly for application in mobile radio cellular networks. In particular, it relates to a base station antenna, broadband and double polarization, whose electrical inclination is adjustable.
  • a coverage area is generally divided into a number of cells, each associated with a base station and a respective antenna.
  • Mobile radio cellular networks use array antennas ("Array Antenna" in English) which comprise an array of individual radiating elements such as dipoles.
  • Array Antenna in English
  • the term “antenna-panel” here means an alignment of radiating elements operating in a given frequency range and comprising its own power supply system.
  • the panel antennas generally have a frequency band and polarization access connector.
  • Changing the vertical angle of the antenna's main beam also known as "tilt" adjusts the coverage area of the antenna.
  • the angle of inclination of the antenna can be adjusted electrically by changing the time delay or the phase of the signal sent or received by each radiating element of the network forming the antenna, this is called electrical inclination adjustable or variable.
  • a single Variable Electrical Tilt (VET) control system controls the inclination in the vertical plane of the antenna for the entire frequency band available for each polarization. If the available frequency spectrum is to be divided into several narrow frequency bands, the introduction of diplexers becomes necessary. Nevertheless, if the diplexer is placed at the access of the VET electrical tilt control system, the electrical inclination of the antenna can not be adjusted independently for each narrow frequency band.
  • VET Variable Electrical Tilt
  • diplexer is understood to mean a passive device that performs multiplexing for mixing / separating the signals in different frequency bands according to the direction in which it is mounted. In this case the diplexer behaves like two filters operating in different frequency bands with one of their pooled access. Such a diplexer allows the radiating element to which it is connected to operate at the same time in the two frequency bands associated with the two power supply systems connected to the diplexer, whether in transmission or reception. There are several technologies for producing these diplexers whose weight, volume, performance and cost are variable.
  • reduced size type diplexers are chosen, such as diplexers using microstrip lines formed on high value dielectric constant substrates (eg ceramic) or using SAW surface acoustic wave techniques (for "Surface Acoustic Wave”).
  • the performance of these reduced-size diplexers is reduced compared to those of diplexers using, for example, air-cavity type resonators.
  • JP2000223924A describes a power system for a mobile base station with adjustable electrical inclination.
  • the decompensations between the signals of each subband are corrected by applying a different phase shift per channel.
  • D3: XP002689687 discloses the separation of a multiband signal into several subbands for beam forming networks. This allows the independent control of each subband.
  • D4: XP002689688 discloses an example of a four-port Butler matrix composed of two hybrid couplers at the input stage, two at the output stage and two at the intermediate stage.
  • the present invention aims to eliminate the drawbacks of the prior art, and in particular to provide a single and simple power supply system for powering the whole of a broadband antenna and to control individually the variable electrical inclination VET in the vertical plane of this antenna for each narrow frequency band.
  • the object of the present invention is a supply system for the control of the variable electrical inclination in the vertical plane of the radiating elements in a network of a multi-band antenna according to claim 1.
  • the module is connected to a pair of radiating elements via a power divider and at least one fixed delay line.
  • the output of the module is connected to the input of a power divider, one of the outputs of the power divider being connected to a first radiating element and the other output of the power divider being connected to a line fixed delay connected to a second radiating element.
  • the system comprises a number of modules which is smaller than the number N of butler matrix outputs.
  • the number of modules is equal to N-1.
  • the Butler matrix comprises N hybrid couplers, N being an even number, of which N / 2 hybrid couplers belonging to a first group and N / 2 hybrid couplers belonging to a second group.
  • the Butler matrix comprises N entries related to the N / 2 hybrid couplers of the first group, each hybrid coupler of the first group having two outputs and each output being respectively connected to a hybrid coupler different from a second group.
  • the Butler matrix comprises N + N / 2 hybrid couplers, N being an even number, of which N / 2 hybrid couplers belonging to a first group, N / 2 hybrid couplers belonging to a second group and N / 2 hybrid couplers belonging to a third group.
  • the Butler matrix comprises N inputs connected to N / 2 hybrid couplers of a first group, each hybrid coupler of the first group comprising two outputs, a first output being directly connected to a hybrid coupler of a second group and the second output being connected to a hybrid coupler of the second group via a hybrid coupler of the third group.
  • the invention relates to the art of coupling circuits for the phasing of the signals. More particularly, this invention relates to phase control phased phased array antennas.
  • Each radiating element of the phased array antenna processes a signal which is out of phase with the signals processed by the other radiating elements in the antenna.
  • the reason for this is that a combined radiation field developed by a phased array antenna at a remote point is the vector sum of the radiation fields produced by the individual radiating elements in the phased antenna.
  • This system has the advantage of allowing to share a broadband antenna between several users (that is to say an antenna having several inputs) and / or between several narrower frequency bands.
  • This system provides independent electrical tilt for each narrow frequency band with a single power grid.
  • the variable electrical inclination VET in the vertical plane of the radiation pattern of the antenna is controlled independently for each frequency band. Only one power system is needed, regardless of the number of frequency bands.
  • the antenna ports are not specific to a predetermined frequency band, i.e. a signal entering a given frequency band can be connected to any of the input connectors.
  • the number of accesses is independent of the number of frequency bands that can be controlled by variable electrical inclination VET.
  • the invention also relates to a method for controlling the variable electrical inclination in the vertical plane of the radiating elements in a network of a multiband antenna by means of a power supply system according to one of the preceding claims, characterized in that that the electrical inclination is adjusted independently for each frequency band by means of a module, connecting the Butler matrix to the radiating elements, which comprises a variable phase shifter on the signal path in each frequency band.
  • the figure 1 is an illustration of a Butler matrix.
  • Jesse Butler and Ralf Lowe proposed a disruptive topology of an antenna power system that allows the direct generation of multiple arrayed radiating antenna beams. Originally intended for radar surveillance and altimetry, this Feeding principle is nowadays widely used in many applications.
  • This antenna feed configuration mainly uses known hybrid couplers and delay lines.
  • a Butler matrix makes it possible to produce M beams using M (or M-1) input connectors. It is a reciprocal passive microwave device which is an arrangement of hybrid couplers with N inputs and N outputs, where N is in general a power of 2. More generally, a Butler matrix with 2 N inputs consists of N2 N-1 hybrid couplers and (N-1) 2 N-1 phase shifters, making a total of (2N-1) 2 N-1 components. The number of crosses imposed by the specific topology of the Butler matrices is 2 N-1 (2 N - N -1).
  • the Butler matrix 1 is intended to supply four antenna radiating elements 2A-2D , and comprises four 3A-3D inputs and four 4A-4B outputs . Each of the four outputs 4A-4B is connected to each radiating element 2A-2D respectively.
  • the Butler matrix also comprises four hybrid couplers -3dB 5A-5D, the hybrid couplers 5A and 5B of a first group being respectively connected to the hybrid couplers 5C and 5D of a second group by links 6A and 6B on the one hand and by 6C and 6D links on the other hand.
  • a first stage switch 7 is usually used before inputs 4A-4B to allow selection of the input to be powered.
  • the presence of the hybrid coupler 5A on the signal path divides the input signal into two signals, each having half the energy, with an output phase shifted by 90 ° for a signal relative to each other.
  • the hybrid coupler 5A thus produces on the one hand a 0 ° phase signal which is sent to the hybrid coupler 5C via the link 6A, and a 90 ° phase signal which is sent to the coupler hybrid 5D through the link 6B.
  • the hybrid coupler 5C introduces in turn an electrical delay which causes a phase shift of the 0 ° phase signal input by the link 6A.
  • the radiating element 2B receives at its input 4B a signal which is 90 ° out of phase with respect to the input signal and with respect to the signal received by the radiating element 2A at its input 4A.
  • the hybrid coupler 5B thus produces on the one hand a 0 ° phase signal which is sent to the hybrid coupler 5C by the link 6C, and a 90 ° phase signal which is sent to the 5D hybrid coupler via the 6D link .
  • the hybrid coupler 5D introduces in turn an electrical delay which causes an additional phase shift of 90 ° of the signal input by the link 6D.
  • the radiating element 2C receives at its input 4C a signal phase-shifted by 90 ° with respect to the input signal and the radiating element 2D receives at its input 4D a signal phase-shifted by 180 ° with respect to the input signal.
  • the combination of delays to apply is specific to each input 11A-11D.
  • the input 3B it would be necessary to add compensating electrical delays of 90 °, 0 °, 180 ° and 90 ° to the input of the radiating elements 2A, 2B, 2C and 2D respectively.
  • a Butler 4X4 matrix 10 having no delay lines similar to the Butler 4X4 matrix 1 of the figure 1 , includes four 11A-11D inputs connected to four 12A-12D hybrid couplers . At each radio frequency access 11A-11D is injected an input signal, which may be a single-band signal or a multiband signal comprising for example several frequency bands F1-F4.
  • the Butler 4X4 matrix 10 thus also comprises four 13A-13D outputs .
  • a module 14A-14D which respectively connects the outputs 13A-13D to the radiating elements 15A-15D.
  • An appropriate electrical delay and phase shift are introduced by the modules 14A-14D.
  • the antenna ports 11A-11D are not specific to a predetermined frequency band. Regardless of the input 11A-11D used, a signal may be directed to one of the radiating elements 15A-15D.
  • the multiband signal entering module 14A-14D is separated into narrow frequency bands F1, F2, F3 or F4 by means of a first stage 16 of diplexers 17.
  • DL 19 for "Delay Line”
  • the fixed delay line 19 associated with the band channel of FIG. frequency F1 connected to the radiating element 15 a will probably introduce a different delay value to that introduced by the delay line 19 associated with the fixed frequency band F1 channel connected to the radiating element 15B. This is because the signals in the frequency band F1 have not all previously followed the same path in the Butler matrix 10.
  • variable phase shifters 21 make it possible to vary the electrical inclination of the antenna independently for each of the frequency bands F1-F4.
  • the antenna would have a fixed inclination in the frequency band F1 for example, that is to say that the radiation pattern of the antenna in the frequency band F1 would be directed according to a given fixed angle with respect to the horizon. This fixed inclination results from the delay introduced by the fixed delay line 19.
  • the signals of the different frequency bands F1-F4 reach a stage 22 of diplexers 23.
  • These diplexers 23 allow the grouping of the signals belonging to the various frequency bands F1-F4 coming from the stage 20 of variable phase-shifters 21, and their transmission. simultaneous by a common channel to the radiating element 15A-15D.
  • the outgoing signals of the modules 14A-14D respectively supply the radiating elements 15A-15D which are all capable of operating in all the frequency bands F1-F4. Consequently, the variable electrical inclination VET in the vertical plane of the radiation pattern of the antenna can be controlled independently for each frequency band F1, F2, F3 and F4 by means of the modules 14A-14D comprising variable phase-shifters 21 .
  • the figure 3 illustrates a second embodiment similar to that of the figure 2 but in which one of the radiating elements is not associated with a module.
  • a Butler 4X4 matrix 30 having no delay lines similar to the Butler 4X4 matrix 10 of the figure 2 , comprises four inputs 31A-31D connected to four hybrid couplers 32A-32D. At each input 31A-11D can be introduced a multiband signal comprising for example several F1-F4 bands .
  • the Butler 4X4 matrix 30 thus also comprises four outputs 33A-33D. At three of the outputs 33A, 33C and 33D of the Butler matrix 30 is assigned a module 34A, 33C and 34D which respectively connects the outputs 33A, 33C and 33D to the radiating elements 35A, 35C and 35D.
  • the output 33B is directly connected by a coaxial cable 36 to the radiating element 35B.
  • the radiation pattern of the antenna in the vertical plane is obtained by the summation in the far field of the different fields radiated by each of the radiating elements. However, this summation is performed using as a reference one of the radiating elements arbitrarily chosen. It is therefore sufficient to control the phase difference between the radiating element 35B, for example, chosen arbitrarily as reference, and the other radiating elements 35A, 35C and 35D. The control of the absolute phase of each radiating element is therefore no longer necessary. Compared to the embodiment of the figure 2 , one of the modules, associated with the selected radiating element 35B , could be removed, and the control of the phase difference between the elements 35A-35D can be performed by the modules 34A, 34C and 34D which are maintained.
  • a Butler 4X4 matrix 40 having no delay lines, comprises four inputs 41A-41D connected to two hybrid couplers 42A and 42B of a first group. At each input 41A-41D can be introduced a multiband signal comprising for example several frequency bands F1-F4.
  • the couplers 42A and 42B of the first group are respectively connected to the couplers 42C and 42D of a second group by direct links 43A and 43B on the one hand, and on the other hand the couplers 42A and 42B of the first group are connected to the couplers 42C and 42D of the second group via hybrid couplers 42E and 42F of a third group.
  • the Butler 4X4 matrix 30 thus also includes four 44A-44D outputs . At each of the four outputs 44A-44D of the Butler matrix 30, an outgoing signal having a quarter of the energy of the incoming signal is collected.
  • Each of the outputs 44A, 44C and 44D is respectively connected to a module 45A, 45C and 45D.
  • An appropriate electrical delay and phase shift are introduced by the modules 45A, 45C and 45D.
  • the two radiating elements 46A and 46B are connected to the module 45A via a power divider 48A and a delay line 49A placed before one of the two radiating elements 46A and 46B, for example here the radiating element 46A.
  • the output 44B is connected by a coaxial cable 47 to the two radiating elements 46C and 46D via a power divider 48B and a delay line 49B placed before one of the two radiating elements 46C and 46D, by example the radiating element 46C.
  • the module 45C is connected to the two radiating elements 46E and 46F via a power divider 48C and a delay line 49C placed before one of the two radiating elements 46E and 46F, for example the radiating element 46F.
  • the two radiating elements 46G and 46H are connected to the module 45D via a power divider 48D and a delay line 49D placed before one of the two radiating elements 46G and 46H, for example here the 46H radiating element .
  • the outputs were split, thanks to the combination of dividers and delay lines, to allow to go from four to eight powered radiating elements without increasing the number of inputs.
  • the radiating elements are therefore controlled in phase by pair of elements.
  • Other configurations based on the same principle are achievable, for example by limiting the splitting of the output to only certain modules, or on the contrary by tripling or even quadrupling the output of certain modules by multiplying the dividers combined with the lines to delay.
  • figure 4 illustrates an advantageous embodiment from the point of view of the cost, the weight and the volume of the antenna.
  • the figure 5 illustrates a particular embodiment where the inclination of the antenna is controlled only for two frequency bands F1 and F2.
  • a Butler 4X4 50 matrix having no delay lines, comprises four inputs 51A-51D connected to two hybrid couplers 52A and 52B of a first group. At each input 51A-51D can be introduced a dual band signal comprising two frequency bands F1 and F2.
  • the hybrid couplers 52A and 52B are respectively connected to the hybrid couplers 52C and 52D of a second group by direct links 53A and 53B on the one hand, and on the other hand the couplers 52A and 52B are connected to the couplers 52C and 52D by via the hybrid couplers 52E and 52F of a third group.
  • an outgoing signal having a quarter of the energy of the incoming signal is collected.
  • Each of the outputs 54A, 54C and 54D of the Butler matrix 50 is respectively connected to a module 55A, 55C and 55D.
  • the two radiating elements 56A and 56B are connected to the module 55A via a power divider 58A and a delay line 59A placed before one of the two radiating elements 56A and 56B, for example the element radiating 56A.
  • the output 54B is connected by a coaxial cable 57 to the two radiating elements 56C and 56D via a power divider 58B and a delay line 59B placed before one of the two radiating elements 56C and 56D, by example the radiating element 56C.
  • the 55C module is connected to the two radiating elements 56E and 56F via a power divider 58C and a delay line 59C placed before one of the two radiating elements 56E and 56F, for example here the radiating element 56F.
  • the two radiating elements 56G and 56H are connected to the module 55D via a power divider 58D and a delay line 59D placed before one of the two radiating elements 56G and 56H, for example the radiating element 56H.
  • An appropriate electrical delay and phase shift are introduced by the modules 55A, 55C and 55D.
  • the dual-band signal entering the module 55A for example, is separated into two narrow frequency bands F1 and F2 by means of a first stage 60 of diplexers.
  • a second stage 61 comprising fixed delay lines applies a determined electrical delay to the signal in each frequency band F1 and F2 respectively.
  • the signal then passes into a third stage 62 of variable phase shifters which adjusts the phase shift in each frequency band F1 and F2 in order to vary the electrical inclination independently for each of the frequency bands F1 and F2.
  • the signal reaches the fourth stage 63 of diplexers which groups the signals belonging to the two frequency bands F1 and F2 to send them in the power divider 58A.
  • the outgoing signal of the power divider 58A supplies the radiating element 56A and, via the fixed delay line 59A, the radiating element 56B which are able to operate in the two frequency bands F1 and F2.
  • the variable electrical inclination VET in the vertical plane of the radiation pattern of the antenna can thus be controlled independently for each of the two frequency bands F1 and F2 through the module 55A.
  • the explanations given for the module 55A are applicable to the modules 55C and 55D.
  • the embodiment illustrated on the figure 6 allows to control from 1 to n frequency bands F1-Fn where n is greater than 4.
  • a Butler 4X4 70 matrix having no delay lines, similar to the Butler 4X4 50 matrix of the figure 5 , comprises four inputs 71A-71D connected to two hybrid couplers 72A and 72B of a first group.
  • the hybrid couplers 72A and 72B are respectively connected to the hybrid couplers 72C and 72D of a second group by direct links 73A and 73B on the one hand, and on the other hand the couplers 72A and 72B are connected to the couplers 72C and 72D by via hybrid couplers 72E and 72F of a third group.
  • Each of the outputs 74A, 74C and 74D of the Butler matrix 70 is respectively connected to a module 75A, 75C and 75D, similar to the modules 55A, 55C and 55D of the figure 5 .
  • the modules 75A, 75C and 75D are themselves each connected to a pair of radiating elements 76A-76B, 76E-76F and 76G-76H respectively via power dividers 78A, 78C and 78D and delay lines. 79A, 79C and 79D.
  • the output 74B is connected by a coaxial cable 77 to the pair of radiating elements 76C-76D via a power divider 78B and a delay line 79B.
  • an input signal which may be a single-band signal or a multiband signal comprising for example several F1-Fn frequency bands .
  • the variable electrical inclination VET in the vertical plane of the radiation pattern of the antenna is controlled independently for each frequency band F1-Fn.
  • the number of frequency band F1-Fn is a priori not limited, otherwise by constraints that one would impose.
  • the multiband signal entering the modules 74A, 74C and 74D is separated into narrow F1-Fn frequency bands by a first diplexer stage.
  • the present invention is not limited to the embodiments described.
  • the described examples can be extended to all types of Butler matrix having from 2 to N inputs and outputs, to control from 1 to n frequency bands F1-Fn and feed from 1 to X radiating elements from each outputs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Description

La présente invention se rapporte au domaine des antennes de télécommunications transmettant des ondes radioélectriques dans le domaine des hyperfréquences au moyen d'éléments rayonnants. Il s'agit de systèmes d'antennes adapté pour une utilisation dans de nombreux systèmes de télécommunications, et notamment pour une application dans les réseaux cellulaires de radiocommunications mobiles. Elle concerne en particulier une antenne-panneau de station de base, à large bande et à double polarisation, dont l'inclinaison électrique est ajustable.The present invention relates to the field of telecommunications antennas transmitting radio waves in the microwave domain by means of radiating elements. These are antenna systems adapted for use in many telecommunications systems, and particularly for application in mobile radio cellular networks. In particular, it relates to a base station antenna, broadband and double polarization, whose electrical inclination is adjustable.

Une zone de couverture est généralement divisée en un certain nombre de cellules, chacune associée à une station de base et une antenne respective. Les réseaux cellulaires de radiocommunications mobiles utilisent des antennes multiéléments ("Array Antenna" en anglais) qui comprennent un réseau d'éléments rayonnants individuels tels que des dipôles. On entend ici par antenne-panneau, un alignement d'éléments rayonnants fonctionnant dans un domaine de fréquence donné et comportant son propre système d'alimentation. Les antennes-panneaux possèdent généralement un connecteur d'accès par bande de fréquence et par polarisation.A coverage area is generally divided into a number of cells, each associated with a base station and a respective antenna. Mobile radio cellular networks use array antennas ("Array Antenna" in English) which comprise an array of individual radiating elements such as dipoles. The term "antenna-panel" here means an alignment of radiating elements operating in a given frequency range and comprising its own power supply system. The panel antennas generally have a frequency band and polarization access connector.

La modification de l'angle vertical du faisceau principal de l'antenne, également connu sous le nom "tilt", permet d'ajuster la zone de couverture de l'antenne. L'angle d'inclinaison de l'antenne peut être ajusté électriquement en changeant le retard temporel ou la phase du signal envoyé ou reçu par chaque élément rayonnant du réseau formant l'antenne, c'est ce qu'on appelle l'inclinaison électrique réglable ou variable. Dans la configuration habituelle, un seul système de commande de l'inclinaison électrique variable VET (pour "Variable Electrical Tilt" en anglais) réalise le pilotage de l'inclinaison dans le plan vertical de l'antenne pour toute la bande de fréquence disponible pour chaque polarisation. Si le spectre de fréquence disponible doit être divisé en plusieurs bandes de fréquence étroites, l'introduction de diplexeurs devient nécessaire. Néanmoins, si le diplexeur est placé à l'accès du système de commande de l'inclinaison électrique VET, l'inclinaison électrique de l'antenne ne peut pas être réglée indépendamment pour chaque bande de fréquence étroite.Changing the vertical angle of the antenna's main beam, also known as "tilt", adjusts the coverage area of the antenna. The angle of inclination of the antenna can be adjusted electrically by changing the time delay or the phase of the signal sent or received by each radiating element of the network forming the antenna, this is called electrical inclination adjustable or variable. In the usual configuration, a single Variable Electrical Tilt (VET) control system controls the inclination in the vertical plane of the antenna for the entire frequency band available for each polarization. If the available frequency spectrum is to be divided into several narrow frequency bands, the introduction of diplexers becomes necessary. Nevertheless, if the diplexer is placed at the access of the VET electrical tilt control system, the electrical inclination of the antenna can not be adjusted independently for each narrow frequency band.

Une solution concernant la possibilité de commander l'inclinaison électrique variable VET par bande de fréquence est de connecter un diplexeur à chaque élément rayonnant, et d'utiliser un système d'alimentation de l'inclinaison électrique variable VET pour chaque bande à contrôler. On entend par diplexeur un dispositif passif qui réalise un multiplexage permettant de mélanger/séparer les signaux dans des bandes de fréquences différentes selon le sens dans lequel il est monté. Dans le cas présent le diplexeur se comporte comme deux filtres fonctionnant dans des bandes de fréquence différentes avec un de leur accès mis en commun. Un tel diplexeur permet à l'élément rayonnant auquel il est relié de fonctionner en même temps dans les deux bandes de fréquences associées aux deux systèmes d'alimentation connectés au diplexeur, que ce soit en transmission ou en réception. Il existe plusieurs technologies de réalisation de ces diplexeurs dont le poids, le volume, les performances et le coût sont variables.One solution concerning the possibility of controlling the variable frequency VET electrical tilt by frequency band is to connect a diplexer to each radiating element, and to use a VET variable electrical tilt power system for each band to be monitored. The term "diplexer" is understood to mean a passive device that performs multiplexing for mixing / separating the signals in different frequency bands according to the direction in which it is mounted. In this case the diplexer behaves like two filters operating in different frequency bands with one of their pooled access. Such a diplexer allows the radiating element to which it is connected to operate at the same time in the two frequency bands associated with the two power supply systems connected to the diplexer, whether in transmission or reception. There are several technologies for producing these diplexers whose weight, volume, performance and cost are variable.

Si le nombre d'éléments rayonnants est important, il ne sera pas possible d'utiliser des diplexeurs dits "haute performance" (utilisant des résonateurs à cavité à air par exemple) en raison du volume, du poids, et du coût que ce type d'appareil peut représenter. Par conséquent, des diplexeurs de type à taille réduite sont choisis, comme par exemple des diplexeurs utilisant des lignes microrubans formées sur des substrats à constante diélectrique de valeur élevée (par exemple en céramique) ou utilisant des techniques d'ondes acoustiques de surface SAW (pour "Surface Acoustic Wave" en anglais). Les performances de ces diplexeurs de taille réduite sont diminuées par rapport à celles des diplexeurs utilisant par exemple des résonateurs de type à cavité à air. Les pertes IL (pour "Insertion Loss" en anglais), l'adaptation d'impédance RL (pour "Return Loss" en anglais) et l'isolation entre les bandes de fréquence vont impacter de manière importante les performances RF globales de l'antenne. En outre, un réseau d'alimentation complet dédié à chaque bande, et pour chaque polarisation, à contrôler est nécessaire. Selon la technologie utilisée pour assurer ces fonctions, cela peut être rédhibitoire en raison du volume, du poids et du coût que les besoins d'un diplexeur unitaire et d'un réseau d'alimentation par bande de fréquence peuvent représenter. Document D1: EP0395239A1 décrit un système de formation de faisceau comportant quatre entrées, chacune de ces entrées recevant un signal de fréquence f1, f2, f3 et f4 déterminée. Le signal de fréquence f1 traverse un réseau de formation de faisceau avec éléments à retard, et une matrice Butler reliée aux éléments rayonnants.If the number of radiating elements is important, it will not be possible to use so-called "high performance" diplexers (using air cavity resonators for example) because of the volume, the weight, and the cost that this type device can represent. Therefore, reduced size type diplexers are chosen, such as diplexers using microstrip lines formed on high value dielectric constant substrates (eg ceramic) or using SAW surface acoustic wave techniques ( for "Surface Acoustic Wave"). The performance of these reduced-size diplexers is reduced compared to those of diplexers using, for example, air-cavity type resonators. Losses IL (for "Insertion Loss" in English), impedance matching RL (for "Return Loss" in English) and isolation between the frequency bands will significantly impact the overall RF performance of the antenna. In addition, a complete power supply network dedicated to each band, and for each polarization, to be controlled is necessary. Depending on the technology used to perform these functions, this may be unacceptable because of the volume, weight and cost that the needs of a unitary diplexer and a frequency band power network may represent. Document D1: EP0395239A1 discloses a beamforming system having four inputs, each of said inputs receiving a determined frequency signal f1, f2, f3 and f4. The frequency signal f1 passes through a beam formation network with delay elements, and a Butler matrix connected to the radiating elements.

Document D2: JP2000223924A décrit une système d'alimentation pour une station base mobile avec inclinaison électrique ajustable. Les décompensations entre les signaux de chaque sous-bande sont corrigées en appliquant un déphasage différent par canal.Document D2: JP2000223924A describes a power system for a mobile base station with adjustable electrical inclination. The decompensations between the signals of each subband are corrected by applying a different phase shift per channel.

D3: XP002689687 divulgue la séparation d'un signal multibande en plusieurs sous-bandes pour des réseaux de formation de faisceaux. Ceci permet la commande indépendante de chaque sous-bande.D3: XP002689687 discloses the separation of a multiband signal into several subbands for beam forming networks. This allows the independent control of each subband.

D4: XP002689688 divulgue une exemple de matrice Butler à quatre ports composée de deux coupleurs hybrides a l'étage d'entrée, deux à l'étage de sortie et deux a l'étage intermédiaire.D4: XP002689688 discloses an example of a four-port Butler matrix composed of two hybrid couplers at the input stage, two at the output stage and two at the intermediate stage.

La présente invention a pour but d'éliminer les inconvénients de l'art antérieur, et en particulier de proposer un système d'alimentation unique et simple permettant d'alimenter l'ensemble d'une l'antenne à large bande et de commander individuellement l'inclinaison électrique variable VET dans le plan vertical de cette antenne pour chaque bande de fréquence étroite.The present invention aims to eliminate the drawbacks of the prior art, and in particular to provide a single and simple power supply system for powering the whole of a broadband antenna and to control individually the variable electrical inclination VET in the vertical plane of this antenna for each narrow frequency band.

L'objet de la présente invention est un système d'alimentation pour la commande de l'inclinaison électrique variable dans le plan vertical des éléments rayonnants en réseau d'une antenne mutlibande selon la revendication 1. Selon un premier aspect, le module est relié à une paire d'éléments rayonnants par l'intermédiaire d'un diviseur de puissance et d'au moins une ligne à retard fixe. De préférence la sortie du module est reliée à l'entrée d'un diviseur de puissance, l'une des sorties du diviseur de puissance étant reliée à un premier élément rayonnant et l'autre sortie du diviseur de puissance étant reliée à une ligne à retard fixe reliée à un second élément rayonnant.The object of the present invention is a supply system for the control of the variable electrical inclination in the vertical plane of the radiating elements in a network of a multi-band antenna according to claim 1. In a first aspect, the module is connected to a pair of radiating elements via a power divider and at least one fixed delay line. Preferably, the output of the module is connected to the input of a power divider, one of the outputs of the power divider being connected to a first radiating element and the other output of the power divider being connected to a line fixed delay connected to a second radiating element.

Selon un deuxième aspect, le système comprend un nombre de modules qui est inférieur au nombre N de sorties de la matrice de Butler. De préférence le nombre de modules est égal à N-1.According to a second aspect, the system comprises a number of modules which is smaller than the number N of butler matrix outputs. Preferably the number of modules is equal to N-1.

Selon une première variante, la matrice de Butler comprend N coupleurs hybrides, N étant un nombre pair, dont N/2 coupleurs hybrides appartenant à un premier groupe et N/2 coupleurs hybrides appartenant à un deuxième groupe. De préférence la matrice de Butler comprend N entrées reliées aux N/2 coupleurs hybrides du premier groupe, chaque coupleur hybride du premier groupe comportant deux sorties et chaque sortie étant respectivement reliée à un coupleur hybride différent d'un deuxième groupe.According to a first variant, the Butler matrix comprises N hybrid couplers, N being an even number, of which N / 2 hybrid couplers belonging to a first group and N / 2 hybrid couplers belonging to a second group. Preferably the Butler matrix comprises N entries related to the N / 2 hybrid couplers of the first group, each hybrid coupler of the first group having two outputs and each output being respectively connected to a hybrid coupler different from a second group.

Selon une deuxième variante, la matrice de Butler comprend N+N/2 coupleurs hybrides, N étant un nombre pair, dont N/2 coupleurs hybrides appartenant à un premier groupe, N/2 coupleurs hybrides appartenant à un deuxième groupe et N/2 coupleurs hybrides appartenant à un troisième groupe. De préférence la matrice de Butler comprend N entrées reliées à N/2 coupleurs hybrides d'un premier groupe, chaque coupleur hybride du premier groupe comportant deux sorties, une première sortie étant directement reliée à un coupleur hybride d'un deuxième groupe et la seconde sortie étant reliée à un coupleur hybride du deuxième groupe par l'intermédiaire d'un coupleur hybride du troisième groupe.According to a second variant, the Butler matrix comprises N + N / 2 hybrid couplers, N being an even number, of which N / 2 hybrid couplers belonging to a first group, N / 2 hybrid couplers belonging to a second group and N / 2 hybrid couplers belonging to a third group. Preferably, the Butler matrix comprises N inputs connected to N / 2 hybrid couplers of a first group, each hybrid coupler of the first group comprising two outputs, a first output being directly connected to a hybrid coupler of a second group and the second output being connected to a hybrid coupler of the second group via a hybrid coupler of the third group.

L'invention concerne l'art du couplage de circuits pour le phasage des signaux. Plus particulièrement, cette invention se rapporte au contrôle de phase des antennes multiéléments phasées. Chaque élément rayonnant de l'antenne multiélément phasée traite un signal qui est déphasé par rapport aux signaux traités par les autres éléments rayonnants dans l'antenne. La raison de cela est qu'un champ de rayonnement combiné développé par une antenne multiélément phasée en un point éloigné est la somme vectorielle des champs de rayonnement produits par les éléments rayonnants individuels dans l'antenne phasée. En commandant correctement les phases respectives des signaux traités par les éléments d'antenne multiélément phasée, il est possible de concentrer un champ de rayonnement combiné très fortement dans une direction souhaitée, et dans une forme du diagramme rayonnant souhaitée.The invention relates to the art of coupling circuits for the phasing of the signals. More particularly, this invention relates to phase control phased phased array antennas. Each radiating element of the phased array antenna processes a signal which is out of phase with the signals processed by the other radiating elements in the antenna. The reason for this is that a combined radiation field developed by a phased array antenna at a remote point is the vector sum of the radiation fields produced by the individual radiating elements in the phased antenna. By properly controlling the respective phases of the signals processed by the phased array elements, it is possible to focus a combined radiation field very strongly in a desired direction, and in a desired shape of the radiating pattern.

Ce système a comme avantage de permettre de partager une antenne large bande entre plusieurs utilisateurs (c'est-à-dire une antenne comportant plusieurs entrées) et/ou entre plusieurs bandes de fréquence plus étroites.This system has the advantage of allowing to share a broadband antenna between several users (that is to say an antenna having several inputs) and / or between several narrower frequency bands.

Ce système permet une inclinaison électrique indépendante pour chaque bande de fréquence étroite avec un réseau d'alimentation unique. L'inclinaison électrique variable VET dans le plan vertical du diagramme de rayonnement de l'antenne est contrôlée de façon indépendante pour chaque bande de fréquence. Un seul système d'alimentation est nécessaire, quel que soit le nombre de bandes de fréquence.This system provides independent electrical tilt for each narrow frequency band with a single power grid. The variable electrical inclination VET in the vertical plane of the radiation pattern of the antenna is controlled independently for each frequency band. Only one power system is needed, regardless of the number of frequency bands.

Les accès de l'antenne ne sont pas spécifiques à une bande de fréquence prédéterminée, c'est-à-dire qu'un signal entrant dans une bande de fréquence donnée peut être relié à n'importe lequel des connecteurs d'entrée. Le nombre d'accès est indépendant du nombre de bandes de fréquence pouvant être commandé par inclinaison électrique variable VET.The antenna ports are not specific to a predetermined frequency band, i.e. a signal entering a given frequency band can be connected to any of the input connectors. The number of accesses is independent of the number of frequency bands that can be controlled by variable electrical inclination VET.

L'invention a aussi pour objet un procédé de commande de l'inclinaison électrique variable dans le plan vertical des éléments rayonnants en réseau d'une antenne multibande au moyen d'un système d'alimentation selon l'une des revendications précédentes caractérisé en ce que l'inclinaison électrique est ajustée de manière indépendante pour chaque bande de fréquence au moyen d'un module, reliant la matrice de Butler aux éléments rayonnants, qui comprend un déphaseur variable sur le trajet du signal dans chaque bande de fréquence.The invention also relates to a method for controlling the variable electrical inclination in the vertical plane of the radiating elements in a network of a multiband antenna by means of a power supply system according to one of the preceding claims, characterized in that that the electrical inclination is adjusted independently for each frequency band by means of a module, connecting the Butler matrix to the radiating elements, which comprises a variable phase shifter on the signal path in each frequency band.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui suit d'un mode de réalisation, donné bien entendu à titre illustratif et non limitatif, et dans le dessin annexé sur lequel

  • la figure 1 illustre le principe d'une matrice de Butler 4X4 sans ligne à retard,
  • la figure 2 illustre un premier mode de réalisation d'un système d'alimentation pour quatre éléments rayonnants d'antenne dans lequel les inclinaisons dans quatre bandes de fréquence sont indépendamment commandées,
  • la figure 3 illustre un deuxième mode de réalisation d'un système d'alimentation d'antenne qui est une variante simplifiée du mode de réalisation de la figure 3,
  • la figure 4 illustre un troisième mode de réalisation d'un système d'alimentation pour huit éléments rayonnants d'antenne dans lequel les inclinaisons dans quatre bandes de fréquence sont indépendamment commandées,
  • la figure 5 illustre un quatrième mode de réalisation d'un système d'alimentation pour huit éléments rayonnants d'antenne dans lequel les inclinaisons dans deux bandes de fréquence sont indépendamment commandées,
  • la figure 6 illustre un cinquième mode de réalisation d'un système d'alimentation pour huit éléments rayonnants d'antenne dans lequel les inclinaisons dans n bandes de fréquence indépendamment commandées.
Other characteristics and advantages of the present invention will appear on reading the following description of an embodiment, given of course by way of illustration and not limitation, and in the accompanying drawing in which:
  • the figure 1 illustrates the principle of a Butler 4X4 matrix without delay line,
  • the figure 2 illustrates a first embodiment of a power supply system for four antenna radiating elements in which the inclinations in four frequency bands are independently controlled,
  • the figure 3 illustrates a second embodiment of an antenna feed system which is a simplified variant of the embodiment of the figure 3 ,
  • the figure 4 illustrates a third embodiment of a power supply system for eight antenna radiating elements in which the inclinations in four frequency bands are independently controlled,
  • the figure 5 illustrates a fourth embodiment of a power supply system for eight antenna radiating elements in which the inclinations in two frequency bands are independently controlled,
  • the figure 6 illustrates a fifth embodiment of a power system for eight antenna radiating elements in which the inclinations in n independently controlled frequency bands.

La figure 1 est une illustration d'une matrice de Butler. En 1961, Jesse Butler et Ralf Lowe ont proposé une topologie disruptive d'un système d'alimentation d'une antenne qui permet la génération directe de faisceaux multiples d'antenne à éléments rayonnants en réseau. A l'origine, destiné aux radars de surveillance et d'altimétrie, ce principe d'alimentation est aujourd'hui largement utilisé dans de nombreuses applications.The figure 1 is an illustration of a Butler matrix. In 1961, Jesse Butler and Ralf Lowe proposed a disruptive topology of an antenna power system that allows the direct generation of multiple arrayed radiating antenna beams. Originally intended for radar surveillance and altimetry, this Feeding principle is nowadays widely used in many applications.

Cette configuration d'alimentation d'antenne utilise principalement des coupleurs hybrides connus et des lignes à retard. Une matrice de Butler permet de produire M faisceaux en utilisant M (ou M-1) connecteurs d'entrée. Il s'agit d'un dispositif passif réciproque hyperfréquence qui est un agencement de coupleurs hybrides avec N entrées et N sorties, où N est en général une puissance de 2. Plus généralement, une matrice de Butler à 2N entrées est constituée de N2N-1 coupleurs hybrides et (N-1)2N-1 déphaseurs, soit un total de (2N-1)2N-1 composants. Le nombre de croisements imposé par la topologie spécifique des matrices de Butler est de 2N-1(2N-N-1).This antenna feed configuration mainly uses known hybrid couplers and delay lines. A Butler matrix makes it possible to produce M beams using M (or M-1) input connectors. It is a reciprocal passive microwave device which is an arrangement of hybrid couplers with N inputs and N outputs, where N is in general a power of 2. More generally, a Butler matrix with 2 N inputs consists of N2 N-1 hybrid couplers and (N-1) 2 N-1 phase shifters, making a total of (2N-1) 2 N-1 components. The number of crosses imposed by the specific topology of the Butler matrices is 2 N-1 (2 N - N -1).

Prenons l'exemple d'une matrice de Butler 2x2 connue. Lorsque la première entrée est utilisée, un signal de phase de 0° est envoyé au premier élément rayonnant alors qu'un signal de phase -90° est envoyé au second élément rayonnant. Ce déphasage de 90° entre les deux signaux est du à des coupleurs hybrides -3dB qui divisent les signaux d'entrée en deux signaux ayant la moitié de l'énergie initiale et une phase de sortie qui est décalée de 90° l'un par rapport à l'autre. Par conséquent, en utilisant la première entrée, le diagramme de réseau présente une certaine inclinaison d'angle θ, et en utilisant la seconde entrée le diagramme de réseau présente une certaine inclinaison d'angle -θ.Take the example of a known 2x2 Butler matrix. When the first input is used, a 0 ° phase signal is sent to the first radiator while a -90 ° phase signal is sent to the second radiator. This phase shift of 90 ° between the two signals is due to hybrid couplers -3dB which divide the input signals into two signals having half of the initial energy and an output phase which is shifted by 90 ° one by report to the other. Therefore, using the first input, the grating pattern has a certain inclination angle θ, and using the second input the grating pattern has a certain angle inclination -θ.

Sur la figure 1 est illustré un exemple d'une matrice de Butler 1 dite 4X4, ne comportant pas de ligne à retard. La matrice de Butler 1 est destinée à alimenter quatre éléments rayonnants 2A-2D d'antenne, et comprend quatre entrées 3A-3D et quatre sorties 4A-4B. Chacune des quatre sorties 4A-4B est reliée à chaque élément rayonnant 2A-2D respectivement. La matrice de Butler comprend aussi quatre coupleurs hybrides -3dB 5A-5D, les coupleurs hybrides 5A et 5B d'un premier groupe étant reliés respectivement aux coupleurs hybrides 5C et 5D d'un deuxième groupe par des liaisons 6A et 6B d'une part et par des liaisons 6C et 6D d'autre part. Un commutateur de premier étage 7 est habituellement utilisé avant les entrées 4A-4B pour permettre de sélectionner l'entrée à alimenter.On the figure 1 is illustrated an example of a Butler 1 said 4X4 matrix, having no delay line. The Butler matrix 1 is intended to supply four antenna radiating elements 2A-2D , and comprises four 3A-3D inputs and four 4A-4B outputs . Each of the four outputs 4A-4B is connected to each radiating element 2A-2D respectively. The Butler matrix also comprises four hybrid couplers -3dB 5A-5D, the hybrid couplers 5A and 5B of a first group being respectively connected to the hybrid couplers 5C and 5D of a second group by links 6A and 6B on the one hand and by 6C and 6D links on the other hand. A first stage switch 7 is usually used before inputs 4A-4B to allow selection of the input to be powered.

Lorsque l'entrée 3A est utilisée, la présence du coupleur hybride 5A sur le trajet du signal divise le signal d'entrée en deux signaux, chacun ayant la moitié de l'énergie, avec une phase de sortie décalée de 90° pour un signal par rapport l'autre. Le coupleur hybride 5A produit ainsi d'une part un signal de phase 0° qui est envoyé au coupleur hybride 5C par la liaison 6A, et un signal de phase 90° qui est envoyé au coupleur hybride 5D par la liaison 6B. Le coupleur hybride 5C introduit à sont tour un retard électrique qui entraine un déphasage du signal de phase 0° entré par la liaison 6A. L'élément rayonnant 2B reçoit à son entrée 4B un signal qui est déphasé de 90° par rapport au signal d'entrée et par rapport au signal reçu par l'élément rayonnant 2A à son entrée 4A. When the input 3A is used, the presence of the hybrid coupler 5A on the signal path divides the input signal into two signals, each having half the energy, with an output phase shifted by 90 ° for a signal relative to each other. The hybrid coupler 5A thus produces on the one hand a 0 ° phase signal which is sent to the hybrid coupler 5C via the link 6A, and a 90 ° phase signal which is sent to the coupler hybrid 5D through the link 6B. The hybrid coupler 5C introduces in turn an electrical delay which causes a phase shift of the 0 ° phase signal input by the link 6A. The radiating element 2B receives at its input 4B a signal which is 90 ° out of phase with respect to the input signal and with respect to the signal received by the radiating element 2A at its input 4A.

De même, lorsque l'entrée 3C est utilisée, le coupleur hybride 5B produit ainsi d'une part un signal de phase 0° qui est envoyé au coupleur hybride 5C par la liaison 6C, et un signal de phase 90° qui est envoyé au coupleur hybride 5D par la liaison 6D. Le coupleur hybride 5D introduit à sont tour un retard électrique qui entraine un déphasage supplémentaire de 90° du signal entré par la liaison 6D. L'élément rayonnant 2C reçoit à son entrée 4C un signal déphasé de 90° par rapport au signal d'entrée et l'élément rayonnant 2D reçoit à son entrée 4D un signal déphasé de 180° par rapport au signal d'entrée.Similarly, when the input 3C is used, the hybrid coupler 5B thus produces on the one hand a 0 ° phase signal which is sent to the hybrid coupler 5C by the link 6C, and a 90 ° phase signal which is sent to the 5D hybrid coupler via the 6D link . The hybrid coupler 5D introduces in turn an electrical delay which causes an additional phase shift of 90 ° of the signal input by the link 6D. The radiating element 2C receives at its input 4C a signal phase-shifted by 90 ° with respect to the input signal and the radiating element 2D receives at its input 4D a signal phase-shifted by 180 ° with respect to the input signal.

A chacune des quatre sorties 4A-4D de la matrice de Butler 1, on recueille un signal sortant ayant le quart de l'énergie du signal entrant. Les déphasages observés à la sortie 4A-4B de la matrice de Butler 1 en fonction de l'entrée 3A-3D choisie sont reportés dans le tableau ci-dessous. TABLEAU 4A 4B 4C 4D 3A 90° 90° 180° 3B 90° 180° 90° 3C 90° 180° 90° 3D 180° 90° At each of the four outputs 4A-4D of the Butler matrix 1, an outgoing signal having a quarter of the energy of the incoming signal is collected. The phase shifts observed at the output 4A-4B of the Butler matrix 1 as a function of the selected input 3A-3D are reported in the table below. BOARD 4A 4B 4C 4D 3A 0 ° 90 90 180 ° 3B 90 180 ° 0 ° 90 3C 90 0 ° 180 ° 90 3D 180 ° 0 ° 90 0 °

On constate alors que si l'on souhaite que tous les éléments rayonnants en réseau soient alimentés avec la même phase, il est nécessaire d'introduire des retards électriques compensatoires à l'entrée des éléments rayonnants 2A, 2B, 2C et 2D. Par exemple, dans le cas de l'utilisation de l'entrée 3A, des retards électriques de 180°, 90°, 90° et 0° doivent être introduits à l'entrée des éléments rayonnants 2A, 2B, 2C et 2D respectivement pour compenser le déphasage observé à la sortie de la matrice de Butler 1 (cf. la première ligne du tableau). La phase résultante observée à l'entrée de chaque élément rayonnant 2A-2D sera alors la même, et sera décalée de 180° par rapport au signal d'entrée: 0°+180°=180° (élément 2A) ; 90°+90°=180° (élément 2B) ; 90°+90°=180° (élément 2C) ; 180°+0°=180° (élément 2D).It is then found that if it is desired that all the radiating elements in a network are fed with the same phase, it is necessary to introduce compensating electrical delays at the input of the radiating elements 2A, 2B, 2C and 2D. For example, in the case of the use of the input 3A, electrical delays of 180 °, 90 °, 90 ° and 0 ° must be introduced at the input of the radiating elements 2A, 2B, 2C and 2D respectively for compensate for the phase shift observed at the exit of the Butler matrix 1 (see the first row of the table). The resulting phase observed at the input of each radiating element 2A-2D will then be the same, and will be offset by 180 ° with respect to the input signal: 0 ° + 180 ° = 180 ° (element 2A ); 90 ° + 90 ° = 180 ° (element 2B ); 90 ° + 90 ° = 180 ° (element 2C ); 180 ° + 0 ° = 180 ° ( 2D element).

Mais il faut noter que la même combinaison de retards ne permet pas d'obtenir une alimentation en phase de tous les éléments rayonnants si l'une des trois autres entrées 11A-11D est utilisée, la combinaison de retards à appliquer est spécifique à chaque entrée 11A-11D. Par exemple, dans le cas de l'utilisation de l'entrée 3B, il serait nécessaire d'ajouter des retards électriques compensatoires de 90°, 0°, 180° et 90° à l'entrée des éléments rayonnants 2A, 2B, 2C et 2D respectivement. La phase résultante observée à l'entrée de chaque élément rayonnant 2A-2D sera alors la même et sera décalée de 180° par rapport au signal d'entrée: 90°+90°=180° (élément 2A) ; 180°+0°=180° (élément 2B) ; 0°+180°=180° (élément 2C) ; 90°+90°=180° (élément 2D). But it should be noted that the same combination of delays does not make it possible to obtain a phase feed of all the radiating elements if one of the other three Inputs 11A-11D is used, the combination of delays to apply is specific to each input 11A-11D. For example, in the case of the use of the input 3B, it would be necessary to add compensating electrical delays of 90 °, 0 °, 180 ° and 90 ° to the input of the radiating elements 2A, 2B, 2C and 2D respectively. The resulting phase observed at the input of each radiating element 2A-2D will then be the same and will be offset by 180 ° with respect to the input signal: 90 ° + 90 ° = 180 ° (element 2A ); 180 ° + 0 ° = 180 ° (element 2B ); 0 ° + 180 ° = 180 ° (element 2C ); 90 ° + 90 ° = 180 ° ( 2D element) .

Dans le premier mode de réalisation illustré sur la figure 2, une matrice de Butler 4X4 10 ne comportant pas de lignes à retard, analogue à la matrice de Butler 4X4 1 de la figure 1, comprend quatre entrées 11A-11D reliées à quatre coupleurs hybrides 12A-12D. A chaque accès radiofréquence 11A-11D est injecté un signal d'entrée, qui peut être un signal monobande ou bien un signal multibande comprenant par exemple plusieurs bandes de fréquence F1-F4. In the first embodiment illustrated on the figure 2 , a Butler 4X4 matrix 10 having no delay lines, similar to the Butler 4X4 matrix 1 of the figure 1 , includes four 11A-11D inputs connected to four 12A-12D hybrid couplers . At each radio frequency access 11A-11D is injected an input signal, which may be a single-band signal or a multiband signal comprising for example several frequency bands F1-F4.

La matrice de Butler 4X4 10 comprend donc aussi quatre sorties 13A-13D. A chacune des sortie 13A-13D de la matrice de Butler 10 est connecté un module 14A-14D qui relie respectivement les sorties 13A-13D aux éléments rayonnants 15A-15D. Un retard électrique et un déphasage appropriés sont introduits par les modules 14A-14D. Les accès 11A-11D de l'antenne ne sont pas spécifiques à une bande de fréquence prédéterminée. Quelle que soit l'entrée 11A-11D utilisée, un signal peut être dirigé vers l'un des éléments rayonnants 15A-15D. The Butler 4X4 matrix 10 thus also comprises four 13A-13D outputs . At each of the outputs 13A-13D of the Butler matrix 10 is connected a module 14A-14D which respectively connects the outputs 13A-13D to the radiating elements 15A-15D. An appropriate electrical delay and phase shift are introduced by the modules 14A-14D. The antenna ports 11A-11D are not specific to a predetermined frequency band. Regardless of the input 11A-11D used, a signal may be directed to one of the radiating elements 15A-15D.

Le signal multibande entrant dans le module 14A-14D est séparé en bandes de fréquence F1, F2, F3 ou F4 étroites grâce à un premier étage 16 de diplexeurs 17. The multiband signal entering module 14A-14D is separated into narrow frequency bands F1, F2, F3 or F4 by means of a first stage 16 of diplexers 17.

Un deuxième étage 18 comportant une ligne à retard DL fixe 19 (pour "Delay Line" en anglais) pour chaque canal de bande de fréquence F1-F4 afin d'appliquer un retard électrique approprié au signal dans chaque bande de fréquence F1-F4 respectivement. On peut souhaiter par exemple que tous les signaux dans la bande de fréquence F1 atteignant les éléments rayonnants 15A-15D soient en phase à la sortie des lignes à retard fixe 19. Dans ce cas la ligne à retard fixe 19 associée au canal de bande de fréquence F1 relié à l'élément rayonnant 15A introduira probablement une valeur de retard différente de celle introduite par la ligne à retard fixe 19 associée au canal de bande de fréquence F1 relié à l'élément rayonnant 15B. Ceci est du au fait que les signaux dans la bande de fréquence F1 n'ont pas tous suivi précédemment le même chemin dans la matrice de Butler 10. A second stage 18 having a fixed delay line DL 19 (for "Delay Line") type F1-F4 for each frequency band channel to apply a suitable electrical delay to the signal in each frequency band F1-F4 respectively . For example, it may be desirable for all the signals in the frequency band F1 reaching the radiating elements 15A-15D to be in phase at the output of the fixed delay lines 19. In this case, the fixed delay line 19 associated with the band channel of FIG. frequency F1 connected to the radiating element 15 a will probably introduce a different delay value to that introduced by the delay line 19 associated with the fixed frequency band F1 channel connected to the radiating element 15B. This is because the signals in the frequency band F1 have not all previously followed the same path in the Butler matrix 10.

Le signal passe ensuite dans un étage 20 de déphaseurs variables 21 qui introduit un déphasage adapté à chaque bande de fréquence F1-F4. Les déphaseurs variables 21 permettent de faire varier l'inclinaison électrique de l'antenne indépendamment pour chacune des bandes de fréquence F1-F4. En l'absence de déphaseurs variables 21, l'antenne aurait une inclinaison fixe dans la bande de fréquence F1 par exemple, c'est-à-dire que le diagramme de rayonnement de l'antenne dans la bande de fréquence F1 serait dirigé selon un angle fixe donné par rapport à l'horizon. Cette inclinaison fixe résulte du retard introduit par la ligne à retard fixe 19. The signal then goes into a stage 20 of variable phase shifters 21 which introduces a phase shift adapted to each frequency band F1-F4. The variable phase shifters 21 make it possible to vary the electrical inclination of the antenna independently for each of the frequency bands F1-F4. In the absence of variable phase shifters 21, the antenna would have a fixed inclination in the frequency band F1 for example, that is to say that the radiation pattern of the antenna in the frequency band F1 would be directed according to a given fixed angle with respect to the horizon. This fixed inclination results from the delay introduced by the fixed delay line 19.

Enfin les signaux des différentes bandes de fréquence F1-F4 atteignent un étage 22 de diplexeurs 23. Ces diplexeurs 23 permettent le regroupement des signaux appartenant aux différentes bandes de fréquence F1-F4 issus de l'étage 20 de déphaseurs variables 21, et leur transmission simultanée par un canal commun vers l'élément rayonnant 15A-15D. Finally, the signals of the different frequency bands F1-F4 reach a stage 22 of diplexers 23. These diplexers 23 allow the grouping of the signals belonging to the various frequency bands F1-F4 coming from the stage 20 of variable phase-shifters 21, and their transmission. simultaneous by a common channel to the radiating element 15A-15D.

Les signaux sortants des modules 14A-14D alimentent respectivement les éléments rayonnants 15A-15D qui sont tous aptes à fonctionner dans toutes les bandes de fréquence F1-F4. Par conséquent, l'inclinaison électrique variable VET dans le plan vertical du diagramme de rayonnement de l'antenne peut être contrôlée de façon indépendante pour chaque bande de fréquence F1, F2, F3 et F4 grâce aux modules 14A-14D comprenant des déphaseurs variables 21. The outgoing signals of the modules 14A-14D respectively supply the radiating elements 15A-15D which are all capable of operating in all the frequency bands F1-F4. Consequently, the variable electrical inclination VET in the vertical plane of the radiation pattern of the antenna can be controlled independently for each frequency band F1, F2, F3 and F4 by means of the modules 14A-14D comprising variable phase-shifters 21 .

La figure 3 illustre un deuxième mode de réalisation analogue à celui de la figure 2 mais dans lequel l'un des éléments rayonnants n'est pas associé à un module.The figure 3 illustrates a second embodiment similar to that of the figure 2 but in which one of the radiating elements is not associated with a module.

Une matrice de Butler 4X4 30 ne comportant pas de lignes à retard, analogue à la matrice de Butler 4X4 10 de la figure 2, comprend quatre entrées 31A-31D reliées à quatre coupleurs hybrides 32A-32D. A chaque entrée 31A-11D peut être introduit un signal multibande comprenant par exemple plusieurs bandes F1-F4. La matrice de Butler 4X4 30 comprend donc aussi quatre sorties 33A-33D. A trois des sortie 33A, 33C et 33D de la matrice de Butler 30 est attribué un module 34A, 33C et 34D qui relie respectivement les sorties 33A, 33C et 33D aux éléments rayonnants 35A, 35C et 35D. La sortie 33B est directement reliée par un câble coaxial 36 à l'élément rayonnant 35B. A Butler 4X4 matrix 30 having no delay lines, similar to the Butler 4X4 matrix 10 of the figure 2 , comprises four inputs 31A-31D connected to four hybrid couplers 32A-32D. At each input 31A-11D can be introduced a multiband signal comprising for example several F1-F4 bands . The Butler 4X4 matrix 30 thus also comprises four outputs 33A-33D. At three of the outputs 33A, 33C and 33D of the Butler matrix 30 is assigned a module 34A, 33C and 34D which respectively connects the outputs 33A, 33C and 33D to the radiating elements 35A, 35C and 35D. The output 33B is directly connected by a coaxial cable 36 to the radiating element 35B.

Le diagramme de rayonnement de l'antenne dans le plan vertical est obtenu par la sommation en champ lointain des différents champs rayonnés par chacun des éléments rayonnants. Or, cette sommation s'effectue en utilisant comme référence l'un des éléments rayonnants choisi arbitrairement. Il suffit donc de contrôler la différence de phase entre l'élément rayonnant 35B par exemple, choisi arbitrairement comme référence, et les autres éléments rayonnants 35A, 35C et 35D. Le contrôle de la phase absolue de chaque élément rayonnant n'est donc plus nécessaire. Par rapport au mode de réalisation de la figure 2, l'un des modules, associé à l'élément rayonnant 35B choisi, a pu être supprimé, et le contrôle de la différence de phase entre les éléments 35A-35D peut être effectué par les modules 34A, 34C et 34D qui sont maintenus.The radiation pattern of the antenna in the vertical plane is obtained by the summation in the far field of the different fields radiated by each of the radiating elements. However, this summation is performed using as a reference one of the radiating elements arbitrarily chosen. It is therefore sufficient to control the phase difference between the radiating element 35B, for example, chosen arbitrarily as reference, and the other radiating elements 35A, 35C and 35D. The control of the absolute phase of each radiating element is therefore no longer necessary. Compared to the embodiment of the figure 2 , one of the modules, associated with the selected radiating element 35B , could be removed, and the control of the phase difference between the elements 35A-35D can be performed by the modules 34A, 34C and 34D which are maintained.

Les modes de réalisation illustrés par les figures 2 et 3 présentent de nombreux avantages par rapport à l'art antérieur.

  1. (i) Un seul réseau d'alimentation est nécessaire pour toutes les bandes de fréquences (comme les bandes F1-F4 dans les modes de réalisation des figures 2 et 3), quel que soit le nombre de bandes disponibles. Dans l'art antérieur, un réseau complet d'alimentation dédié était nécessaire pour chacune des bandes de fréquences.
  2. (ii) A chaque accès radiofréquence (comme les entrées 11A-11D ou 31A-31D dans les modes de réalisation des figures 2 et 3 respectivement), peut être injecté un signal multibande qui comprend plusieurs bandes de fréquence (comme les bandes F1-F4 dans les modes de réalisation des figures 2 et 3) étant donné que les accès RF sont isolés les uns des autres. Des modules assurant les fonctions de filtrage et de déphasage (comme les modules 14A-14D ou 34A, 34C et 31D dans les modes de réalisation des figures 2 et 3 respectivement), gèrent la répartition de fréquence de la multibande en plusieurs bandes de fréquence plus étroites, et adapte le déphasage pour chaque bande de fréquence. Dans ce cas le positionnement de l'inclinaison électrique variable VET est géré par la bande de fréquence F1-F4, et non par l'entrée 11A-11D ou 31A-31D.
  3. (iii) A chaque accès RF, un signal appartenant à n'importe quelle bande de fréquence peut être injecté, c'est à dire qu'il est possible par exemple d'envoyer un signal dans la bande de fréquence F1 à l'entrée 11A, un signal dans la bande de fréquence F2 à l'entrée 11B, un signal dans la bande de fréquence F3 à l'entrée 11C, un signal dans la bande de fréquence F4 à l'entrée 11D, mais aussi un signal dans la bande de fréquence F4 à l'entrée 11A, un signal dans les bandes de fréquence F1 et F3 à l'entrée 11B, un signal dans les bandes de fréquence F2 et F4 à l'entrée 11C, un signal dans la bande de fréquence F1 à l'entrée 11D, ou bien encore toute autre permutation ou combinaison. Un accès RF n'est donc pas dédié à une bande de fréquence spécifique. Les valeurs de déphasage introduits par les modules (comme les modules 14A-14D ou 34A, 34C et 31D dans les modes de réalisation des figures 2 et 3 respectivement) doivent seulement être fixées à des valeurs adaptées selon la configuration choisie.
The embodiments illustrated by the figures 2 and 3 have many advantages over the prior art.
  1. (i) Only one power supply is required for all frequency bands (such as F1-F4 bands in figures 2 and 3 ), regardless of the number of bands available. In the prior art, a complete dedicated power supply network was required for each of the frequency bands.
  2. (ii) At each radio frequency access (such as inputs 11A-11D or 31A-31D in the embodiments of figures 2 and 3 respectively), can be injected a multiband signal which comprises several frequency bands (such as F1-F4 bands in the embodiments of figures 2 and 3 ) since RF accesses are isolated from each other. Modules providing the filtering and phase-shifting functions (such as the modules 14A-14D or 34A, 34C and 31D in the embodiments of the figures 2 and 3 respectively), manage the frequency distribution of the multiband in several narrower frequency bands, and adjust the phase shift for each frequency band. In this case the positioning of the variable electrical inclination VET is managed by the frequency band F1-F4, and not by the input 11A-11D or 31A-31D.
  3. (iii) At each RF access, a signal belonging to any frequency band can be injected, ie it is possible for example to send a signal in the frequency band F1 to the input 11A, a signal in the frequency band F2 at the input 11B, a signal in the frequency band F3 at the input 11C, a signal in the frequency band F4 at the input 11D, but also a signal in the frequency band F4 at the input 11A, a signal in the frequency bands F1 and F3 at the input 11B, a signal in the frequency bands F2 and F4 at the input 11C, a signal in the frequency band F1 at the input 11D, or else any other permutation or combination. RF access is therefore not dedicated to a specific frequency band. The phase shift values introduced by the modules (such as the modules 14A-14D or 34A, 34C and 31D in the embodiments of the figures 2 and 3 respectively) should only be set to values that match the chosen configuration.

On a illustré un troisième mode de réalisation sur la figure 4. Une matrice de Butler 4X4 40, ne comportant pas de lignes à retard, comprend quatre entrées 41A-41D reliées à deux coupleurs hybrides 42A et 42B d'un premier groupe. A chaque entrée 41A-41D peut être introduit un signal multibande comprenant par exemple plusieurs bandes de fréquence F1-F4. Les coupleurs 42A et 42B du premier groupe sont reliés respectivement aux coupleurs 42C et 42D d'un deuxième groupe par des liaisons directes 43A et 43B d'une part, et d'autre part les coupleurs 42A et 42B du premier groupe sont reliés aux coupleurs 42C et 42D du deuxième groupe par l'intermédiaire des coupleurs hybrides 42E et 42F d'un troisième groupe. Dans ce mode de réalisation avancé, les lignes de croisement de la matrice de Butler ont été remplacées par des coupleurs hybrides 42E et 42F, ce qui permet de réaliser un matrice de Butler complète qui ne comporte aucune liaison croisées. La matrice de Butler 4X4 30 comprend donc aussi quatre sorties 44A-44D. A chacune des quatre sorties 44A-44D de la matrice de Butler 30, on recueille un signal sortant ayant le quart de l'énergie du signal entrant.A third embodiment has been illustrated on the figure 4 . A Butler 4X4 matrix 40, having no delay lines, comprises four inputs 41A-41D connected to two hybrid couplers 42A and 42B of a first group. At each input 41A-41D can be introduced a multiband signal comprising for example several frequency bands F1-F4. The couplers 42A and 42B of the first group are respectively connected to the couplers 42C and 42D of a second group by direct links 43A and 43B on the one hand, and on the other hand the couplers 42A and 42B of the first group are connected to the couplers 42C and 42D of the second group via hybrid couplers 42E and 42F of a third group. In this advanced embodiment, the crossing lines of the Butler matrix have been replaced by hybrid couplers 42E and 42F, which makes it possible to produce a complete Butler matrix that has no cross-links. The Butler 4X4 matrix 30 thus also includes four 44A-44D outputs . At each of the four outputs 44A-44D of the Butler matrix 30, an outgoing signal having a quarter of the energy of the incoming signal is collected.

Chacune des sorties 44A, 44C et 44D est respectivement reliée à un module 45A, 45C et 45D. Un retard électrique et un déphasage appropriés sont introduits par les modules 45A, 45C et 45D. Les deux éléments rayonnants 46A et 46B sont reliés à au module 45A par l'intermédiaire d'un diviseur de puissance 48A et d'une ligne à retard 49A placée avant l'un des deux éléments rayonnants 46A et 46B, par exemple ici l'élément rayonnant 46A. La sortie 44B est reliée par un câble coaxial 47 aux deux éléments rayonnant 46C et 46D par l'intermédiaire d'un diviseur de puissance 48B et d'une ligne à retard 49B placée avant l'un des deux éléments rayonnants 46C et 46D, par exemple l'élément rayonnant 46C. De même le module 45C est relié aux deux éléments rayonnants 46E et 46F par l'intermédiaire d'un diviseur de puissance 48C et d'une ligne à retard 49C placée avant l'un des deux éléments rayonnants 46E et 46F, par exemple l'élément rayonnant 46F. Et les deux éléments rayonnants 46G et 46H sont reliés à au module 45D par l'intermédiaire d'un diviseur de puissance 48D et d'une ligne à retard 49D placée avant l'un des deux éléments rayonnants 46G et 46H, par exemple ici l'élément rayonnant 46H. Les sorties ont été dédoublées, grâce à la combinaison de diviseurs et de lignes à retard, afin de permettre de passer de quatre à huit éléments rayonnants alimentés sans augmenter le nombre des entrées.Each of the outputs 44A, 44C and 44D is respectively connected to a module 45A, 45C and 45D. An appropriate electrical delay and phase shift are introduced by the modules 45A, 45C and 45D. The two radiating elements 46A and 46B are connected to the module 45A via a power divider 48A and a delay line 49A placed before one of the two radiating elements 46A and 46B, for example here the radiating element 46A. The output 44B is connected by a coaxial cable 47 to the two radiating elements 46C and 46D via a power divider 48B and a delay line 49B placed before one of the two radiating elements 46C and 46D, by example the radiating element 46C. Similarly, the module 45C is connected to the two radiating elements 46E and 46F via a power divider 48C and a delay line 49C placed before one of the two radiating elements 46E and 46F, for example the radiating element 46F. And the two radiating elements 46G and 46H are connected to the module 45D via a power divider 48D and a delay line 49D placed before one of the two radiating elements 46G and 46H, for example here the 46H radiating element . The outputs were split, thanks to the combination of dividers and delay lines, to allow to go from four to eight powered radiating elements without increasing the number of inputs.

Dans le mode de réalisation illustré sur la figure 4, les éléments rayonnants sont donc contrôlés en phase par paire d'éléments. D'autres configurations basées sur le même principe sont réalisables comme par exemple en limitant le dédoublement de la sortie à certains modules seulement, ou bien au contraire en triplant, voire en quadruplant, la sortie de certains modules en multipliant les diviseurs combinés aux lignes à retard.In the embodiment illustrated on the figure 4 , the radiating elements are therefore controlled in phase by pair of elements. Other configurations based on the same principle are achievable, for example by limiting the splitting of the output to only certain modules, or on the contrary by tripling or even quadrupling the output of certain modules by multiplying the dividers combined with the lines to delay.

Bien entendu le contrôle de huit éléments rayonnants serait aussi possible grâce à l'utilisation d'une matrice de Butler 8x8 par exemple suivie de huit ou sept modules tels que décrit respectivement dans les modes de réalisation des figures 2 et 3. Néanmoins la figure 4 illustre un mode de réalisation avantageux au point de vue du coût, du poids et du volume de l'antenne.Of course, the control of eight radiating elements would also be possible thanks to the use of a Butler 8x8 matrix, for example followed by eight or seven modules as described respectively in the embodiments of FIGS. figures 2 and 3 . Nevertheless, figure 4 illustrates an advantageous embodiment from the point of view of the cost, the weight and the volume of the antenna.

La limitation du nombre de composants nécessaires, et donc la simplification de l'architecture de l'antenne, n'est envisageable que si on accepte une réduction partielle des performances radiofréquences qui se reflète sur le diagramme de rayonnement de l'antenne.The limitation of the number of components required, and thus the simplification of the architecture of the antenna, is only conceivable if a partial reduction of the radio frequency performance which is reflected on the antenna radiation pattern is accepted.

La figure 5 illustre un mode de réalisation particulier où l'inclinaison de l'antenne est contrôlée seulement pour deux bandes de fréquences F1 et F2. The figure 5 illustrates a particular embodiment where the inclination of the antenna is controlled only for two frequency bands F1 and F2.

Une matrice de Butler 4X4 50, ne comportant pas de lignes à retard, comprend quatre entrées 51A-51D reliées à deux coupleurs hybrides 52A et 52B d'un premier groupe. A chaque entrée 51A-51D peut être introduit un signal bibande comprenant deux bandes de fréquence F1 et F2. Les coupleurs hybrides 52A et 52B sont reliés respectivement aux coupleurs hybrides 52C et 52D d'un deuxième groupe par des liaisons directes 53A et 53B d'une part, et d'autre part les coupleurs 52A et 52B sont reliés aux coupleurs 52C et 52D par l'intermédiaire des coupleurs hybrides 52E et 52F d'un troisième groupe. A chacune des quatre sorties 54A-54D de la matrice de Butler 50, on recueille un signal sortant ayant le quart de l'énergie du signal entrant.A Butler 4X4 50 matrix , having no delay lines, comprises four inputs 51A-51D connected to two hybrid couplers 52A and 52B of a first group. At each input 51A-51D can be introduced a dual band signal comprising two frequency bands F1 and F2. The hybrid couplers 52A and 52B are respectively connected to the hybrid couplers 52C and 52D of a second group by direct links 53A and 53B on the one hand, and on the other hand the couplers 52A and 52B are connected to the couplers 52C and 52D by via the hybrid couplers 52E and 52F of a third group. At each of the four outputs 54A-54D of the Butler matrix 50, an outgoing signal having a quarter of the energy of the incoming signal is collected.

Chacune des sorties 54A, 54C et 54D de la matrice de Butler 50 est respectivement reliée à un module 55A, 55C et 55D. Les deux éléments rayonnants 56A et 56B sont reliés à au module 55A par l'intermédiaire d'un diviseur de puissance 58A et d'une ligne à retard 59A placée avant l'un des deux éléments rayonnants 56A et 56B, par exemple l'élément rayonnant 56A. La sortie 54B est reliée par un câble coaxial 57 aux deux éléments rayonnant 56C et 56D par l'intermédiaire d'un diviseur de puissance 58B et d'une ligne à retard 59B placée avant l'un des deux éléments rayonnants 56C et 56D, par exemple l'élément rayonnant 56C. De même le module 55C est relié aux deux éléments rayonnants 56E et 56F par l'intermédiaire d'un diviseur de puissance 58C et d'une ligne à retard 59C placée avant l'un des deux éléments rayonnants 56E et 56F, par exemple ici l'élément rayonnant 56F. Et les deux éléments rayonnants 56G et 56H sont reliés à au module 55D par l'intermédiaire d'un diviseur de puissance 58D et d'une ligne à retard 59D placée avant l'un des deux éléments rayonnants 56G et 56H, par exemple l'élément rayonnant 56H. Each of the outputs 54A, 54C and 54D of the Butler matrix 50 is respectively connected to a module 55A, 55C and 55D. The two radiating elements 56A and 56B are connected to the module 55A via a power divider 58A and a delay line 59A placed before one of the two radiating elements 56A and 56B, for example the element radiating 56A. The output 54B is connected by a coaxial cable 57 to the two radiating elements 56C and 56D via a power divider 58B and a delay line 59B placed before one of the two radiating elements 56C and 56D, by example the radiating element 56C. Similarly the 55C module is connected to the two radiating elements 56E and 56F via a power divider 58C and a delay line 59C placed before one of the two radiating elements 56E and 56F, for example here the radiating element 56F. And the two radiating elements 56G and 56H are connected to the module 55D via a power divider 58D and a delay line 59D placed before one of the two radiating elements 56G and 56H, for example the radiating element 56H.

Un retard électrique et un déphasage appropriés sont introduits par les modules 55A, 55C et 55D. Le signal bibande entrant dans le module 55A, par exemple, est séparé en deux bandes de fréquence F1 et F2 étroites grâce à un premier étage 60 de diplexeurs. Un deuxième étage 61 comportant des lignes à retard fixe applique un retard électrique déterminé au signal dans chaque bande de fréquence F1 et F2 respectivement. Le signal passe ensuite dans un troisième étage 62 de déphaseurs variables qui adapte le déphasage dans chaque bande de fréquence F1 et F2 afin de faire varier l'inclinaison électrique indépendamment pour chacune des bande de fréquence F1 et F2. Enfin le signal atteint le quatrième étage 63 de diplexeurs qui regroupe les signaux appartenant aux deux bandes de fréquence F1 et F2 pour les envoyer dans le diviseur de puissance 58A. Le signal sortant du diviseur de puissance 58A alimente l'élément rayonnant 56A et, via la ligne à retard fixe 59A, l'élément rayonnant 56B qui sont aptes à fonctionner dans les deux bandes de fréquence F1 et F2. L'inclinaison électrique variable VET dans le plan vertical du diagramme de rayonnement de l'antenne peut ainsi être contrôlée de façon indépendante pour chacune des deux bandes de fréquence F1 et F2 grâce au module 55A. De même, les explications données pour le module 55A sont applicables aux modules 55C et 55D. An appropriate electrical delay and phase shift are introduced by the modules 55A, 55C and 55D. The dual-band signal entering the module 55A, for example, is separated into two narrow frequency bands F1 and F2 by means of a first stage 60 of diplexers. A second stage 61 comprising fixed delay lines applies a determined electrical delay to the signal in each frequency band F1 and F2 respectively. The signal then passes into a third stage 62 of variable phase shifters which adjusts the phase shift in each frequency band F1 and F2 in order to vary the electrical inclination independently for each of the frequency bands F1 and F2. Finally the signal reaches the fourth stage 63 of diplexers which groups the signals belonging to the two frequency bands F1 and F2 to send them in the power divider 58A. The outgoing signal of the power divider 58A supplies the radiating element 56A and, via the fixed delay line 59A, the radiating element 56B which are able to operate in the two frequency bands F1 and F2. The variable electrical inclination VET in the vertical plane of the radiation pattern of the antenna can thus be controlled independently for each of the two frequency bands F1 and F2 through the module 55A. Similarly, the explanations given for the module 55A are applicable to the modules 55C and 55D.

Le mode de réalisation illustré sur la figure 6 permet de contrôler de 1 à n bandes de fréquence F1-Fn où n est supérieur à 4.The embodiment illustrated on the figure 6 allows to control from 1 to n frequency bands F1-Fn where n is greater than 4.

Une matrice de Butler 4X4 70, ne comportant pas de lignes à retard, analogue à la matrice de Butler 4X4 50 de la figure 5, comprend quatre entrées 71A-71D reliées à deux coupleurs hybrides 72A et 72B d'un premier groupe. Les coupleurs hybrides 72A et 72B sont reliés respectivement aux coupleurs hybrides 72C et 72D d'un deuxième groupe par des liaisons directes 73A et 73B d'une part, et d'autre part les coupleurs 72A et 72B sont reliés aux coupleurs 72C et 72D par l'intermédiaire des coupleurs hybrides 72E et 72F d'un troisième groupe. Chacune des sorties 74A, 74C et 74D de la matrice de Butler 70 est respectivement reliée à un module 75A, 75C et 75D, analogues aux modules 55A, 55C et 55D de la figure 5. Les modules 75A, 75C et 75D sont eux-mêmes reliés chacun à une paire d'éléments rayonnants 76A-76B, 76E-76F et 76G-76H respectivement par l'intermédiaire de diviseurs de puissance 78A, 78C et 78D et de lignes à retard 79A, 79C et 79D. La sortie 74B est reliée par un câble coaxial 77 à la paire d'éléments rayonnants 76C-76D par l'intermédiaire d'un diviseur de puissance 78B et d'une ligne à retard 79B. A Butler 4X4 70 matrix , having no delay lines, similar to the Butler 4X4 50 matrix of the figure 5 , comprises four inputs 71A-71D connected to two hybrid couplers 72A and 72B of a first group. The hybrid couplers 72A and 72B are respectively connected to the hybrid couplers 72C and 72D of a second group by direct links 73A and 73B on the one hand, and on the other hand the couplers 72A and 72B are connected to the couplers 72C and 72D by via hybrid couplers 72E and 72F of a third group. Each of the outputs 74A, 74C and 74D of the Butler matrix 70 is respectively connected to a module 75A, 75C and 75D, similar to the modules 55A, 55C and 55D of the figure 5 . The modules 75A, 75C and 75D are themselves each connected to a pair of radiating elements 76A-76B, 76E-76F and 76G-76H respectively via power dividers 78A, 78C and 78D and delay lines. 79A, 79C and 79D. The output 74B is connected by a coaxial cable 77 to the pair of radiating elements 76C-76D via a power divider 78B and a delay line 79B.

A chaque accès radiofréquence 71A-71D est injecté un signal d'entrée, qui peut être un signal monobande ou bien un signal multibande comprenant par exemple plusieurs bandes de fréquence F1-Fn. L'inclinaison électrique variable VET dans le plan vertical du diagramme de rayonnement de l'antenne est contrôlée de façon indépendante pour chaque bande de fréquence F1-Fn. Le nombre de bande de fréquence F1-Fn n'est à priori pas limité, sinon par des contraintes que l'on s'imposerait. Le signal multibande entrant dans les modules 74A, 74C et 74D est séparé en bandes de fréquence F1-Fn étroites grâce à un premier étage de diplexeurs.At each radio frequency access 71A-71D is injected an input signal, which may be a single-band signal or a multiband signal comprising for example several F1-Fn frequency bands . The variable electrical inclination VET in the vertical plane of the radiation pattern of the antenna is controlled independently for each frequency band F1-Fn. The number of frequency band F1-Fn is a priori not limited, otherwise by constraints that one would impose. The multiband signal entering the modules 74A, 74C and 74D is separated into narrow F1-Fn frequency bands by a first diplexer stage.

Bien entendu, la présente invention n'est pas limitée aux modes de réalisation décrits. En particulier, on pourra élargir les exemples décrits à tous les types de matrice de Butler ayant de 2 à N entrées et sorties, pour contrôler de 1 à n bandes de fréquence F1-Fn et alimenter de 1 à X éléments rayonnants à partir de chacune des sorties.Of course, the present invention is not limited to the embodiments described. In particular, the described examples can be extended to all types of Butler matrix having from 2 to N inputs and outputs, to control from 1 to n frequency bands F1-Fn and feed from 1 to X radiating elements from each outputs.

Claims (8)

  1. A power system for controlling the variable electrical tilt in the vertical plane of radiating elements (15A-15D; 35A-35D; 46A-46H; 56A-56H; 76A-76H) in an a network of array antennas, comprising a Butler matrix (10; 30; 40; 50; 70) and at least one module (14A-14D; 34A; 34C; 34D; 45A; 45C; 45D; 55A, 55C, 55D; 75A, 75C, 75D) comprising delay lines (19; 61), the Butler matrix (10; 30; 40; 50; 70) comprising N inputs (11A-11D; 31A-31D; 41A-41D; 51A-51D; 71A-71D) and N outputs (13A-13D; 33A-33D; 44A-44D; 54A-54D; 74A-74D) and hybrid couplers (12A-12D; 32A-32D; 42A-42F; 52A-52F; 72A-72F), each input (11A-11D; 31A-31D; 41A-41D; 51A-51D; 71A-71D) being able to receive a single-band or multiband radio frequency signal belonging to any frequency band F1-Fn and each output (13A-13D; 33A-33D; 44A-44D; 54A-54D; 74A-74D) being able to transmit a signal to at least one radiating element (15A-15D; 35A-35D; 46A-46H; 56A-56H; 76A-76H) enabling an independent electrical tilt for each frequency band F1-Fn, to at least one of the outputs (13A-13D; 33A, 33C, 33D; 44A, 44C, 44D; 54A, 54C, 54D; 74A, 74C, 74D) of the Butler matrix (10; 30; 40; 50; 70) is connected a module (14A-14D; 34A; 34C; 34D; 45A; 45C; 45D; 55A, 55C, 55D; 75A, 75C, 75D) which connects that at least one output (13A-13D; 33A, 33C, 33D; 44A, 44C, 44D; 54A, 54C, 54D; 74A, 74C, 74D) to the respective radiating element (15A-15D; 35A, 35C, 35D; 46A, 46B, 46E-46H; 56A, 56B, 56E-56H; 76A, 76B, 76E-76H), the module (14A-14D; 34A; 34C; 34D; 45A; 45C; 45D; 55A, 55C, 55D; 75A, 75C, 75D) comprising
    - a first stage (16) of diplexers (17; 60) being able to receive the signal from said output (13A-13D; 33A, 33C, 33D; 44A, 44C, 44D; 54A, 54C, 54D; 74A, 74C, 74D) and to separate the signal based on said frequency bands F1-Fn,
    - a second stage (18) of fixed delay lines (19; 61) being able to apply a given electrical delay to the signals provided by the first stage (16) in each frequency band F1-Fn,
    - a third stage (20) of variable phase shifters (21; 62) being able to introduce a phase shift adjusted to the signals provided by the second stage (18) into each frequency band F1-Fn, and
    - a fourth stage (22) of diplexers (23; 63) being able to gather the signals provided by the third stage (20) belonging to the different frequency bands F1-Fn to transmit them to at least one radiating element (15A-15D; 35A, 35C, 35D; 46A, 46B, 46E-46H; 56A, 56B, 56E-56H; 76A, 76B, 76E-76H),
  2. A power system according to claim 1, comprising a number of modules (34A; 34C; 34D; 45A; 45C; 45D; 55A, 55C, 55D; 75A, 75C, 75D) that is less than the number N of outputs (33A-33D; 44A-44D; 54A-54D; 74A-74D) of the Butler matrix (30; 40; 50; 70).
  3. A power system according to claim 2, wherein the number of modules (34A; 34C; 34D; 45A; 45C; 45D; 55A, 55C, 55D; 75A, 75C, 75D) is equal to N-1.
  4. A power system according to one of the preceding claims, wherein the Butler matrix (10; 30) comprises N hybrid couplers (12A-12D, 32A-32D), N being an even number, of which N/2 hybrid couplers belonging to a first group (12A, 12B; 32A, 32B) and N/2 hybrid couplers belonging to a second group (12C, 12D; 32C, 32D), each hybrid coupler of the first group (12A, 12B; 32A, 32B) comprising two outputs and each output being respectively connected to a different hybrid coupler of a second group (12C, 12D; 32C, 32D).
  5. A power system according to one of the preceding claims, wherein the Butler matrix (40; 50; 70) comprises N+N/2 hybrid couplers (42A-42F; 52A-52F; 72A-72F), N being an even number, of which N/2 hybrid couplers belonging to a first group (42A, 42B; 52A, 52B; 72A, 72B), N/2 hybrid couplers belonging to a second group (42C, 42D; 52C, 52D; 72C, 72D), and N/2 hybrid couplers belonging to a third group (42E, 42F; 52E, 52F; 72E, 72F), each hybrid coupler of the first group (42A, 42B; 52A, 52B; 72A, 72B) comprising two outputs, a first output being directly linked to a hybrid coupler of the second group (42C, 42D; 52C, 52D; 72C, 72D) and the second output being linked to a hybrid coupler of the second group (42C, 42D; 52C, 52D; 72C, 72D) via a hybrid coupler of the third group (42E, 42F; 52E, 52F; 72E, 72F).
  6. A method for controlling the variable electrical tilt in the vertical plane of radiating elements in an a network of multiband antennas by means of a power system according to one of the preceding claims, characterized in that the electrical tilt is adjusted independently for each frequency band by means of a module, linking the Butler matrix to the radiating elements, which comprises a variable phase-shifter on the path of the signal in each frequency band.
  7. A multiband antenna comprising radiating elements in an array and a power system for controlling the variable electrical tilt of the radiating elements according to one of the claims 1 to 5, wherein the module (45A, 45C, 45D; 55A, 55C, 55D; 75A, 75C, 75D) is linked to a pair of radiating elements (46A, 46B, 46E-46H; 56A, 56B, 56E-56H; 76A, 76B, 76E-76H) via a power splitter (48A, 48C, 48D; 58A, 58C, 58D; 78A, 78C, 78D) and at least one fixed-delay line (49A, 49C; 49D; 59A, 59C, 59D; 79A, 79C, 79D).
  8. A multiband antenna according to claim 7, wherein the output of the module (45A, 45C, 45D; 55A, 55C, 55D; 75A, 75C, 75D) is linked to the input of a power splitter (48A, 48C, 48D; 58A, 58C, 58D; 78A, 78C, 78D), one of the outputs of the power splitter being linked to a first radiating element (46B, 46E, 46G; 56B, 56E, 56G; 76B, 76E, 76G) and the other output of the power splitter being linked to a fixed delay line (49A, 49C, 49D; 59A, 59C, 59D; 79A, 79C, 79D) linked to a second radiating element (46A, 46F, 46H; 56A, 56F, 56H; 76A, 76F, 76H).
EP12306096.4A 2012-09-11 2012-09-11 Multi-band antenna with variable electrical tilt Active EP2706613B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12306096.4A EP2706613B1 (en) 2012-09-11 2012-09-11 Multi-band antenna with variable electrical tilt
US14/427,085 US10103432B2 (en) 2012-09-11 2013-09-09 Multiband antenna with variable electrical tilt
CN201380055496.6A CN104756318B (en) 2012-09-11 2013-09-09 Multiband antenna with variable electric tilting
PCT/EP2013/068631 WO2014040957A1 (en) 2012-09-11 2013-09-09 Multiband antenna with variable electrical tilt
JP2015531528A JP6012873B2 (en) 2012-09-11 2013-09-09 Multiband antenna with variable electrical tilt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12306096.4A EP2706613B1 (en) 2012-09-11 2012-09-11 Multi-band antenna with variable electrical tilt

Publications (2)

Publication Number Publication Date
EP2706613A1 EP2706613A1 (en) 2014-03-12
EP2706613B1 true EP2706613B1 (en) 2017-11-22

Family

ID=46888980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12306096.4A Active EP2706613B1 (en) 2012-09-11 2012-09-11 Multi-band antenna with variable electrical tilt

Country Status (5)

Country Link
US (1) US10103432B2 (en)
EP (1) EP2706613B1 (en)
JP (1) JP6012873B2 (en)
CN (1) CN104756318B (en)
WO (1) WO2014040957A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411350B2 (en) 2014-01-31 2019-09-10 Commscope Technologies Llc Reflection cancellation in multibeam antennas
CN103945414B (en) * 2014-04-23 2017-04-26 华为技术有限公司 Method and equipment for determining mapping relation between frequency band and long-distance power transfer inclination angle
US10243263B2 (en) 2014-04-30 2019-03-26 Commscope Technologies Llc Antenna array with integrated filters
KR101703744B1 (en) * 2015-06-15 2017-02-07 주식회사 케이엠더블유 Multi-line phase shifter in multi-band antenna of mobile communication base transceiver station
CN105914469B (en) * 2016-06-01 2018-09-14 华南理工大学 The microstrip line butler matrix with band-pass filtering property based on uniform impedance resonator
CN108054514A (en) * 2018-01-11 2018-05-18 江苏亨鑫科技有限公司 A kind of antenna system of two-dimensional radiation directional diagram reconstructable
US10700420B2 (en) 2018-03-05 2020-06-30 Commscope Technologies Llc Compact multiband feed for small cell base station antennas
US11018427B2 (en) 2018-08-03 2021-05-25 Commscope Technologies Llc Multiplexed antennas that sector-split in a first band and operate as MIMO antennas in a second band
CN109378593B (en) * 2018-11-15 2023-11-03 华南理工大学 Broadband butler matrix feed network based on frequency selectivity
WO2021076195A1 (en) * 2019-10-18 2021-04-22 Galtronics Usa, Inc. Mitigating beam squint in multi-beam forming networks
KR102200533B1 (en) * 2020-01-29 2021-01-08 국방과학연구소 Improved structure of multi-channel wideband active phased array antenna
CN113839175A (en) * 2020-06-24 2021-12-24 康普技术有限责任公司 Base station antenna
US20220329268A1 (en) * 2021-04-07 2022-10-13 Skyworks Solutions, Inc. Systems and methods for diplexer circuits with leakage cancellation
WO2024209115A1 (en) * 2023-04-03 2024-10-10 Celling 5G Network, S.L. Radiant device for a flag-type advertising sign and advertising flag

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731316A (en) * 1972-04-25 1973-05-01 Us Navy Butler submatrix feed for a linear array
US3736592A (en) * 1972-05-25 1973-05-29 Us Navy Multiple beam retrodirective array with circular symmetry
US3917998A (en) * 1973-11-02 1975-11-04 Communications Satellite Corp Butler matrix transponder
US4316192A (en) * 1979-11-01 1982-02-16 The Bendix Corporation Beam forming network for butler matrix fed circular array
US4451831A (en) * 1981-06-29 1984-05-29 Sperry Corporation Circular array scanning network
US4425567A (en) * 1981-09-28 1984-01-10 The Bendix Corporation Beam forming network for circular array antennas
US4799065A (en) * 1983-03-17 1989-01-17 Hughes Aircraft Company Reconfigurable beam antenna
US4689627A (en) * 1983-05-20 1987-08-25 Hughes Aircraft Company Dual band phased antenna array using wideband element with diplexer
US5257031A (en) * 1984-07-09 1993-10-26 Selenia Industrie Elettroniche Associate S.P.A. Multibeam antenna which can provide different beam positions according to the angular sector of interest
US4831619A (en) * 1986-08-14 1989-05-16 Hughes Aircraft Company Satellite communications system having multiple downlink beams powered by pooled transmitters
US4879711A (en) * 1986-08-14 1989-11-07 Hughes Aircraft Company Satellite communications system employing frequency reuse
US5179386A (en) * 1986-08-21 1993-01-12 Rudish Ronald M Cylindrical phased array antenna system to produce wide open coverage of a wide angular sector with high directive gain and strong capability to resolve multiple signals
US4839894A (en) * 1986-09-22 1989-06-13 Eaton Corporation Contiguous channel multiplexer/demultiplexer
US4882588A (en) * 1986-12-22 1989-11-21 Hughes Aircraft Company Steerable beam antenna system using butler matrix
US5233358A (en) 1989-04-24 1993-08-03 Hughes Aircraft Company Antenna beam forming system
US5086302A (en) * 1991-04-10 1992-02-04 Allied-Signal Inc. Fault isolation in a Butler matrix fed circular phased array antenna
JP2904084B2 (en) 1995-11-30 1999-06-14 日本電気株式会社 Antenna feeder
JP3345767B2 (en) 1996-02-21 2002-11-18 日本電信電話株式会社 Multi-beam antenna feed circuit
JP3569083B2 (en) 1996-08-14 2004-09-22 日本電信電話株式会社 Multi-beam phased array antenna
US6104935A (en) * 1997-05-05 2000-08-15 Nortel Networks Corporation Down link beam forming architecture for heavily overlapped beam configuration
US6463301B1 (en) * 1997-11-17 2002-10-08 Nortel Networks Limited Base stations for use in cellular communications systems
JP2000223924A (en) * 1999-02-02 2000-08-11 Mitsubishi Electric Corp Antenna device
JP2000244224A (en) * 1999-02-22 2000-09-08 Denso Corp Multi-beam antenna and antenna system
US6549171B1 (en) * 2000-08-28 2003-04-15 The United States Of America As Represented By The Secretary Of The Air Force Constrained feed techniques for phased array subarrays
JP2003069334A (en) 2001-08-24 2003-03-07 Nippon Telegr & Teleph Corp <Ntt> Circular array antenna
US6791507B2 (en) 2003-02-13 2004-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Feed network for simultaneous generation of narrow and wide beams with a rotational-symmetric antenna
CN100455075C (en) 2003-06-05 2009-01-21 中兴通讯股份有限公司 Realizing apparatus for space multi-wave beam feed network
US6965279B2 (en) * 2003-07-18 2005-11-15 Ems Technologies, Inc. Double-sided, edge-mounted stripline signal processing modules and modular network
US6864837B2 (en) * 2003-07-18 2005-03-08 Ems Technologies, Inc. Vertical electrical downtilt antenna
EP1784894A1 (en) * 2004-08-31 2007-05-16 Fractus, S.A. Slim multi-band antenna array for cellular base stations
US9014619B2 (en) * 2006-05-30 2015-04-21 Atc Technologies, Llc Methods and systems for satellite communications employing ground-based beam forming with spatially distributed hybrid matrix amplifiers
MX2011013156A (en) * 2009-06-08 2012-03-06 Powerwave Technologies Inc Muti-element amplitude and phase compensated antenna array with adaptive pre-distortion for wireless network.
US8768267B2 (en) * 2010-02-03 2014-07-01 Hollinworth Fund, L.L.C. Switchless band separation for transceivers
CN103201900A (en) * 2010-11-15 2013-07-10 瑞典爱立信有限公司 Antenna architecture for maintaining beam shape in a reconfigurable antenna
US8674895B2 (en) * 2011-05-03 2014-03-18 Andrew Llc Multiband antenna
US9293809B2 (en) * 2011-06-30 2016-03-22 Intel Corporation Forty-five degree dual broad band base station antenna
US9484619B2 (en) * 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
EP2629362B1 (en) * 2012-02-20 2016-04-27 CommScope Technologies LLC Shared antenna arrays with multiple independent tilt
KR101975830B1 (en) * 2013-04-02 2019-05-09 한국전자통신연구원 Beam forming device and method for forming beam thereof
CN105247734A (en) * 2013-05-29 2016-01-13 古特尔株式会社 Multiband antenna system
US9444151B2 (en) * 2014-01-10 2016-09-13 Commscope Technologies Llc Enhanced phase shifter circuit to reduce RF cables
US10116425B2 (en) * 2014-11-10 2018-10-30 Commscope Technologies Llc Diplexed antenna with semi-independent tilt
US10033086B2 (en) * 2014-11-10 2018-07-24 Commscope Technologies Llc Tilt adapter for diplexed antenna with semi-independent tilt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20150244072A1 (en) 2015-08-27
CN104756318B (en) 2017-12-22
JP6012873B2 (en) 2016-10-25
US10103432B2 (en) 2018-10-16
EP2706613A1 (en) 2014-03-12
JP2015530052A (en) 2015-10-08
WO2014040957A1 (en) 2014-03-20
CN104756318A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
EP2706613B1 (en) Multi-band antenna with variable electrical tilt
CA2110634C (en) Variable polarization synthesis active antenna
EP2532050B1 (en) On-board directional flat-plate antenna, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
FR2672436A1 (en) DEVICE FOR ELECTRONICALLY CONTROLLING THE RADIATION DIAGRAM OF AN ANTENNA WITH ONE OR MORE DIRECTION BEAMS AND / OR VARIABLE WIDTH.
EP2532046A1 (en) Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
EP2688138B1 (en) Antenna and multi-beam antenna system comprising compact sources and satellite telecommunication system comprising at least one such antenna
EP3039745A1 (en) A signal generator for a phased array antenna
EP2797166A1 (en) Distributed feeding device for forming an antenna beam
EP3176875B1 (en) Active antenna architecture with reconfigurable hybrid beam formation
EP3002825B1 (en) Antenna with shaped reflector(s) reconfigurable in orbit
EP3179559A1 (en) Dual-band modular active antenna
EP3832899A1 (en) Wireless transmitter performing channel frequency multiplexing
EP3506429B1 (en) Quasi-optical beam former, basic antenna, antenna system, associated telecommunications platform and method
WO2012085768A1 (en) Beamforming circuit and antenna system including such a circuit
EP2822192A1 (en) System for producing simultaneous multi-link directional beams
EP2750245B1 (en) Cross-polarised panel antenna system with variable electrical tilt
FR3013909A1 (en) CORNET, ELEMENTARY ANTENNA, ANTENNA STRUCTURE AND TELECOMMUNICATION METHOD THEREOF
KR102469437B1 (en) Apparatus for OAM mode combination and antenna apparatus for generating multi-mode
FR3129535A1 (en) Active multibeam array antenna comprising a hybrid device for the formation of directional beams
EP4092831A1 (en) Antenna with lacunary distribution network
FR2952759A1 (en) Reflector focal network and antenna for use in satellite to cover chosen geographical area of geostationary orbit, has sub-reflector misaligning and/or deforming beam from selected sources to produce spot near area
FR3111480A1 (en) Multimode, multiport and multistandard antenna for adaptable communication system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

111Z Information provided on other rights and legal means of execution

Free format text: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Effective date: 20140516

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

17P Request for examination filed

Effective date: 20140912

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

D11X Information provided on other rights and legal means of execution (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012040035

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0003240000

Ipc: H01Q0001240000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 25/00 20060101ALI20170406BHEP

Ipc: H01Q 5/28 20150101ALI20170406BHEP

Ipc: H01Q 3/40 20060101ALI20170406BHEP

Ipc: H01Q 1/24 20060101AFI20170406BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 949214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012040035

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: SITE NOKIA PARIS SACLAY ROUTE DE VILLEJUST, 91620 NOZAY (FR)

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 949214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171122

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCATEL LUCENT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180222

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012040035

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230803

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230808

Year of fee payment: 12

Ref country code: DE

Payment date: 20230802

Year of fee payment: 12