EP2466074A1 - Gasturbinentriebwerk mit Kolbenringdichtung - Google Patents
Gasturbinentriebwerk mit Kolbenringdichtung Download PDFInfo
- Publication number
- EP2466074A1 EP2466074A1 EP10195144A EP10195144A EP2466074A1 EP 2466074 A1 EP2466074 A1 EP 2466074A1 EP 10195144 A EP10195144 A EP 10195144A EP 10195144 A EP10195144 A EP 10195144A EP 2466074 A1 EP2466074 A1 EP 2466074A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- piston ring
- sealing
- housing
- turbine
- receptacle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/005—Sealing means between non relatively rotating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
Definitions
- the present invention relates to an engine with a sealing device, in particular an aircraft engine.
- the sealing device in the engine is required for sealing a gas channel, for example, formed from lining segments towards the case.
- trim segments are provided which form part of an inner ring of the gas channel and trim segments forming part of an outer ring of the gas channel, and trim segments, the struts between the inner and outer ring dress and disposed between the lining segments of the inner and outer ring.
- the lining segments which form the inner or outer ring of the gas channel are so-called inner and outer panels or so-called inner and outer lining panels.
- the cladding segments which form the cladding of the struts are referred to as so-called fairing.
- a sealing device for a gas turbine engine is known.
- the sealing device thereby prevents a high temperature main gas flow from impinging directly on a vane / rotor disk interface during periods of maximum engine output power operation.
- the sealing device consists of a segmented, annular sealing part, which has an L-shaped cross-section.
- the seal member is attached to a stator assembly or a nozzle support device.
- the sealing member also has a honeycomb-shaped part which is fixed to the radially inner side of its axially aligned leg.
- a seal is provided by counter-rotating low-pressure rotors with respect to a booster and an LPT housing, through the use of brush seals.
- a first brush seal is disposed in a sealing arrangement between a second fan and a fan frame.
- a second brush seal is disposed between a front end of a low pressure turbine housing and an outer drum rotor.
- a third brush means is between a rear end of the low-pressure turbine housing and a last stage of a low-pressure turbine blade row, with screwed to the outer drum rotor is arranged.
- An alternative to the brush seals are non-contact seals such as suction seals or mechanical seals.
- a gas turbine engine with a leaf spring gasket known.
- a leaf seal and leaf springs of the leaf spring seal between suspension of an outer segmented band and rear rails are arranged, which are connected to turbine lining segments.
- the leaf seal and the leaf springs are secured by mounting pins in corresponding receptacles of the suspensions.
- the invention is based on the object of designing an engine with an improved sealing device.
- an engine in particular an aircraft engine, is provided with a turbine with a gas channel, wherein a sealing device is provided with at least one piston ring element for sealing the gas channel.
- At least one piston ring member is disposed between a turbine housing of the turbine and an annular segmented fairing with fairing segments.
- the piston ring element can in this case in addition to the displacements and radial tolerances, for example, due to the segmented formed fairing compensate.
- the lining segments of the lining each have a receptacle in which the at least one piston ring element is received and wherein the at least one piston ring member is biased radially and / or axially sealingly against a sealing surface of the turbine housing.
- a radial as well as an axial seal can be provided by the piston ring member.
- the receptacle of the respective trim segment has an outer diameter smaller than the inner diameter of the at least one piston ring element in the receptacle to provide a radial gap between the receptacle of the trim segment and the piston ring element.
- the radial gap is dimensioned, for example, so that it can compensate in particular radial games of the panel and its fairing segments, special in different operating conditions of the engine.
- the width of the receptacle of the respective trim segment is greater than the width of the at least one piston ring element in the receptacle to provide an axial gap between the receptacle and the piston ring element.
- the axial gap is, for example, dimensioned such that it can in particular compensate for the axial tolerances of the lining segments (in particular if the lining segments expand differently axially during operation of the engine due to hot gas in the hot gas channel, for example).
- At least two piston ring elements are provided as sealing means.
- At least one piston ring member is additionally provided axially sealing against the turbine housing or its ring member and / or the respective trim segment of the panel or its inclusion.
- an axial sealing of the hot gas channel can additionally be provided in this way, if, for example, two piston ring elements are used as the sealing device,
- a section of an aircraft engine 10 is shown. More specifically, in Fig. 1 Among other things, a housing 12 or that of a turbine intermediate housing (TCF) with a ring element 13 with a flange portion 14, and an annular segmented fairing 16 are shown.
- TCF turbine intermediate housing
- a hot gas channel 20 (TCF Flow Path) between the annular segmented panel 16 and the housing or the turbine intermediate housing (TCF) 12 via individual sealing strip segments 22, which are pressed by spring elements 24 to the sealing surface of the ring member 13
- a spring element 24 is shown which is attached to the panel 16 or an extension of the panel 16 respectively by a fastening pin 26 and a sealing strip segment 22 presses against the sealing surface of the ring member 13.
- a section of an aircraft engine 10 is shown. More specifically, in Fig. 2 In this case, a section of a housing 12 of a turbine intermediate housing (TCF) with a ring element 13 is shown (designed as a retaining ring of a guide blade), which has a flange portion 14. Furthermore, a vane device 17 of a turbine 18, here for example a vane device 17 with a vane stage 1 (Vane STG 1) 19 of a low-pressure turbine 18, and an annular, segmented casing 16 are shown.
- TCF turbine intermediate housing
- Vane STG 1 vane stage 1
- the segmented shroud 16 having the sealing means of the present invention has shroud segments 15 forming part of the outer ring of the gas channel 20 and shroud segments 25 covering the struts between an inner ring and the outer ring and between shroud segments 15 of the outer ring are arranged to form the outer ring of the gas channel 20.
- the cladding segments 15 which form part of the outer ring of the gas channel 20 are so-called outer panels or so-called outer cladding panels.
- the lining segments 25, which form the lining of the struts, are referred to as so-called fairing as described above.
- the inner ring of the gas channel 20 also has a segmented lining, with inner panels and the trim segments 25 therebetween.
- Fig. 2 a part of the housing 12 of the turbine intermediate housing (TCF) is shown.
- the housing 12 is connected to the separately formed ring element 13, which is integrally formed, that is not formed segmented, and the flange portion 14 has.
- the flange portion 14 may have a sealing portion 34 for the sealing device 30 as a receptacle.
- the sealing portion 34 has, for example, a cylindrical sealing surface for sealingly receiving the piston ring member 32.
- each of the trim segments 15, 25 of the outer ring trim 16 of the hot gas duct 20, i. the outer ring panels (so-called outer panels or outer cladding panels) and the fairing fairing segments 25 interposed therebetween have a receptacle 36 for the sealing means 30.
- the sealing device 30 has a piston ring element 32, which is received in the respective receptacle 36 of the segments 15, 25 of the panel 16.
- the receptacle 36 in the respective trim segment 15 and 25 is designed such that the outer diameter of the receptacle 36 is formed smaller than the inner diameter of the piston ring member 32, so that a gap 21 results in the radial direction between the piston ring member 32 and the receptacle 36th
- the radial gap 21 serves in this case, for example, to provide a radial play of the lining segments 15 and 25. This play is necessary in order to enable or permit radial thermal expansions and also radial component deviations (tolerances).
- the receptacle 36 is formed in the respective trim segment 15 and 25 such that its width is greater than the width of the piston ring element 32, so that a gap 23 in the axial direction between the receptacle 36 and the piston ring member 32 is given.
- the axial gap 23 serves, for example, to provide an axial play of the lining segments 15 and 25, which are assembled into a ring and the annular segmented panel 16 form to allow axial tolerances and not to impede different thermal expansion from segment to segment.
- the piston ring member 32 is received as a sealing means 30 in the seal receptacle 36 of the respective panel segment 15 and 25 of the panel 16 and sealingly abuts the associated sealing portion 34 of the ring member 13 of the housing 12 of the turbine intermediate housing (TCF).
- the ring member 13 and the housing 12 may also be formed so that the piston ring member 32 bears against this axially sealing.
- the panel segments 15 and 25 of the panel 16 can also be formed so that the piston ring member 32 bears against these radially sealing.
- the axial guidance of the piston ring element 32 in this case takes place via a seal receiver 36 in the housing or the ring element. This also applies to the following second embodiment of the invention.
- FIG. 3 Furthermore, a section of an aircraft engine 10 is shown, comparable to that in FIG Fig. 2 shown section.
- the sealing device 30 in contrast to the embodiment according to the invention in Fig. 2 a plurality of piston ring elements 32, for example, a first and second piston ring element 32nd
- Fig. 2 also shows Fig. 3 a section of a housing 12 of a turbine intermediate housing (TCF), however, the ring member 13 is, for example, integrally formed with the turbine housing 12 and not as in Fig. 2 provided as a separate part and attached to the housing 12, for example by means of screws.
- TCF turbine intermediate housing
- the cladding segments 25 are arranged between cladding segments 15.
- the lining segments 15, 25 each have a receptacle 36 for the two piston ring elements 32 of the sealing device 30.
- the first piston ring member 32 is sealingly on the housing 12 or its example, with the housing 12 integrally formed ring member 13 (sealing surface 34).
- the second piston ring element 32 in turn is sealingly against the respective trim segment 15 and 25.
- the second piston ring member 32 is sealingly attached to an associated sealing surface of the receptacle 36 of the respective panel segment 15, 25.
- the receptacle 36 in the respective trim segment 15, 25 is for example designed such that the outer diameter of the receptacle 36 is formed smaller than the inner diameter of the first piston ring member 32, so that a gap 21 results in the radial direction between the first piston ring member 32 and the Recording 36.
- the radial gap 21 serves, for example, for providing a radial play for the lining segments 15, 25.
- the first piston ring element lies in the radial direction in a sealing manner against the ring element 13 or the housing 12.
- the outer diameter of the receptacle 36 for example, equal to the inner diameter of the second piston ring member 32 or forms with this a transition fit, so that the second piston ring member 32 sealingly bears against the receptacle 36 or an associated sealing surface of the receptacle 36.
- the receptacle 36 in the respective trim segment 15, 25 is formed so that its width is greater than the width of the two piston ring elements 32 together, so that a gap 23 is given in the axial direction between the receptacle 36 and the two piston ring elements 32.
- the axial gap 23 serves, for example, to provide an axial clearance for the lining segments 15, 25, which, as described above, are assembled into a ring or outer ring and form the annular segmented lining 16 for the outer ring.
- the two piston ring elements 32 can now compensate for deviations in the radial direction. This means that if, for example, the lining segments 15, 25 in the radial direction move outward or expand in the radial direction, this radial expansion can be compensated by the two piston ring members 32 and the radial column 21 of the piston ring members 32.
- the first piston ring member 32 is sealingly on its outer periphery to the ring member 13 of the housing 12 and the second piston ring member 32 with its inner periphery sealingly against the receptacle 36 at.
- the first piston ring member 32 lies with its outer periphery sealingly against the ring member 13 of the housing 12 and the second piston ring member 32 is sealingly against the receptacle 36 with its inner periphery.
- the first piston ring member 32 in the axial direction also sealingly on the receptacle 36 at. Due to the axial play of the receptacle 36 is the second piston ring member 32, as in Fig. 2 For example, it is not shown sealingly on the receptacle 36.
- an expansion of the lining 16 and its lining segments 15, 25 are compensated or compensated in the axial direction and at the same time an axial seal between the panels 15, 25 and the housing 12 and its ring member 13 are provided.
- the piston ring pair 32 in Fig. 3 be designed so that a piston ring member 32 (here the second Kolberingelement 32) against the radial inner surface, here the seal holder 36 in Fig. 3 , spans and seals.
- the other piston ring element 32 (here the first piston ring element 32) can in turn be designed such that it presses against the radial outer surface and thus seals, here the sealing section 34 of the flange section 14 of the ring element 13 Fig. 3 which as a separate part or in one piece, as in Fig. 3 , may be formed with the housing 12.
- tolerance-related steps between the lining 16 or its lining segments 15, 25 and the piston ring elements 32 can be reproduced and thus lead to a further improvement of the sealing effect.
- the wear running-in process
- the piston ring members 32 may either seal against the axially elongated liner 16, as in FIG Fig. 3 is shown, or against the housing 12 and against the Ring element 13 dense to the interface to the turbine, eg here low pressure turbine (LPT) 18, not to influence and also to simplify the assembly.
- LPT low pressure turbine
- a reliable hot runner sealing between the turbine housing or turbine intermediate housing (TCF) and the turbine, here e.g. Low pressure turbine (LPT) can be provided.
- TCF turbine intermediate housing
- LPT Low pressure turbine
- a piston ring pair 32 as exemplified in Fig. 3 can be designed so that a ring 32 clamps and seals against a radially inner surface, the other presses against a radial Au- ⁇ enthesis 32 and thus seals. This is useful because the inner surface to be sealed, ie the surface of the panels 15, 25, is segmented here and thus, in contrast to normal applications of piston rings or piston ring elements 32, especially in the axial direction tolerances.
- seal construction is particularly suitable to endure the axial displacement occurring without loss of sealing effect.
- a hot gas collapse, for example, in areas can be avoided, which do not permanently withstand the hot gas temperatures, inevitably. This leads to a significant reduction in maintenance or maintenance costs.
- the maintenance costs are significantly reduced in particular by the fact that the piston ring element solution, for example in the examples in the Fig. 2 and 3 the life of the sealing segments in Fig. 1 significantly better.
- consequential damage such as cracks in the vane device 17, retaining ring element 13 and a repair of the housing of the turbine intermediate housing (TCF), for example by means of spraying or even a replacement (Replacement) can be avoided.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
- Die vorliegende Erfindung betrifft ein Triebwerk mit einer Dichtungseinrichtung, insbesondere ein Flugzeugtriebwerk. Die Dichtungseinrichtung in dem Triebwerk ist erforderlich zum Dichten eines Gaskanals, beispielsweise gebildet aus Verkleidungssegmenten hin zum Gehäuse (engl. case). Dabei sind Verkleidungssegmente vorgesehen, die einen Teil eines inneren Rings des Gaskanals bilden und Verkleidungssegmente die einen Teil eines äußeren Rings des Gaskanals bilden, sowie Verkleidungssegmente, die Streben zwischen dem inneren und äußeren Ring verkleiden und zwischen den Verkleidungssegmenten des inneren und äußeren Rings angeordnet sind. Die Verkleidungssegmente die den inneren bzw. äußeren Ring des Gaskanals bilden sind sog. inner and outer panels bzw. sog. innere und äußere Verkleidungsplatten. Des Weiteren werden die Verkleidungssegmente welche die Verkleidung der Streben bilden als sog. Fairing bezeichnet.
- Aus dem Stand der Technik, wie er in der
DE 29 43 464 offenbart ist, ist eine Dichtungsvorrichtung für ein Gasturbinentriebwerk bekannt. Die Dichtungsvorrichtung verhindert hierbei, dass ein eine hohe Temperatur aufweisendes Hauptgasstrom während Perioden eines Betriebs mit maximaler Triebwerksausgangsleistung direkt auf eine Leitschaufel/Rotorscheibe-Grenzfläche trifft. Hierzu besteht die Dichtungsvorrichtung aus einem segmentierten, ringförmigen Dichtungsteil, das einen L-förmingen Querschnitt hat. Das Dichtungsteil ist dabei an einer Statoranordnung oder einer Düsentragvorrichtung befestigt. Das Dichtungsteil hat außerdem einen wabenförmigen Teil, der an der radial inneren Seite seines axial ausgerichteten Schenkels befestigt ist. - Des Weiteren ist aus der
DE 602 20 636 T2 eine Gasturbine mit gegenläufigen Niederdruckrotoren bekannt. Dabei ist eine Abdichtung von gegenläufig rotierenden Niederdruckrotoren gegenüber einem Booster- und einem LPT-Gehäuse vorgesehen, durch die Verwendung von Bürstendichtungen. Eine erste Bürstendichtung ist in einer abdichtenden Anordnung zwischen einem zweiten Bläser und einem Bläserrahmen angeordnet. Weiter ist eine zweite Bürstendichtung zwischen einem vorderen Ende eines Niederdruckturbinengehäuses und eines äußeren Trommelrotors angeordnet. Eine dritte Bürsteneinrichtung ist zwischen einem hinteren Ende des Niederdruckturbinengehäuses und einer letzten Stufe einer Niederdruckturbinenschaufelreihe, die mit dem äußeren Trommelrotor verschraubt ist angeordnet. Eine Alternativ zu den Bürstendichtungen sind dabei berührungslose Dichtungen wie Saugdichtungen oder Gleitringdichtungen. Außerdem ist aus derEP 1270 875 A2 ein Gasturbinentriebwerk mit einer Blattfederdichtung bekannt. Dabei sind eine Blattdichtung und Blattfedern der Blattfederdichtung zwischen Aufhängungen eines äußeren segmentierten Bandes und hinteren Schienen angeordnet, die mit Turbinenverkleidungssegmenten verbunden sind. Die Blattdichtung und die Blattfedern sind hierbei über Befestigungsstifte in entsprechenden Aufnahmen der Aufhängungen gesichert. - Vor diesem Hintergrund liegt der Erfindung nun die Aufgabe zugrunde, ein Triebwerk mit einer verbesserten Dichtungseinrichtung auszubilden.
- Gemäß der Erfindung wird ein Triebwerk, insbesondere ein Flugzeugtriebwerk, mit einer Turbine mit einem Gaskanal bereitgestellt, wobei eine Dichtungseinrichtung mit wenigstens einem Kolbenringelement zum Dichten des Gaskanals vorgesehen ist.
- Dies hat den Vorteil, dass durch das wenigstens eine Kolbenringelement größere axiale Verschiebungen ausgeglichen werden können, welche im Betrieb an der Turbine oder dem Turbinengehäuse auftreten können als dies bei Blattfederdichtungen der Fall ist. Des Weiteren kann das Kolbenringelement neben den axialen Verschiebungen auch radiale Bewegungen bis zu einem gewissen Grad ebenfalls ausgleichen. Dadurch kann der Gaskanal, insbesondere ein Heißgaskanal, in dem Triebwerk wirksam abgedichtet werden.
- Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen sowie der Beschreibung unter Bezugnahme auf die Zeichnungen.
- In einer erfindungsgemäßen Ausführungsform ist wenigstens ein Kolbenringelement zwischen einem Turbinengehäuse der Turbine und einer ringförmigen, segmentierten Verkleidung mit Verkleidungssegmenten angeordnet. Das Kolbenringelement kann hierbei neben den Verschiebungen auch radiale Toleranzen, beispielsweise aufgrund der segmentiert ausgebildeten Verkleidung, ausgleichen.
- Gemäß einer weiteren erfindungsgemäßen Ausführungsform weisen die Verkleidungssegmente der Verkleidung jeweils eine Aufnahme auf, in welcher das wenigstens eine Kolbenringelement aufgenommen ist und wobei das wenigstens eine Kolbenringelement radial und/oder axial dichtend gegen eine Dichtfläche des Turbinengehäuses vorgespannt ist. Auf diese Weise kann durch das Kolbenringelement ein radiale wie auch eine axiale Dichtung bereitgestellt werden.
- In einer weiteren erfindungsgemäßen Ausführungsform weist die Aufnahme des jeweiligen Verkleidungssegments einen Außendurchmesser auf, der kleiner ist als der Innendurchmessers des wenigstens einen Kolbenringelements in der Aufnahme, um einen radialen Spalt bereitzustellen zwischen der Aufnahme des Verkleidungssegments und dem Kolbenringelement. Der radiale Spalt ist dabei beispielsweise so dimensioniert, dass er insbesondere radiale Spiele der Verkleidung und ihrer Verkleidungssegmente ausgleichen kann, besondere in verschiedenen Betriebszuständen des Triebwerks.
- In einer anderen erfindungsgemäßen Ausführungsform ist die Breite der Aufnahme des jeweiligen Verkleidungssegments größer als die Breite des wenigstens einen Kolbenringelements in der Aufnahme, um einen axialen Spalt bereitzustellen zwischen der Aufnahme und dem Kolbenringelement. Der axiale Spalt ist dabei beispielsweise so dimensioniert, dass er insbesondere die axialen Toleranzen der Verkleidungssegmente ausgleichen kann (insbesondere wenn sich die Verkleidungssegmente im Betrieb des Triebwerks aufgrund von heißem Gas im Heißgaskanal z.B. unterschiedlich axial ausdehnen).
- In einer weiteren erfindungsgemäßen Ausführungsform sind wenigstens zwei Kolbenringelemente als Dichtungseinrichtung vorgesehen. Hierbei kann ein Kolbenringelement gegen eine radiale Innenfläche, z.B. die radiale Innenfläche des Turbinengehäuses, und das andere Kolbenringelement gegen eine radiale Außenfläche, z.B. die der Verkleidung bzw. die der Aufnahme des jeweiligen Verkleidungssegments, vorgespannt und dichtend bzw. radial dichtend ausgebildet sein.
- Gemäß einer anderen erfindungsgemäßen Ausführungsform ist wenigstens ein Kolbenringelement zusätzlich axial dichtend gegen das Turbinengehäuse bzw. dessen Ringelements und/oder das jeweilige Verkleidungssegment der Verkleidung bzw. dessen Aufnahme vorgesehen. Auf diese Weise kann neben der radialen Abdichtung zusätzlich auch immer eine axiale Abdichtung des Heißgaskanals bereitgestellt werden, wenn beispielsweise zwei Kolbenringelemente als Dichtungseinrichtung verwendet werden,
- Die Erfindung wird nachfolgend anhand der in den schematischen Figuren der Zeichnungen angegebenen Ausführungsbeispiele näher erläutert. Es zeigen:
-
Fig. 1 einen Ausschnitt aus einem Flugzeugtriebwerk, wobei ein Turbinengehäuse bzw. ein Turbinenzwischengehäuse (TCF) mit einer segmentierten Verkleidung und einer Dichtungseinrichtung gezeigt ist; -
Fig. 2 einen Ausschnitt aus einem Flugzeugtriebwerk, wobei ein Turbinengehäuse bzw. ein Turbinenzwischengehäuse (TCF) mit einer segmentierten Verkleidung und einer Dichtungseinrichtung gemäß einer ersten Ausführungsform der Erfindung gezeigt sind; und -
Fig. 3 einen Ausschnitt aus einem Flugzeugtriebwerk, wobei ein Turbinengehäuse bzw. ein Turbinenzwischengehäuse (TCF) mit einer segmentierten Verkleidung und einer Dichtungseinrichtung gemäß einer zweiten Ausführungsform der Erfindung gezeigt sind. - In den Figuren sind gleiche Elemente oder ähnliche Elemente mit gleichen Bezugszeichen bezeichnet, sofern nichts anderes angegeben ist. Die Darstellung der Kolbenringelemente in den Ausführungsbeispielen in den nachfolgenden
Fig. 2 und3 ist nicht maßstäblich. - In
Fig. 1 ist ein Ausschnitt aus einem Flugzeugtriebwerk 10 gezeigt. Genauer gesagt sind inFig. 1 u.a. ein Gehäuse 12 bzw. das eines Turbinenzwischengehäuses (TCF) mit einem Ringelement 13 mit einem Flanschabschnitt 14, gezeigt, sowie eine ringförmige, segmentiert ausgebildete Verkleidung (engl. Fairing) 16. - Wie in
Fig. 1 dargestellt ist, erfolgt eine Abdichtung eines Heißgaskanals 20 (TCF Flow Path) zwischen der ringförmigen, segmentiert ausgebildeten Verkleidung 16 und dem Gehäuse bzw. des Turbinenzwischengehäuses (TCF) 12 über einzelne Dichtstreifensegmente 22, die über Federelemente 24 an die Dichtfläche des Ringelements 13 angedrückt werden. InFig. 1 ist ein Federelement 24 gezeigt, das an der Verkleidung 16 oder einer Verlängerung der Verkleidung 16 jeweils durch einen Befestigungspin 26 befestigt ist und ein Dichtstreifensegment 22 gegen die Dichtfläche des Ringelements 13 andrückt. - Die hohe Betriebstemperatur, die in dem Heißgaskanal 20 herrscht, zusammen mit den großen axialen Verschiebungen, die auftreten können, führen zu einem Verlust der Federvorspannung der Federelemente 24, so dass diese die Dichtstreifensegmente 22 nicht mehr ausreichend gegen die entsprechenden Dichtflächen des Ringelements 13 andrücken können. Durch die damit verbundene reduzierte Dichtwirkung verstärkt sich außerdem dieser Effekt noch. Die Folge ist, dass es zu einem Heißgaseinbruch kommt. Durch den Heißgaseinbruch kann außerdem ein Kriechen beispielsweise des Turbinengehäuses 12 und des Ringelements 13 auftreten. Des Weiteren können Risse in der Verkleidung 16, sowie einem Haltering (engl. Vane STG 1 Retainer) für eine Leitschaufel 1 einer Turbine, hier Niederdruckturbine (nicht dargestellt) auftreten. Der Verlust der Federspannung der Federelemente 24 führt zudem zu lose vibrierenden Dichtsegmenten 22 und Blattfedern, die sich dadurch sehr stark verschleißen, so dass sie sich lösen und verloren gehen können.
- In
Fig. 2 ist nun ebenfalls ein Ausschnitt aus einem Flugzeugtriebwerk 10 gezeigt. Genauer gesagt ist inFig. 2 dabei ein Ausschnitt eines Gehäuses 12 eines Turbinenzwischengehäuses (TCF) mit einem Ringelement 13 gezeigt (ausgebildet als Haltering einer Leitschaufel), welches einen Flanschabschnitt 14 aufweist. Des Weiteren ist eine Leitschaufeleinrichtung 17 einer Turbine 18, hier z.B. eine Leitschaufeleinrichtung 17 mit einer Leitschaufelstufe 1 (engl. Vane STG 1) 19 einer Niederdruckturbine 18, und eine ringförmige, segmentiert ausgebildete Verkleidung 16 dargestellt. Die segmentierte Verkleidung 16, welche die erfindungsgemäße Dichtungseinrichtung aufweist, weist dabei Verkleidungssegmente 15 auf, welche einen Teil des äußeren Rings des Gaskanals 20 bilden und Verkleidungssegmente 25, die die Streben zwischen einem inneren Ring und dem äußeren Ring verkleiden und zwischen Verkleidungssegmenten 15 des äußeren Rings angeordnet sind, um den äußeren Ring des Gaskanals 20 zu bilden. Die Verkleidungssegmente 15 die einen Teil des äußeren Rings des Gaskanals 20 bilden sind sog. outer panels bzw. sog. äußere Verkleidungsplatten. Die Verkleidungssegmente 25, welche die Verkleidung der Streben bilden, werden wie zuvor beschrieben als sog. Fairing bezeichnet. Der innere Ring des Gaskanals 20 weist ebenfalls eine segmentierte Verkleidung auf, mit inneren Verkleidungsplatten (engl. inner panels) und den dazwischen angeordneten Verkleidungssegmenten 25. - Um nun einen Heißgaseinbruch in den Bereich zwischen Heißgaskanal 20 und Gehäuse zu verhindern, wie er bei dem in
Fig. 1 gezeigten Aufbau auftreten kann, werden nun die Dichtsegmente inklusive der Federelemente und deren Befestigungspins durch eine Dichtungseinrichtung 30 mit wenigstens einem Kolbenringelement 32 ersetzt. Diese Dichtungskonstruktion hat dabei den Vorteil, insbesondere gegenüber der mit Bezug aufFig. 1 zuvor beschriebenen Dichtkonstruktion, dass diese Dichtkonstruktion größere axiale Verschiebungen und in erforderlichem Umfang auch die auftretenden radialen Bewegungen ausgleichen kann und somit dauerhaft abdichtet. Die Fähigkeit des größeren Ausgleichs einer axialen Verschiebung ist dabei insbesondere für das gezeigte Anwendungsbeispiel geeignet, da hier hauptsächlich aufgrund von hohen Betriebstemperaturen axiale Verschiebungen auftreten oder auftreten können. Radiale Verschiebungen treten in deutlich geringerem Umfang auf, da ein segmentierter Heißgaskanal vorliegt. - Wie aus
Fig. 2 entnommen werden kann, ist in dem gezeigten Ausschnitt, ein Teil des Gehäuses 12 des Turbinenzwischengehäuses (TCF) gezeigt. Dabei ist das Gehäuse 12 mit dem separat ausgebildeten Ringelement 13 verbunden, welches einteilig ausgebildet ist, d.h. nicht segmentiert ausgebildet ist, und den Flanschabschnitt 14 aufweist. Der Flanschabschnitt 14 kann dabei einen Dichtungsabschnitt 34 für die Dichtungseinrichtung 30 als Aufnahme aufweisen. Der Dichtungsabschnitt 34 weist beispielsweise eine zylindrische Dichtungsfläche auf, zur dichten Aufnahme des Kolbenringelements 32. - Des Weiteren weist beispielsweise jedes der Verkleidungssegmente 15, 25 der Verkleidung 16 für den äußeren Ring des Heißgaskanals 20, d.h. die Verkleidungssegmente 15 für den äußeren Ring (sog. engl. outer panels oder äußere Verkleidungsplatten) und der dazwischen angeordneten Verkleidungssegmente 25 für die Streben (engl. Fairing), eine Aufnahme 36 für die Dichtungseinrichtung 30 auf. In der ersten Ausführungsform weist die Dichtungseinrichtung 30 ein Kolbenringelement 32 auf, das in der jeweiligen Aufnahme 36 der Segmente 15, 25 der Verkleidung 16 aufgenommen ist.
- Die Aufnahme 36 in dem jeweiligen Verkleidungssegment 15 und 25 ist dabei derart ausgebildet, dass der Außendurchmesser der Aufnahme 36 kleiner ausgebildet ist als der Innendurchmesser des Kolbenringelements 32, so dass sich ein Spalt 21 in radialer Richtung ergibt zwischen dem Kolbenringelement 32 und der Aufnahme 36. Der radiale Spalt 21 dient hierbei beispielsweise zum Bereitstellen eines radialen Spiels der Verkleidungssegmente 15 und 25. Dieses Spiel ist erforderlich, um radiale Wärmedehnungen und auch radiale Bauteilabweichungen (Toleranzen) zu ermöglichen bzw. zulassen z können.
- Des Weiteren ist die Aufnahme 36 in dem jeweiligen Verkleidungssegment 15 und 25 so ausgebildet, dass ihre Breite größer ist als die Breite des Kolbenringelements 32, so dass ein Spalt 23 in axialer Richtung zwischen der Aufnahme 36 und dem Kolbenringelement 32 gegeben ist. Der axiale Spalt 23 dient dabei beispielsweise zum Bereitstellen eines axialen Spiels der Verkleidungssegmente 15 und 25, welche zu einem Ring zusammengesetzt sind und die ringförmige segmentierte Verkleidung 16 bilden, um axiale Toleranzen zulassen zu können und auch von Segment zu Segment unterschiedliche Wärmedehnungen nicht zu behindern.
- Wie in
Fig. 2 gezeigt ist, ist das Kolbenringelement 32 als Dichtungseinrichtung 30 in der Dichtungsaufnahme 36 des jeweiligen Verkleidungssegments 15 und 25 der Verkleidung 16 aufgenommen und liegt dichtend an dem zugeordneten Dichtungsabschnitt 34 des Ringelements 13 des Gehäuses 12 des Turbinenzwischengehäuses (TCF) an. Das Ringelement 13 bzw. das Gehäuse 12 kann auch so ausgebildet werden, dass das Kolbenringelement 32 an diesem axial dichtend anliegt. Umgekehrt können die Verkleidungssegmente 15 und 25 der Verkleidung 16 auch so ausgebildet werden, dass das Kolbenringelement 32 an diesen radial dichtend anliegt. Die axiale Führung des Kolbenringelements 32 erfolgt in diesem Fall über eine Dichtungsaufnahme 36 im Gehäuse oder dem Ringelement. Dies gilt auch für die nachfolgende zweite Ausführungsform der Erfindung. - In
Fig. 3 ist des Weiteren ein Ausschnitt aus einem Flugzeugtriebwerk 10 gezeigt, vergleichbar dem inFig. 2 gezeigten Ausschnitt. Bei der inFig. 3 gezeigten erfindungsgemäßen Ausführungsform weist die Dichtungseinrichtung 30 jedoch im Gegensatz zu der erfindungsgemäßen Ausführungsform inFig. 2 mehrere Kolbenringelemente 32 auf, z.B. ein erstes und zweites Kolbenringelement 32. - Wie zuvor
Fig. 2 zeigt auchFig. 3 einen Ausschnitt eines Gehäuses 12 eines Turbinenzwischengehäuses (TCF), dabei ist das Ringelement 13 jedoch beispielsweise einstückig mit dem Turbinengehäuse 12 ausgebildet und nicht wie inFig. 2 als separates Teil vorgesehen und an dem Gehäuse 12 befestigt, z.B. mittels Schrauben. - Des Weiteren zeigt
Fig. 3 , wie auch zuvorFig. 2 , eine ringförmige, segmentiert ausgebildete Verkleidung 16 mit Verkleidungssegmenten 15, welche den äußeren Ring bzw. einen Teil des äußeren Rings bilden (sog. outer panels) und Verkleidungssegmente 25, welche die Streben verkleiden (sog. Fairing), sowie eine Leitschaufeleinrichtung 17 einer Turbine 18, hier z.B. einer Niederdruckturbine. Die Verkleidungssegmente 25 für die Verkleidung der Streben und die Verkleidungssegmente 15 für den äußeren Ring bilden zusammen den äußeren Ring des Heißgaskanals 20. Hierbei sind die Verkleidungssegmente 25 zwischen Verkleidungssegmenten 15 angeordnet. - Die Verkleidungssegmente 15, 25 weisen jeweils eine Aufnahme 36 für die beiden Kolbenringelemente 32 der Dichtungseinrichtung 30 auf. Das erste Kolbenringelement 32 liegt dabei dichtend an dem Gehäuse 12 oder dessen z.B. mit dem Gehäuse 12 integral ausgebildeten Ringelement 13 (Dichtfläche 34) an. Das zweite Kolbenringelement 32 liegt wiederum dichtend an dem jeweiligen Verkleidungssegment 15 und 25 an. Wie in
Fig. 3 gezeigt ist, liegt das zweite Kolbenringelement 32 dabei an einer zugeordneten Dichtfläche der Aufnahme 36 des jeweiligen Verkleidungssegments 15, 25 dichtend an. - Die Aufnahme 36 in dem jeweiligen Verkleidungssegment 15, 25 ist dabei beispielsweise derart ausgebildet, dass der Außendurchmesser der Aufnahme 36 kleiner ausgebildet ist als der Innendurchmesser des ersten Kolbenringelements 32, so dass sich ein Spalt 21 in radialer Richtung ergibt zwischen dem ersten Kolbenringelement 32 und der Aufnahme 36. Der radiale Spalt 21 dient hierbei beispielsweise zum Bereitstellen eines radialen Spiels für die Verkleidungssegmente 15, 25. Das erste Kolbenringelement liegt in radialer Richtung dichtend an dem Ringelement 13 bzw. dem Gehäuse 12 an.
- Des Weiteren ist der Außendurchmesser der Aufnahme 36 beispielsweise gleich dem Innendurchmesser des zweiten Kolbenringelements 32 oder bildet mit diesem eine Übergangspassung, so dass das zweite Kolbenringelement 32 dichtend an der Aufnahme 36 oder einer zugeordneten Dichtfläche der Aufnahme 36 anliegt.
- Weiter ist die Aufnahme 36 in dem jeweiligen Verkleidungssegment 15, 25 so ausgebildet, dass ihre Breite größer ist als die Breite der beiden Kolbenringelemente 32 zusammen, so dass ein Spalt 23 in axialer Richtung zwischen der Aufnahme 36 und den beiden Kolbenringelementen 32 gegeben ist. Der axiale Spalt 23 dient dabei beispielsweise zum Bereitstellen eines axialen Spiels für die Verkleidungssegmente 15, 25, welche, wie zuvor beschrieben, zu einem Ring bzw. äußeren Ring zusammengesetzt sind und die ringförmige segmentierte Verkleidung 16 für den äußeren Ring bilden.
- Die beiden Kolbenringelemente 32 können nun Abweichungen in radialer Richtung ausgleichen. Das bedeutet, dass wenn sich beispielsweise die Verkleidungssegmente 15, 25 in radialer Richtung nach außen bewegen oder in radialer Richtung ausdehnen, so kann diese radiale Ausdehnung durch die beiden Kolbenringelemente 32 und die radialen Spalte 21 der Kolbenringelemente 32 ausgeglichen werden. Dabei liegt das erste Kolbenringelement 32 an seinem Außenumfang dichtend an dem Ringelement 13 des Gehäuses 12 an und das zweite Kolbenringelement 32 mit seinem Innenumfang dichtend an der Aufnahme 36 an. Entsprechendes gilt auch, wenn die Verkleidungssegmente 15, 25 sich in radialer Richtung nach innen bewegen oder in radialer Richtung zusammenziehen. Auch hier liegt das erste Kolbenringelement 32 mit seinem Außenumfang dichtend an dem Ringelement 13 des Gehäuses 12 an und das zweite Kolbenringelement 32 liegt mit seinem Innenumfang dichtend an der Aufnahme 36 an.
- Des Weiteren liegt in dem in
Fig. 3 gezeigten Beispiel das erste Kolbenringelement 32 in axialer Richtung außerdem dichtend an der Aufnahme 36 an. Aufgrund des axialen Spiels der Aufnahme 36 liegt das zweite Kolbenringelement 32, wie inFig. 2 gezeigt ist z.B. nicht dichtend an der Aufnahme 36 an. Auf diese Weise kann beispielsweise eine Ausdehnung der Verkleidung 16 und deren Verkleidungssegmenten 15, 25 in axialer Richtung ausgeglichen oder kompensiert werden und gleichzeitig aber eine axiale Dichtung zwischen den Verkleidungen 15, 25 und dem Gehäuse 12 und dessen Ringelement 13 bereitgestellt werden. - Mit anderen Worten kann das Kolbenringpaar 32 in
Fig. 3 so ausgelegt werden, dass ein Kolbenringelement 32 (hier das zweite Kolberingelement 32) gegen die radiale Innenfläche, hier der Dichtungsaufnahme 36 inFig. 3 , spannt und dichtet. Das andere Kolbenringelement 32 (hier das erste Kolbenringelement 32) kann wiederum so ausgelegt werden, dass es gegen die radiale Au-βenfläche drückt und somit dichtet, hier den Dichtungsabschnitt 34 des Flanschabschnitts 14 des Ringelements 13 inFig. 3 , welches als separates Teil oder einstückig, wie inFig. 3 , mit dem Gehäuse 12 ausgebildet sein kann. - Je nach Materialwahl können sich, im Falle eines mehr oder minder auftretenden Einlaufvorgangs, toleranzbedingte Stufen zwischen der Verkleidung 16 bzw. deren Verkleidungssegmenten 15, 25 und den Kolbenringelementen 32 abbilden und somit zu einer weiteren Verbesserung der Dichtwirkung führen. Durch die damit verbundenen Verbesserungen des Tragbildes wird dann auch der Verschleiß (Einlaufvorgang) weiter reduziert.
- Die Kolbenringelemente 32 können entweder gegen die in axialer Richtung verlängerte Verkleidung 16 dichten, wie in
Fig. 3 gezeigt ist, oder aber auch gegen das Gehäuse 12 bzw. gegen dessen Ringelement 13 dichten, um die Schnittstelle zu der Turbine, z.B. hier Niederdruckturbine (LPT) 18, nicht zu beeinflussen und auch um die Montage zu vereinfachen. - Mittels der erfindungsgemäßen Dichtungseinrichtung 30 kann eine zuverlässige Heißkanalabdichtung zwischen dem Turbinengehäuse oder Turbinenzwischengehäuse (TCF) und der Turbine, hier z.B. Niederdruckturbine (LPT), bereitgestellt werden.
- Ein Kolbenringpaar 32, wie es beispielhaft in
Fig. 3 gezeigt ist, kann so ausgelegt werden, dass ein Ring 32 gegen eine radiale Innenfläche spannt und dichtet, der andere gegen eine radiale Au-βenfläche 32 drückt und somit dichtet. Dies ist sinnvoll, da die innere abzudichtende Fläche, d.h. die Fläche der Verkleidungen 15, 25, hier segmentiert ist und somit im Gegensatz zu normalen Anwendungsfällen von Kolbenringen bzw. Kolbenringelementen 32, vor allem auch in axialer Richtung toleranzbehaftet ist. - Diese zuvor mit Bezug auf die Ausführungsbeispiele in den
Fig. 2 und3 beschriebene Dichtungskonstruktion ist insbesondere geeignet, die auftretende axiale Verschiebung ohne Verlust der Dichtwirkung zu ertragen. Ein Heißgaseinbruch z.B. in Bereiche kann vermieden werden, die den Heißgastemperaturen, nicht dauerhaft zwangsläufig standhalten. Dies führt zu einer deutlichen Reduzierung der Instandhaltungs- oder Wartungskosten. - Die Wartungskosten werden insbesondere dadurch deutlich reduziert, dass die Kolbenringelementlösung z.B. in den Beispielen in den
Fig. 2 und3 die Lebensdauer der Dichtsegmente inFig. 1 deutlich übertrifft. Zudem können Folgeschäden, wie beispielsweise Risse in der Leitschaufeleinrichtung 17, Halteringelement 13 sowie eine Reparatur des Gehäuses des Turbinenzwischengehäuses (TCF), beispielsweise mittels Aufspritzen oder sogar einem Ersatz (Replacement), vermieden werden. - Obwohl die vorliegende Erfindung vorstehend anhand der bevorzugten Ausführungsbeispiele beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Art und Weise modifizierbar. Insbesondere sind die zuvor beschriebenen Ausführungsbeispiele miteinander kombinierbar, insbesondere einzelne Merkmale davon.
-
- 10
- Ausschnitt aus Flugtriebwerk (Teilbereich eines Turbinenzwischengehäuses (TCF))
- 12
- Gehäuse des Turbinenzwischengehäuses(TCF)
- 13
- Ringelement (Haltering für Leitschaufel 1 der LPT Vane Stg 1 Retainer)
- 14
- Flanschabschnitt (Ringelement)
- 15
- Verkleidungssegment (zur Bildung des inneren und äußeren Rings des Gaskanals (inner and outer panels)
- 16
- Verkleidung
- 17
- Leitschaufeleinrichtung
- 18
- Niederdruckturbine
- 19
- Leitschaufel
- 20
- Heißgaskanal
- 21
- radialer Spalt
- 22
- Dichtstreifen (Segment)
- 23
- axialer Spalt
- 24
- Federelement
- 25
- Verkleidungssegment (zur Verkleidung der Streben (Fairing) des TCFs)
- 26
- Befestigungspin
- 30
- Dichtungseinrichtung
- 32
- Kolbenringelement
- 34
- Dichtungsabschnitt
- 36
- Dichtungsaufnahme
Claims (12)
- Triebwerk (10), insbesondere Flugzeugtriebwerk, mit einer Turbine (18) mit einem Gaskanal (20), wobei eine Dichtungseinrichtung (30) mit wenigstens einem Kolbenringelement (32) zum Dichten des Gaskanals (20) vorgesehen ist.
- Triebwerk nach Anspruch 1, dadurch gekennzeichnet, dass das wenigstens ein Kolbenringelement (32) zwischen einem Gehäuse (12, 13) der Turbine (18) und einer ringförmigen, segmentierten Verkleidung (16) mit Verkleidungssegmenten (15, 25) angeordnet ist.
- Triebwerk nach Anspruch 2, dadurch gekennzeichnet, dass die Verkleidungssegmente (15, 25) der Verkleidung (16) jeweils eine Aufnahme (36) aufweisen, in welcher das wenigstens eine Kolbenringelement (32) aufgenommen ist und wobei das wenigstens eine Kolbenringelement (32) radial und/oder axial dichtend gegen eine Dichtfläche des Gehäuses (12, 13) vorgespannt ist.
- Triebwerk nach Anspruch 3, dadurch gekennzeichnet, dass die Aufnahme (36) des jeweiligen Verkleidungssegments (15, 25) einen Außendurchmesser aufweist der kleiner ist als der Innendurchmessers des wenigstens einen Kolbenringelements (32), um einen radialen Spalt (21) bereitzustellen zwischen der Aufnahme (36) des Verkleidungssegments (15, 25) und dem Kolbenringelement (32).
- Triebwerk nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Breite der Aufnahme (36) des jeweiligen Verkleidungssegments (15, 25) größer ist als die Breite des wenigstens einen Kolbenringelements (32), um einen axialen Spalt (23) bereitzustellen zwischen der Aufnahme (36) des jeweiligen Verkleidungssegments (15, 25) und dem Kolbenringelement (32).
- Triebwerk nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens zwei Kolbenringelemente (32) als Dichtungseinrichtung (30) vorgesehen sind.
- Triebwerk nach Anspruch 6, dadurch gekennzeichnet, dass die Kolbenringelemente (32) derart ausgelegt sind, dass ein Kolbenringelement (32) gegen eine radiale Innenfläche und das andere Kolbenringelement (32) gegen eine radiale Außenfläche vorgespannt und dichtend ausgebildet ist.
- Triebwerk nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass ein Kolbenringelement (32) gegen die radiale Innenfläche des Gehäuses (12, 13) radial dichtend vorgesehen ist und das andere Kolbenringelement (32) gegen eine radiale Außenfläche des jeweiligen Verkleidungssegments (15, 25) und der Verkleidung (16) radial dichtend ausgebildet ist.
- Triebwerk nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Kolbenringelement (32) zusätzlich axial dichtend gegen das Turbinengehäuse (12, 13) und/oder das jeweilige Verkleidungssegment (15, 25) der Verkleidung (16) vorgesehen ist.
- Triebwerk nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (12) ein Ringelement (13) aufweist, wobei ein Kolbenringelement (32) radial und/oder axial dichtend an dem Ringelement (13) vorgesehen ist und wobei das Ringelement (13) einteilig mit dem Gehäuse (12) ausgebildet ist oder als separates Teil an dem Gehäuse (12) befestigt ist.
- Triebwerk nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Turbine (18) als Niederdruckturbine ausgebildet ist.
- Triebwerk nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gaskanal (20) ein Heißgaskanal (20) ist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10195144A EP2466074A1 (de) | 2010-12-15 | 2010-12-15 | Gasturbinentriebwerk mit Kolbenringdichtung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10195144A EP2466074A1 (de) | 2010-12-15 | 2010-12-15 | Gasturbinentriebwerk mit Kolbenringdichtung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2466074A1 true EP2466074A1 (de) | 2012-06-20 |
Family
ID=43989839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10195144A Withdrawn EP2466074A1 (de) | 2010-12-15 | 2010-12-15 | Gasturbinentriebwerk mit Kolbenringdichtung |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2466074A1 (de) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2743459A1 (de) * | 2012-12-11 | 2014-06-18 | MTU Aero Engines GmbH | Strömungsmaschine |
US10247019B2 (en) | 2017-02-23 | 2019-04-02 | General Electric Company | Methods and features for positioning a flow path inner boundary within a flow path assembly |
US10253643B2 (en) | 2017-02-07 | 2019-04-09 | General Electric Company | Airfoil fluid curtain to mitigate or prevent flow path leakage |
US10253641B2 (en) | 2017-02-23 | 2019-04-09 | General Electric Company | Methods and assemblies for attaching airfoils within a flow path |
US10370990B2 (en) | 2017-02-23 | 2019-08-06 | General Electric Company | Flow path assembly with pin supported nozzle airfoils |
US10371383B2 (en) * | 2017-01-27 | 2019-08-06 | General Electric Company | Unitary flow path structure |
US10378373B2 (en) | 2017-02-23 | 2019-08-13 | General Electric Company | Flow path assembly with airfoils inserted through flow path boundary |
US10385709B2 (en) | 2017-02-23 | 2019-08-20 | General Electric Company | Methods and features for positioning a flow path assembly within a gas turbine engine |
US10385776B2 (en) | 2017-02-23 | 2019-08-20 | General Electric Company | Methods for assembling a unitary flow path structure |
US10393381B2 (en) | 2017-01-27 | 2019-08-27 | General Electric Company | Unitary flow path structure |
US10450897B2 (en) | 2016-07-18 | 2019-10-22 | General Electric Company | Shroud for a gas turbine engine |
US10816199B2 (en) | 2017-01-27 | 2020-10-27 | General Electric Company | Combustor heat shield and attachment features |
US10822973B2 (en) | 2017-11-28 | 2020-11-03 | General Electric Company | Shroud for a gas turbine engine |
US11111858B2 (en) | 2017-01-27 | 2021-09-07 | General Electric Company | Cool core gas turbine engine |
US11268394B2 (en) | 2020-03-13 | 2022-03-08 | General Electric Company | Nozzle assembly with alternating inserted vanes for a turbine engine |
US11402097B2 (en) | 2018-01-03 | 2022-08-02 | General Electric Company | Combustor assembly for a turbine engine |
US11428160B2 (en) | 2020-12-31 | 2022-08-30 | General Electric Company | Gas turbine engine with interdigitated turbine and gear assembly |
US11739663B2 (en) | 2017-06-12 | 2023-08-29 | General Electric Company | CTE matching hanger support for CMC structures |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE972115C (de) * | 1954-10-23 | 1959-05-21 | Maschf Augsburg Nuernberg Ag | Axialdurchstroemte Turbine fuer heisse Treibmittel, insbesondere Gasturbine |
DE2943464A1 (de) | 1978-10-30 | 1980-05-14 | Gen Electric | Dichtungsvorrichtung fuer ein gasturbinentriebwerk |
DE3609578A1 (de) * | 1986-03-21 | 1987-08-27 | Daimler Benz Ag | Dichtung bei einer gasturbine |
DE3939272A1 (de) * | 1989-11-28 | 1991-05-29 | Daimler Benz Ag | Dichtring |
DE4100225A1 (de) * | 1991-01-07 | 1992-07-09 | Daimler Benz Ag | Vorrichtung zur abdichtung eines aus zwei ineinander geschobenen, rotationssymmetrischen gehaeuseteilen einer gasturbine gebildeten spaltes |
EP1270875A2 (de) | 2001-06-21 | 2003-01-02 | General Electric Company | Befestigung eines Dichtstreifens in einer Turbine mit Hilfe von Stiften |
DE60220636T2 (de) | 2002-03-01 | 2008-02-21 | General Electric Co. | Gasturbine mit gegenläufigen Niederdruckrotoren |
EP1939404A2 (de) * | 2006-12-19 | 2008-07-02 | United Technologies Corporation | Statoranordnung |
-
2010
- 2010-12-15 EP EP10195144A patent/EP2466074A1/de not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE972115C (de) * | 1954-10-23 | 1959-05-21 | Maschf Augsburg Nuernberg Ag | Axialdurchstroemte Turbine fuer heisse Treibmittel, insbesondere Gasturbine |
DE2943464A1 (de) | 1978-10-30 | 1980-05-14 | Gen Electric | Dichtungsvorrichtung fuer ein gasturbinentriebwerk |
DE3609578A1 (de) * | 1986-03-21 | 1987-08-27 | Daimler Benz Ag | Dichtung bei einer gasturbine |
DE3939272A1 (de) * | 1989-11-28 | 1991-05-29 | Daimler Benz Ag | Dichtring |
DE4100225A1 (de) * | 1991-01-07 | 1992-07-09 | Daimler Benz Ag | Vorrichtung zur abdichtung eines aus zwei ineinander geschobenen, rotationssymmetrischen gehaeuseteilen einer gasturbine gebildeten spaltes |
EP1270875A2 (de) | 2001-06-21 | 2003-01-02 | General Electric Company | Befestigung eines Dichtstreifens in einer Turbine mit Hilfe von Stiften |
DE60220636T2 (de) | 2002-03-01 | 2008-02-21 | General Electric Co. | Gasturbine mit gegenläufigen Niederdruckrotoren |
EP1939404A2 (de) * | 2006-12-19 | 2008-07-02 | United Technologies Corporation | Statoranordnung |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2743459A1 (de) * | 2012-12-11 | 2014-06-18 | MTU Aero Engines GmbH | Strömungsmaschine |
US11994039B2 (en) | 2016-07-18 | 2024-05-28 | General Electric Company | Shroud for a gas turbine engine |
US11306617B2 (en) | 2016-07-18 | 2022-04-19 | General Electric Company | Shroud for a gas turbine engine |
US10450897B2 (en) | 2016-07-18 | 2019-10-22 | General Electric Company | Shroud for a gas turbine engine |
US10816199B2 (en) | 2017-01-27 | 2020-10-27 | General Electric Company | Combustor heat shield and attachment features |
US10371383B2 (en) * | 2017-01-27 | 2019-08-06 | General Electric Company | Unitary flow path structure |
US11143402B2 (en) | 2017-01-27 | 2021-10-12 | General Electric Company | Unitary flow path structure |
US11111858B2 (en) | 2017-01-27 | 2021-09-07 | General Electric Company | Cool core gas turbine engine |
US10393381B2 (en) | 2017-01-27 | 2019-08-27 | General Electric Company | Unitary flow path structure |
US10253643B2 (en) | 2017-02-07 | 2019-04-09 | General Electric Company | Airfoil fluid curtain to mitigate or prevent flow path leakage |
US11149575B2 (en) | 2017-02-07 | 2021-10-19 | General Electric Company | Airfoil fluid curtain to mitigate or prevent flow path leakage |
US10385709B2 (en) | 2017-02-23 | 2019-08-20 | General Electric Company | Methods and features for positioning a flow path assembly within a gas turbine engine |
US11384651B2 (en) | 2017-02-23 | 2022-07-12 | General Electric Company | Methods and features for positioning a flow path inner boundary within a flow path assembly |
US10385776B2 (en) | 2017-02-23 | 2019-08-20 | General Electric Company | Methods for assembling a unitary flow path structure |
US10378373B2 (en) | 2017-02-23 | 2019-08-13 | General Electric Company | Flow path assembly with airfoils inserted through flow path boundary |
US10370990B2 (en) | 2017-02-23 | 2019-08-06 | General Electric Company | Flow path assembly with pin supported nozzle airfoils |
US11149569B2 (en) | 2017-02-23 | 2021-10-19 | General Electric Company | Flow path assembly with airfoils inserted through flow path boundary |
US10247019B2 (en) | 2017-02-23 | 2019-04-02 | General Electric Company | Methods and features for positioning a flow path inner boundary within a flow path assembly |
US11286799B2 (en) | 2017-02-23 | 2022-03-29 | General Electric Company | Methods and assemblies for attaching airfoils within a flow path |
US10253641B2 (en) | 2017-02-23 | 2019-04-09 | General Electric Company | Methods and assemblies for attaching airfoils within a flow path |
US11828199B2 (en) | 2017-02-23 | 2023-11-28 | General Electric Company | Methods and assemblies for attaching airfoils within a flow path |
US11391171B2 (en) | 2017-02-23 | 2022-07-19 | General Electric Company | Methods and features for positioning a flow path assembly within a gas turbine engine |
US11739663B2 (en) | 2017-06-12 | 2023-08-29 | General Electric Company | CTE matching hanger support for CMC structures |
US10822973B2 (en) | 2017-11-28 | 2020-11-03 | General Electric Company | Shroud for a gas turbine engine |
US11402097B2 (en) | 2018-01-03 | 2022-08-02 | General Electric Company | Combustor assembly for a turbine engine |
US11846207B2 (en) | 2020-03-13 | 2023-12-19 | General Electric Company | Nozzle assembly with alternating inserted vanes for a turbine engine |
US11268394B2 (en) | 2020-03-13 | 2022-03-08 | General Electric Company | Nozzle assembly with alternating inserted vanes for a turbine engine |
US11428160B2 (en) | 2020-12-31 | 2022-08-30 | General Electric Company | Gas turbine engine with interdigitated turbine and gear assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2466074A1 (de) | Gasturbinentriebwerk mit Kolbenringdichtung | |
EP2696037B1 (de) | Abdichtung des Strömungskanals einer Strömungsmaschine | |
DE102010016532A1 (de) | Turbinengehäuse mit Bolzenlagerung | |
EP3152407B1 (de) | Leitschaufelkranz, innenring und strömungsmaschine | |
EP3051068A1 (de) | Leitschaufelring für eine strömungsmaschine und additives herstellungsverfahren | |
DE10318852A1 (de) | Hauptgaskanal-Innendichtung einer Hochdruckturbine | |
DE102012102625A1 (de) | Rotationsbürstendichtung | |
DE60307100T2 (de) | Dichtungsanordnung für den rotor einer turbomaschine | |
DE102004024683A1 (de) | Dichtungssystem für horizontale Verbindungsstellen von Zwischenböden von Dampfturbinen | |
EP2647795A1 (de) | Dichtungssystem für eine Strömungsmaschine | |
EP2360352B1 (de) | Schraubenlose Zwischenstufendichtung einer Gasturbine | |
EP2960555A1 (de) | Bürstendichtungssystem zum abdichten eines spalts zwischen relativ zueinander bewegbaren bauteilen einer strömungsmaschine | |
EP2428647B1 (de) | Übergangsbereich für eine Brennkammer einer Gasturbine | |
EP2526263B1 (de) | Gehäusesystem für eine axialströmungsmaschine | |
EP2955336B1 (de) | Zwischengehäuse für eine Gasturbine sowie Gasturbine mit einem solchen Zwischengehäuse | |
EP3628030B1 (de) | Verfahren zum instandhalten einer strömungsmaschine | |
EP2284426B1 (de) | Strömungsmaschine | |
DE102010036071A1 (de) | Gehäuseseitige Struktur einer Turbomaschine | |
EP2031189A1 (de) | Dicht-Ring für die Abdichtung eines Spaltes zwischen den Leitschaufeln eines Leitschaufelkranzes einer stationären axial durchströmbaren Strömungsmaschine und dessen Rotor | |
EP3670845B1 (de) | Strömungsmaschine mit statischer dichtungsanordnung | |
EP2085575A1 (de) | Kombination von Bürstendichtung mit Kolbenring für grosse Dichtspalte | |
EP3536913B1 (de) | Innenring für eine turbomaschine und entsprechendes herstellungsverfahren | |
DE102013203870B4 (de) | Verdrehsicherung für Turbomaschinen | |
EP2863019B1 (de) | Dichtungsanordnung | |
EP2725202A1 (de) | Innenring-Dichtungsträgeranordnung eines verstellbaren Leitschaufelgitters einer Strömungsmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20121220 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MTU AERO ENGINES AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170424 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170905 |