EP2410823B1 - Zyklotron, das in der Lage ist, mindestens zwei Teilchentypen zu beschleunigen - Google Patents

Zyklotron, das in der Lage ist, mindestens zwei Teilchentypen zu beschleunigen Download PDF

Info

Publication number
EP2410823B1
EP2410823B1 EP20100170531 EP10170531A EP2410823B1 EP 2410823 B1 EP2410823 B1 EP 2410823B1 EP 20100170531 EP20100170531 EP 20100170531 EP 10170531 A EP10170531 A EP 10170531A EP 2410823 B1 EP2410823 B1 EP 2410823B1
Authority
EP
European Patent Office
Prior art keywords
cavity
transmission line
rod
frequency
intermediate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20100170531
Other languages
English (en)
French (fr)
Other versions
EP2410823A1 (de
Inventor
Michel Abs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Priority to EP20100170531 priority Critical patent/EP2410823B1/de
Priority to US13/807,989 priority patent/US8823291B2/en
Priority to PCT/EP2011/060835 priority patent/WO2012010387A1/fr
Priority to JP2013520036A priority patent/JP5858300B2/ja
Priority to CA2800290A priority patent/CA2800290C/fr
Priority to CN201180035515XA priority patent/CN103004292A/zh
Publication of EP2410823A1 publication Critical patent/EP2410823A1/de
Application granted granted Critical
Publication of EP2410823B1 publication Critical patent/EP2410823B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy

Definitions

  • the present invention relates to the field of cyclotrons, and in particular to cyclotrons capable of accelerating several types of charged particles having different charge (q) / mass (m) ratios, such as for example protons (equal q / m ratio at 1), alpha particles (ratio q / m equal to 1 ⁇ 2) or deuterons (ratio q / m also equal to 1 ⁇ 2).
  • protons equal q / m ratio at 1
  • alpha particles ratio q / m equal to 1 ⁇ 2
  • deuterons ratio q / m also equal to 1 ⁇ 2
  • such a cyclotron comprises acceleration electrodes 28, commonly called dice, each coupled to a vertical pillar 29 also called stem. Said die 28 and said pillar 29 are surrounded by a conductive enclosure which together constitute a resonant cavity.
  • the resonant cavities are generally excited by an RF power source and the successive passage of the charged particles in the accelerator gap consisting of dice and sectors brought to different potentials produces the acceleration of said particles.
  • a cyclotron can also operate in harmonic mode: in this case several oscillations of the RF voltage occur while the particles still circulate inside the die.
  • the pillar forms an axial transmission line essentially having an inductance for compensating the capacitive impedance of the die to minimize reactive RF power.
  • the cavities are arranged asymmetrically or symmetrically with respect to the median plane of circulation of the particles.
  • the two plates constituting the die are mechanically and electrically integral and constitute a single assembly carried by the pillar.
  • the lower and upper pillars respectively support the lower half-die and the upper half-die. These are electrically connected to each other at a few points in their perimeter as soon as the cyclotron is closed.
  • the die is part of a resonant cavity 5 as schematically shown in FIG. figure 1 at.
  • This cavity comprises the actual dice 10, a vertical cylindrical pillar 20 and a conducting enclosure 40.
  • figure 1c represents an equivalent circuit diagram of the cavity, in which the inductance L represents the pillar 20 and the capacitance C is that formed at the space between the die 10 and the conducting enclosure 40.
  • the . VS a parallel LC circuit
  • the present invention aims to solve at least partially the aforementioned difficulties.
  • the present invention relates to a resonant cavity for accelerating charged particles in a cyclotron, comprising a die, a pillar and a conductive enclosure at least partially including said pillar and said die, an end of said pillar supporting the die. , the conductive enclosure and the pillar thus forming a transmission line, an opposite end of said pillar being integral with a base of the conductive enclosure, characterized in that the linear capacitance of an intermediate portion of said transmission line located between said ends of the pillar is substantially greater than the linear capacity of the other portions of said transmission line.
  • Such a configuration makes it possible to make the cavity resonate according to two modes thus producing two distinct frequencies, without having to make use of mobile elements such as, for example, sliding shorts or moving plates, which resolves many of the problems mentioned. previously.
  • the linear capacitance of the intermediate portion of the transmission line is greater than twice the linear capacitance of the other portions of said transmission line. More preferably, the linear capacity of the intermediate portion of the transmission line is greater than ten times the linear capacity of the other portions of said transmission line.
  • the characteristic impedance of the intermediate portion and the characteristic impedances of the other portions of the transmission line are such that the cavity is able to resonate in two modes to produce two distinct frequencies in a substantially double ratio.
  • substantially double it is necessary to understand a frequency ratio lying between 1.7 and 2.3.
  • Such a cavity makes it possible to accelerate, in the same cyclotron, particles having values of q / m in a ratio of two, such as for example protons and alpha particles or protons and deuterons.
  • the pillar comprises a plurality of superimposed cylinders, one of these cylinders corresponding to said intermediate portion of the transmission line and having a mean diameter substantially greater than the average diameter of the other cylinders.
  • the conductive enclosure comprises a plurality of superposed hollow cylinders, one of these hollow cylinders corresponding to said intermediate portion of the transmission line and having a mean diameter substantially smaller than the average diameter of the other hollow cylinders.
  • the invention relates to a method for designing a dual-frequency resonant cavity as claimed.
  • the figure 1a represents a section of an asymmetric resonant cavity of a cyclotron of the prior art
  • the figure 1b represents a section of a symmetrical resonant cavity of a cyclotron of the prior art
  • the figure 1c represents a simplified equivalent electrical diagram of the resonant cavity of the Figure 1a or 1b ;
  • the figure 2a schematically represents a section of a cavity according to the invention with indication of the circulation of the current and the magnetic field during resonance at the low frequency;
  • the figure 2b represents the evolution of the voltage and the current along the pillar during the operation of the cavity of the figure 2a in mode ⁇ 4 ;
  • the Figure 2c represents a simplified equivalent electrical diagram of the resonant cavity of the figure 2a ;
  • the figure 3a schematically represents a section of a resonant cavity according to the invention with indication of the circulation of currents and magnetic fields during resonance at the high frequency;
  • the figure 3b represents the evolution of the voltage and the current along the pillar during the operation of the cavity of the figure 3a in mode 3 ⁇ ⁇ 4 ;
  • the figure 3c represents a simplified equivalent electrical diagram of the resonant cavity of the figure 3a ;
  • the figure 4a represents a real geometrical shape and a distribution of the equipotentials of a static electric field of a cavity of the prior art
  • the figure 4b schematizes a cavity of the prior art in the form of a coaxial transmission line whose characteristic impedance is a function of the diameters d and D;
  • the figure 5 represents a graph illustrating the power dissipated in a resonant cavity according to the invention for each of the two resonance frequencies as a function of the value of the capacitance of the characteristic low-impedance line portion;
  • the figure 6a represents an impedance diagram of a pillar in an embodiment of the invention.
  • the figure 6b schematically represents a section of the cavity according to the invention, to be related to the impedance diagram of the figure 6a ;
  • the figure 7 represents a section of a bi-frequency cyclotron equipped with four cavities according to the invention.
  • the figure 8 schematically represents a graph showing the two distinct frequencies in a double ratio obtained by frequency scanning of a cavity according to the invention.
  • the figure 2a schematically represents an exemplary embodiment of a dual-frequency cavity according to the invention.
  • This is a symmetrical cavity relative to the median plane of the cyclotron (represented by a mixed dotted line in the figure), but it is obvious that an asymmetrical cavity would also be suitable.
  • the cavity 6 comprises two half-dice 10 and 10 'electrically connected together and between which will circulate the particles to accelerate, two pillars each comprising three portions 20a, 20b and 20c (20a', 20b 'and 20c'), and two conductive speakers 40 and 40 'surrounding the whole.
  • the speakers have a cross section which, in this example, is substantially constant over the height of the pillars.
  • Each pillar respectively supports a half-die at one end, the opposite ends being respectively electrically connected to the bases 45 and 45 'of the conductive speakers 40 and 40' to constitute a short circuit from the radiofrequency point of view.
  • the different portions of the pillar are superimposed and preferably aligned along the same axis.
  • Said portions consist, in this example, of cylindrical tubes of different diameters, examples of dimensions of which will be given below when a method of designing a cavity according to the invention will be described.
  • the diameter of the intermediate portion 20b is substantially greater than the diameter of the other two portions 20a and 20c, so that the linear capacity (in Farad per meter) of this intermediate portion 20b is substantially greater than the linear capacity of the other two portions 20a and 20c. Consequently, the intermediate portion 20b will have a substantially capacitive behavior while the other portions 20a and 20c will have an essentially inductive behavior, in the operating frequency range of the cavity (which is in the megahertz).
  • a first type of operation is obtained by exciting the cavity in ⁇ 4 ( ⁇ being the wavelength), which makes it possible to obtain a first resonance frequency (hereinafter "the low resonance frequency", for example 33 MHz).
  • the figure 2b represents the evolution of the voltage (U x ) and the current (I x ) in this mode as a function of an axial position x along the pillar. The voltage is maximum at the die while the corresponding current is zero or very low. This is reversed when one comes back to the foot of the pillar.
  • This voltage configuration is particularly suitable for accelerating particles moving in the median plane of a cyclotron.
  • the magnetic field B is oriented identically on either side of the intermediate portion 20b (hereinafter "the low impedance line 20b").
  • the resulting current i 1 of this mode circulates axially and is distributed radially around the pillar as shown in FIG. figure 2a .
  • FIG 3a A second type of operation is illustrated in figure 3a .
  • the physical structure is identical to that of the figure 2a but we excite the mode 3 ⁇ ⁇ 4 , which makes it possible to obtain a second resonance frequency (hereinafter referred to as the "high resonance frequency", for example 66 MHz), higher than the first frequency.
  • the figure 3b represents the evolution of the voltage (U x ) and of the current (I x ) in this mode and, like the first resonance mode, the voltage is always maximum at the dice level, while the corresponding current is zero or very weak. Furthermore, the current is reversed at an intermediate point about halfway up the low impedance line 20b, which has the effect of dividing the capacitive effect of this portion of line 20b in two.
  • the figure 3c represents a simplified equivalent electrical diagram with the circulation of currents i 2 and i 3 respectively present in the upper and lower part of the half-cavity. They are distributed radially around the pillar, in opposition to a virtual horizontal plane transversely sharing the low impedance line 20b, in which they cancel each other out.
  • an intermediate portion of the cavity has a linear capacity substantially greater than the linear capacity of the other portions, preferably greater than twice the linear capacity of the other portions, even more preferably greater than ten times the linear capacity of the other portions.
  • a calculation method for designing and dimensioning a structure of a cavity according to the invention is provided below.
  • the characteristic impedance of the known pillar is evaluated, for example using the Tricomp program of Field Precision LLC. This program solves the electric field by the finite element method.
  • Z vs 1 VS . vs 0 from which a value of Z c is obtained, which is 90.1 ohms in the case of the example.
  • the surface currents in the cavity are then determined so as to evaluate the dissipated power and the quality factor. This can for example also be done using the Wavesim program.
  • the power dissipated in a cavity known according to the example provided is 1300 W and the quality factor Q is 10600. These values will serve as benchmarks for subsequent steps.
  • the numerical values obtained during these first five steps then make it possible to calculate the structure of a two-frequency cavity according to the invention.
  • the following steps of the calculation method according to the invention concern, by way of example, a cavity according to the Figures 2a and 3a and exploiting two resonant modes: a first mode to ⁇ 4 for a low frequency of about 33 MHz and a second mode to 3 ⁇ ⁇ 4 for a high frequency of about 66 MHz. It will be obvious to those skilled in the art to adapt what is necessary to adapt to these next steps for other frequencies and / or other frequency ratios.
  • a final optimization of the two-frequency cavity is preferably carried out by 2D electromagnetic simulation, for example using the Wavesim program. It examines the variation of the resonant frequency as a function of the variation of the geometrical characteristics of the different portions of the pillar. In particular, the most delicate point is the optimization of the low impedance line 20b. Indeed, if its capacity is chosen too low, the dissipation at the high frequency (eg at 66MHz) is important, as is the voltage developed at this point, in some cases as important as that present on the die. By increasing the value of the capacitance, the voltage decreases as well as the power dissipated in the bottom of the cavity.
  • an optimum point C opt is preferably determined.
  • the dissipated power is almost identical to the two resonance frequencies, as illustrated by figure 5 .
  • FIG. 6a is an impedance diagram of the different line portions constituting the pillar and the figure 6b being a schematic view in longitudinal section of a corresponding physical embodiment of the preferred cavity example according to the invention (only half of the cavity is shown).
  • the total length of the cavity is 1355 mm, of which 600 mm out of the cylinder head 60 of the cyclotron.
  • the low and high resonance frequencies are evaluated at 33.094 MHz and 66.486 MHz, respectively.
  • the dissipated powers are of the order of 2768 W at 33 MHz for a dc voltage of 25 kV and 2699 W at 66 MHz for a dc voltage of 50 kV.
  • the quality factors are 6700 to 33 MHz and 10000 to 66 MHz.
  • FIG. figure 7 A practical embodiment of a cavity according to the invention and its implantation in a cyclotron is illustrated in FIG. figure 7 .
  • the vertical section of this cyclotron makes it possible to distinguish four cavities according to the invention, only one of which has been annotated for clarity and comprehension.
  • the resonance frequencies of the cavity can be verified by performing a frequency sweep ("wobbulation"). This provides a curve of variation of the impedance as a function of the frequency revealing two distinct peaks. According to the preferred example provided, there is a peak at substantially 33 MHz and a second peak at substantially 66 MHz, as shown schematically in FIG. figure 8 .
  • the cavity 6 comprises a tuning capacitor 50 comprising a movable electrode electrically connected to the conducting enclosure 40 and placed opposite the pillar and substantially at the intermediate portion 20b. of the transmission line. This tuning capacitor 50 is visible on the figure 7 .
  • a resonant cavity (6) bi-frequency cyclotron which comprises a die (10), a pillar (20) and a conductive enclosure (40) encompassing said pillar and said die , one end of the pillar being integral with the base of the conductive enclosure and an opposite end of said pillar (20) supporting the die (10).
  • the conducting enclosure and the pillar form a transmission line comprising at least three portions (20a, 20b, 20c) each having a characteristic impedance (Z c1 , Z c2 , Z c3 ).
  • the characteristic impedance Z c2 of the intermediate portion (20b) is substantially lower than the characteristic impedances Z c1 and Z c3 of the two other portions (20a, 20b), which makes it possible to make the cavity resonate according to two modes in order to produce two frequencies separate without having to use moving parts such as for example sliding shorts or moving plates.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Claims (9)

  1. Hohlraumresonator (6) zur Beschleunigung von in ein Zyklotron geladenen Partikeln, der einen Mikrochip (10), eine Säule (20) und ein leitendes Gehäuse (40) enthält, das die Säule und den Mikrochip zumindest teilweise einschließt, wobei ein Ende der Säule (20) den Mikrochip (10) trägt, wobei das leitende Gehäuse und die Säule (20) so eine Übertragungsleitung formen, wobei ein entgegengesetztes Ende der Säule (20) fest mit einer Basis (45) des leitenden Gehäuses (40) verbunden ist, dadurch gekennzeichnet, dass die Leitungskapazität eines Zwischenabschnitts (20b) der Übertragungsleitung, der sich zwischen den Enden der Säule befindet, deutlich größer ist als die Leitungskapazität der anderen Abschnitte (20a, 20c) der Übertragungsleitung.
  2. Hohlraumresonator nach Anspruch 1, dadurch gekennzeichnet, dass die Leitungskapazität des Zwischenabschnitts (20b) der Übertragungsleitung größer als das Doppelte der Leitungskapazität der anderen Abschnitte (20a, 20c) der Übertragungsleitung ist.
  3. Hohlraumresonator nach Anspruch 2, dadurch gekennzeichnet, dass die Leitungskapazität des Zwischenabschnitts (20b) der Übertragungsleitung größer als das Zehnfache der Leitungskapazität der anderen Abschnitte (20a, 20c) der Übertragungsleitung ist.
  4. Hohlraumresonator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wellenwiderstand (Zc2 ) des Zwischenabschnitts (20b) und die Wellenwiderstände (Zc1 , Zc3 ) der anderen Abschnitte (20a, 20c) der Übertragungsleitung so sind, dass der Hohlraum (6) gemäß zwei Betriebsarten schwingen kann, um zwei unterschiedliche Frequenzen in einem im Wesentlichen doppelten Verhältnis zu erzeugen.
  5. Hohlraumresonator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Säule (20) mehrere übereinander angeordnete Zylinder (20a, 20b, 20c) aufweist, wobei einer dieser Zylinder (20b) dem Zwischenabschnitt (20b) der Übertragungsleitung entspricht und einen mittleren Durchmesser besitzt, der wesentlich größer als der mittlere Durchmesser der anderen Zylinder (20a, 20c) ist.
  6. Hohlraumresonator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das leitende Gehäuse (40) mehrere übereinander angeordnete Hohlzylinder aufweist, wobei einer dieser Hohlzylinder dem Zwischenabschnitt (20b) der Übertragungsleitung entspricht und einen mittleren Durchmesser besitzt, der wesentlich kleiner als der mittlere Durchmesser der anderen Hohlzylinder ist.
  7. Hohlraumresonator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er außerdem einen Abstimmkondensator (50) aufweist, der eine bewegliche Elektrode enthält, die elektrisch mit dem leitenden Gehäuse (40) verbunden und der Säule gegenüber und im Wesentlichen im Bereich des Zwischenabschnitts (20b) der Übertragungsleitung angeordnet ist.
  8. Gestaltungsverfahren eines Zweifrequenz-Hohlraumresonators nach einem der vorhergehenden Ansprüche, das die folgenden Schritte enthält:
    - Berechnung der Leitungskapazität der Säule eines Hohlraums, dessen Säule und leitendes Gehäuse einen konstanten Querschnitt aufweisen, was es ermöglicht, den Wellenwiderstand der so von der Säule und dem Leiter geformten Übertragungsleitung zu bestimmen;
    - Berechnung des Wellenwiderstands für verschiedene Säulendurchmesser;
    - Bestimmung des äquivalenten mittleren Außendurchmessers des leitenden Gehäuses;
    - elektromagnetische 2D-Simulation des Hohlraums, die sich auf die vorher gefundenen Abmessungen stützt, und Bestimmung des als kreisförmig angenommenen Durchmessers eines äquivalenten Mikrochips, der die gleiche Resonanzfrequenz erzeugt wie der Hohlraum, dessen Säule und leitendes Gehäuse einen konstanten Querschnitt aufweisen;
    - Berechnung der intrinsischen Parameter des Hohlraums, wie des Qualitätsfaktors Q, der gestreuten Leistung, der gespeicherten Energie, und Vergleich der Ergebnisse mit gemessenen Werten;
    - Charakterisierung, mit Hilfe einer Radiofrequenzsimulation, der verschiedenen Leitungsabschnitte, die die Säule eines Hohlraums bilden, von dem zwei Schwingungsbetriebsarten genutzt werden, die zwei unterschiedliche Frequenzen erzeugen.
  9. Gestaltungsverfahren eines Zweifrequenz-Hohlraumresonators nach Anspruch 8, das außerdem einen Schritt der Endoptimierung des Zweifrequenz-Hohlraums durch elektromagnetische 2D-Simulation enthält.
EP20100170531 2010-07-22 2010-07-22 Zyklotron, das in der Lage ist, mindestens zwei Teilchentypen zu beschleunigen Active EP2410823B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20100170531 EP2410823B1 (de) 2010-07-22 2010-07-22 Zyklotron, das in der Lage ist, mindestens zwei Teilchentypen zu beschleunigen
US13/807,989 US8823291B2 (en) 2010-07-22 2011-06-28 Cyclotron able to accelerate at least two types of particles
PCT/EP2011/060835 WO2012010387A1 (fr) 2010-07-22 2011-06-28 Cyclotron apte à accélérer au moins deux types de particules
JP2013520036A JP5858300B2 (ja) 2010-07-22 2011-06-28 サイクロトロンに用いる共振空洞
CA2800290A CA2800290C (fr) 2010-07-22 2011-06-28 Cyclotron apte a accelerer au moins deux types de particules
CN201180035515XA CN103004292A (zh) 2010-07-22 2011-06-28 能够对至少两种粒子进行加速的回旋加速器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20100170531 EP2410823B1 (de) 2010-07-22 2010-07-22 Zyklotron, das in der Lage ist, mindestens zwei Teilchentypen zu beschleunigen

Publications (2)

Publication Number Publication Date
EP2410823A1 EP2410823A1 (de) 2012-01-25
EP2410823B1 true EP2410823B1 (de) 2012-11-28

Family

ID=43304790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100170531 Active EP2410823B1 (de) 2010-07-22 2010-07-22 Zyklotron, das in der Lage ist, mindestens zwei Teilchentypen zu beschleunigen

Country Status (6)

Country Link
US (1) US8823291B2 (de)
EP (1) EP2410823B1 (de)
JP (1) JP5858300B2 (de)
CN (1) CN103004292A (de)
CA (1) CA2800290C (de)
WO (1) WO2012010387A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917529B (zh) * 2012-10-24 2016-01-13 中国科学院近代物理研究所 螺旋型多间隙高频谐振装置及聚束和加速方法
US9456532B2 (en) * 2014-12-18 2016-09-27 General Electric Company Radio-frequency power generator configured to reduce electromagnetic emissions
US9894747B2 (en) * 2016-01-14 2018-02-13 General Electric Company Radio-frequency electrode and cyclotron configured to reduce radiation exposure
CN106163072B (zh) * 2016-07-29 2018-08-07 中国原子能科学研究院 一种等时性回旋加速器射频腔体
US10306746B2 (en) * 2017-01-05 2019-05-28 Varian Medical Systems Particle Therapy Gmbh Cyclotron RF resonator tuning with asymmetrical fixed tuner
KR102165370B1 (ko) * 2019-01-31 2020-10-14 성균관대학교산학협력단 다중 캐비티를 포함하는 사이클로트론 시스템
JP7397622B2 (ja) * 2019-10-29 2023-12-13 住友重機械工業株式会社 キャビティ、及びステム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2458201A1 (fr) * 1979-05-31 1980-12-26 Cgr Mev Systeme resonnant micro-onde a double frequence de resonance et cyclotron muni d'un tel systeme
US4507616A (en) * 1982-03-08 1985-03-26 Board Of Trustees Operating Michigan State University Rotatable superconducting cyclotron adapted for medical use
US4641057A (en) * 1985-01-23 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting synchrocyclotron
LU85895A1 (fr) 1985-05-10 1986-12-05 Univ Louvain Cyclotron
JPH0766877B2 (ja) * 1987-06-09 1995-07-19 岩 三浦 加速空胴共振器
US4949047A (en) * 1987-09-24 1990-08-14 The Boeing Company Segmented RFQ accelerator
BE1005530A4 (fr) * 1991-11-22 1993-09-28 Ion Beam Applic Sa Cyclotron isochrone
US6130926A (en) * 1999-07-27 2000-10-10 Amini; Behrouz Method and machine for enhancing generation of nuclear particles and radionuclides
US6617810B2 (en) * 2000-03-01 2003-09-09 L-3 Communications Corporation Multi-stage cavity cyclotron resonance accelerators
DE10010967A1 (de) * 2000-03-07 2001-09-13 Bosch Gmbh Robert Hohlraumresonator mit abstimmbarer Resonanzfrequenz
CN101061759B (zh) * 2004-07-21 2011-05-25 斯蒂尔瑞弗系统有限公司 用于同步回旋加速器的可编程的射频波形发生器
ITRM20040408A1 (it) * 2004-08-11 2004-11-11 Istituto Naz Di Fisica Nuclea Metodo di progettazione di una cavita' a radiofrequenza, in particoalre da utilizzare in un ciclotrone, cavita' a radiofrequenza realizzata utilizzando tale metodo, e ciclotrone utilizzante tale cavita'.
US8581523B2 (en) * 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US9603235B2 (en) * 2012-07-27 2017-03-21 Massachusetts Institute Of Technology Phase-lock loop synchronization between beam orbit and RF drive in synchrocyclotrons

Also Published As

Publication number Publication date
JP2013531354A (ja) 2013-08-01
CA2800290A1 (fr) 2012-01-26
CN103004292A (zh) 2013-03-27
WO2012010387A1 (fr) 2012-01-26
US8823291B2 (en) 2014-09-02
CA2800290C (fr) 2016-11-08
EP2410823A1 (de) 2012-01-25
US20130106315A1 (en) 2013-05-02
JP5858300B2 (ja) 2016-02-10

Similar Documents

Publication Publication Date Title
EP2410823B1 (de) Zyklotron, das in der Lage ist, mindestens zwei Teilchentypen zu beschleunigen
CH623182A5 (de)
EP2193694A1 (de) Geräte zur erzeugung von mikrowellenplasma und plasmabrenner
FR2726729A1 (fr) Dispositif de production d'un plasma permettant une dissociation entre les zones de propagation et d'absorption des micro-ondes
EP2156538B1 (de) Elektromagnetischer aktor mit variabler reluktanz
CA2745984C (fr) Procede de controle de l'usure d'au moins une des electrodes d'une torche a plasma
EP0346168B1 (de) Plasmareaktor
EP0184475A1 (de) Verfahren und Vorrichtung zum Starten einer Mikrowellenionenquelle
EP0410880A1 (de) Freielektronen Laser mit verbessertem Elektronenbeschleuniger
FR3048906A1 (fr) Procede de soudage entre un element conducteur et un pole de batterie et batteries assemblees avec un tel procede
EP1607761A1 (de) Multifrequenz-Stromeinspeisung und Spule und NMR-Spektrometer mit einer solchen Stromeinspeisung
FR2925217A1 (fr) Structure hyperfrequences pour tube microondes avec dispositif de confinement du faisceau a aimants permanents et refroidissement ameliore
EP0296912B1 (de) Verfahren und Vorrichtung zur Verbesserung des Entladungsvorgangs eines elektrischen Bogens zwischen zwei Elektroden durch Dazwischenstellen eines isolierenden Elementes mit grossem Widerstand und Stossgenerator, welcher solch ein Verfahren und solch eine Vorrichtung anwendet, insbesondere für hydraulische Lithotrypsie
FR2694447A1 (fr) Canon à électrons pour fournir des électrons groupés en impulsions courtes.
FR2643506A1 (fr) Dispositif generateur d'ondes hyperfrequences a cathode virtuelle
EP0407558A1 (de) Mikrowellen-verstärker oder oszillator-anordnung.
FR3003702A1 (fr) Antenne filaire amelioree a large bande de frequences.
FR2905803A1 (fr) Dispositif de dephasage dielectrique rotatif pour elements rayonnants
FR2514197A1 (fr) Tube micro-onde a faisceau lineaire reglable focalise par aimant permanent
WO2007090850A1 (fr) Dispositif de couplage entre une antenne a plasma et un generateur de signal de puissance
EP0445009B1 (de) Frequenzabstimmbare Hochfrequenzröhre
FR2796218A1 (fr) Dispositif et procede pour generer des variations controlees intenses et breves de pression magnetique au sein d'un echantillon de materiau solide
WO2019193297A1 (fr) Dispositif de chauffage localise pour appareil de fabrication additive
FR2999332A1 (fr) Generateur d'ondes hyperfrequences et procede de generation d'ondes associe
EP1866977A1 (de) Verfahren zum bestimmen der stromleitungsfrequenz eines piezoelektrischen aktors

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20110617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 586732

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010003808

Country of ref document: DE

Effective date: 20130124

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 586732

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121128

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130328

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130301

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010003808

Country of ref document: DE

Effective date: 20130829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140726

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140729

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130722

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100722

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150722

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240729

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240729

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240725

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240727

Year of fee payment: 15